Math879, HW10

52. Let γ be a closed curve on the surface of a unit cube which is smooth outside of finitely many points and passes through all six facets. What is the minimal possible length of C?

53. Let $p = (p_1, p_2, \ldots, p_n) \colon \mathbf{C}^n \to \mathbf{C}^n$ be a polynomial map.

- (a) Show that if p is injective then it is onto.
- (b) Is it true that if p is onto then it is injective?
- (c) Is the claim of (a) true for polynomial maps $\mathbf{R}^n \to \mathbf{R}^n$?

54. Show that any compact metric space can be embedded isometrically in $L^{\infty}[0,1]$, the Banach space of essentially bounded integrable functions on the interval [0,1] with the supremum norm.

55. Four circularly ordered players P_i , $i \in \mathbb{Z}/4\mathbb{Z}$ use four dices A_1, A_2, A_3, A_4 , and player *i* uses only dice A_i . Show that one can assign numbers to the sides of the dices A_i so that for each of the four pairs P_i, P_{i+1} the winning probability of P_i against P_{i+1} is larger than 1/2. (Naturally, the game is that they independently throw the dices, and the larger result wins.)

56.

(a) Can one find polynomials $P, Q, R \in \mathbf{R}[x, y, z]$ so that $P(x, y, z)(2x - 3y + z - 1)^3 + Q(x, y, z)(-x + y - z)^4 + R(x, y, z)(x - 2y - 1)^5 = 1$? (b) Can one find polynomials $P, Q, R \in \mathbf{R}[x, y, z]$ so that $P(x, y, z)(2x - 3y + z - 1)^3 + Q(x, y, z)(-x + y - z - 1)^4 + R(x, y, z)(x - 2y - 1)^5 = 1$?

57. Let $K = \mathbf{Q}^{ab}$ be the maximal cyclotomic extension of \mathbf{Q} (i.e. K is obtained by adjoining all roots of 1 to \mathbf{Q}), and let $G = G_{K/\mathbf{Q}}$ be its Galois group over \mathbf{Q} . Is it true that for any subgroup $H \subset G$ of index 2 the fixed field K^H is a quadratic extension of \mathbf{Q} ?