Math879, HW4

19. Let γ_{1} and γ_{2} be two circles in the plane with a non-empty intersection. Show that one can construct their centers using straightedge only.
20. Let L be a lattice in \mathbf{R}^{n} whose fundamental box has volume one. Show that a symmetric (i.e. $M=-M$) convex set in \mathbf{R}^{n} whose volume is larger than 2^{n} contains a nonzero point of L.
21. Let $C_{i}, i \in\{1,2,3\}$ be three disjoint circles in the plane so that neither of them encompasses another one. Let $P_{i j}$ be the intersection of the two outside tangents to the circles C_{i} and C_{j}. Show that these three points lie on a line.
22. Is it always true that given two polygons P, P^{\prime} in \mathbf{R}^{2} of the same area S, one can find a finite set of polygons P_{1}, \ldots, P_{n} of total area S such that both P and P^{\prime} can be covered by P_{1}, \ldots, P_{n} ?
23. Can a cube and a regular tetrahederon of equal volumes be cut using finitely many hyperplanes to produce the same sets of pieces?
24. Show that $\int_{0}^{1} \frac{d x}{x^{x}}=\sum_{n=1}^{\infty} \frac{1}{n^{n}}$.
