
§2. Affinoid algebras *

2.1. The algebra of convergent power series. Let k be a non-Archimedean field. For

a tuple r = (r1, . . . , rn) of positive numbers, we denote by k{r−1T} = k{r−1
1 T1, . . . , r

−1
n Tn} the

subalgebra of the algebra of formal power series k[[T1, . . . , Tn]] consisting of series of the form

f =
∑
ν∈Zn

+
aνT

ν with |aν |rν → 0 as |ν| = ν1+ . . .+νn → ∞. It is a Banach k-algebra with respect

to the norm ||f || = maxν{|aν |rν}. It is easy to see that the norm on k{r−1T} is multiplicative.

We set Tn = k{T1, . . . , Tn}. Notice that ||Tn|| = |k|. One sets T ◦
n = {f ∈ T

∣∣||f || ≤ 1} and

T ◦◦
n = {f ∈ T

∣∣||f || < 1}. Then T ◦
n is a ring, T ◦◦

n is an ideal in T ◦
n , and the quotient ring

T̃n = T ◦
n /T ◦◦

n is canonically isomorphic to the ring of polynomials k̃[T1, . . . , Tn].

2.1.1. Lemma. (i) A nonzero element f ∈ k{r−1T} is invertible if and only if |f(0)| = ||f ||

and ||f − f(0)|| < ||f ||;

(ii) for every nonzero element f ∈ Tn there exists a ∈ k with |a| = ||f || such that the element

f + a is not invertible in Tn.

Proof. (i) is easy. (ii) If |f(0)| < ||f ||, then, by (i), the element f + a is not invertible for

any element a ∈ k with |a| = ||f ||. If |f(0)| = ||f ||, then, also by (i), the element f − f(0) is not

invertible.

2.1.2. Corollary. The Jacobson radical j(Tn) (i.e., the intersection of maximal ideals) of Tn
is zero).

Proof. Assume now that such a nonzero element f ∈ Tn lies in the Jacobson radical of Tn,

and let a be an element from k with |a| = ||f || for which the element f + a is not invertible. Then

it is contained in a maximal ideal m and, by the assumption, f ∈ m. It follows that a ∈ m, which

is a contradiction.

2.1.3. Corollary. Every k-algebra homomorphism φ : Tn → Tm is a contraction, i.e.,

||φ(f)|| ≤ ||f || for all f ∈ Tn.

Proof. Assume that there is an element f ∈ Tn with ||φ(f)|| > ||f ||, and let a ∈ k be an

element with |a| = ||φ(f)|| such that the element φ(f)+a is not invertible. Then the element f +a
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is not invertible. But ||f || < |a|, which contradicts Lemma 2.1.1.

2.1.4. Corollary. If φ : Tn → Tm is a k-algebra isomorphism, then m = n and φ is an

isometric isomorphism.

Proof. That φ is an isometric isomorphism follows from Corollary 2.1.3. It follows that φ

induces an isomorphism of k̃-algebras φ̃ : T̃n = k̃[T1, . . . , Tn]
∼→ T̃m = k̃[T1, . . . , Tm] and of fields of

rational functions k̃(T1, . . . , Tn)
∼→ k̃(T1, . . . , Tm). We therefore get m = n.

2.1.4. Corollary. A k-algebra automorphism φ of Tn is bijective if and only if φ̃ is bijective.

Proof. The direct implication follows from Corollary 2.1.3. Assume that φ̃ is bijective. Then

φ is obviously isometric, and so it remains to show that it is surjective. It suffices to show that

there exists ε < 1 such that for every f ∈ Tn one can find g ∈ Tn with ||f − φ(g)|| ≤ ε||f ||. By

the assumption, there are elements h1, . . . , hn ∈ T ◦
n with ε := max

1≤i≤n
||Ti − φ(hi)|| < 1. Using the

inequality

||u1 · . . . · un − v1 · . . . · vn|| =
n∑
i=1

(u1 · . . . · uivi+1 · . . . · vn − u1 · . . . · ui−1vi · . . . · vn)

≤ ( max
1≤i≤n

|ui − vi|) · ( max
1≤i≤n

{||ui||, ||vi||))n−1

it is easy to show that, if f =
∑
ν∈Zn

+
aνT

ν , the above fact is true for g =
∑
ν∈Zn

+
aνh

ν .

For a non-Archimedean field K over k, we set En(K) = {x = (x1, . . . , xn) ∈ Kn
∣∣|xi| ≤ 1 for

all 1 ≤ i ≤ n}. Any element f ∈ Tn defines a continuous function En(K) → K. Conversely, if a

formal power series f ∈ k[[T1, . . . , Tn]] is convergent at all points x ∈ En(K), then f ∈ Tn.

2.1.5. Lemma (Maximum modulus principle). If the residue field K̃ is infinite, then for any

f ∈ Tn there exists a point x ∈ En(K) with |f(x)| = ||f ||.

As the proof shows one can find such a point x with the additional property |xi| = 1 for all

1 ≤ i ≤ n.

Proof. We may assume that ||f || = 1. Since the field K̃ is infinite, the nonzero polynomial

takes a nonzero value at some point x̃ = (x̃1, . . . , x̃n) ∈ k̃n. If x is a point of from En(K) whose

image in k̃n is k̃, then |f(x)| = 1.

