Math879, HW3

13. Let γ_{1} and γ_{2} be two concentric circles on the plane. Show that one can construct their joint center using straightedge only.
14. By a strip of width l we mean an (unbounded) subset of \mathbf{R}^{2} lying between two parallel lines with distance l between them. Assume that a circle of radius r is covered by s strips of lengthes l_{1}, \ldots, l_{s}. Prove that $2 r \leq l_{1}+\cdots+l_{s}$.
15. Show that given a sequence of numbers of length $n^{2}+1$ there is a monotonic subsequence of length $n+1$.
16. Show that given any collection of $n>2$ points in the plane which are not all on one line there is a line passing through exactly two of them.
17. Compute $\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
18. Show that a bounded function $f: \mathbf{Z}^{2} \rightarrow \mathbf{R}$ which satisfies

$$
f(x, y)=\frac{1}{4}(f(x+1, y)+f(x, y+1)+f(x-1, y)+f(x, y-1))
$$

is constant.

