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4 Dan Abramovih and Frans Oort0 IntrodutionH. Hironaka, 1964: In harateristi zeroany variety an be modi�ed into a nonsingular variety.A. J. de Jong, 1995:Any variety an be altered into a nonsingular variety.On July 26, 1995, at the University of California, Santa Cruz, a young Duthmathematiian by the name Aise Johan de Jong made a revolution in the study ofthe arithmeti, geometry and ohomology theory of varieties in positive or mixedharateristi. The talk he delivered, �rst in a series of three entitled \DominatingVarieties by Smooth Varieties", had a entral theme: a systemati appliation of�brations by nodal urves. Among the hundreds of awe struk members of theaudiene, partiipants of the Amerian Mathematial Soiety Summer ResearhInstitute on Algebrai Geometry, many reognized the great potential of Johande Jong's ideas even for omplex algebrai varieties, and indeed soon more resultsalong these lines began to form.0.1 The alteration paradigmA.J. de Jong's main result was, that for any variety X , there is a nonsingularvariety Y and an alteration, namely a proper, surjetive and generially �nitemorphism, Y ! X (see Theorem 2.3 for a preise statement). This is in ontrastwith Hironaka's result, whih uses only a modi�ation, namely a proper birationalmorphism.Here is the basi struture of the proof by De Jong:� Projetion. For a given variety X of dimension d we produe a morphismf : X ! P with dimP = d � 1, and all �bers of f are urves (we may �rsthave to apply a modi�ation to X).� Desingularization of �bers. After an alteration of the base P , we arriveat a new morphism f : X ! P where all �bers are urves with only ordinarynodes as singularities. The main tool here is the theory of moduli of urves.� Desingularization of base. After a further alteration on the base P , wearrive at a new morphism f : X ! P as above, where P is regular. Here weuse indution, i.e. supposing that the theorem is already true for varieties ofdimension d� 1. So here we \desingularize the base".� Desingularization of total spae. Given the last two steps, an expliitand easy method of resolution of singularities �nishes the job.



Alterations and resolution of singularities 50.2 The purpose of this paperThis paper is an outgrowth of our ourse material prepared for the Working Weekon Resolution of Singularities, whih was held during September 7-14, 1997 inObergurgl, Tirol, Austria. As we did in the workshop, we intend to explain Johande Jong's results in some detail, and give some other results following the sameparadigm, as well as a few appliations, both arithmeti and in harateristi zero.We hope that the reader will ome to share some of the exitement we felt on thatbeautiful July day in Santa Cruz.In the rest of this introdution we give an overview of the proof and the materialinvolved. We hope that this introdution will give most readers a general feelingof what the results are about. The body of the paper is divided in two parts.We begin part I by expanding on some of the preliminary material neessary forunderstanding the proofs by any student of algebrai geometry. Then we go bakto the proof of de Jong's main theorem, as well as some generalizations. Proofs ofsome variants and generalizations of de Jong's theorems are indiated in the formof exerises, with suÆient hints and referenes, whih we hope will enable thereader to appreiate de Jong's work. Part II is an introdution to an ingredientof the proof - the theory of moduli of urves. We aim to indiate the main ideasbehind the proofs of the main theorems about existene and properties of modulispaes, again aompanied with a olletion of exerises.As a result, this aount is mostly expository. The only point where some noveltyappears is in Setion 13, where we show the existene of tautologial families ofstable urves over the moduli spaes of stable pointed urves with level struture.This has been \well known to the experts" for years, and an be olleted fromthe literature. However a omplete aount under one roof has not been published.For the de�nition of a \tautologial urve" we refer to Setion 10.4.0.3 Historial ontextThere are many ases in geometry in whih one wants to transform a singularvariety into a non-singular one: one arrived in suh a situation, various tehnialsteps an be performed, not possible on singular varieties.Sine the beginning of the entury, partial results in this diretion appeared,rowned by Hironaka's theorem on resolution of singularities in harateristi zero,in 1964.Hironaka's ingenuous proof had many appliations, but it was not easy tounderstand the �ne details of his proof. Generalizing that method to varieties inpositive harateristi has failed up to now. Indeed, resolution of singularities inpositive harateristi has been a topi to whih many years of intensive researhhave been devoted, and up to now the status is not yet lear: for the generalquestion of resolution of singularities in positive harateristi we have neither a



6 Dan Abramovih and Frans Oortfully veri�ed theorem nor a ounterexample. In addition, the algorithms involvedin Hironaka's theory were diÆult to generalize, even in harateristi 0, to someimportant more ompliated situations.It seemed that a lull in development of this subjet had been reahed, untila totally new idea ame about. In 1995 Johan de Jong approahed the problemabove, of transforming a variety into a nonsingular one, from a di�erent angle.The idea of the proof is surprisingly easy, and for many appliations his resultis suÆient. His approah is very geometri, and hene it works in a wide rangeof situations. The alteration paradigm automatially works in all harateristis,and a suitable version works in mixed harateristi as well. It easily gives rise tosome new \semistable redution" type results whih are new even over the omplexnumbers. Moreover, without muh e�ort it give birth to new, \oneptually easy"proofs of a weaker form of Hironaka's theorem.0.4 Comparison of approahesLet us take a moment to make a qualitative omparison of Hironaka's result andde Jong's result.In the approah taken by Hironaka, singularities of a variety are studiedlosely, invariants measuring the diÆulty of the singularities are de�ned, and asomewhat expliit algorithm is applied in order to improve the singularities, in thesense that the given invariants get \better". One needs to show that the algorithmterminates (and indeed in harateristi zero it does), resulting in the onstrutionof a regular variety. A big advantage of this proess developed by Hironaka (andby many others) is the fat that usually it is very expliit, it is anonial in aertain sense and one it works, the result is in its strongest form, see [70℄ and[11℄, as well as [19℄ in this volume.In the approah by Johan de Jong, the singularities are, at �rst, ompletelyignored. The idea is to �rst bring the variety to a speial form: a �bration bynodal urves. Here one pays a big prie: in order to arrive at this speial formone needs to use an operation - alled alteration - whih extends the funtion�eld of the variety. However, one we arrive at this form, we an use indution onthe dimension for the base spae of the �bration, and automatially arrive at asituation where the variety has very mild singularities. Only then, �nally, attentionis paid to the singularities. But these are so mild that an easy and expliit blowingup �nishes the job.0.5 A sketh of the onstrution of an alteration giving aregular varietyHere we give a muh simpli�ed form of the proof of A.J. de Jong's main Theorem(Theorem 2.3 in this text). We break up the proof in steps. A star attahed to astep means that in that phase of the proof a �nite extension of the funtion �eld



Alterations and resolution of singularities 7might be involved, i.e. the alteration onstruted might not be a modi�ation. Insteps without a star only modi�ations are used.Before starting, a small tehnial point is neessary. In the ourse of the proofwe use indution on the dimension of the variety X , and it turns out that for theindution to work we need the statement of the theorem to involve a losed subsetZ � X as well. Our �nal goal will be to �nd an alteration f : Y ! X suh thatf�1Z is a normal rossings divisor.We start with a �eld k, a variety X and a losed subset Z � X, over the �eldk.Step 0.We an redue to the ase where k is algebraially losed, thevariety X is projetive and normal, and the losed subset Z isthe support of an e�etive Cartier divisor.We intend to say: if we prove the theorem with this new additional data, then thetheorem in the original, more general form follows. Reduing to the algebraiallylosed �eld ase is standard - in the main body of the paper we avoid it, assumingk is algebraially losed. The main ingredient for projetivity is Chow's Lemma(see [Red Book℄, pp. 85-89, or [HAG℄, Exerise II.4.10): for a variety X over k,there exists a modi�ation X 0 ! X, suh that X 0 is quasi-projetive. To make Zinto a divisor we simply blow it up inside X .Replaement onvention. From now on, in eah step, we shall replae X by a newvariety X 0 over k whih admits a modi�ation or an alteration X 0 ! X , arriving�nally at a regular variety and an alteration of the variety produed in Step 0.Step 1.After modifying X, onstrut a morphism f : X ! P of pro-jetive varieties whose generi �ber is an irreduible, omplete,non-singular urve.Note: dim(P ) = dim(X)� 1, whih suggests using indution later.Atually we need a little more, but the tehnial details will be disussed inthe main text.This step follows a lassial, geometri idea. Set dim(X) = d, and assumeX � PN . Using Bertini's theorem we see that we an �nd a linear subvarietyL � PN \in general position" with dim(L) = N � d suh that the projetion withenter L gives a rational map X 9 9 K Pd�1 where the generi �ber is a regularurve. After modifying X we an make this rational map into a morphism.The strit transform. We will use an operation whih de Jong alled the \strittransform". (In [10℄, 815-12 the terminology \strit alteration" is used). Consider



8 Dan Abramovih and Frans Oorta morphism X ! S, and a base hange T ! S. Assume T to be integral, and let� 2 T be its generi point. Then de�ne X 0 � T �S X as the losure of the generi�ber (T �S X)� in (T �S X). A more thorough disussion of this operation willfollow in Setion 3.1.In our situation X ! P , we will often replae P by an alteration, and thensimply replae X by its strit transform.Step 2�.After applying alterations to X and to P we an arrive at a mor-phism f : X ! P as in Step 1, and setions �1; � � � ; �n : P ! X,suh that every geometri omponent C 0 of every geometri �berof f meets at least three of these setions in the smooth lous off , i.e. in C 0 \ Sm(f).There is a \multi-setion" in the situation of Step 1 having this property. After analteration on Y and on X this beomes a union of setions.Stable pointed urves. Here we follow Deligne-Mumford and Knudsen. An algebraiurve is alled nodal if it is omplete, onneted and if the singularities of Care not worse than ordinary double points. Its arithmeti genus is given by g =dimk H1(C;OC):Suppose C is a nodal urve of genus g over a �eld k, and let P1; � � � ; Pn 2 C(k)with 2g � 2 + n > 0; we write P = fP1; � � � ; Png; this is alled a stable n-pointedurve if:� the points are mutually di�erent, i < j =) Pi 6= Pj ,� none of these marked points is singular, Pi 62 Sing(C),� and Aut(C;P) is a �nite group; under the previous onditions (and k alge-braially losed) this amounts to the ondition that for every regular rationalirreduible omponentP1 �= C 0 � C; then #(C 0 \ (P [ Sing(C))) � 3:A at family of urves is alled \a family of stable n-pointed urves" if all geometri�bers are stable n-pointed urves in the sense just de�ned, the markings given bysetions.Historially, stable urves and stable pointed urves were introdued in order toonstrut, in a natural way, ompati�ations of moduli spaes (see [17℄). Certainlythe following names should be mentioned: Zariski, A. Mayer, Deligne, Mumford,Grothendiek, Knudsen, and many more. It ame a bit as a surprise when de Jongused these for a desingularization-type problem!



Alterations and resolution of singularities 9Step 3�.After an alteration on the base P , we an assume that X ! P isa projetive family of stable n-pointed urves.We briey sketh the heart of the proof of this step - it will be disussed in detaillater.Extending families of urves. We need the following fundamental fat: suppose weare given a variety P , an open dense subset U � P , and a family of stable urvesCU ! U : CU � ?# #U � P:Then there is an alteration a : P1 ! P suh that the pullbak family CU1 ! U1over the open set U1 = a�1U an be extended to a family of stable urves C1 ! P1:CU1 � C1# #U1 � P1:The �rst result behind this is the existene of a moduli spae of stable urves ([39℄,see also Setion 12). Then one needs the fat that a �nite over M !Mg;n of themoduli spae admits a \tautologial family" - namely, a family C !M suh thatthe assoiated morphism M ! Mg;n is the given �nite over. One ould onsult[16℄ (the preise statement we need follows from that paper), or use [21℄, wherea tautologial family of nodal urves is onstruted over a moduli spae of stableurves with a level struture.The setionss of the family X ! P orrespond to those of the stable n-pointed urve C ! P , under the birational transformation thus de�ned. We wantto show this extends to a morphism C ! X .Flattening of the graph. We take the losure T � X �P C of the graph of �0 :CU ! XU , and apply the \Flattening Lemma", see 3.2 below. We arrive at newX;T , and C at over P . All we have to show (modulo some tehnialities) is thatno point of a �ber of C ! P is blown up to a omponent of a �ber of X ! P .The Three Point Lemma. Using the markings, and studying arefully the geometrywe show that indeed �0 extends to a morphism �. The ruial point here was thatevery omponent of every �ber of X over P has at least three nonsingular pointsmarked by the setions �i (see 4.18 - 4.20 of [Alteration℄).Step 4�.After an alteration of P , we may assume that P is nonsingular.



10 Dan Abramovih and Frans OortWe simply apply indution on the dimension of the base: we suppose that thetheorem we want to prove is valid for all varieties having dimension less thandim X . Thus after an alteration of the base P we an suppose P is regular andthe strit transform of X has all the previous properties.Following Z. The argument for the previous two steps should be arried throughwith a proper are given to the divisor Z. At the end, we an guarantee that Z isontained in the union of two types of sets:� the images of the setions �i, and� the inverse image of a normal rossings divisor � � P .Moreover, in the indution hypothesis we an guarantee that the �nal family ofurves X ! P degenerates only over the normal rossings divisor �.Step 5.The singularities of the resulting family X ! P are so mild thatit is very easy to resolve them expliitly.Indeed, eah singular point an be desribed in formal oordinates by theequation xy = tk11 � � � tkrr . It is a fairly straightforward exerise to resolve thesesingularities.



11Part IThe alteration theorem1 Some preliminaries and generalities on varieties1.1 VarietiesTo �x notation, we use the following de�nition of a variety:De�nition. By a variety de�ned over k we mean a separated geometrially integralsheme of �nite type over k. If k � k1 we write Xk1 for X �Spek Spe k1.In more down to earth terms this means: an aÆne variety de�ned over k is given asa losed subvariety of an aÆne spae A nk de�ned by an ideal I � k[T1; � � � ; Tn℄ =k[T ℄ suh that k1�I � k1[T ℄ is a prime ideal for every (equivalently, for some)algebraially losed �eld k1 ontaining k. In general, a variety then is de�ned bygluing a �nite number of aÆne varieties in a separated way. See [Red Book℄, I.5,De�nition 1 (p. 35) and I.6, De�nition 2 (p. 52).Remark. This de�nition di�ers slightly from that in [Alteration℄. De Jong requiresthe algebrai sheme to be integral, and we require that the shemes stay integralafter extending the �eld. For example for any �nite �eld extension k � K, thesheme Spe(K) is alled a k-variety by de Jong, but we only say it is a varietyde�ned over k if k = K. For most geometri situations the di�erenes will not beimportant.1.2 Operations on varietiesDe�nition. A morphism of varieties Y ! X is alled a modi�ation if it is properand birational.A modi�ation is the type of \surgery operation" usually assoiated with resolutionof singularities. Johan de Jong introdued the following important variant:De�nition (de Jong). A morphism of varieties Y ! X is alled an alteration if itis proper, surjetive and generially �nite. This notion of alteration will also beused for integral shemes.See [Alteration℄, 2.20.Remark. A modi�ation is a birational alteration.Exerise 1.1. Show that an alteration ' : Y ! X an be fatored asY ��! Z f�! X;where � is a modi�ation, and f is a �nite morphism.