2.2. Weierstrass’ theorems. Let A be a non-Archimedean commutative Banach ring, and

let A{r−1T} be the ring of formal power series f =
∑∞
n=0 anT

n with ||an||rn → 0. It is a non-

Archimedean commutative Banach ring with respect with the norm ||f || = max{||an||rn}. Assume

that the norm on A is multiplicative, i.e., ||ab|| = ||a|| · ||b|| for all a, b ∈ A. Then the norm on
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A{r−1T} is also multiplicative and, in particular, any principal ideal of A{r−1T} (i.e. an ideal of

the form A{r−1T}f) is closed. The order ord(f) of a nonzero element f =
∑∞
n=0 anT

n ∈ A{r−1T}

is the maximal n with ||f || = ||an||rn. The element f is said to be distinguished if an ∈ A∗. It is

easy to see that for nonzero elements f, g ∈ A{r−1T} the following is true:

(1) ord(fg) = ord(f) + ord(g) and ||f || · ||g||;

(2) if ||f || < ||g||, or ||f || = ||g|| and ord(f) < ord(g), then ord(f + g) = ord(g) and ||f + g|| =

||g||.

Let A{r−1T}<n the free Banach A-submodule of polynomials of degree less than n.

2.1.1. Proposition (Weierstrass division theorem). Let f be a nonzero element of A{r−1T}

of order n. Then

(i) the following homomorphism of Banach A-modules is an isometric monomorphism

A{r−1T}f ⊕A{r−1T}<n → A{r−1T} : (Qf,R) 7→ g = Qf +R ;

(ii) the above map is an isomorphism if and only if the element f is distinguished.

Proof. (i) By the property (1), all nonzero summands in the right hand side have pairwise

distinct orders, and so the statement follows from the property (2).

(ii) Assume first that the map considered is a bijection. Then Tn = Qf + R for some Q ∈

A{r−1T} and R ∈ A{r−1T}<n. From the properties (1)-(2) it follows that ord(Q) = 0, i.e., if f is as

above and Q =
∑∞
i=0 ciT

i, then ||c0|| > ||ci||ri for all i ≥ 1. One has 1 = c0an+ c1an−1+ . . .+ cna0

and ||cian−i|| < ||c0an|| for all 1 ≤ i ≤ n. It follows that the element c0an = 1 −
∑n
i=1 cian−i is

invertible in A and, in particular, an ∈ A∗. Conversely, assume that an ∈ A∗. Then the number

ε′ = max
i>n

{ ||ai||ri
||f || } is strictly less than one. Let ε is a positive number with ε′ ≤ ε < 1. We set

f̃ =
∑n
i=0 aiT

i and, for a nonzero element g =
∑∞
i=0 ciT

i ∈ A{r−1T}, we set g̃ =
∑m
i=0 ciT

i,

where m is maximal with the property ||am||rm > ε||g||. By the construction, ||f − f̃ || ≤ ε||f ||

and ||g − g̃|| ≤ ε||g||. By Euclid’s division algorithm, there exist Q,R ∈ A[T ] with R of degree at

most n− 1 such that g̃ = Qf̃ +R. By (i), we have ||g̃|| = max(||Q|| · ||f ||, ||R||) and, in particular,

||Q||·||f || ≤ ||g||. It follows that ||g−(Qf+R)|| = ||g−g̃−Q(f−f̃)|| ≤ max{||g−g̃||, ||Q||·||f−f̃ ||) ≤

ε||g||. Thus, if M denotes the closed Banach A-submodule of A{r−1T} which is the image of the

map (i), then, for any element g ∈ A{r−1T}, there exists an element h ∈M with ||g − h|| ≤ ε||g||.

It follows that M = A{r−1T}.

2.2.2. Proposition (Weierstrass preparation theorem). Let f ∈ A{r−1T} be a distinguished

element of order n. Then there exists a unique decomposition f = e ·w, where w ∈ A[T ] is a monic

polynomial of degree and order n, and e is an invertible element of A{r−1T}.
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Proof. By Proposition 2.2.1, there exist unique Q ∈ A{r−1T} and R ∈ A{r−1T}<n with

Tn = Qf + R and max{||Qf ||, R} = ||Tn|| = rn, and we define w = Tn − R. Then w is a monic

polynomial of degree n. Since ||R|| ≤ rn and ord(R) < n, it follows that w is of order n and

||w|| = rn. We have w = Qf . It follows that ||Q|| = ||an||−1 and ord(Q) = 0. Since w is monic,

the latter implies that the free coefficient of Q is invertible in A. It follows that Q is invertible in

A{r−1T} and, setting e = Q−1, we get f = e ·w. Finally, is such a decomposition is given, one has

Tn = e−1f + (Tn −w), and the uniquence follows from the correspondent property in Proposition

2.2.1.

2.2.3 Definition. A Weierstrass polynomial is a monic polynomial w ∈ A[r−1T ] ⊂ A{r−1T}

whose order is equal to its degree.

Notice that, given two monic polynomials w1, w2 ∈ A[r−1T ], their product w1 ·w2 is a Weier-

strass polynomial if and only if so are both of them.

2.2.4. Proposition (Weierstrass finiteness theorem). Let B be a finite Banach A{r−1T}-

algebra, and assume that the kernel of the corresponding homomorphism A{r−1T} → B contains

a Weierstrass polynomial. Then B is a finite Banach A-algebra.

