Math879, HW9

46. Let $p(x)=\sum_{i=0}^{n} a_{i} x_{i} \in \mathbf{R}[x]$ be a polynomial with real coefficients. Show that the number of positive roots of $p[x]$ is bounded by the number of sign changes in the sequence of coefficients: $a_{n}, a_{n-1}, \ldots, a_{0}$.
47. Show that the three heights of a spherical triangle meet at a point.
48. Show that an infinite dimensional Hilbert space is the union of two disjoint dense convex sets.
49. Assume given $n>2$ and two disjoint circles Γ and γ, such that the second one is encircled by the first one. Assume that there exists a point P on Γ such that the following n-loop property is satisfied: set $P=P_{0}$ and define P_{1}, P_{2}, \ldots inductively so that the interval $\left[P_{i} P_{i+1}\right.$] touches γ so that the orientation of the interval is compatible with the clockwise orientation of γ, then $P_{n}=P_{0}$. Prove that in this case any point of Γ satisfies the same n-loop property.
50. (i) Does there exist an uncountable set S of subsets of \mathbf{N} such that for any $A, B \in S$ either $A \subset B$ or $B \subset A$?
(ii) Does there exist an uncountable set S of subsets of \mathbf{N} such that for any $A, B \in S$ the intersection $A \cap B$ is finite?
51. Let $\left(S_{i}, f_{i j}\right)$ be a filtered family of sets. This means that I is a partially ordered set such that for any $i, j \in I$ there exists k such that $k>i, k>j$, for each $i \in I$ we are given a set S_{i} and for any pair $i>j$ we are given a map $f_{i j}: S_{i} \rightarrow S_{j}$ so that for any triple $i>j>k$ one has $f_{i k}=f_{j k} \circ f_{i j}$. Recall that the limit $S=\lim _{i \in I} S_{i}$ is the set of tuples $\left(s_{i}\right)_{i \in I}$ such that $s_{i} \in S_{i}$ and for any $i>j$ one has that $f_{i j}\left(s_{i}\right)=s_{j}$. Can it happen that all maps $f_{i j}$ are surjective but the limit S is empty?