12 Dan Abramovih and Frans OortExerise 1.2. Suppose moreover that a �nite group G ats on Y by automor-phisms suh that the �eld of invariants K(Y )G ontains the funtion �eld K(X).Formulate other fatorizations of '.Remark. Given a variety X and a nonzero oherent ideal sheaf I � OX , theblowing up BlIX = ProjX(�j�0Ij) ! X gives naturally a modi�ation, suhthat the inverse image of I beomes invertible. If Z � X is a subsheme with idealsheaf I, the blowing up BlZ(X) of X with enter Z is de�ned to be the blowingup BlIX .See [HAG℄, II.7, p. 163.1.3 Smooth morphisms and regular varietiesThe terminology \smooth" will only be used in a relative situation. Thus a mor-phism an be smooth. The terminology \regular", or \non-singular", will be usedin the absolute sense. Thus a variety an be regular. This means that for everypoint P in the variety the loal ring at P is a regular loal ring. If a morphismX ! Spe(K) is smooth, then X is regular. It is not reommended to use theterminology \a smooth variety", whih an be misleading and onfusing.1.4 Resolution, weak and strongWe state what we mean by a resolution of singularities. There are two variants wewill use:De�nition. Let X be a variety. A resolution of singularities in the weak sense is amodi�ation Y ! X suh that Y is nonsingular.De�nition. Let X be a variety. A resolution of singularities in the strong sense isa modi�ation Y ! X , whih is an isomorphism over the nonsingular lous Xreg ,suh that Y is nonsingular.1.5 Normal rossingsThe following type of \nie subshemes" of a variety are quite useful in desingu-larization problems and appliations:De�nition. Let X be a variety. A subsheme Z � X is alled a strit normalrossings divisor if for eah point x 2 Z, there is a regular system of parametersy1; : : : ; yk for x in X (in partiular the point x 2 X is supposed to be a regularpoint on X), suh that Z is given on a Zariski neighborhood of x by the equationy1 � � � yl = 0.Suppose furthermore we have a �nite group ating on Z and X equivariantly:G � Aut(Z � X). We say that Z is a G-strit normal rossings divisor if it hasnormal rossings, and for any irreduible omponent Z 0 � Z, the orbit [g2G g(Z 0)is normal.



Alterations and resolution of singularities 13We say that a losed subset Z � X is a strit normal rossings divisor, if thsredued subsheme it supports is a strit normal rossings divisor.See [Alteration℄, 7.1.Strit normal rossings divisors have played an important role in resolution ofsingularities, and are essential in the proof of de Jong's result.1.6 FlatnessA ruial idea for studying \families of shemes" is Serre's notion of atness (see[HAG℄, III.9).De�nition. Let A be a ring and M and A-module. Reall that M is said to be aat A-module if the funtor N 7!M 
A N is exat.A morphism of shemes X ! Y is at if at any point x 2 X , whose image isy 2 Y , the loal ring OX;x is a at OY;y-module.There are many important examples of at morphisms whih we will disuss later.The reader is advised to onsult [HAG℄ or [43℄ for a more detailed disussion.The general piture should be that in a proper at morphism, many essentialnumerial invariants (e.g. dimension, degree...) are \onstant" from �ber to �ber,so we should really think about it as a \family".Here are some instrutive examples of morphisms whih are not at:Example 1.3. (See [HAG℄, III 9.7.1.) Let Y be a urve with a node (say, thelous xy = 0 in the aÆne plane). Let X ! Y be the normalization (in the spei�example, the disjoint union of two lines mapping onto the lous xy = 0). Thenf : X ! Y is not at. The idea one should have in mind is that sine over ageneral point in Y we have one point in X , and over the node we have two pointsin X , this is not really a nie family - it jumps in degree.The same reasoning gives a more general example:Example 1.4. Let f : X ! Y be a modi�ation. Then f is at if and only if itis an isomorphism.In partiular, a nontrivial blowup is not at.1.7 Stable urvesWe give a formal de�nition of the fundamental notion introdued in the introdu-tion:De�nition. An S sheme C ! S is alled a family of nodal urves over S if it is of�nite presentation, proper and at, and all geometri �bers are onneted reduedurves with at most ordinary double points (loally xy = 0) as singularities.



14 Dan Abramovih and Frans OortRemark. The terminology a nodal urve over S an be used interhangeably witha family of nodal urves over S. Indeed, if C ! S omes by way of an extensionof a nodal urve C� over the generi point �S of S, it may be natural to all it anodal urve over S.De�nition. The disriminant lous � � S is the losed subset over whih C ! Sis not smooth.De�nition (Deligne and Mumford). A family of nodal urvesf : C ! S;together with setions si : S ! C; i = 1; : : : ; n with image shemes Si = si(S),is alled a family of stable n-pointed urves of genus g if1. The shemes Si are mutually disjoint.2. The shemes Si are disjoint from the non-smooth lous Sing(f).3. All the geometri �bers have arithmeti genus g.4. The sheaf !C=S(PSi) is f -ample (namely, it is ample on fall �bers of f).In ase n = 0 we simply all these stable urves (rather than stable 0-pointedurves).The de�nition is made so that a stable pointed urve has a �nite automorphismgroup (relative over S). It agrees with that made (informally) in the introdution.It is disussed in detail in [17℄.Remark. In the litterature one sometimes �nds the terminology \n-pointed stableurve" instead of \stable n-pointed urve". We try to stik to the latter, sineit e�etively onveys the idea that the urve with the points is stable. The otherterminology might give the impression we are dealing with stable urve with somepoints on them. This would be a di�erent notion in general!1.8 Minimal models, existene and uniquenessAn important stepping stone for understanding moduli of stable urves is thenotion of minimal models of 1-parameter families of urves.Let K be a �eld, and C a omplete, geometrially irreduible algebrai urvesmooth overK; suppose the genus of C is at least 2. Let v be a disrete valuation onK, and R � K its valuation ring. Pik a projetive model C0 of C over R. FollowingAbhyankar (1963) we an resolve singularities in dimension 2, therefore we mayassume C0 is nonsingular. Following Shafarevih (1966) and Lipman (1969) we havethe notion of the minimal model of C over S := Spe(R) (see Lihtenbaum, [41℄,Th. 4.4; also (see [17℄, page 87). We thus arrive at a family of urves C ! Spe(R)whih is a regular 2-dimensional sheme, and whih is relatively minimal.Remark. Here we use a speial ase of resolution of singularities, namely in thease of shemes of dimension 2.



Alterations and resolution of singularities 152 ResultsFirst reall Hironaka's theorem:Theorem 2.1 (Hironaka). Let X be a variety over a �eld k of harateristi 0.Then there exists a sequene of modi�ationsXn ! Xn�1 ! � � � ! X1 ! X0 = X;where eah Xi ! Xi�1 is a blowing up with nonsingular enter, and the enterlies over the singular lous Sing(X). In partiular, Xn ! X is a resolution ofsingularities in the strong sense.See the original [29℄. Hironaka's theorem and its re�nements will be disussed in[19℄ in this volume.Our main goal is to prove the following result, due to A. J. de Jong:Theorem 2.2. Let X be a variety over an algebraially losed �eld. There is aseparable alteration Y ! X suh that Y is quasi projetive and regular.Corollary. Let X=k be a variety. There is a �nite extension k � k1 and a sepa-rable alteration Y ! Xk1 suh that Y is quasi projetive and regular.In order for the indution in the proof to work, de Jong's theorem gives more:Theorem 2.3 (de Jong). Let X be a variety over an algebraially losed �eld,Z � X a proper losed subset. There is a separable alteration f : Y ! X, and anopen immersion j : Y � �Y , suh that �Y is projetive and regular, and the subsetj(f�1Z) [ ��Y Y � is the support of a strit normal rossings divisor.See [Alteration℄, 4.1. The proof of this result will be given in Setion 4.De Jong's theorem has a few important variants. First, a theorem of semistableredution up to alteration over a one dimensional base:Theorem 2.4 (de Jong). Let R be a disrete valuation ring, with fration �eldK and residue �eld k. Let X ! SpeR be an integral sheme of �nite type suhthat XK is a variety. There exists a �nite extension R � R1, where R1 is a disretevaluation ring with residue �eld k1, and an alteration Y ! XR1 , suh that Y isnonsingular, and the speial �ber Yk1 is a redued, strit normal rossings divisor.See [Alteration℄, 6.5. The proof is detailed in Setion 5.This theorem belongs to a lass of theorems about \desingularization of mor-phisms". A \dual" ase, whih an atually serve as a building blok in provingthe alteration type theorems, is the ase where the base is arbitrary dimensional,and the �bers are urves. A proof an be found in [31℄.Theorem 2.5 (de Jong). Let � : X ! B be a proper surjetive morphism ofintegral shemes, with dimX = dimB + 1. Let Z � X be a proper losed subset.There exists an alteration B1 ! B, a modi�ation X1 ! ~XB1 of the strit trans-form ~XB1 (see Setion 3.1), setions si : B1 ! X1, and a proper losed subset� � B1 suh that



16 Dan Abramovih and Frans Oort1. �1 : X1 ! B1 is a family of pointed nodal urves,2. si are disjoint setions, landing in the smooth lous of �1, and3. the inverse image Z1 of Z in X1 is ontained in the union of ��11 � (the\vertial part") and si(B1) (the \horizontal part").The reader who has solved the exerises in Setion 5 will be able to ompletethe proof of this theorem. From this de Jong dedued the following re�nement ofTheorem 2.4:Theorem 2.6 (de Jong). Let � : X ! B be a proper surjetive morphism ofintegral shemes, dimX = dimB + r. Assume that B admits a proper morphismto an exellent two-dimensional sheme S. Then there are alterations B1 ! B andX1 ! ~XB1 , a fatorization X1 ! X2 ! � � � ! Xr ! Xr+1 = B, and subshemes�i = �hori [ �veri , suh that1. Xi are nonsingular and �i are normal rossings divisors, i = 1; : : : ; r + 1;2. �i : Xi ! Xi+1 are families of nodal urves, smooth away from �i+1, and3. �hori is the union of disjoint setions of �i, lying in the smooth lous of �i.See [31℄. Alternative proofs of di�erent versions of this theorem were provided in[1℄ and [44℄.Next, we onsider a �nite group ation:Theorem 2.7 (de Jong). Let X be a variety over an algebraially losed �eld,Z � X a proper losed subset, G � Aut(Z � X). There is an alteration f : Y !X, and a �nite subgroup G1 � Aut Y , satisfying:1. there is a surjetion G1 ! G suh that f is G1 equivariant, and the �eldextension K(X)G � K(Y )G1 is purely inseparable;2. Y is quasi projetive and nonsingular; and3. f�1Z is the support of a G-strit normal rossings divisor.See [Alteration℄, 7.3. The proof is detailed in exerises in Setion 5.Note that, taking G = fidg, this implies:Corollary. Let X be a variety over an algebraially losed �eld. There is a purelyinseparable alteration Y ! X where Y is a quotient of a nonsingular variety bythe ation of a �nite group.Remark. For generalizations whih ombine both Theorem 2.4 and Theorem 2.7,see [31℄.In harateristi 0, any purely inseparable alteration is birational, and the quotientsingularities an be improved:



Alterations and resolution of singularities 17Theorem 2.8 (See [2℄ and [12℄). Let X be a variety over an algebraially losed�eld of harateristi 0. Then there is a projetive resolution of singularities in theweak sense Y ! X.Remark. This is a rather weak version of Hironaka's theorem. The point is, thatnew proofs, by Abramovih and de Jong [2℄, and by Bogomolov and Pantev [12℄,were given based on de Jong's ideas. The proof by Bogomolov and Pantev isextremely simple, drawing only on tori geometry. Its proof is detailed in Setion7.Question 2.9. Can we improve the methods and obtain a weak resolution of sin-gularities in all harateristis? Or, at least weak resolution up to purely insepa-rable alterations?The proof by Abramovih and de Jong, detailed in Setion 8, lends itself to gen-eralizations in the avor of de Jong's semistable redution theorem, suh as thefollowing two results:Theorem 2.10 (Abramovih - Karu). Let X ! B be a dominant morphismof omplex projetive varieties. There exists a ommutative diagramUX0 � X 0 ! X# # #UB0 � B0 ! Bsuh that1. X 0 ! X and B0 ! B are modi�ations,2. X 0 and B0 are nonsingular,3. UX0 � X 0 and UB0 � B0 are toroidal embeddings, and the morphism X 0 ! B0is a toroidal morphism (see de�nition in 6).Theorem 2.11 (Abramovih - Karu). Let X ! B be a dominant morphismof omplex projetive varieties. There exists a ommutative diagramUX � X1 ! X# # �1 # �UB � B1 ! Bwhere B1 ! B is an alteration, X1 ! ~XB1 is a modi�ation of the strit trans-form, UX � X1 and UB � B1 are toroidal, the morphism �1 : X1 ! B1 is toroidalwith ��11 UB = UX , the variety B1 is nonsingular and1. the morphism �1 is equidimensional and2. all �bers of �1 are redued.See [3℄ for details. A re�nement is given in [33℄, and an appliation in [34℄.



18 Dan Abramovih and Frans Oort3 Some toolsIn this setion we gather some basi tools whih we are going to use. Some of thesetools seem to be of vital importane in algebrai geometry, and it is instrutiveto see them funtioning in the ontext of de Jong's theorem. We have inludedsome indiations of proofs for the interested reader. For the proof of the alterationtheorem only the following will be neessary: Setion 3.1, Lemmas 3.1, 3.2 and 3.4,and Theorem 3.6.3.1 The strit transformSee [Alteration℄, 2.18.As mentioned in the introdution, we need an operation alled the \strittransform". Let us reall the de�nition.De�nition. Consider a morphism X ! S, and a base hange T ! S. Assume Tto be integral, and let � 2 T be its generi point. Then de�ne the strit transform~XT � T �S X as the Zariski losure of the generi �ber � �S X :~XT def= � �S XZar � T �S X �! X& ??y ??yT �! S:Note that if the image of � is not in the image of X ! S (i.e. if T �S X ! T isnot dominant), then the strit transform in the sense explained here is empty.Remark. The notion given here is di�erent from the usual notion of the \strittransform" of a subvariety under a modi�ation (ompare with [HAG℄, II.7, thede�nition after 7.15). For example onsider a blowing up T ! S of a surfae Sin a point P 2 S, and let C � S be a urve in S passing through P . The \stritalteration" (or \strit transform" in the terminology above) of C under T ! S isempty; the \strit transform" of C under T ! S in the lassial sense, as explainedin [HAG℄, II.7, is a urve in T .Some people have suggested the use of terminology \essential pullbak of Xalong T ! S", whih may have some merits. After all, ~XT ontains only the \part"of T �S X whih dominates T , whih is in some sense its essential part.3.2 Chow's lemmaAn algebrai urve and a regular algebrai surfae are quasi-projetive. However inhigher dimension an \abstrat variety" need not be quasi-projetive. A beautifulexample by Hironaka (of a variety of dimension three) is desribed in [HAG℄,Appendix B, Example (3.4.1). However in ertain situations (suh as the alterationmethod desribed below) we like to work with projetive varieties.