We now represent Tn in the form Tn−1{Tn}, and call distinguished elements Tn-distinguished.

2.2.5. Proposition. For every nonzero element f ∈ Tn, there exists a k-automorphism

σ : Tn
∼→ Tn such that σ(f) is Tn-distinguished.

Proof. We may assume that ||f || = 1. Let f =
∑
ν∈Zn

+
aνT

ν . There are only finitely many

tuples ν with |aν | = 1. Let µ be the maximal among them with respect to the lexicographical

ordering, and let d be an integer strictly greater than all of the coordinates νi of such ν’s. Define

a k-endomorphism σ of Tn by σ(T1) = T1 + T d
n−1

n , σ(T2) = T2 + T d
n−2

n , . . ., σ(Tn−1) = Tn−1 + T dn ,

and σ(Tn) = Tn. It is an automorphism since σ̃ is an automorphism of k̃[T1, . . . , Tn]. We claim

that σ(f) is Tn-distinguished of order m = µ1d
n−1 + . . . + µn−1d + µn. Indeed, this follows from

the fact that, by our choice of d, if ν is such that |aν | = 1 and ν ̸= µ, then the similar sum for ν is

strictly smaller than m.

2.3. Rückert’s theory. Let A be a commutative ring with unity, and let B be a commutative

ring that contains the ring of polynomials A[T ].

2.3.1. Definition. The ring B is said to be Rückert over A if there is a set of monic

polynomials W ⊂ A[T ] with the following properties:
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(1) if the product of two monic polynomials lies in W , then so do the factors;

(2) for every w ∈W , A[T ]/wA[T ]
∼→ B/wB;

(3) for every nonzero f ∈ B there is an automorphism σ of B such that σ(f) = e · w, where

e ∈ B∗ and w ∈W .

For example, Tn is Rückert over Tn−1.

2.3.2. Proposition. Assume that B is Rückert over A. Then

(i) if A is Noetherian, then so is B;

(ii) if A is Jacobson, then rad(B/b) = j(B/b) for any nonzero ideal b ⊂ B;

(iii) if A is factorial, then so is B.

It is not true in general that in (ii) B is Jacobson. Example is as follows: A = k is a field and

B = k[[T ]]. One has nil(k[[T ]]) = 0 and j(k[[T ]]) is the unique maximal ideal (generated by T ).

Proof. (i) Let b be a nonzero ideal in B. By the property (3), we may assume it contains

a polynomial w ∈ W . Furthermore, by the property (2), B/wB = A[T ]/wA[T ]. Since the latter

is Noetherian, by Hilbert’s basis theorem, then so is B/wB. But B/wB is a finite A-module. It

follows that the ideal b is finitely generated.

(ii) Since rad(B/b) is the intersection of all prime ideals, we may assume that b is a nonzero

prime ideal, and so we have to show that j(B/b) = 0. Let a = A∩b. Since b ̸= 0, we may assume

b contains a polynomial from W , and it follows that B/b is finite over A/a. For b ∈ j(B/b), let

bn+a1b
n−1+ . . .+an = 0 be an equation over A/a of minimal degree. Then an = −(bn+a1b

n−1+

. . .+ an−1b) ∈ j(B/b) ∩A/a ⊂ j(A/a) = 0. It follows that b = 0.

(iii) By the assumption, A is an integral domain, and every nonzero element of A is a finite

product of prime elements. (An element of A is prime if it generates a prime ideal.) Any such

product decomposition is unique up to invertible elements, i.e., if p1 · . . . · pm = q1 · . . . · qn, then

m = n and, after a permutation, qi = eipi with ei ∈ A∗. Let f be a nonzero element of B.

Applying an automorphism and multiplying by an invertible element, we may assume that f ∈W .

Let K be the fraction field of A. Since K[T ] is factorial, there is a factorization f = p1 · . . . · pm
into monic irreducible polynomials in K[T ]. Furthermore, since A is factorial, there exist elements

a1, . . . , an ∈ A such that the polynomials a1p1, . . . , anpn lie in A[K] and are primitive (i.e., p is

primitive if no prime elements of A divide all of the coefficients of p). Then (
∏n
i=1 ai)f =

∏n
i=1(aipi)

is a primitive polynomial (by the Gauss lemma). It follows that the product
∏n
i=1 ai is invertible

and, therefore, all ai’s are invertible. Thus, the above factorization of f takes place in A[X]. We

claim that the elements p1, . . . , pn are primes in B. By the property (1), these elements belong
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to W and, by (2), B/piB = A[T ]/piA[T ], i.e., it suffices to verify that pi’s are prime elements of

A[T ]. By the Gauss lemma, one has A[T ] ∩ piK[T ] = piA[T ], which implies that the canonical

homomorphism A[T ]/piA[T ] → K[T ]/piK[T ] is injective.

2.3.3. Corollary. The ring Tn is Noetherian, factorial and Jacobson.

Proof. The first two properties follow directly from Proposition 2.3.2(i) and (iii), and the

third one follows from (ii) and Corollary 2.1.2 stating that j(Tn) = 0.

A Banach module M over a commutative Banach ring A is said to be finite if there is an

admissible epimorphism An →M . It is easy to show that the evident functor from the category of

finite Banach A-modules to that of finite A-modules is fully faithful.

