Math879, HW5

25. Let P be a polygon with n vertices $P_{1}, \ldots, P_{n}, P_{n+1}=P_{1}$.
(a) Assume that one is given midpoints of the edges of P. Can one reconstruct P ? Does the answer depend on n ?
(b) Assume that one is given a triangle $A B C$ and points Q_{1}, \ldots, Q_{n} such that the triangles $P_{i} Q_{i} P_{i+1}$ (with this order) are similar to $A B C$. Can one reconstruct P ?
26. Let $f, g \in \mathbf{Z}[x]$ be two relatively prime polynomials with $\operatorname{deg}(f)>\operatorname{deg}(g)$. Show that for every sufficiently large prime p the polynomial $p f(x)+g(x)$ is irreducible.
27. A map $f: X \rightarrow X$, where X is a compact metric space, is called distal if for any $x \neq y \in X$ one has that $\inf _{n \in \mathbf{N}} d\left(f^{n}(x), f^{n}(y)\right)>0$. Show that a continuous distal map is surjective.
28. Construct a perfect (i.e. closed without isolated points) subset of \mathbf{R} which does not contain any rational point.
29. Given points A and B in the plane and using compass only find points $P_{0}=A, P_{1}, \ldots, P_{n-1}, P_{n}=B$ that divide the interval $A B$ into n equal parts.
30. Assume that $a, b>1$ are integers with $(a, b)=1$, and p is a prime dividing $a^{2}-2 b^{2}$. Prove that p itself is of the form $m^{2}-2 n^{2}$ for $m, n \in \mathbf{Z}$.