Alterations and resolution of singularities 19Lemma 3.1. Given a variety X, there is a modi�ation Y ! X suh that Y isquasi-projetive.See [Red Book℄ , I.10, p. 85, or [HAG℄, Ex. II.4.10 p. 107. 	3.3 The attening lemmaIn some situations we want to replae a morphism by a at morphism. One anshow this is possible after a modi�ation of the base. The general situation isstudied in [60℄. We only need this in an easier, speial situation, as follows:Lemma 3.2 (The Flattening Lemma). Let X and Z be varieties over a per-fet �eld K (more generally, integral shemes of �nite presentation) and X ! Z aprojetive, dominant morphism. There exists a modi�ation f : Y ! Z suh thatthe strit transform f 0 : ~XY ! Y is at.The main ingredient in the proof is the existene and projetivity of theHilbert sheme. Hilbert shemes were introdued and onstruted by Grothen-diek in [24℄, Exp. 221 (see [47℄ for simpli�ed proofs, [18℄ for disussion). We willome bak to them in Setion 10. Their purpose is to parametrize all subshemesof a �xed projetive spae PN . Of ourse, the set of all subshemes of a projetivespae is rather large, so we ut it down into bounded piees by �xing the Hilbertpolynomial PW (T ) = �(W;OW (T )) for a subsheme W � PN . Grothendiek'sresult may be summarized as follows:Theorem 3.3. There is a projetive sheme HPN;P (T ) over SpeZ and a losedsubsheme XPN;P (T ) � PN � HPN;P (T ) whih is at over HPN;P (T ), suh thatHPN;P (T ) parametrizes subshemes of PN with Hilbert polynomial P (T ), and whereXPN;P (T ) ! HPN;P (T ) is a universal family, in the following sense:Given a sheme T , let X � PN � T be a losed subsheme whih is at overT and suh that the Hilbert polynomial of the �bers is P (T ). Then there exists aunique morphism h : T ! HPN;P (T ), suh thatX = T �HPN;P (T ) XPN;P (T )Bak to the proof of Lemma 3.2. Sine X ! Z is projetive, we an hoose anembedding X � PN � T for some N . Note that the generi �ber of f is redued.By generi atness, there exists a dense, open subset i : U ,! Z suh thatfU : XU := X jU �! Uis at. Let P be Hilbert polynomial of the �bers of fU (all �bers in a at familyover an irreduible base have the same Hilbert polynomial), and let X ! H be the



20 Dan Abramovih and Frans Oortuniversal family over the Hilbert sheme assoiated to this polynomial. We have aartesian ommutative diagram: XU �! X# #U g�! H:Note that X ! H is a at morphism. We have a morphism i � g : U ! Z �H.De�ne Z 0 := i� g(U)Zar � Z �H;and let X 0 ! Z 0 be the pull bak:X 0 = Z 0�H X :Note that the base hange of a at morphism is at, hene X 0 ! Z 0 is at.It follows from [HAG℄ III.9.8 that X 0 is the strit transform under Z 0 ! Z ofX ! Z. 	3.2Remark. We ited [HAG℄ III.9.8, whih is in fat an important building blok inthe onstrution of Hilbert shemes.Remark. We an delete the word \dominant" in the attening lemma, and stillprove the onlusion, but we do not gain muh: if X ! Z is not dominant, theidentity on Z gives a strit transform (in the sense explained above) of X suhthat X 0 = ;, and atness trivially follows.Remark. In the proof above we note a general method, whih will also be used inthe question of extending urves below: suppose we study a ertain property (e.g.atness of a map). Suppose there is a \universal family" having this property (e.g.,the Hilbert sheme). Suppose also that in a given family the property holds overa dense open subset U in the base. Then, after a modi�ation, or an alteration ofthe base, depending on the situation, we an ahieve that property by mappingU to the base of the universal family, taking the losure of the graph, and pullingbak the universal family.We enounter a similar situation, in the ontext of extending stable urves,in Setion 3.6 below.3.4 Deforming a nodeAn important fat underlying the role of stable urves, whih is impliitly invokedin several plaes in this paper, is that a node uv = 0 an only deform in a ertainway. To be preise:Lemma 3.4. Let R be a omplete loal ring with maximal ideal m and alge-braially losed residue �eld. Let S = SpeR and denote the speial point by s. LetX ! S be the ompletion of a nodal urve at a losed point x on the �ber Xs overs, so Xs = Spe(R=m[�u; �v℄=(�u�v))^. Then there is an element f 2 m, and liftingsu of �u and v of �v, suh that X ' Spe(R[u; v℄=(uv � f))^.



Alterations and resolution of singularities 21One an prove this using the deformation theory of a node: the versal defor-mation spae (see [6℄) of the ompletion Xs of a nodal urve has dimensiondimExt1(
1Xs ;OXs) = 1, and it is easy to see that the equation uv = t is versal.An elementary proof by lifting the equation is skethed in [Alteration℄, Setion2.23.3.5 Serre's lemmaA ritial result in the theory of moduli of urves is, that a 1-parameter family ofurves admits stable redution after a base hange (see Theorem 11.2). A ruialpoint in the proof is the relationship between the automorphisms of a urve andthe automorphisms of its jaobian, as in the following lemma.Lemma 3.5. Let C be a stable urve de�ned over an algebraially losed �eld k,let m 2 Z�3, not divisible by the harateristi of k, and let ' 2 Aut(C) suh thatthe indued map on loally free sheaves of order m'� : Pi0C [m℄ �! Pi0C [m℄is the identity map. Then ' = 1C , the identity morphism on C.Proof (see [65℄, or [16℄, 3.5.1). Let ~C ! C be the normalization of C (namelythe disjoint union of the normalizations of all irreduible omponents). DenoteJ := Pi0C and X := Pi0~C . Consider the \Chevalley deomposition" (as in [14℄):0! T �! J �! X ! 0;i.e. T � J is the maximal onneted linear subgroup in J , the quotient is anabelian variety, and J=T �= Pi0~C . Note that T �= (Gm )s is a split torus. De�nef := '� � 1J 2 End(J). Using Hom(T;X) = 0we obtain a ommutative diagram0 ! T �! J �! X ! 0g # f # h #0 ! T �! J �! X ! 0:By the original lemma of Serre we dedue that h = 0; let us sketh the argument.The automorphism ' is of �nite order (beause C is stable), hene the indued 2 Aut( ~C) is of �nite order, hene  � = 1+h is of �nite order. Note that the ringEnd(X) is torsion free, and sine  is of �nite order the subring Z[ �℄ � End(X)is ylotomi. By assumption the element  � 
Z Z=m = 1 in End(X) 
Z Z=m.Sine  � is a root of unity, and m � 3, this implies  � = 1X , hene h = 0.



22 Dan Abramovih and Frans OortMoreover an analogous reasoning implies that g = 0: use that End(T ) =Mat(s;Z) is torsion-free. From h = 0 and g = 0 we dedue that f : J ! J fatorsas J ! X f 0�! T ! J:Using Hom(X;T ) = 0we onlude f 0 = 0, hene f = 0. Hene '� = 1J , and this implies that ' =1C . 	3.5Remark. We have used the fat that for p � 3, even modulo p, the root of unity�p is not equal to 1: indeed, the ring OQ(�p)=p is artinian, with generator �p.3.6 Extending stable urvesSuppose we are given a stable urve CU ! U over an open set U � S of a basesheme S. Can it be extended to a stable urve C ! S? In general the answer isnegative. This question is disussed in [32℄ and [44℄, where we �nd riteria whihensure that in ertain ases this is possible. The general situation has the followinganswer: an extension to a stable urves is possible after an alteration on the base.Note the di�erene from the Flattening Lemma, whih has to do with extendingfamilies of at subshemes of a �xed sheme.Theorem 3.6 (Stable Extension Theorem). Let S be a loally noetherian in-tegral sheme, let U � S be a dense open subset, and let C ! U with setionssUi : U ! C be a stable pointed urve. There exists an alteration ' : T ! S, anda stable pointed urve D ! T with setions �i : T ! D, suh that, if we write'�1(U) =: U 0 � T , we have an isomorphismDjU 0 ��! U 0 �U C;suh that ��sUi = �i.Remark. A proof for unpointed urves an be found in [16℄, Lemma 1.6. We presenthere a somewhat di�erent proof. For simpliity of notation the proof is stated inthe ase of unpointed urves.The �rst step is to extend isomorphisms of stable urves. The �rst lemma is thefollowing:Lemma 3.7. Suppose T is the spetrum of a disrete valuation ring, and D ! Tand D0 ! T are stable (pointed) urves, suh that the generi �bers are isomorphi:D� �= D0�. Then this extends a unique isomorphism: D �=T D0.For the proof see [17℄, Lemma 1.12. The main point is that the minimal modelsof D and D0 oinide, and D or D0 are obtained from the minimal model in aunique way by blowing down (�2)-urves. This lemma implies the following (see[17℄, 1.11):



Alterations and resolution of singularities 23Lemma 3.8. Suppose T is a sheme, and D ! T and D0 ! T are stable (pointed)urves. Then IsomT (D;D0)! T is �nite and unrami�ed.Indeed, the previous lemma implies that IsomT (D;D0)! T is proper. Sine stableurves have a �nite automorphism groups, the morphism is �nite. And sine stableurves have no nonzero vetor �elds, the morphism is unrami�ed.As a onsequene we get the following general result about extending isomor-phisms:Lemma 3.9. Suppose T is an integral normal sheme, and D ! T and D0 ! Tare stable (pointed) urves, suh that the generi �bers are isomorphi: D� �= D0�.Then this indues an isomorphism: D �=T D0.Proof. The given isomorphism over the generi point � gives a lifting � !IsomT (D;D0). The losure of its image in IsomT (D;D0) maps �nitely and bira-tionally to T . By Zariski's Main theorem it is isomorphi to T , and therefore givesa setion of IsomT (D;D0)! T . 	Exerise 3.10. We show that the ondition \normal" in the previous lemma isneeded. To this end, hoose a regular urve T0, and a smooth urve D0 ! T0.Choose it in suh a way that the geometri generi �ber has only the identity asautomorphism, and suh that there exist losed points x; y 2 T0 and two di�erentisomorphisms �; � : (D0)x ��! (D0)y:Let T0 ! T be the nodal urve obtained by identifying x and y as a nodal pointP 2 T (and the urves isomorphi outside these points). Construt D� ! T by\identifying (D0)x and (D0)y via �". Analogously D� ! T . Show thatD� 6�=T D� ; and (D�)�T = (D0)�T 0 = (D�)�T :It is instrutive to desribe IsomT (D�;D�).Remark. The phenomenon desribed in the exerise is harateristi of situationswhere one has a oarse moduli spae rather than a �ne one. See Setion 10.4 fordetails.The following is an analogous lemma about isomorphisms of the geometri generi�bers:Lemma 3.11. Suppose T is an integral sheme, D ! T and D0 ! T stable(pointed) urves, suh that the geometri generi �bers are isomorphi:D� �= D0�:Then there exists a �nite surjetive morphism T 0 ! T and an isomorphismD�T T 0 �=T 0 D0�T T 0:



24 Dan Abramovih and Frans OortRemark. It is easy to give examples where the isomorphism requested does notexist even over the generi point of T .Proof. As in [17℄, 1.10 we onsider IsomT (D;D0). The ondition in the lemmaassures that this is not empty, it is �nite and dominant over T , and the lemmafollows. 	Proof of Theorem 3.6: Here we use the fat that there exists a \tautologi-al family" of urves over the ompati�ed moduli spae of urves with a levelstruture. For stable urves without points, this is given in [21℄. For the ase ofstable pointed urves, use Theorem 13.2. Another proof, more in the line of [17℄,is skethed in Setion 13.4Let us suppose that there exists m 2 Z�3 suh that S ! Spe(Z[1=m℄).Hene the family C ! U de�nes a moduli morphismf : U !Mg[1=m℄ :=Mg �SpeZ SpeZ[1=m℄:We writeM :=M (m)g (after having �xed g and m) for the moduli sheme of stableurves of genus g with level-m struture (see [21℄ and Setion 13.2). We havea urve Z ! M suh that the assoiated moduli morphism to Mg [1=m℄ is thenatural morphism � :M !Mg [1=m℄ (we say that Z !M is a tautologial family;see Setion 10.4). Let U 00 := U �Mg M , let U 0 � U 00 be a redued, irreduibleomponent of U 00 dominant over U , and let C0 be the pull bak C0 = C �U U 0. LetZ 0 ! U 0 be the pull bak of the tautologial family, Z 0 = Z �M U 0. The very fatthatMg os a oarse moduli sheme (see Setion 10.4, ondition 1) guarantees thatover the geometri generi point we have C0� ' Z 0� . By the previous lemma we anreplae U 0 by a �nite over (all it again U 0) for whih there is a U 0 isomorphismC0 ' Z 0. Let S0 be the normalization of S in the funtion �eld of U 0. We de�neV � S0 �M to be the image of U 0 by the two morphisms into S0 and M , and letT = V Zar � S0 �M .By onstrution there is a stable urve over T , obtained by pulling bakZ ! M , whih moreover by onstrution extends the pull bak of C0 ! V . Thisproves the theorem in ase S ! Sm := Spe(Z[1=m℄).In ase S ! Spe(Z) is surjetive, one does the onstrution for two di�erentvalues of m, and then one pastes the result using Lemma 3.11. 	3.63.7 Contration and stabilizationIn [39℄, II, Setion 3, pp. 173-179, we �nd a desription of the following two on-strutions.1. Consider a stable (n + 1)-pointed urve (X ;P) ! S with 2g � 2 + n > 0.Deleting one setion gives a nodal n-pointed urve (with an extra setion),whih need not be a stable n-pointed urve. However, if neessary one anontrat \non-stable omponents" of �bers (regular rational urves ontain-ing not enough singularities and marked points). After this blowing down one



Alterations and resolution of singularities 25obtains a stable n-pointed urve (X 0;Q)! S, and an S-morphism X ! X 0mapping the �rst n setions of P to Q. This proess, whih arrives at aunique solution to this problem, is alled \ontration".2. Consider a stable n-pointed urve (Y ;Q)! S plus an extra setion � : S !Y not in Q. This extra setion may meet setions in Q, or meet the nodesof Y ! S. One an blow up Y in suh a way that the strit transforms (inthe old sense) of elements of Q and of the extra setion give a stable (n+1)-pointed urve (X ;P)! S, and an S-morphism X ! Y mapping the �rst nsetions of P to Q. This proess, whih arrives at a unique solution to thisproblem, is alled \stabilization".4 Proof of de Jong's main theoremOne striking feature of the proofs of de Jong's theorem and its derivatives is, thatall the ingredients, with the exeption of one subtle, but still natural, result (theThree Point Lemma), were known and understood nearly two deades before. Theway they are put together is quite ingenious.4.1 Preparatory steps and observationsThe proof of de Jong's theorem starts with a series of simple redution steps.The situation. We want to prove de Jong's Theorem 2.3. Thus we are given avariety X de�ned over an algebraially losed �eld k, and a Zariski - losed subsetZ � X . We perform some elementary redutions:Replaing X by an alteration. In order to prove the theorem for a variety Xand a losed subset Z, it is enough to prove it for an alteration X 0 of X whilereplaing Z by its inverse image Z 0 in X 0. Thus in several stages of the proof, onewe �nd an alteration X 0 ! X whih we like better than X , we simply replae thepair (X;Z) by (X 0; Z 0).Making Z into a divisor. By blowing up Z in X , and using the observationabove, we may assume that Z is the support of an e�etive Cartier divisor. Wewill slightly abuse terminology, and say that \Z is a divisor" when we mean thatZ is a losed subset supporting an e�etive Cartier divisor.Enlarging Z. Suppose Zi � X are divisors and Z1 � Z2, then to prove thetheorem for (X;Z1) it suÆes to prove it for (X;Z2). Indeed, if f : Y ! X isan alteration suh that Y is nonsingular and f�1(Z2) is a strit normal rossingsdivisor, then f�1(Z1) is a Cartier divisor ontained in f�1(Z2), and it is learfrom the de�nition that it is a strit normal rossings divisor as well. Thus we mayalways enlarge the divisor Z.Making X quasi-projetive. Using Chow's Lemma 3.1, we may assume X isquasi-projetive. Indeed, by Chow's lemma there is a modi�ation X 0 ! X suhthat X 0 is quasi-projetive. We may replae X by X 0.