2.3.4. Proposition. (i) If A = Tn, the above functor is an equivalence of categories;

(ii) all ideals of Tn are closed.

Proof. It suffices to verify the following fact. If M is an submodule of a Banach Tn-module N

such that its closureM is finitely generated over Tn, thenM =M . Indeed, this immediately implies

(ii) and, by fully faithfulness, it suffices to show that any finite Tn-module M has a structure of a

finite Banach Tn-module. For this we take an arbitrary surjective homomorphism φ : T m
n → M .

By the above fact, the kernel Ker(φ) is a closed Tn-submodule of T m
n . Thus, the homomorphism

T m
n /Ker(φ)

∼→M defines a structure of a finite Banach Tn-module on M .

Consider a surjective homomorphism of Tn-modules φ : T m
n → M : ei 7→ xi. By the Banach

theorem, it is an open map. It follows that, for any 1 ≤ i ≤ m, one has xi ∈M +
∑m
j=1 T ◦◦

n xj , i.e.,

yi = xi −
∑n
i=1 fijxj ∈ M for some fij ∈ T ◦◦

n . If X and Y are the vector columns of xi and yi,

respectively, and F is the matrix (fij)1≤i,j≤m, we get Y = (1−F )X. The matrix 1−F is invertible

and, therefore, xi ∈M for all 1 ≤ i ≤ m, i.e., M =M .

2.4. Noether normalization. A chart of the algebra Tn is a system (f1, . . . , fn) of elements

in T ◦
n such that the homomorphism k{S1, . . . , Sn} → Tn : Si 7→ fi is an isomorphism.

2.4.1. Proposition. Let A be a nonzero strictly k-affinoid algebra. Then for any bounded

finite homomorphism φ : Tn → A there exist a chart (S1, . . . , Sn) of Tn and an integer d ≥ 0 such

that the induced homomorphism Td = k{S1, . . . , Sd} → A is finite and injective.

Proof. The statement is trivially true for n = 0. Assume that n ≥ 1. If Ker(φ) = 0, there is

nothing to prove. Otherwise, we can find a chart (S1, . . . , Sn) and a Weierstrass polynomial w ∈

Tn−1[Sn] which lies in Ker(φ). By the Weierstrass finiteness theorem, the induced homomorphisms

Tn−1 → Tn/wTn → A are finite. Continuing this process, we get the statement.
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2.4.2. Corollary. For every nonzero strictly k-affinoid algebra A there exists a finite bounded

monomorphism Tn ↪→ A.

2.4.3. Corollary. Let a be an ideal of a strictly k-affinoid algebra A such that its radical

rad(a) is a maximal ideal. Then A/a is of finite dimension over k.

Proof. By Corollary 2.4.2, there is a bounded finite monomorphism φ : Tn → A/a. Since Tn
is reduced (i.e., it has no nilpotent elements), the induced homomorphism Tn → A/rad(a) is finite

and injective. But the latter quotient is a field. It follows that Tn is a field, i.e., n = 0.

2.4.4. Proposition. Any homomorphism between strictly k-affinoid algebras φ : A → B is

bounded.

Proof. The statement is trivial if the valuation on k is trivial. Thus, assume it is not the case.

To show that φ is bounded, we use the Banach Closed Graph Theorem. It suffices to verify that the

graph of φ in A×B is closed in the product topology. Assume that there is a sequence of elements

{fi}i≥1 in A that tends to zero, but φ(fi) → g ̸= 0 as i → ∞. Given a maximal ideal m ⊂ B

and an integer n ≥ 1, consider the induced injective homomorphism A/φ−1(mn) → B/mn. Both

spaces are of finite dimension over k and, therefore, the homomorphism between them is bounded.

It follows that the images of the elements φ(fi) tend to zero in B/mn, i.e., g ∈ B/mn for all m

and n. Thus, it remain to show that
∩

m,nm
n = 0. Indeed, if f ∈

∩
nm

n then, by the Krull

intersection theorem, there exists an element gm ∈ m with f = fg, i.e., f(1− gm) = 0, and so the

ideal generated by the elements 1− gm coincides with A (it is not contained in any maximal ideal);

it follows that f = 0.

2.5. Complete tensor products. Given Banach modules M , N and P over a non-

Archimedean commutative Banach ring A, an A-bilinear homomorphism φ :M ×N → P is said to

be a bounded if there is a constant C > 0 such that ||φ(f, g)|| ≤ C||f || · ||g|| for all (f, g) ∈M×N . A

complete tensor product ofM and N over A is a Banach A-moduleM⊗̂AN provided with bounded

A-bilinear homomorphismM×N →M⊗̂AN such that, for any bounded A-bilinear homomorphism

M × N → P , there is a unique bounded homomorphism M⊗̂AN → P which is compatible with

all of the above homomorphism. The complete tensor product exists and is unique up to a unique

isomorphism. It is constructed as follows. The usual tensor product M ⊗A N is provided with a

non-Archimedean seminorm

||x|| = inf max
1≤i≤n

{||fi|| · ||gi||} ,

where the infimum is taken over all representations of x ∈M ⊗A N in the form
∑n
i=1 fi ⊗ gi. The

complete tensor product is the completion ofM⊗AN with respect to that seminorm. For example,
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for n ≥ 1 the above seminorm on An ⊗A N is in fact a norm, the tensor product is complete

with respect to it, and the canonical bijection An ⊗A N → Nn is an isometric isomorphism. in

particular, An ⊗A N
∼→ An⊗̂AN .

