Math879, HW2

7. For a simplex S in \mathbf{R}^{3} its perimeter $P(S)$ is the sum of lengthes of its six edges. Prove that if $S \subseteq S^{\prime}$ are two simplices then $P(S) \leq \frac{4}{3} P\left(S^{\prime}\right)$.
8. Let a_{1}, \ldots, a_{n} be complex numbers. Find all eigenvalues of the matrix

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
a_{2} & a_{3} & \ldots & a_{1} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n} & a_{1} & \ldots & a_{n-1}
\end{array}\right)
$$

9. Let K be a compact convex subset in \mathbf{R}^{d} with smooth boundary. Show that it can be covered by $d+1$ subsets whose diameters are strictly smaller than the diameter of K.
10. Show that \mathbf{Z} is not a disjoint union of finitely many arithmetic sequences with distinct minimal gaps.
11. Given a circle γ and a point P outside of it, construct the tangents from P to γ using straightedge only.
12. Show that a finitely generated group having no proper subgroup of finite index cannot be embedded in $\operatorname{GL}(n ; C)$.