26 Dan Abramovih and Frans OortEnlarging X. Suppose X � X1 is an open embedding of varieties, Z1 � X1 adivisor whih ontaining X1 X , and Z = X \ Z1. Then evidently to prove thetheorem for (X;Z) it suÆes to prove it for (X1; Z1).Making X projetive. Sine X is quasi-projetive, there is an open embeddingX � X where X is projetive. Denote Z1 = Z [ (X X). We may replae X bythe blowup of Z1, thus we may assume that Z1 is the support of a Cartier divisor.By the previous observation it is enough to prove the result for (X;Z1).We may assume X is normal. Indeed, we an simply replae X by its normal-ization.To summarize, one may assume that the variety X is projetive and normal, andthe subset Z is the support of an e�etive Cartier divisor. Moreover, one mayalways replae Z by a larger divisor.4.2 Produing a projetionThe next step is to produe a projetion with some nie properties. We �rst startwith some general fats about projetions in projetive spaes.Let Y � PN be a projetive variety over an algebraially losed �eld (infat, separably losed would suÆe). For any losed point p 2 PN Y we have aprojetion prp : Y ! PN�1.Lemma 4.1. Suppose dimY < N�1. Then there is a nonempty open set U � PN ,suh that if p 2 U then prp sends Y birationally to its image.Proof. Let q 2 Y be a regular point. De�ne the one CY;q over Y with vertex q tobe the Zariski losure of the union of all seant lines lines ontaining q and anotherq0, for all q0 2 Y . It is easy to see that CY;q has dimension � dimY + 1 < N .Note that CY;q ontains (as \limit points") the projetive tangent spae TY;q at q.Therefore if p 2 PN CY;q then the line through p and q meets Y transversally, atq only. This property holds as well for the line through p and q0, for any q0 2 Y ina neighborhood of q. Hene the lemma. 	Lemma 4.2. Suppose dimY = N�1. Then there is a nonempty open set U � PN ,suh that if p 2 U then prp maps Y generially �etale to PN�1.Proof. Same as before, using TY;q instead of CY;q. 	We go bak to our X and Z.Lemma 4.3. There exists a modi�ation � : X 0 ! X and a morphism f : X 0 !Pd�1 suh that1. There exists a �nite set of nonsingular losed points S � Xns disjoint fromZ, suh that X 0 is the blowup of X at the points of S.2. f is equidimensional of relative dimension 1



Alterations and resolution of singularities 273. The smooth lous of f is dense in all �bers4. Let Z 0 = ��1Z. Then f jZ0 is �nite and generially �etale5. At least one �ber of f is smooth.Proof. First projet � : X ! Pd using the previous lemmas N � d� 1 times.Let B � Pd be the lous over whih � is not �etale.If we hoose a general p 2 Pd, then prp : �(Z) ! Pd�1 is generially �etale -simply use the lemma above for all irreduible omponents of �(Z).We hoose suh a p away from B. By the loal desription of blowing up, wean identify the varietyX 0 = f(x; `) 2 X � Pd�1j�(x) 2 `gwith the blowing up of X at the points in ��1(p).We de�ne f : X 0 ! Pd�1 to be the seond projetion.We an identify the �bers: the �ber over a point ` is the sheme theoretiinverse image ��1(L) where L is the line orresponding to `.It follows immediately that f is equidimensional: all �bers have dimension atmost 1, and are de�ned by d� 1 equations (the equations of L).Sine no line through p is ontained in B, every �ber has a dense smoothlous.The last assertion follows by Bertini's theorem, sine the �bers are obtainedby interseting X with linear subspaes.Lemma 4.4. The morphism f has onneted �bers.Proof. Sine the smooth lous is dense in every �ber, the Stein fatorization is�etale. Sine projetive spae has no nontrivial �nite �etale overs, the Stein fator-ization is trivial.Remark. 1. The last assertion is not really neessary: if f did not have on-neted �bers, we ould replae f : X 0 ! Pd�1 by its Stein fatorization.2. The projetion above is the only point where it is ruial that X should benormal, to guarantee that the generi �ber is smooth. From here on we willallow ourselves to make redutions after whih X might not be normal.To summarize, one may assume that we have a morphism of varietiesX ! P ,for some variety P , whih makes X into a generially smooth family of urves,satisfying some nie properties, in partiular Z ! P is �nite and generially �etale.4.3 Enlarging the divisor ZIn order to \rigidify" the situation, it will be useful to enlarge Z so it meets every�ber \suÆiently". This is done as follows:



28 Dan Abramovih and Frans OortLemma 4.5. Let X ! P be as above. There exists a divisor H � X suh that1. f jH : H ! P is �nite and generially �etale, and2. for any irreduible omponent C of a geometri �ber of f , we have#sm(X=P ) \ C \H � 3:Here we ount the points without multipliities.Proof. Let n � 1 be an integer. Given a very ample line bundle L on X , onsiderthe embedding i : X ,! P = P(�(X;L
n))assoiated to L
n.Claim. Given any irreduible urve C � X , the image i(C) � P is not ontainedin any linear subspae of dimension n� 1.Proof of laim. Sine L is very ample, the image of �(X;L)! �(C;LjC) ontainsa rank-2 subspae V � �(C;LjC) suh that the orresponding linear series (ofdimension 1) has no base points. The map SymmV ! �(C;L
njC ) has rank �n + 1, therefore �(X;L
n) ! �(C;L
njC ) has rank � n + 1, whih is what welaimed. 	(Claim)The divisors of setions of L
n are parametrized by the dual projetive spaeP_. We onsider the olletion of \bad" divisors and show that there are \good"ones left. So onsiderT = f(H; y) 2 P_ � P j dim f�1y \H = 1g � P_ � P:It is lear that T is a Zariski losed subset. We an desribe the �bers ofpr2 : T ! P using irreduible omponents of the �bers:pr�12 (y) = [C�f�1yfH ji(C) � Hg:But by the fat that i(C) is not ontained in any linear subspae of dimensionn� 1, we have odim(pr�12 (y);P_) � n:Therefore dimT � dimP + dimP_ � n.Thus if n is large enough, pr1(T ) � P_ is of large odimension (at leastn� dimP ). In partiular pr1(T ) 6= P_.We �x suh large n. Thus there are plenty of H whih map �nitely to P .For a �xed losed point y 2 P (k) onsider the setU(y) =8<:H 2 P_(k) ������ H 62pr1(T )H \ f�1y � sm(X=P )H \ f�1y is redued 9=; :



Alterations and resolution of singularities 29This is learly a nonempty open set of P_. Moreover, if H 2 U(y) then H 2 U(y0)for all y0 in a neighborhood of y.If moreover n � 3, then we have that #H \ f�1y � 3. so we are done for allpoints in a neighborhood V of y.We deal with points in P V in the same way. Using Noetherian indutionwe are done. 	(Lemma)Summarizing, one may assume that Z meets every irreduible omponent ofevery geometri �ber in at least three smooth points.4.4 The idea of simplifying the �bersDe Jong's idea is to simplify the �bers of the morphismX ! P . Then by indutionon dimension one an simplify the base P , and �nally put these simpli�ationstogether.The method of simplifying the �bers uses the deepest ingredient in the pro-gram: the theory of moduli of urves (see Setion 10 for disussion).Here is the general plan. First, as we will see below, it is easy to make analteration of P , and replae X and Z by their pullbaks, suh that Z beomes theunion of setions of X ! P .We an think of the generi �ber of X ! P as a smooth urve with a numberof points marked on it. Say the genus of this urve is g, and the number of points isn. By the Stable Extension Theorem 3.6, the generi �ber an be extended, afteran alteration P1 ! P , to a family of stable urves X1 ! P1:X1 9 9 K X# #P1 ! PThe new morphism f1 : X1 ! P1 is muh nier than f , sine at least the �bersare as nie as one an expet: they are nodal urves. Moreover, Z was made muhnier: it is replaed by n setions whih are mutually disjoint, and pass throughthe smooth lous of f1.If we an resolve P1 (say using indution on dimension), then it is easy toresolve X1 as well.There is a problem though: if we want to repeat this indutively, we annotallow a rational map X1 9 9 KX whih is not a morphism - sine we annot pullbak niely along rational maps. So we want to �nd a way to make sure thatX1 9 9 KX is atually a regular map.Remark. If one is satis�ed with proving a weaker result, namely that every varietyadmits a \rational alteration" by a nonsingular variety, then there is an alternativeway to avoid the issue. This is arried out by S. Mohizuki in [44℄.Remark. Another way to irumvent the issue of extending � to a morphism, is toensure that it extends automatially, by using a moduli spae into whih a mor-phism is built in: the spae of stable maps. This was arried out, in harateristi



30 Dan Abramovih and Frans Oort0, in [1℄, Lemma 4.2. Unfortunately the details of onstruting moduli spaes ofstable maps have not yet been written out in positive or mixed harateristis,although this would not be diÆult: the results of [9℄ imply that the moduli ofstable maps forms a proper Artin stak, and the results of [37℄ imply that thisstak admits a proper algebrai spae as a oarse moduli spae. One should evenbe able to modify the argument of [40℄, Proposition 4.5 and show that this spaeis projetive, but this is not essential for the argument.Let us go into details.4.5 Straightening out ZLemma 4.6. There exists a normal variety P1 and a separable �nite morphismP1 ! P satisfying the following property:Let X1 = ~XP1 be the strit transform (see Setion 3.1), and let Z1 be theinverse image of Z in X1. Then there is an integer n � 3, and n distint setionssi : P1 ! X1; i = 1; : : : ; n suh thatZ1 = n[i=1 si(P1):Proof. This an be proven by indution on the degree n of Z ! P as follows: LetZ1 be an irreduible omponent of Z and let P 0 := Z�1 be its normalization. Wehave a generially �etale morphism P 0 ! P . Denote X 0 = ~XP 0 and let Z 0 be theinverse image of Z. The morphism P 0 ! Z gives rise to a setion sk+1 : P 0 ! Z 0,and therefore we an write Z 0 = sk+1(P 0)[Z 00. We have deg(Z 00 ! P 0) = deg(Z !P )� 1, and therefore the indutive assumption holds for Z 00. 	Thus one an assume Z is the union of setions of X ! P .4.6 Produing a family of stable pointed urvesLet X ! P; si : P ! X be the new family. Let U � P be an open set satisfyingthe following assumptions:1. XU ! U is smooth;2. the setions sijU : U ! XU are disjoint.Suh an open set learly exists.Sine n � 3 this gives the morphism XU ! U the struture of a family ofstable n-pointed urves.And here omes the point where moduli theory is used: by Theorem 3.6,there exists an alteration P1 ! P , a family of stable pointed urves C ! P1, withsetions �i : P1 ! C, suh that over the open set U1 = P1 �P U � P1 we have anisomorphism � : CU1 ! U1 �P X , satisfying ��si = �i.



Alterations and resolution of singularities 314.7 The three point lemmaAs usual, we replae P by P1 and X by its strit transform. Thus we may assumethat we have a diagram as follows:C �9 9 K X& #PThe ruial point, for whih we needed to \enlarge Z" in a previous step, is thefollowing:Lemma 4.7 (Three Point Lemma). Suppose Z meets the smooth lous of ev-ery irreduible omponent of every �ber in at least three points. Then, at least aftera modi�ation of P , the rational map � : C 9 9 KX extends to a morphism.The proof of this lemma, whih is detailed in the next few paragraphs, is probablythe most subtle point in this hapter.4.8 Flattening the graphLet T � X �P C be the losure of the graph of the rational map �. We have twoprojetion maps pr1 : T ! C and pr2 : T ! X .Claim. There exists a modi�ation P 0 of P suh that the strit transform of X,and the losure of the graph of C 9 9 K X are both at. Thus we might as wellassume X ! P and T ! P are at.Proof. By the Flattening Lemma 3.2 there exists a modi�ation P 0 ! P suhthat ~XP 0 and ~TP 0 are both at. Evidently the losure of the graph of the rationalmap C �P P 0 ! ~XP 0 is ontained in ~TP 0 , and sine ~TP 0 is at they oinide by[HAG℄ III.9.8. 	(Claim)Let p be a geometri point on P , and denote by Xp; Tp; Cp the �bers overp. There exists a �nite set W � Xp suh that Tp ! Xp is �nite away from W .Indeed, the atness implies that dimTp = dimXp = 1.Thus, for any x 2 Xp W , there is an open neighborhood x 2 V � X suhthat pr�12 V ! V is �nite and birational.In ase x 2 Sm(Xp) W , we may hoose V � Sm(X ! P ). Using the as-sumption that P is normal, it follows that V is normal. In this ase, by Zariski'smain theorem, pr�12 V ! V is an isomorphism.Note that the assumption that x 2 Sm(Xp) exludes only �nitely manypoints, sine our projetion X ! P is smooth at the generi point of eah ompo-nent of the geometri �ber Xp. Therefore we onlude that the following lemmaholds:



32 Dan Abramovih and Frans OortLemma 4.8. If X 0 � Xp is an irreduible omponent, then there is a unique irre-duible omponent T 0 of Tp mapping �nitely onto X 0 via pr2 : T ! X. Moreover,T 0 ! X 0 is birational.Repeating the argument for pr1 : T ! C, we also have:Lemma 4.9. If C 00 � Cp is an irreduible omponent, then there is a unique irre-duible omponent T 00 of Tp mapping �nitely onto C 00 via pr1 : T ! C. Moreover,T 00 ! C 00 is birational.Let x 2 Sm(Xp) be a losed point. Considering the Stein fatorization T ! ~X !X , we have that the �ber pr�12 (x) is onneted. Indeed, sine X is normal at x,we have that ~X ! X is an isomorphism at x.4.9 Using the three point assumptionLet X 0 � Xp be an irreduible omponent, and T 0 � Tp the unique omponentmapping �nitely (and birationally) onto it, as in Lemma 4.8 above. We will provethat pr1 : T 0 ! C is non-onstant. Assume by ontradition that pr1(T 0) = fg isa point.We will use the three point assumption. Let si : P ! X; i = 1; : : : ; 3 be threeof the given setions suh that si(p) = xi are three distint points on Sm(X 0). LetTi = pr�12 xi. Let �i(p) = i 2 Cp.Note that the point ti = (i; xi) 2 C �X is in T .Assume  62 fi; i = 1; : : : ; 3g. Then eah of Ti; i = 1; : : : ; 3 ontains anirreduible omponent T 0i whose image in C is again a urve passing through. These image omponents are distint. Indeed, Ti are disjoint subshemes ofTp, whose images in C onnet  with i, and therefore eah has an irreduibleomponent whose image ontains . These omponents are distint, and by Lemma4.9 their images are distint.This ontradits the fat that Cp is nodal. Thus  is among the i.Assume, without loss of generality,  = 1. Repeating the argument of theprevious paragraph we onlude that there are two distint omponents of Cppassing through . This ontradits the fat that Cp has a marked point at  = 1.Thus we onlude that pr1 : T ! C is �nite and birational.By Serre's riterion C is normal: it is learly regular in odimension 1, andondition S2 follows sine C ! P has redued one-dimensional �bers and P isnormal.We onlude that T ! C is an isomorphism, hene � extends as a morphism!	4.7