If B is a Banach A-algebra and N is a Banach A-module, then the complete tensor product

B⊗̂AN carries the structure of a Banach B-module. If B and C are Banach A-algebras, then so is

B⊗̂AC. For example, there is a canonical isometric isomorphism

B⊗̂AA{r−1
1 T1, . . . , r

−1
n Tn}

∼→ B{r−1
1 T1, . . . , r

−1
n Tn} .

2.5.1. Lemma. If φ : M → M ′ and ψ : N → N ′ are admissible epimorphisms of Banach

A-modules, then the induced homomorphisms M ⊗AN →M ′⊗AN
′ and M⊗̂AN →M ′⊗̂AN

′ are

admissible epimorphisms.

Proof. The assumption means that there is a constant C > 0 such that, for any elements

m′ ∈ M ′ and n′ ∈ N ′, there exist m ∈ φ−1(m′) and n ∈ ψ−1(n) with ||m|| ≤ C||m′|| and

||n|| ≤ C||n′||. Given x′ ∈M ′⊗AN
′ and ε > 0, take a representation as a finite sum x′ =

∑
m′
i⊗n′i

with max{||m′
i|| · ||n′i||} ≤ ||x′|| + ε. Furthermore, take elements mi ∈ φ−1(m′

i) and ni ∈ φ−1(n′i)

with ||mi|| ≤ C||m′
i|| and ||ni|| ≤ C||n′i||. Then for the element x =

∑
mi ⊗ ni we have

||x|| ≤ max{||mi|| · ||ni||} ≤ C2 max{||m′
i|| · ||n′i||} ≤ C2(||x′||+ ε) .

This implies that the tensor product seminorm on M ⊗AN is equivalent to the quotient seminorm

induced from M ⊗A N .

2.5.2. Corollary. Let k be a non-Archimedean field, and let A be a (strictly) k-affinoid

algebra Then

(i) if B and C are (strictly) A-affinoid algebras, then so is B⊗̂AC;

(ii) if k′ is a bigger non-Archimedean field, then A⊗̂kk′ is a (strictly) k′-affinoid algebra.

2.5.3. Lemma. Let A be a strictly k-affinoid algebra, M and N finite Banach A-modules,

and B an A-affinoid algebra. Then

(i) M ⊗A N
∼→M⊗̂AN ;

(ii) M ⊗A B ∼→M⊗̂AB.

Proof. Let Am φ→ An ψ→ M → 0 be an exact sequence. Then both φ and ψ are admissible

homomorphisms. Tensoring by N over A, we get a commutative diagram of bounded homomor-

phisms

Am ⊗A N
φ⊗id−→ An ⊗A N

ψ⊗id−→ M ⊗A N −→ 0y y y
Am⊗̂AN

φ⊗̂id−→ An⊗̂AN
ψ⊗̂id−→ M⊗̂AN −→ 0
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The first row is an exact sequence. The first and second vertical arrows are isomorphisms, and the

homomorphism φ ⊗ id is admissible. Together with Lemma 2.5.1, this implies that the seminorm

on M ⊗A N is in fact a norm, and ψ ⊗ id is an admissible epimorphism. In particular, (i) is true.

(ii) is verified in the same way.

2.5.4. Corollary. Let A be a strictly k-affinoid algebra. Then

(i) the canonical functor from the category of finite Banach A-algebras to that of finite A-

algebras is an equivalence of categories;

(ii) every finite Banach A-algebra is strictly k-affinoid.

Proof. Let B be a finite A-algebra. We know that it can be provided with a (unique) structure

of a finite Banach A-module. By Lemma 2.5.3, there is an isomorphism of Banach A-modules

B⊗AB ∼→ B⊗̂AB and, in particular, the algebra B⊗AB is a finite Banach A-module. Furthermore,

the multiplication homomorphism B⊗A B → B is bounded, i.e., there exists a constant C > 0 such

that ||fg|| ≤ C||f || · ||g|| for all f, g ∈ B. We can therefore replace the norm on B by an equivalent

one so that ||fg|| ≤ ||f || · ||g||. To prove (ii), take an admissible epimorphism of Banach A-modules

An → B : ei 7→ fi, and let ri be a number from |k∗| with ri ≥ ||fi||. Then there is an admissible

A{r−1
1 T1, . . . , r

−1
n Tn} → B that takes Ti to fi.

2.5.5. Proposition. The k-affinoid algebra Tn,r = k{r−1
1 T1, . . . , r

−1
n Tn} is strictly k-affinoid

if and only if r1, . . . , rn ∈
√
|k∗|.

Proof. Assume first that Tn,r is strictly affinoid. then there is a finite bounded homomorphism

φ : Tm → Tn,r. It is admissible, by Corollary 2.5.4(i). since the norms on both Banach algebras

are multiplicative, it follows that φ is an isometry. Given 1 ≤ l ≤ n, let T dl + f1T
d−1
l + . . .+ fd = 0

be an equation of Tl over Tm. Then there exist 1 ≤ i ̸= j ≤ d with ||fi||rd−il = ||fj ||rd−jl . It follows

that rl ∈
√
|k∗|.

