Math879, HW1

1. By a box B in \mathbf{R}^{n} we mean a product of n closed intervals $\left[a_{i}, b_{i}\right.$], that is, B is the set of points $x=\left(x_{1}, \ldots, x_{n}\right)$ such that $a_{i} \leq x_{i} \leq b_{i}$ for any i with $1 \leq i \leq n$. The numbers $b_{i}-a_{i}$ will be called the edge lengthes of B. Assume that a box B is presented as a union of boxes B_{1}, \ldots, B_{l} so that each intersection $B_{j} \cap B_{k}$ has empty interior. Prove that if each B_{j} has an integral edge length, then B also has an integral edge length. Your proof should not use calculus (no integrals and derivatives, please).
2. Let $r>0$ be an integer with primary decomposition $r=2^{l} \prod_{i=1}^{a} p_{i}^{n_{i}} \prod_{j=1}^{b} q_{j}^{m_{j}}$. Let N_{r} be the total number of natural solutions $(x, y) \in \mathbf{N}^{2}$ of the equation $x^{2}+y^{2}=$ r. Prove that $N_{r}>0$ if and only if each exponent m_{j} is even, and in the latter case $N_{r}=\prod_{i=1}^{a}\left(n_{i}+1\right)$.
3. For a natural $r>0$ and $i \in\{1,3\}$ let $D_{i, r}$ denote the number of natural divisors of r whose remainder modulo 4 is i. Prove that $N_{r}=D_{1, r}-D_{3, r}$, where N_{r} is as in problem 2. (To solve this problem you can assume that the assertion of problem 2 is known.)
4. Assume that one fixed in \mathbf{R}^{2} a closed interval $I=[P, Q]$ and a line l parallel to I (and not containing I). Show how to find the center of I using the straightedge only.
5. Assume that one fixed a circumference C in \mathbf{R}^{2}. Prove that using straightedge only one cannot find the center of the circle encompassed by C.
6. Give an example of a finitely generated group with no proper subgroups of finite index.