Alterations and resolution of singularities 334.10 IndutionWe arrived at the following situation:C �! X& #PWe may replae X by C, and Z by its inverse image in C. Note that Z is no longer�nite over P : it has a\�nite part", the union of the setions �i : P ! C = X , butthere is a \vertial" part Zvert, whih is the union of irreduible omponents ofsingular �bers of X ! P .Let � � P be the losed subset over whih f : X ! P is not smooth. Bythe indution assumption there is a projetive alteration P1 ! P suh that P1is nonsingular and the inverse image of � is a strit normal rossings divisor. Wemay replae X by its pullbak to P1, and replae P by P1. It is onvenient toreplae Z by its union with f�1(�).We arrived at a situation where both P , and the morphism f : X ! P , aresimpli�ed. The resulting variety has very simple singularities, and its desingular-ization results from the following exerises.4.11 Exerises on blowing up of nodal familiesThe exerises below, whih aim at ompleting the proof, are adapted from DeJong's omplete exposition in [Alteration℄. We have not reprodued his proofshere. The reader may onsult [Alteration℄, pages 63-64 (Setion 3.4) and 75-76(Setions 4.23-4.28). We �nd it hard to improve upon that text, but we hope thereader will enjoy unraveling the details by following the exerises below.Let f : X ! S be a at morphism of varieties over an algebraially losed�eld k, with n = dimX = dimS + 1. Let D � S be a redued divisor. We makethe following assumptions.N1 The base S is nonsingular.N2 The divisor D has strit normal rossings.N3 The morphism f is smooth over S D.N4 The morphism f : X ! S is a nodal urve.Let x 2 X be a losed point and let s = f(x) 2 S. By assumption we mayhoose a regular system of parameters t1; :::; tn�1 at s suh that D oinides ona neighborhood with the zero lous of t1 � � � tr for some r � n � 1. It an be seenthat if x is a singular point of X , then the ompleted loal ring of X at x an bedesribed as (�) k[[u; v℄℄=(uv � tn11 � � � � � tnrr )



34 Dan Abramovih and Frans Oort.Step 1: Assume odimX Sing(X) = 2.1. Show that there is an irreduible omponent D1 � D and �1 � Sing(X)suh that f(�1) = D1.2. Fix a point x 2 �1, and use formal oordinates as in (�), suh that D1 =V (t1). Show that the power n1 of t1 is > 1.3. Show that the ideal of �1 in the formal ompletion is (u; v; t1).4. Conlude that �1 ! D1 is �etale, in partiular �1 is nonsingular.5. Let X1 = Bl�1X: Show that X1 ! S satis�es onditions N1-N4, there is atmost one omponent of Sing(X1) over �1, with the exponent n1 replaed byn1 � 26. Conlude by indution that there is a blowup X 0 ! X entered aboveSing(X), suh that X 0 satis�es N1-N4, and odimX Sing(X) > 2.7. Show that eah omponent of Sing(X 0) is de�ned by u = v = ti = tj inequation (�), in partiular it is nonsingular.Step 2: Assume odimX Sing(X) > 2. De�ne Z = f�1D. Unfortunately here weneed to abandon the struture X ! B of a family of nodal urves. Instead we lookat X itself. The situation is as follows:T1 whenever x is a nonsingular point of X , Z has normal rossings at x.T2 whenever x 2 Sing(X), we have formal desription(��) k[[u; v℄℄=(uv � t1 � � � ts); 2 � s � r � n� 1and Z = V (t1 � � � tr).T3 All omponents of Sing(X) are nonsingular.1. Let E � Sing(X) be an irreduible omponent. Show that the blowup BlEXsatis�es T1-T3, and its singular lous has one fewer irreduible omponent.2. Conlude by indution that there is a resolution of singularities X 0 ! X .This onludes the proof of Theorem 2.3 	



Alterations and resolution of singularities 355 Modi�ations of the proof for Theorems 2.4 and2.75.1 Exerises on removing the onditions on the projetionAn important step in the proof of de Jong's theorem was, that given the projetionX ! P , one ould onstrut an alteration P1 ! P and a diagramC �! X# #P1 ! Pwhere C ! P1 was a family of nodal urves. In order for the proof to go through,we made several assumptions on the projetion X ! P . Here we will show thateven if these onditions fail, we an still redue to the ase where they do hold.Exerise 5.1. Using an alteration, show that the ondition that Z ! P be �nitein Lemma 4.3 (4) is unneessary for the rest of the proof.Exerise 5.2. Show that, if one is willing to aept inseparable alterations inthe theorem, the ondition that Z ! P be generially �etale in Lemma 4.3 (4) isunneessary for the rest of the proof.Exerise 5.3. � By reviewing the arguments, show that the ondition that everyomponent of every �ber of X ! P be generially smooth is unneessary.Here a modi�ation of the three point lemma is be neessary! In [31℄, de Jong usesa trik of \raising the genus of the urves" with �nite overs. Another way goesas follows: in the proof of the Three Point Lemma 4.7, after attening X and T ,one works with �bers of the normalizations X� and T � . This way one avoids theneed for Sm(Xp) to be dense. One notes that the setions si lift to X� , and atleast three meet every omponent of every �ber, sine Z is the support of a Cartierdivisor! The details are left to the reader.Exerise 5.4. Using the attening lemma and the previous exerise, show thatthe ondition that X ! P be equidimensional is unneessary.Exerise 5.5. Show that, if one is willing to aept inseparable alterations in thetheorem, the ondition that the generi �ber of X ! P be smooth is unneessary.5.2 Exerises on Theorem 2.4Let us address Theorem 2.4 on semistable redution up to alteration. SupposeS = SpeR where R is a disrete valuation ring, X ! S is a morphism as in thetheorem, and Z a proper losed subset.Exerise 5.6. Show that we may assume X projetive over S, that Z is thesupport of a Cartier divisor.



36 Dan Abramovih and Frans OortExerise 5.7. Show that we may assume that the generi �ber is a normal variety,and that X is a normal sheme. (You may need an inseparable base hange!)Exerise 5.8. Let d be the dimension of X�. Produe a projetion X ! Pd�1Swith onneted �bers.Exerise 5.9. Use the semistable redution argument, with the Three Point Lemma,and the results of Setion 5.1 to replae X by a nie family of urves X ! P ! S.Exerise 5.10. Use indution on the dimension to onlude the proof of the the-orem.Exerise 5.11. Can you think of other situations where a similar theorem anbe proven, where S is not neessarily the spetrum of a disrete valuation ring?(This is interesting even in harateristi 0!)5.3 Exerises on Theorem 2.7We address the equivariant version of the theorem. Suppose X is a variety, Z aproper losed subset, and a �nite group G ats on X stabilizing Z. We wish toprove Theorem 2.7.Exerise 5.12. Produe an equivariant version of Chow's lemma, so that we mayassume X is projetive.Exerise 5.13. Show that, to prove the theorem, it suÆes to onsider the asewhere Z is a divisor.Exerise 5.14. Show that we may replae Z by a bigger equivariant divisor; inpartiular we may assume Z ontains the �xed point loi of elements in G.Exerise 5.15. Using a projetion of X=G, show that we may assume we havean equivariant projetion X ! P making X into a nie family of urves.Exerise 5.16. Consider the ase X = A 2k where har k = p, and G = Z=pZating via (x; y) 7! (x; x + y). Show that the �xed point set maps inseparablyto the image. In partiular, the map Z ! P in the previous exerise might beinseparable!Exerise 5.17. Making an alteration \Galois": Given a varietyW , a �nite groupation H � AutW and an alteration V0 !W , show that there exists an alterationV ! V0, and a �nite group H 0 with a surjetion H 0 ! H , and a lifting of theH ation H 0 � Aut(V ! W ) suh that the extension of �xed �elds K(W )H �K(V )H0 is purely inseparable.Exerise 5.18. � Use the uniqueness in the stable redution theorem to showthat there is an alteration P 0 ! P , a family of stable pointed urves C ! P 0 and



Alterations and resolution of singularities 37a �nite group G0 with a quotient G0 ! G and a diagramC ! X# #P 0 ! Pon whih G0 ats equivariantly, suh that C is birational to gXP 0 , and the extensionsK(X)G � K(C)G0 and K(P )G � K(P 0)G0 are purely inseparable.Exerise 5.19. Use indution on the dimension and a suitable modi�ation ofthe elementary blowups argument to onlude the theorem.6 Toroidal geometryToroidal geometry is a generalization of the more well known geometry of torivarieties. In this setion we will show that various aspets of tori varieties gener-alize with few diÆulties to the toroidal ase. The reader is assumed to be familiarwith the basi fats about tori varieties, as given in [15℄ in this volume.6.1 Basi de�nitionsFor simpliity we work over an algebraially losed �eld. We reall the notion of atori variety (a more thorough disussion is available in [15℄):De�nition. A variety X together with an open dense embedding T � X is alleda tori variety if X is normal, T is a torus (geometrially isomorphi to G km ), andthe ation of T on itself by translations extends to an ation on X .To get an intuitive idea about the singularities of a tori variety, it is worth notingthat a normal, aÆne variety, de�ned by equations between monomials (suh asz2 = xy) is tori, and every tori variety is loally of this type.For many purposes tori varieties are too restritive. A more general notionwas introdued by Mumford in [38℄:De�nition. A variety X together with an open embedding U � X is alled atoroidal embedding if any point x 2 X has an �etale neighborhood X 0 suh thatX 0 is isomorphi to an �etale neighborhood of a point on a tori variety, and theisomorphism arries the open subset U 0 = X 0�X U � X 0 to the torus of the torivariety.Thus a toroidal embedding looks loally like a tori variety, and the big open setU is a devie whih ties together these \loal pitures". In a sense, this notion issuitable for studying varieties whose singularities are like those of tori varieties.In this setion we reall fats about tori varieties and briey indiate how onean obtain analogous fats about toroidal embeddings. The details are availablein [38℄.



38 Dan Abramovih and Frans OortRemark. A more sheaf - theoreti approah was introdued by K. Kato, see [35℄,[36℄.De�nition. A toroidal embedding is said to be strit (or a toroidal embeddingwithout self intersetions) if every irreduible omponent of X U is normal.For instane, if X is a nonsingular variety, D � X is a strit normal rossingsdivisor, and U = X D, then U � X is a strit toroidal embedding.We will only work with strit toroidal embeddings.De�nition. If G � Aut(U � X) is a �nite group, we say that G ats toroidally iffor any point x 2 X , the stabilizer Gx of x an be identi�ed with a subgroup ofthe torus in an appropriate �etale neighborhood of x.De�nition. A morphism between tori varieties is alled a tori morphism, if itis surjetive and torus-equivariant. A morphism of toroidal embeddings (UX �X)! (UY � Y ) is alled a toroidal morphism if loally on X it looks like a torimorphism.6.2 The oneFirst reall some notation (see [15℄):M = Hom(T; Gm ) - this is the group of algebrai haraters of T ;MR =M 
 RN = Hom(M;Z) = Hom(Gm ; T ) - this is the group of 1-parameter subgroupson T ;NR = N 
 RIt is ommon to all the funtions de�ned by elements of M the monomials.One uses the notation xm for the monomial assoiated with the element m 2M .Reall the basi orrespondene betweenfaÆne tori varieties T � Xgandfstritly onvex rational polyhedral ones � � NRgwhih an be de�ned in one diretion viaX = V� := Spe k[�_ \M ℄;and in the other diretion by� = the one spanned by the 1-parameter subgroups � : Gm ! Tsuh that \the limit limz!0 �(z) exists inX", that is, � extendsto a morphism A 1 ! X .There is another, less well known haraterization of �, whih is less depen-dent on the torus ation, and is therefore useful for toroidal embeddings:



Alterations and resolution of singularities 39Any monomial m 2M de�nes a Cartier divisor Div(xm) supported on X T .If �_ ontains a line through the origin, then for any m on this line the divisor iseasily seen to be trivial (both m and �m give regular funtions).We use the following notation:�? = fm 2MRjhm;�i = 0gM� = Cartier divisors supported on X T .One an easily see that M� =M=�? \M .N� = span(�): Clearly N� = Hom(M� ;Z).Let M�+ �M�: the e�etive Cartier divisors.We have that M�+ = �_ \M=�? \M .It is not hard to see that � = (M�+)_R, the dual one of the one spanned byM�+. In short: � is the dual one to the one of e�etive Cartier divisors supportedon X T .6.3 The toroidal pitureWe wish to mimi the onstrution of the one in the toroidal ase. We follow [38℄,Chapter II.Let U � X be a strit toroidal embedding. X U = [Di; where Di normal.We deompose \i2IDi = [X�; the loally losed subsetsX� are alled strata.Eah stratum has its star: Star(X�) = [X��X�X� .Note: X� is the unique losed stratum in Star(X�). In a sense it is analogousto the unique losed orbit in an aÆne tori variety.De�ne:M� = group of Cartier divisors supported on Star(X�) U ;M�+ = subset of e�etive Cartier divisors;N� = Hom(M�;Z);�� = (M�+)_R.Thus, to eah stratum we assoiated a stritly onvex rational polyhedralone.Remark. The one �� has a desription analogous to the tori one using 1-parametersubgroups, in terms of valuations. Let RS(X) be the disrete valuations on X . Letv be a valuation entered in Star(X�). Let fj be rational funtion de�ning gen-erators of M� on a small aÆne open. Then v(fj) is a vetor in ��, and in fat�� an be desribed as a set of equivalene lasses of disrete valuations enteredin Star(X�), the equivalene being de�ned by equality of the valuations of thesefuntions fj .6.4 Birational aÆne morphismsReall: if � � � are two stritly onvex rational polyhedral ones, then �_ � �_gives rise to a morphism V� ! V� , whih is birational and aÆne.