Conversely, assume that r1, . . . , rn ∈
√
|k∗|. Then there are elements a1, . . . , an ∈ k∗ and

integers m1, . . . ,mn ≥ 1 with |a−1
i | = rmi

i for all 1 ≤ i ≤ n. Define a homomorphism φ : Tn =

k{S1, . . . , Sn} → Tn,r by setting φ(Si) = aiT
mi
i . It is easy to verify that Tn,r is generated by the

monomials T l11 · . . . ·T lnn with 0 ≤ i ≤ mi, i.e., Tn,r is a finite Tn-module. Corollary 2.5.4(ii) implies

that Tn,r is strictly k-affinoid.

Let A be a strictly k-affinoid algebra. From Corollary 2.4.3 it follows that there is a canonical

injective map Max(A) → M(A).

2.5.6. Proposition (i) If the valuation on k is trivial, the topology of M(A) induces the

discrete topology on Max(A);
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(ii) if the valuation on k is nontrivial, then the above map induces a homeomorphism ofMax(A)

with a dense subset of M(A).

Proof. (i) Let x0 be a point of M(A), and let f1, . . . , fn be generators of the corresponding

maximal ideal mx0 ⊂ A. Then the only point from Max(A) which lies in the open subset {x ∈

M(A)
∣∣|fi(x)| < 1

2 for all 1 ≤ i ≤ n} is the point x0.

(ii) Let U be an open neighborhood of a point x0 ∈ M(A). We may assume that U =

{x ∈ M(A)
∣∣|fi(x)| < ai, |gj(x)| > bj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Choose pi, qj ∈

√
|k∗| with

|f(x0)| < pi < ai and |gj(x0)| > qj > bj . By Proposition 2.5.5, the algebra

B = A{p−1
1 T1, . . . , r

−1
m Tm, q

−1
1 S1, . . . , q

−1
n Sm}/(Ti − fi, gjSj − 1)

is strictly k-affinoid and nonzero. Hence, Max(B) ̸= ∅. Since the image of Max(B) in M(A) lies

in U and contains the point x0, Max(A) is dense in M(A). Furthermore, let x0 ∈ Max(A). A

fundamental system of open neighborhoods of the point x0 in Max(A) is formed by sets of the form

U = {x ∈ Max(A)
∣∣|fi(x)| < ai, 1 ≤ i ≤ n} for f1, . . . , fn ∈ mx0 . The set U = {x ∈ M(A)

∣∣|fi(x)| <
ai, 1 ≤ i ≤ n} is open in M(A), and U ∩Max(A) = U .

2.6. Properties of the spectral norm. Let A be a strictly k-affinoid algebra. Proposition

2.5.6 implies that, for any element f ∈ A, one has

ρ(f) = sup
x∈Max(A)

|f(x)| .

2.6.1. Proposition (Maximum Modulus Principle). Let A be a strictly k-affinoid algebra.

Then for any element f ∈ A there exists a point x ∈ Max(A) with ρ(f) = |f(x)|.

Let P (T ) = Tn+ a1T
n+ . . .+ an be a monic polynomial in k[T ]. The quotient K = k[T ]/(P )

is a finite k-algebra which, therefore, has the structure of a strictly k-affinoid algebra with M(K) =

Max(A) a finite set. Of course, in this case the Maximum Modulus Principle holds.

2.6.2. Lemma. In the above situation, let f be the image of T in K. Then

ρ(f) = max
1≤i≤n

|ai|
1
i .

Proof. If we replace k by a bigger non-Archimedean field and K by the corresponding tensor

product, both sides do not change. We may therefore assume that the filed k is algebraically

closed. Let σ(P ) denote the righthand side. If k is of characteristic p > 0 and P (T ) = Q(T )p
m

,
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then σ(P ) = σ(Q), and ρ(f) does not change if we replace K by K[T ]/(Q). Thus, we may assume

that all roots of P are pairwise different, i.e., P (T ) =
∏d
i=1(T − αi) with αi ̸= αj for i ̸= j. The

required fact is then equivalent to the equality

max
1≤i≤d

|αi| = max
1≤i≤n

|ai|
1
i .

Since ai is the value of the symmetric function of degree i at α1, . . . , αn, the left hand side is greater

or equal to the right hand side. On the other hand, if |α1| = . . . = |αm| > |αm+1|, . . . , |αn|, then

the norm of the value of m-th symmetric function is equal to |α1|m, i.e., the left hand side is less

or equal to the right hand side.

Proof of Proposition 2.6.1. The statement is trivial if the valuation on k is trivial. Assume

therefore that the valuation on k is nontrivial, and f ̸= 0.

Case 1: A = Tn. We may assume that ρ(f) = ||f || = 1. Since the residue field k̃a of the

algebraic closure ka of k has infinitely many elements, there exists a point x = (x1, . . . , xn) ∈ ka

with |xi| ≤ 1 and f̃(x̃1, . . . , x̃n) ̸= 0, which is equivalent to |f(x) = 1. The image of the point x in

M(Tn) lies in Max(Tn), i.e., the required fact is true.