40 Dan Abramovih and Frans OortNote that V� ! V� an be desribed in the following invariant manner:V� = SpeV� XE2M�+OV� (�E);where the sum is taken inside the �eld of rational funtions of V� .This learly works over Star(X�) in the toroidal ase as well.6.5 Prinipal aÆne opensIf m 2 �_ then � = fn 2 �j < n;m >= 0g is a fae of �. We have �_ = �_+R �m,and therefore V� is the prinipal open set on V� obtained by inverting the monomialxm. Again, this an be desribed divisorially in terms of Div(m). Thus the sameis true for Star(X�): given a fae � of ��, we get an open setStar(X�) � Star(X�)suh that � = �� .The most important fae of a one is the vertex. It orresponds to the openset T � V . In the toroidal ase you get U .6.6 Fans and polyhedral omplexesReall: if �1 and �2 interset along a ommon fae � , then V�1 and V�2 an beglued together along the ommon open set V� , forming a new tori variety.In general, whenever you have a fan � in N , namely a olletion of ones �iinterseting along faes, you an glue together the V�i and get a tori variety V�.It is not hard to see that every tori variety is obtained in this way in aunique manner. The point is that every tori variety is overed by aÆne open torivarieties.In the toroidal ase, X is overed by the open sets fStar(X�)g�.In general Star(X�) \ Star(X�) = [ Star(Xi);so �i are possibly several faes of both �� and �� .Still these an be glued together, as a rational onial polyhedral omplex.The main di�erene from the tori ase, is that it is abstratly de�ned, and ingeneral it is not linearly ontained in some vetor spae NR.6.7 Modi�ations and subdivisionsLet � be a fan, and �0 ! � a (omplete) subdivision. This orresponds to a torimodi�ation V�0 ! V�.Sine the onstrution is loal (the Spe onstrution, as in Setion 6.4, andgluing) it works word for word in the toroidal ase. There is a small issue in



Alterations and resolution of singularities 41heking that the resulting modi�ation is still a strit toroidal embedding; this isdisussed in detail in [38℄.In [38℄ (see also [15℄) it is shown that a modi�ation is projetive if and onlyif the subdivision is indued by a support funtion - one assoiates to a supportfuntion an ideal, whose blowup gives the modi�ation. This works in the toroidalase as well.6.8 NonsingularityReall: an aÆne tori variety V� is nonsingular if and only if � is simpliial, gen-erated by a basis of N� (namely, part of a basis of N). Suh a one is allednonsingular.In general: a tori variety V� is nonsingular if and only if every one � 2 �is nonsingular.This is a loal fat, so it is true in the toroidal ase as well.6.9 DesingularizationReall that it is easy to resolve singularities of a tori variety: one �nds a simpliialsubdivision suh that every one is nonsingular.Obviously, the same works in toroidal ase! We obtained:Theorem 6.1. For any toroidal embedding U � X there is a projetive toroidalmodi�ation U � X 0 ! X suh that X 0 is nonsingular.See [38℄, Theorem 11*, page 94.6.10 Exerises on tori varieties and toroidal embeddings1. Show that G nm � A n is a tori variety. Desribe its one.2. Show that G nm � Pn is a tori variety. Desribe its fan.3. Let X � A n be a normal variety de�ned by moni monomial equations oftype Yxnjj =Yxmjj :Show that X is tori. (Identify the torus!)4. Do the same if the monomial equations are not neessarily with oeÆients= 1.5. Desribe the one assoiated to the aÆne tori variety de�ned byxy = tk11 � � � tkrr :



42 Dan Abramovih and Frans Oort6. Look at the aÆne 3-fold xy = zw. Let X 0 ! X be the blowup of X at theideal (x; z). Desribe this blowup, show that it is tori, and desribe the onesubdivision assoiated to it.7. Let X = A 2 , D = fxy(x + y � 1) = 0g, U = X D. Show that U � X is atoroidal embedding. Desribe its onial polyhedral omplex. (Compare withthe fan of P2!)8. Do the same for D = fy(x2+ y2� 1) = 0g. Show that the resulting omplexan not be linearly embedded in a vetor spae.9. Consider the surfae X = fz2 = xyg, U = fz 6= 0g. Show that U � X istori and desribe its one.10. Consider the surfae X above, let D1 = fx = 0g, D2 = fy = x(x �1)2 and z = x(x� 1)g. Let U = X (D1 [D2). Show that U � X is toroidal.Desribe its onial polyhedral omplex. Make sure to desribe the integralstruture!6.11 Abhyankar's lemma in toroidal termsAbhyankar's lemma about fundamental groups (see [25℄, [26℄) desribes the loaltame fundamental group of a variety around a normal rossings divisor. Let X =Spe k[[t1; : : : ; tn℄℄ and letD = V (t1 � � � tn). Let Y ! X be a �nite alteration whihis tamely branhed alongD, and �etale away fromD. Form prime to har k, denoteXm = Spe k[[t1=m1 ; : : : ; t1=mn ℄℄. Abhyankar's lemma says that the normalization ofY �X Xm is �etale over Xm.In the following exerises we interpret this in toroidal terms.Exerise 6.2. Let U � X be a nonsingular strit toroidal embedding. Let f :Y ! X be a �nite over, whih is tame, and �etale over U . Then f�1U � Y is astrit toroidal embedding.Exerise 6.3. Suppose further that Y ! X is Galois, with Galois group G. Showthat G ats toroidally on Y .7 Weak resolution of singularities IGiven the existene of toroidal resolution, the proof of weak resolution of sin-gularities in harateristi 0 by Bogomolov and Pantev is arguably the simplestavailable. It does not even require surfae resolution.We will go through this proof. The steps of proof here inlude some simpli-�ations on the arguments in [12℄, whih ame up in disussions with T. Pantev.These and additional simpli�ations were disovered independently by K. Paran-jape [53℄, and we have used his exposition in some of the following exerises. Theversion given in [53℄ has the advantage that it does not even require moduli spaes.



Alterations and resolution of singularities 437.1 ProjetionLet X be a variety over an algebraially losed �eld of harateristi 0, and Z � Xa proper losed subset. Let n = dimX , and again assume we know the weakresolution theorem for varieties of dimension n� 1.First a few redution steps:1. Show, as in 4.1 that we may assume X projetive and normal, and Z thesupport of a Cartier divisor.2. Show that there is a �nite projetion X ! Pn.3. Let P ! Pn be the blowup at a losed point. Show thatP ' PPn�1(OPn�1 �OPn�1(1)):Denote by E the exeptional divisor of P ! Pn.4. By blowing up a general point on Pn, and blowing up X at the points above,show that we may assume we have a �nite morphism f : X ! P , whih is�etale along E, suh that the image of Z is disjoint from E, and maps �nitelyto Pn�1.5. By the Nagata - Zariski purity theorem, note that the branh lous ofX ! Pis a divisor B, disjoint from E, mapping �nitely to Pn�1.We replae Z by Z [ f�1B.7.2 Vetor bundlesThe next steps are aimed at replaing P by another P1-bundle Q ! Pn�1, suhthat the branh lous in Q of X ! Q beomes simpler. Let Y be any variety, F arank-2 vetor bundle on Y , P = PY (E). Let E � P be a divisor whih is a setionof � : P ! Y and let D � P be another e�etive divisor disjoint from E. Denoteby OP (1) the tautologial bundle, and by d the relative degree of D over Y .1. Consider the exat sequene0! ID(d)! OP (d)! OP (d)jD ! 0:Use this to show that there is an invertible sheaf LD on Y suh that ID(d) '��LD.2. If D1; D2 � P are any two disjoint divisors �nite of degree d over Y , showthat there is an embedding of vetor bundles LD1 �LD2 � symdF induinga surjetion ��(LD1 �LD2)! OP (d):



44 Dan Abramovih and Frans Oort3. Assume the harateristi is 0. Consider the ase D1 = dE;D2 = D. showthat the resulting morphism P ! PY (LD1 �LD2) = P 0 maps E to a setionE0 andD to a disjoint setion; and its branh lous is of the form (d�1)E+D0where D0 has degree d� 1 over Y and is disjoint from E0.4. Continue by indution to show that there is a P1 bundle Q ! Y and amorphism g : P ! Q over Y , suh that the image of D and the branh lousof g form a union of setions of �Q : Q! Y .7.3 Conlusion of the proofBak to our theorem, where Y = Pn�1. Composing with the morphism f : X ! P ,we obtain that the image g(f(Z)) � Q is the image D1 of a setion s1 : Pn�1 ! Qof Q ! Pn�1 and the branh lous of g Æ f is the union of images Di setionssi : Pn�1 ! Q as well. Denote � = �Q([i6=jDi \Dj).The following steps use moduli theory; however it has been shown (in thepreprint version of [12℄, and in Paranjape's exposition [53℄) that the use of modulitheory an be irumvented within a few pages of work.1. � Use the stable redution argument to show that there is a modi�ationY 0 ! Y , and a modi�ation Q0 ! Q�Y Y 0 suh that Q0 ! Y is a family ofnodal urves of genus 0, and the setions lift to disjoint setions s0i : Y 0 ! Q0.We replae Y by Y 0, � by its inverse image, et.Hints. The point is that the generi �ber of Q! Y is a projetive line witha number (say k) of points marked by the setions we obtained. This givesa rational map Y 9 9 KM0;k, whih an be replaed by a morphism after amodi�ation Y 0 ! Y .Sine the moduli shemes in genus 0 are �ne moduli shemes, there is afamily of pointed rational urves Q0 ! Y 0. one would like to use the ThreePoint Lemma to get a morphism Q0 ! Q. However, the argument above onlyguarantees that every �ber of Q has two marked points, and not neessarilythree. This is easy to orret by adding setions on the P1-bundle Q ! Ybefore applying the moduli argument.Another approah is to use Knudsen's stabilization method diretly. Thedetails of this an be found in [12℄.2. Use indution on the dimension to replae Y by a nonsingular variety suhthat � beomes a strit divisor of normal rossings.3. Use either toroidal geometry, or Setion 4.11, to replae Q by a nonsingularvariety, suh that the inverse image of D is a strit normal rossings divi-sor. (Note that at this point Q ! Y is a family of nodal pointed urves,degenerating over the divisor of normal rossings D.)



Alterations and resolution of singularities 454. Let ~X be the normalization of Q in the funtion �eld of X . Use Abhyankar'slemma (Setion 6.11) to show that ~X has a toroidal struture, suh that theinverse image ~Z of Z is a toroidal divisor.5. Conlude that there is a weak resolution of singularities r : X 0 ! X suhthat r�1Z is a strit divisor of normal rossings.8 Weak resolution of singularities IIThe weak resolution argument aording to Abramovih - de Jong starts verymuh like de Jong's theorem: a projetion X ! P is produed, and a Galoisalteration P1 ! P over whih one has stable redution X1 ! P1, equivariantunder the Galois group G, is produed. Indution on the dimension for P allowsone to assume that X1 and P1 are toroidal, and the Galois ation on P1 is toroidalas well. The only point left is to make the group ation on X1 toroidal, so thatthe quotient should be toroidal, and therefore admit toroidal resolution.Let us go through the steps. Let X be a variety over an algebraially losed�eld of harateristi 0, and let Z � X be a Zariski-losed subset. We want to �nda nonsingular, quasi-projetive variety X 0 and a modi�ation f : X 0 ! X suhthat f�1Z is a divisor with simple normal rossings.8.1 Redution stepsExerise 8.1. Show that it is enough to prove the result when X is projetiveand normal, and Z a Cartier divisor.Exerise 8.2. Redue to the ase where there is a projetion X ! P , suh thatthe generi �ber is a smooth urve.Exerise 8.3. �Using the trik of enlarging Z and stable redution, show thatthere is a diagram as follows: X1 ! X# #P1 ! Psuh that P1 ! P is an alteration, X1 ! ~XP1 is birational, and X1 ! P1 hassetion si : P1 ! X1 making it a family of stable pointed urves, and the imageof these setions in X ontains Z.Exerise 8.4. Show that you an make P1 ! P a Galois alteration. Call theGalois group G. Show, using the uniqueness of stable redution3.7, that the ationof G on P1 lifts to an ation on X1, whih permutes the setions si.You an replae X by X1=G and P by P1=G



46 Dan Abramovih and Frans OortExerise 8.5. Use indution on the dimension to redue to the ase where:1. P is nonsingular, with a normal rossings divisor �;2. The branh lous of P1 ! P is ontained in Æ;3. The lous where X1 ! P is not smooth is ontained in Æ.Exerise 8.6. Show that in this ase P1 ! P is a toroidal morphism, G atstoroidally on X , and X1 ! P1 is a toroidal morphism as well.The only point left is to make the ation of G on X1 toroidal - if it were, then Xwould be toroidal and we ould easily resolve its singularities.Looking loally, the question boils down to the following situation:Let T0 � X0 be an aÆne torus embedding, X0 = Spe R. Let G � T0 be a�nite subgroup of T0, let p0 2 X0 be a �xed point of the ation of G, and let  u bea harater of G. Consider the torus embedding of T = T0 � Spe k[u; u�1℄ intoX = X0�Spe k[u℄, and let G at on u via the harater  u. Write p = (p0; 0) 2 Xand write D = (X0 T0)�Spe k[u℄. We wish to �nd a anonial blowup X1 ! X ,suh that if U � X1 is the inverse image of T0, then it is a toroidal embedding,and the group G ats toroidally.8.2 The idealLet M � R[u℄ be the set of monomials. For eah t 2 M let �t be the assoiatedharater of T , and let let  t : G ! k� be the restrition of � to G. De�neMu = ftj t =  ug, the set of monomials on whih G ats as it ats on u. De�neIG = hMui, the ideal generated by Mu.Exerise 8.7 (anoniity). � Show that if X 00; T 00; G0; p00 and  0u is a seondset of suh data, and if we have an isomorphism of formal ompletions' : X̂p �! X̂ 0p0 ;whih indues isomorphisms G �= G0 and D̂p �= D̂0p0 , then ' pulls bak IG to theideal IG0 .Exerise 8.8 (gluing property). � If q0 is any point of X0 and if Gq � G isthe stabilizer of q = (q0; 0) in G, then the stalk of IG at q is the same as the stalkof IGq at q.Exerise 8.9. Show that IG is generated by u and a �nite number of monomialst1; : : : ; tm in Mu \ R.Exerise 8.10. Let X 0 = BIG(X) be the blowup. Let X 0u be the hart withoordinates u; tj=u. Show that the ation of G on X 0u is toroidal.



Alterations and resolution of singularities 47Exerise 8.11. Let X 0i be the hart on X 0 with oordinates ti; v = u=ti; sj =tj=ti. Show that G ats trivially on v, and that X 0i = Spe R0i[v℄ where R0i isgenerated over R by sj .Exerise 8.12. Let X1 be the normalization of X 0. Show that if U � X1 isthe inverse image of T0, then it is a toroidal embedding, and the group G atstoroidally.9 Intersetion multipliitiesIntersetion theory has a long history, and ertainly we are not going to say muhabout it here. One aspet is, that it is not so easy to have a good de�nition forintersetion multipliities.Remark, exerise: let C � P2k be a plane algebrai urve, P 2 C a losed pointat whih C is regular, and D = Z(F ) � P2 a plane urve given by a homogeneouspolynomial F ; suppose F is not idential zero on a neighborhood of P in C (i.e.no omponent of D ontains the omponent of C ontaining P ). Show that thefollowing two de�nitions of the intersetion multipliity i(C;D;P ) of C and D atP are equivalent:� the dimension of the k-vetor spaeOC;P 
OP2;P OD;P ;� the value of the valuation v = vC;P de�ned by the disrete valuation ringOC;P omputed on the funtion on C given by F ,see [HAG℄, Exerise (5.4) on page 36, and Remark (7.8.1) on page 54.Consider two varieties V;W � Pn whih have an isolated point of intersetionat P 2 V \W . One ould try to de�ne the intersetion of V and W at P as thelength of OV;P 
OPn;P OW;P :Analogous situations of intersetions of arbitrary shemes in some regular ambientsheme an be onsidered.Exerise 9.1. (See Gr�obner [23℄, 144.10/11, also see [66℄, [62℄, [10℄, see [HAG℄,I.7): a) Let C � P3 be the spae urve with parameterization(x1 : x2 : x3 : x4) = (t4 : t3�s : t�s3 : s4)(we work over some �eld K). Show that the prime ideal given by this urve equalsj := (T 21 T3�T 32 ; T1T4�T2T3 ; T1T 23 �T 22 T4 ; T2T 24 �T 33 ) � K[T1; T2; T3; T4℄:



48 Dan Abramovih and Frans Oortb) Consider C as a urve embedded in P4: hoose the hyper plane P3 �= Z(T0) =H , and we get C � H � P4. Let P := (x0 = 1 : 0 : 0 : 0 : 0) 2 P4. De�ne V � P4as the one with vertex P over the urve C � P4, i.e. V is de�ned by the idealJ := K[T0; T1; T2; T3; T4℄ � j; V = Z(J):Note that the dimension of V equals two, that the degree of V � P4 equals four.) Let W be the 2-plane given byI := (T1; T4) � K[T0; T1; T2; T3; T4℄; W := Z(I):Note that P 2 W . Remark that (set-theoretially):W \ V = fPg(use the geometri situation, or give an algebrai omputation).We like to have a B�ezout type of theorem for the situation W \ V � P4, however:d) De�ne M := OW;P ; A := OP4;P ; N := OV;P ;and ompute dimK (M 
A N)(surprise: this is not equal to four).e) Compute dimK �TorAi (M;N)� ; 8i(either using, or reproving �A(M;N) = 4, for notation see below).Hene we see that just the length of the appropriate tensor produt does notde�ne neessarily the orret onept. Serre proposed in 1957/58 to de�ne theintersetion multipliity as the alternating sum of the lengths of the Tori (notethat Tor0 = 
), i.e. by�A(M;N) :=Xi�0 (�1)i lengthATorAi (M;N)(we follow notation of [66℄, also see [10℄, 6.1, see [62℄), here A is a regular loalring, and M and N are A-modules suh that M 
A N has �nite length. In equalharateristi this is the right geometri onept (i.e. satis�es B�ezout's theorem,oinides with previously de�ned intersetion multipliities et.).The following theorem was onjetured by Serre, proved by Gabber (usingde Jong's alteration result), and written up by Berthelot (in [10℄, 6.1):Theorem 9.2. Let the harateristi of A be equal to zero. Suppose p 2 m2, heneits residue �eld A=m has harateristi p > 0. Then:�A(M;N) � 0:



49Part IIModuli of urves10 Introdution to moduli of urvesIt is an important feature of algebrai geometry, that the set of all objets (e.g.smooth projetive urves) of the same a �xed geometri nature (e.g. genus) oftenhas the struture of an algebrai variety itself. Suh a spae is a \moduli spae",whih gives a good algebrai meaning to the problem of \lassi�ation". It isfair to say that this \self referential" nature of algebrai geometry is one of themain reasons for the depth of the subjet - it is impossible to overestimate itsimportane.The �rst instanes of this phenomenon to be disovered were those of embed-ded variety: the projetive spae as a parameter spae for lines in a vetor spae;Grassmannians parametrizing vetor subspaes of arbitrary dimension; the pro-jetive spae (of dimension (d2+3d)=2) parametrizing all plane urves of degree d,and so on. The ase of abstrat varieties, suh as smooth urves, had to await forsome tehnial advanes, although already Riemann knew that algebrai urves ofgenus g \vary in 3g � 3 parameters"; see [61℄, page 124:\Die 3p�3 �ubrigen Verzweigungswerthe in jenen Systemen gleihverzweig-ter �-werthiger Funtionen k�onnen daher beliebige Werthe annehmen;und es h�angt also eine Klasse von Systemen gleihverzweigter (2p+1)-fah zusammenh�angender Funtionen und die zu ihr geh�orende Klassealgebraisher Gleihungen von 3p�3 stetig ver�anderlihen Gr�ossen ab,welhe die Moduln dieser Klasse genannt werden sollen."Historially moduli spaes of urves, or of urves with points on them, wereonstruted with more or less ad ho methods. Moduli spaes for 3 or 4 points onrational urves have been known for ages, using the so alled \ross ratio" (seeexerise 10.9 below). For genus 1, the modular funtion j was used (see exerise10.12). The ase of genus 2 was already quite diÆult to ahieve by algebraimethods [30℄. For years, moduli spaes for higher genus were only known to existusing Teihm�uller theory.One problem whih took years to solve was, that no good understanding of\what moduli spaes really are" was available. Then Grothendiek introdued thenotion of \representable funtor", desribing the best possible meaning for modulispaes. This had a great suess with the development of Hilbert shemes. Fora while one hoped that nature would be as ideal as expeted (see Grothendiekhopeful Conjeture 8.1 in [24℄ 212-18, and its retration in the Additif of [24℄ 221-28). But it was soon seen that in general moduli funtors are not representable, oras we say now, some moduli funtors do not give rise to \�ne moduli spaes" dueto existene of automorphisms. Finally, Mumford pinned down the ompromise



50 Dan Abramovih and Frans Oortnotion of a \oarse moduli sheme", whih enables us to have a good insight invarious aspets of moduli theory. This is what we shall try to desribe here. Itshould be said that sine then, other good approahes were developed, by wayof \enlarging the ategory of shemes" to inlude some \moduli objets", alledstaks. For details see [17℄, Setion 4. We will not pursue this diretion here.In this setion we gather some basi de�nitions on funtors of moduli forurves. In the next setions we disuss existene theorems for moduli spaes ofurves, and for omplete moduli spaes with extra struture arrying a \tautolog-ial family". Setion 14 is devoted to some further questions, examples and fats,not needed for the methods of alterations, but in order to give a more ompletepiture of this topi.10.1 The funtor of points and representabilityTo any sheme M one naturally assoiates a ontravariant funtorFM : fShemesg ! fSetsgvia X 7! Mor(X;M):This is known as the funtor of points of M , see [Red Book℄, II x6.We say that a ontravariant funtor F : fShemesg ! fSetsg is representableby a sheme M , if it is isomorphi to FM , i.e. there is a funtorial isomorphism� : F(�) ��! Mor(�;M):Remark. Stritly speaking, it is the pair (M; �), onsisting of the objet M andthe isomorphism �, whih represent F . But it has beome ustomary to say \Mrepresents F", suppressing �.Already in the early Bourbaki literature one �nds this notion in the disguise ofa \universal property". The question of representability of funtors an also beposed in ategories other than the ategory of shemes.Exerise 10.1. 1. Fix an integer N , and let V be a vetor spae of dimensionN + 1 over C . Consider the funtor FC that assoiates to a sheme T overC , the set fL � T � V g of all line sub-bundles of the trivial vetor bundleT � V . Show that FC is represented by PNC .2. Let F be the funtor that assoiates to any sheme T (over Z) the setfL � ON+1T g of all loally free subsheaves of rank 1 of the trivial sheaf ON+1Thaving loally free quotient. Show that F is represented by the projetivesheme PNZ.3. In general, show that the Grassmannian sheme Grass(n; r) represents thefuntor of loally free subsheaves of rank r of the trivial free sheaf OnT ofrank n having loally free quotients.



Alterations and resolution of singularities 51Exerise 10.2. Fix integers N and d, and let G be the funtor that assoiates toa sheme T the set fX � PNT g of all at families of hypersurfaes of degree d inprojetive N -spae over T . Show that G is represented (over Z) by a projetivespae PM�1, where M = �N+dd � is the dimension of the spae of homogeneouspolynomials of degree d in N + 1 variables.Exerise 10.3. Show that the Hilbert sheme HPN;P (T ) represents the \Hilbert"funtor, that assoiates to a sheme T , the set of all subshemes X � PNT , whihare at over T and suh that the geometri �bers have Hilbert polynomial P (T ).10.2 Moduli funtors and �ne moduli shemesSuppose a ontravariant funtor F has the nature of a moduli funtor, namely,it assigns to a sheme S the set fC ! Sg= �= of isomorphism lasses of ertainfamilies of objets over S. As a guiding example, let us �x an integer g, withg 2 Z�0, and de�ne the moduli funtor for smooth urves:Mg(S) = fisom. lasses of families of urves of genus g over Sg:A morphism T ! S de�nes (by pulling bak families) a map of sets in the oppositediretion:Mg(T ) Mg(S), and we have obtained a ontravariant funtor.Assume the funtor F were represented by a sheme M . Then we would allM a �ne moduli sheme for this funtor F , and the objetC !M orresponding to the identity id 2= Mor(M;M)would be alled a universal family.Remark. Note that in the exerise above on the Hilbert sheme, we an view it asa �ne moduli sheme, if we agree that \families up to isomorphism" means \up toisomorphisms as subfamilies of the �xed PNT , namely up to equality.It is a fat of life that for every g � 0 the funtor Mg is not representable. Wewill explain later why this is true in general, but for the moment let us onsiderthe easiest ase:Exerise 10.4. Let us say that C is a \urve of genus 0", if it is an algebraiurve de�ned over a �eld K, and over some extension of K � L it is isomorphiwith P1L. In other words: C is geometrially irreduible, redued, it is ompleteand of genus equal to zero.1. Let K be a �eld. Show there exist an extension K � K 0, and two urves ofgenus 0 over K 0 whih are not isomorphi.2. For every algebraially losed �eld k, the setM0(k) onsists of one element,M0(k) = fP1kg.3. Show that the moduli funtorM0 is not representable.



52 Dan Abramovih and Frans Oort10.3 Historial interludeThe �rst ase of a highly nontrivial algebrai onstrution of a moduli spae ofurves in all haratersitis, appeared in Igusa's work [30℄. This is a onstrution ofa \moduli sheme for non-singular urves of genus two in all harateristis", whihwould now be denoted byM2 ! Spe(Z). This happened almost onurrently withGrothendiek's study of representability of funtors. But notie that, when Samueldisussed these beautiful results by Igusa in S�eminaire Bourbaki (see [63℄), his very�rst omment was:\Signalons ausitôt que le travail d' Igusa ne r�esoud pas pour les ourbesde genre 2, le \probl�eme des modules" tel qu'il a �et�e pos�e par Grothen-diek �a diverses reprises dans e S�eminaire."It really seemed that Nature was working against algebrai geometers, refusing toprovide us with these �ne moduli shemes...The truth is, Nature does provide us with a replaement. Indeed, not muhlater, Mumford (see [GIT℄, 5.2) disovered how to follow nature's ditations andome to a good working de�nition, requiring that the sheme gives geometriallywhat you want, and does it in the best possible way.10.4 Coarse moduli shemesHere is the de�nition:De�nition. A sheme M and a morphism of funtors' : F ! MorS(�;M)is alled a oarse moduli sheme for F if:1. for every algebraially losed �eld k the map'(k) : F (Spe(k))! MorS(Spe(k);M) =M(k)is bijetive, and2. for any sheme N and any morphism  : F (�) ! MorS(�; N) there is aunique � :M ! N fatoring  :By de�nition, a oarse moduli sheme does not arry a universal family, unlessit is a �ne moduli sheme. A replaement, alled a tautologial family, is de�nedas follows:De�nition. Let F be a moduli funtor. Suppose T is a sheme, and let f : T !Mbe a morphism. A family C ! T giving an element of F(T ), is alled a tautologialfamily if it de�nes f , namely  (C ! T ) = f . In partiular this implies that forevery geometri point t 2 T the �ber Ct is an objet whose isomorphism lassde�nes the image under f , i.e.: [Ct℄ = f(t).



Alterations and resolution of singularities 53Remark. There exist ases (and we shall give examples), where a moduli funtoris not representable, where there is no (unique) universal family, but where atautologial family does exist. In suh ases the use of the word \tautologial",and the distintion between \universal" and \tautologial" is neessary, and it pinsdown the di�erenes.The terminology \tautologial" will also be used in ases suh as pointedurves, urves with a level struture, and so on.Here is the �rst triumphant suess of the notion of oarse moduli sheme:Theorem 10.5 (Mumford). Suppose g � 2. The funtor Mg of smooth urvesof genus g admits a quasi-projetive oarse moduli sheme.See [GIT℄, Th. 5.11 and Setion 7.4, or [17℄, Coroll. 7.14. We will denote the oarsemoduli sheme ofMg by Mg ! SpeZ.We note some properties of Mg:� As we mentioned before, for every g � 2 the funtorMg is not representable:there does not exist a universal family of urves over Mg whih an give anisomorphism betweenMg and Mg.� For every g � 2 and for any �eld K, the variety (Mg)K =Mg�SpeZSpeKis not omplete. A fortiori, the morphism Mg ! Spe(Z) is not proper.� At least for the sake of de Jong's theorem, we need a moduli spae of urveswith points on them.The �rst problem is solved by introduing a �nite overing M !Mg admitting atautologial family, namely a family realizing the morphismM !Mg as its modulimorphism. The niest way of doing this is by introduing a new moduli funtor,of smooth urves \enrihed" with a �nite amount of \extra struture", whih doesadmit a �ne moduli sheme. See Setion 13.In order to \ompatify" these spaes, the notion of stable urves was in-vented. Historially, the inuential paper [17℄ by Deligne and Mumford seems tobe one of the �rst printed versions in whih the onept of stability, espeially inthe ase of algebrai urves is explained and used. In [46℄ we see that already in1964 Mumford was trying to �nd the appropriate notions assuring good ompat-i�ations. In [GIT℄, page 228, Mumford attributes the notion of a stable urve tounpublished joint work with Alan Mayer.As it turns out, the third problem was solved almost onurrently with theseond.First, the moduli spae of smooth pointed urves:Theorem 10.6. Let g 2 Z�0, and n 2 Z�0 suh that 2g�2+n > 0. Consider thefuntorMg;n of isomorphism lasses of families of stable smooth n-pointed urvesof genus g. This funtor admits a quasi-projetive oarse moduli sheme.We will denote this moduli spae by Mg;n ! Spe(Z).



54 Dan Abramovih and Frans OortRemark. 1. Note that this inludes the previous theorem.2. For g = 0 and n = 3 this spae is proper over Spe(Z). However in all otherases in the theorem Mg;n is not proper. In many ases it will not representthe funtor (see Setion 14 for a further disussion), in other words, in generalthis is not a �ne moduli sheme.3. It is important to note that these spaes exist over Spe(Z), whih is usefulfor arithmetial appliations.4. The litterature poses diÆulties in hoosing notations. In [GIT℄ the subsriptn denotes a level struture, but in [39℄ it indiates the number of markedpoints. We have hosen to indiate the markings as lower index, using n, andthe level struture as upper index, using (m).Finally the moduli spae of stable pointed urves:Theorem 10.7 (Knudsen and Mumford). Let g 2 Z�0, and n 2 Z�0 suhthat 2g� 2+n > 0. Consider the funtorMg;n of isomorphism lasses of familiesof stable n-pointed urves of genus g. This funtor admits a projetive oarsemoduli sheme.See [39℄, part II, Theorem 2.7 and part III, Theorem 6.1, or [22℄, Theorem 2.0.2.We will denote this moduli sheme by Mg;n ! Spe(Z).The following exerise should give you an idea why the moduli spae M0;n isomplete. This is disussed in further detail in the next setion.Exerise 10.8. Let K be a �eld, and let R � K be a disrete valuation ringhaving K as �eld of frations. Consider the projetive line P1 over K and supposen � 3, let P1; � � � ; Pn 2 P1(K) are distint points. Write P = fP1; � � � ; Png.Construt a stable n-pointed urve (C;P)! Spe(R) extending (P1; P ). (You willneed to blow up losed points over the speial �ber where the Zariski losures ofPi meet. Then you may need to blow down some omponents! See [39℄.)Exerise 10.9. 1. Let K be a �eld. Given three distint �nite points P1; P2and P3 on P1k onsider the ross ratio�(P1; P2; P3; z) = (z � P1)(P2 � P3)(z � P3)(P2 � P1) :Show that, as a funtion of z, the ross ratio is an automorphism of P1 ar-rying P1; P2; P3 to 0; 1; and1, respetively. Show that this automorphism isthe unique one with this property. Chek that this de�nition an be extendedto the ase where one of the points is 1.2. Using the ross ratio � de�ned above, desribe M0;3.3. Show thatM0;3 is a �ne moduli sheme by exhibiting a universal family overit!