Case 2: A is an integral domain. By the Noether Normalization Lemma, there exists a finite

monomorphism φ : Tn ↪→ A. Let P (T ) = T d+ g1T
d+ . . .+ gd be the minimal polynomial of f over

the fraction field of Tn. Since Tn is integrally closed, it follows that gi ∈ Tn for all 1 ≤ i ≤ d. We

may assume that A = Tn[f ]/(P ). One has

sup
y∈Max(A)

|f(y)| = sup
x∈Max(Tn)

max
y 7→x

|f(y)| = sup
x∈Max(Tn)

max
1≤i≤d

|gi(x)|
1
i .

By case 1, there exists a point x ∈ Max(Tn) with ρ(gi) = |g(x)| for all 1 ≤ i ≤ d. Then there exists

a point y ∈ Max(A) over x where the supremum on the right hand side is achieved.

Case 3: A is arbitrary. Let ℘1, . . . , ℘n be the minimal prime ideals of A, and fi is the image

of f in the quotient ring Ai = A/℘i. Then ρ(f) = max
1≤i≤n

ρ(fi), and the required fact follows from

Case 2.

2.6.3. Corollary. ρ(f) ∈
√
|k∗| ∪ {0} for any element f of a strictly k-affinoid algebra A.

The following statement is proved using the reasoning from the proof of Proposition 2.6.1.

2.6.4. Proposition. Let φ : A → B be a finite homomorphism of strictly k-affinoid algebras.

Then for every element g ∈ B there exists a monic polynomial P (T ) = Tn+f1T
n−1+. . .+fn ∈ A[T ]

such that P (g) = 0 and

ρ(g) = max
1≤i≤n

ρ(fi)
1
i .
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Proof. Case 1: B is an integral domain. By the Noether Normalization Lemma, we can find

a homomorphism Td → A whose composition with φ is a finite monomorphism. we can therefore

assume that A = Td, and the required fact was obtained in the proof of Proposition 2.6.1.

Case 2: B is arbitrary. Let ℘1, . . . , ℘m be the minimal prime ideals of B, and let gi denotes the

image of g in Bi = B/℘i. By the Case 1, there are monic polynomials Pi(T ) ∈ A[T ] with Pi(gi) = 0

and ρ(gi) = σ(Pi). We set Q(T ) =
∏m
i=1 Pi(T ). Then the element Q(g) lies in the intersection of

all minimal prime ideals of B, i.e., there is e ≥ 1 such that for P (T ) = Q(T )e one has P (g) = 0.

We get

σ(P ) ≤ max
1≤i≤m

σ(Pi) = max
1≤i≤m

ρ(gi) = ρ(f) .

The converse inequality is trivial.

2.6.5. Proposition. The following properties of an element f of a strictly k-affinoid algebra

A are equivalent:

(a) f is power bounded, i.e., there is C > 0 such that ||fn|| ≤ C for all n ≥ 1;

(b) ρ(f) ≤ 1, i.e., f ∈ A◦.

Proof. The implication (a)=⇒(b) is trivial. Assume that ρ(f) ≤ 1. Take a finite ho-

momorphism φ : Td → A. By Proposition 2.6.4, there exists a monic polynomial P (T ) =

Tm + g1T
m−1 + . . .+ gm ∈ Tn[T ] with P (f) = 0 and ρ(f) = max

1≤i≤d
ρ(gi)

1
i . It follows that ρ(gi) ≤ 1

and, therefore, fn ∈
∑m−1
i=0 φ(T ◦

d )f
i for all n ≥ m. Since φ(T ◦

d ) is bounded in A, it follows that

the above sum is bounded, and we are done.

2.7. Properties of k-affinoid algebras. Given positive numbers r1, . . . , r2, let Kr1,...,rn

denote the space of all formal series f =
∑
ν∈Zn aνT

ν with aν ∈ k and |aν |rν → 0 as |ν| =

|ν1| + . . . + |νn| → ∞ provided with the multiplicative norm ||f || = maxνZn{|aν |rν}. It is a

k-affinoid algebra since there is an admissible epimorphism

k{r−1
1 T1, . . . , r

−1
n Tn, rS1, . . . rnSn} → Kr1,...,rn : Ti 7→ Ti, Si 7→ T−1

i .

Notice that there is an isometric isomorphism Kr1⊗̂ . . . ⊗̂Krn
∼→ Kr1,...,rn . Assume now that the

images of r1, . . . , rn in the Q-vector space R∗
+/

√
|k∗| are linearly independent. Then Kr1,...,rn is a

field, i.e., a non-Archimedean field over k.

2.7.1. Lemma. Let X be a k-Banach space. Then

(i) the canonical map X → X⊗̂Kr1,...,rn is an isometric embedding;
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(ii) a sequence of bounded homomorphisms of k-Banach spaces X → Y → Z is exact and

admissible if and only if the corresponding sequence of Kr1,...,rn -banach spaces X⊗̂Kr1,...,rn →

Y ⊗̂Kr1,...,rn → Z⊗̂Kr1,...,rn is exact and admissible.

2.7.2. Corollary. Given a k-affinoid algebra A, there exist r1, . . . , rn > 0, whose images

in the Q-vector space R∗
+/

√
|k∗| are linearly independent, such that A⊗̂Kr1,...,rn is a strictly

Kr1,...,rn-affinoid algebra.

2.7.3. Proposition. Let A be a k-affinoid algebra, and f ∈ A. Then

(i) A is Noetherian, and all of its ideals are closed;

(ii) ρ(f) = 0 if and only if f is nilpotent;

(iii) if f is not nilpotent, there exists a constant C > 0 with ||fn|| ≤ Cρ(f)n for all n ≥ 1.

Proof. (i) It suffices to show that if the ring A⊗̂Kr with r ̸∈
√

|k∗| is Noetherian and all of

its ideals are closed, then the ring A possesses the same properties. Let a be an ideal of A. Then

the ideal a(A⊗̂Kr) is generated by elements f1, . . . , fn ∈ a. Any f ∈ a can be written in the form

f =
∑n
i=1 figi, where gi =

∑+∞
j=−∞ gijT

i with gij ∈ A. We have f =
∑n
i=1 figi,0, i.e., f1, . . . , fn

generate a and a = A ∩ a(A⊗̂Kr).

(ii) Consider first the case when A is strictly k-affinoid, and assume that ρ(f) = 0. By

Corollary 2.4.3, there is an injective embedding Max(A) ↪→ M(A), it follows that f ∈ m for all

maximal ideals m ⊂ A. Since A is a Jacobson ring (Corollary 2.3.3), it follows that f is a nilpotent

element. In the general case, it suffices to show that if the statement is true for the ring A⊗̂Kr

with r ̸∈
√
|k∗|, then it is also true for A. Since the canonical homomorphism A → A⊗̂Kr is

isomoetric, it follows that the spectral norm of an element f ∈ A does not change if it is considered

as an element of A⊗̂Kr. This immediately implies the requited fact.

(iii) It suffices to assume that A is strictly k-affinoid. By Corollary 2.6.3, ρ(f)m = |a| for some

m ≥ 1 and a ∈ k∗. Then ρ(g) = 1 for g = fm

a . Proposition 2.6.5 implies that there exists C > 0

such that ||gn|| ≤ Cρ(g)n for all n ≥ 1, and the required fact follows.

2.7.4. Corollary. Let φ : A → B be a bounded homomorphism between k-affinoid algebras.

Let f1, . . . , fn ∈ B, and let r1, . . . , rn be positive numbers with ri ≥ ρ(fi). then there is a unique

bounded homomorphism Φ : A{r−1
1 T1, . . . , r

−1
n Tn} → B extending φ and sending Ti to fi.

2.7.5. Corollary. A k-affinoid algebra A is strictly k-affinoid if and only if ρ(f) ∈
√
|k∗|∪{0}

for all f ∈ A.

Proof. The direct implication follows from Corollary 2.6.3. Assume that ρ(f) ∈
√
|k∗| ∪ {0}

for all f ∈ A. (We may assume that the valuation on k is nontrivial.) Consider an admis-
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sible epimorphism φ : k{r−1T} → A : Ti 7→ fi, 1 ≤ i ≤ n. Suppose that r1 ̸∈
√
|k∗|.

Then there is a number s1 ∈
√
|k∗| with ρ(f1) ≤ s1 < r1. Then the induced homomorphism

k{s−1
1 T1, r

−1
2 T2, . . . , r

−1
n Tn} → A is also an admissible epimorphism. Continuing this process, we

get the required fact.

For a k-affinoid algebra A, let Modhb (A) denote the category of finite Banach A-modules, and

let Modh(A) denote the category of finite A-modules. An affinoid A-algebra is an A⊗̂K)-algebra

for some non-Archimedean field K over k.

2.7.4. Proposition. Let A be a k-affinoid algebra, and M,N ∈ Modhb (A). Then

(i) the canonical functor Modhb (A) → Modh(A) is an equivalence of categories;

(ii) any A-linear map M → N is admissible;

(iii) M ⊗A N
∼→M⊗̂AN ∈ Modhb (A);

(iv) for any affinoid A-algebra B, one has M ⊗A B ∼→M⊗̂AB ∈ Modhb (B).

Proof. (i) It suffices to verify that any finite A-module M can be provided with the structure

of a finite A-module. For this we consider an arbitrary A-linear epimorphism φ : An → M . Since

An has a k-affinoid structure, the kernel of φ is closed. Therefore, one can endow M with the

residue norm, with respect to which M is complete.

(ii) follows from Lemma 2.7.1(ii) and the fact that the statement is true in the strictly k-affinoid

case.

(iii) and (iv) are now proved in the same way as Lemma 2.5.3.

2.7.5. Corollary. The category of finite Banach A-algebras is equivalent to the category of

finite A-algebras.

2.7.6. Proposition. Let B be a finite Banach algebra over a k-affinoid algebra A, and assume

the canonical homomorphism A → B is injective. Then the map M(B) → M(A) is surjective and

has finite fibers.

Proof. That the map has finite fibers is easy: for x ∈ M(A), the fiber at x is the spectrum

of B⊗̂AH(x) which is a finite extension of H(x). Furthermore, if r ̸∈
√
|k∗|, then the canonical

map M(A⊗̂Kr) → M(A) is surjective. this reduces the situation to the case when A and B are

strictly k-affinoid and the valuation on k is nontrivial. In this case, the map Max(B) → Max(A) is

surjective. Since Max(A) is dense in M(A), the surjectivity follows.
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