Alterations and resolution of singularities 554. Show that M0;3 =M0;3.5. Use the ross ratio to give an expliit desription of M0;4. Show that it is a�ne moduli sheme by expliitly onstruting a universal family.6. Use the above (possibly together with the previous exerise) to desribeM0;4 �M0;4.7. Show that M0;4 is a �ne moduli sheme, and give expliit desriptions of theuniversal family.8. Show that the universal family over M0;4 is anonially isomorphi to M0;5.Exerise 10.10. Give an alternative desription of M0;4 as follows: onsider theprojetive spae P of dimension 5 parametrizing onis in P2. Choose four pointsin general position in P2 (for instane (1 : 0 : 0); (0 : 1 : 0); (0 : 0 : 1); (1 : 1 : 1)will do). Let M � P be the subsheme parametrizing onis passing through thesefour points. Show that M =M0;4 and the universal family of onis is a universalfamily for M0;4.Exerise 10.11.1. Show that M0;n exists and is a �ne moduli sheme (you may exhibit it as anopen subsheme of (P1)n�3).2. Show that, assuming M0;n is a �ne moduli sheme, then there is a anonialmorphism M0;n+1 ! M0;n whih exhibits M0;n+1 as the universal familyover M0;n.3. � Show that for every n � 3, the shemeM0;n is a �ne moduli sheme. (Youmay want to use Knudsen's stabilization tehnique.)Remark. For every n � 3, let (C;P ) be a stable n-pointed rational urve. ThenAut(C;P ) = fidg. You do not need to know this in the previous exerise, but it\explains" why the result should be true.Exerise 10.12. Let k be a �eld of harateristi 6= 2 and let (E;O) be an elliptiurve, namely a projetive, smooth and onneted urve E of genus 1 with a k-rational point O on it.1. Considering the linear series of OE(2O), show that E an be exhibited as abranh overing of P1 of degree 2.2. Show that the branh divisor B on P1 is redued and has degree 4.3. If k is algebraially losed, show that E is determined up to isomorphism bythe divisor B.4. Conlude that M1;1 is isomorphi to the quotient of M0;4 by the ation ofthe symmetri group S4, permuting the four points.



56 Dan Abramovih and Frans Oort5. Assume further that har k 6= 3, so that every ellipti urve an be writtenin aÆne oordinates as y2 = x3 + ax+ b. Show thatj(E) = 1728 4a34a3 + 27b2is an invariant haraterizing the �k-isomorphism lass ofE, exhibitingM1;1 =A 1 .11 Stable redution and ompleteness of modulispaes11.1 General theoryIn order to understand the reason whyMg;n is projetive, let us reall the following:Theorem 11.1 (The valuative riterion for properness). A morphismf : X ! Yof �nite type is proper, if and only if the following holds:Let R be a disrete valuation ring, and let S := Spe(R) be the orresponding\germ of a non-singular urve", with generi point �. Let ' : S ! Y and let � : � ! X be a lifting: �  �! X# #S '! Y:Then there is an extension  : S ! X, lifting ':�  �! X#  % #S '! Y:See [HAG℄, II, Theorem (4.7) for a preise formulation.Let us translate this to our moduli sheme. Keeping in mind the relationshipbetween the funtorMg;n and the spae Mg;n, one might hope that every familyof stable pointed urves over � as in the theorem above might extend to R. Thisis not the ase, as we shall see later. However, a weaker result, sometimes alled\the weak valuative riterion for properness", does hold for the funtorMg;n, andit does imply the valuative riterion for Mg;n. The �rst ase to onsider is whenthe generi �ber is smooth and n = 0. This is the ontent of the following result,the Stable Redution Theorem for a one parameter family of urves:



Alterations and resolution of singularities 57Theorem 11.2. Let S = Spe(R) be the spetrum of a disrete valuation ringR, � 2 S the generi point, orresponding with the �eld of frations K of R. LetC� ! � be a smooth stable urve of genus g > 1. There exists a �nite extension ofdisrete valuation rings R ,! R1, with S1 = SpeR1 and generi point �1, and anextension C�1 ,! C1# #f�1g ,! S1;suh that C1 ! S1 is a family of stable urves.Proofs of this theorem, using di�erent methods, may be found in various referenes.One proof whih works in pure harateristi 0 is relatively simple. As the readerwill notie, none of the general proofs is easy or elementary.Most proofs of this theorem use resolution of singularities of 2-dimensionalshemes (Abhyankar).Exerise 11.3. Suppose R is of pure harateristi 0. Let s 2 SpeR be the losedpoint.1. Show that there exists an extension � : C ! S suh that � is proper andat, C is nonsingular, and Cs � C is a normal rossings divisor.2. Let x 2 Cs be a singular point. After passing to the algebrai losure of the�eld of onstant, let �x 2 Ĉ�k be the ompletion. Show that one an �nd loalparameters u; v at �x and t at �s 2 Ŝ�k, and positive integers kx; lx, suh thatt = ukxvlx .3. Let S1 ! S be a �nite over obtained by extrating the n-th root of auniformizer, where n is divisible by all the non-zero kx; lx given above. LetC 01 be the normalization of C �S S1. Show that the speial �ber is reduedand nodal.4. Show that the minimal model C1 of C 01 ! S1 is stable.We list some approahes for positive and mixed harateristi:Artin-Winters. This proof an be found in [7℄. A preise and nie desriptionand analysis of the proof is given by Raynaud, see [59℄.In this proof one attahes an numerial invariant to a given genus, and oneproves that by hoosing a prime number q larger than this invariant, and notequal to the residue harateristi, and by extending the �eld of de�nition of aurve of that genus suh that all q-torsion point on the jaobian are rationalover the extension, then one aquires stable redution. The proof onsists of aareful numerial analysis of the possible intersetion matries of omponents ofdegenerating urves. The proof does not rely on a lot of theory, but is quite subtle.Grothendiek, Deligne-Mumford. This proof an be found in [17℄, Theorem(2.4) and Corollary (2.7).



58 Dan Abramovih and Frans OortIn this proof one shows that a urve has stable redution if and only ifits jaobian has stable redution. Then one shows following Grothendiek thateigenvalues of algebrai `-adi monodromy are roots of unity (see [67℄, Appendix).Moreover, again following Grothendiek one shows that these eigenvalues are allequal to one i� the abelian variety in question has stable redution. The advantageof this proof is that it has a more oneptual basis. The big disadvantage is thatit relies on the theory of N�eron models, whose foundations are quite diÆult.Hilbert shemes and GIT - Gieseker. See [22℄, Chapter 2, Proposition(0.0.2).He says on the �rst page of the introdution: \...we use results of Chapter 1 togive an indiret proof that the n-anonial embedding of a stable urve is stableif n � 10, and to onstrut the projetive moduli spae for stable urves. Asorollaries, we obtain proofs of the stable redution theorem for urves, and ofthe irreduibility for smooth urves." The proof uses Geometri Invariant Theoryto prove diretly that Mg exists and is projetive, and then one an easily derivethe theorem. This proof does not use resolution of singularities for surfaes in anyexpliit manner.Remark. This theorem is an instane of the semistable redution problem. In [10℄,1.3, the de�nition of semistable redution, over a one-dimensional base, and ar-bitrary �ber dimension, is realled. As we have seen above, it is true that if therelative dimension is one, stable redution, hene semistable redution, exists overa one-dimensional base. For higher relative dimension an analogous result holds inpure harateristi zero - see [38℄. The general ase is an important open problem,whih seems diÆult.One Theorem 11.2 is known, it is easy to generalize it. The pointed ase an beeasily proven using Knudsen's stabilization tehnique:Exerise 11.4. Let R be a disrete valuation ring, with �eld of frations K,suppose (C; p1; : : : ; pn) is a smooth, stable n-pointed urve of genus g > 1 de�nedover K. There exists a �nite extension R � R1 of valuation rings, with K1 the�eld of frations of R1, suh that C1 = C
K1 extends to a stable n-pointed urveC1 ! Spe(R1).The ase of genus zero follows from Exerise 10.9. We will disuss the ase of genus1 in Setion 11.2 below.We an also onsider the ase when the generi �ber is not neessarily smooth:Exerise 11.5. Let R be a disrete valuation ring, with �eld of frations K,suppose C is a stable urve de�ned over K. There exists a �nite extension R � R1of valuation rings, with K1 the �eld of frations of R1, suh that C1 = C 
 K1extends to a stable urve C1 ! Spe(R1). [Below we formulate a generalization tostable pointed urves of this.℄We give a full generalization of (11.2):Exerise 11.6. Let S be the spetrum of a disrete valuation ring, � 2 S thegeneri point. Let (C;P )! f�g be a stable n-pointed urve of genus g, i.e., C is a



Alterations and resolution of singularities 59omplete, nodal urve de�ned over a �eld K, and P := fP1; � � � ; Png are distintlosed points Pj 2 C(K), with suh that (C;P ) is stable n-pointed over K.Then there exists a �nite extension of disrete valuation rings S ,! S1, withgeneri point �1, and an extension(C�1 ; P ) ,! (C;P)# #Spe(K1) ,! S1suh that (C;P)! S1 is a family of stable n-pointed urves.This is the \weak valuative riterion for properness" of the funtorMg;n.Remark. Here is a hint about a tehnial detail whih an be used in solving theprevious exerises, \The normalization of a stable n-pointed urve": Suppose givena stable n-pointed urve (C;P ) over a �eldK, with P = fP1; � � � ; Png. There existsa �nite extensionK � L, a �nite disjoint union (D;Q) of stable pointed urves, anda morphism (\the normalization") ' : (D;Q)! (C;P )L = (C;P )
K L suh that:D =`D(t), let the singular points of CL be: Rj 2 C(L), with 1 � j � d, moreoverQ = fQ1; � � � ; Qng [ fSj ; Tj j 1 � j � dg, for every irreduible omponent of CLthere is a unique omponent of D mapping birationally onto it, the morphism ' isan isomorphism outside Sing(CL), the markings Qi orresponds with the markingsPi of the pointed urve (C;P ), and the markings fSj ; Tjg are preisely the pointsmapping to Rj .You need to show this hoie an be made, and show it is unique in aseK = k is an algebraially losed �eld.Corollary. Let g 2 Z�0, and n 2 Z�0 suh that 2g�2+n > 0. The oarse modulisheme � :Mg;n ! Spe(Z) is proper over Spe(Z).Proof. We use the valuative riterion for properness setting X = Mg;n and Y =Spe(Z): Suppose R is a disrete valuation ring, with �eld of frations K, andsuppose given SpeK  K! X# #SpeR '! Y:By the de�nition of a oarse moduli sheme, there is a �nite extensionK � K 0suh that the point  K(Spe(K)) 2 X orresponds to a stable pointed urve (C;P )over K 0. By the stable redution theorem there is a �nite extension K 0 � K1suh that (C;P ) �SpeK0 SpeK1 extends to a stable pointed urve; this de�nesa morphism � : Spe(R1) ! X , \extending" ' and  K . It fators over Spe(R),beause R = K \ R1. This shows that the ondition for the valuative riterionholds in our situation, hene that � :Mg;n ! Spe(Z) is proper. 	



60 Dan Abramovih and Frans Oort11.2 Stable redution for ellipti urves.In these exerises we illustrate the onept of stable redution by studying thease of ellipti urves. The onepts, ideas and examples below an be found inSilverman's book [69℄. In this ase examples are easy to give beause in many aseswe an hoose plane models (Weierstrass equations). These exerises an be usedat motivation for more abstrat methods whih apply for higher genus. You ando the exerises by expliit methods and alulations.For details on ellipti urves, Weierstrass equations, the j-funtion, and re-lated issues, see [69℄, Chapters III and VII.A non-singular one-pointed urve of genus one is alled an ellipti urve. Inother words: an ellipti urve is an algebrai urve E de�ned over a �eld, absolutelyirreduible, non-singular, of genus one, with a marked point P 2 E(K). Morphismsare supposed to respet the marked point.The following exerise is an easy exerise using the theorem of Riemann-Roh.Exerise 11.7. Show the following are equivalent:1. (E;P ) is an ellipti urve over K.2. E � P2K is a plane, nonsingular ubi urve, with a marked point P 2 E(K).3. (E;P ) is an abelian variety of dimension one over K.De�nition. Let R = Rv be a disrete valuation ring, with K = frat(R) its �eldof frations, and k = Rv=mv the residue lass �eld.1. An ellipti urve E de�ned over K is said to have good redution (at thegiven valuation) if there exists a smooth proper morphism E ! Spe(R)with generi �ber isomorphi to E ! Spe(K). If E does not have goodredution, we say that it has bad redution.2. We say E has stable redution at v if either it has good redution, or thereexists a nodal E ! Spe(R) with generi �ber isomorphi to E ! Spe(K).De�nition. We say that E has potentially good redution, if there exists a �niteextension K � L, where B is the integral losure of R in L, and w a valuationover v, suh that E 
 L has good redution at w.We de�ne potentially stable redution analogously.Here are some exerises to warm up:Exerise 11.8. Suppose R = k[T ℄, with har(k) 6= 2; 6= 3, and let E over K =k(T ) be given by the equation Y 2 = X3+T 6: Show that E has good redution atthe valuation given by v(T ) = 1:Exerise 11.9. Suppose R = k[S℄, with har(k) 6= 2; 6= 3, and let E over K =k(S) be given by the equation Y 2 = X3 + S: Show that E has bad redution atthe valuation v given by v(S) = 1:



Alterations and resolution of singularities 61Exerise 11.10. Suppose R = k[S℄, with har(k) 6= 2; 6= 3, and let E over K =k(S) be given by the equation Y 2 = X3 + S: Show that E has potentially goodredution at the valuation v given by v(S) = 1:Suppose that E is given over K by a Weierstrass equation with oeÆients inR (see [69℄, III). Suh an equation de�nes an aÆne plane urve E � A 2B overSpe(R) = B, and it is easy to see that the urve E0 := E 
R k is irreduible andhas at most one singular point. The urve E is obtained by adding the point atin�nity to E0. Suppose the Weierstrass equation is minimal at v. If this singularpoint is a usp, we say that this redution is of additive type, if it is a node we saythat this redution is of multipliative type, or we say in this ase the redution isstable.Exerise 11.11. Show that the notion of \good redution" as de�ned earlier isequivalent by saying there is Weierstrass equation de�ning good redution. Showthat a redution of multipliative type is a stable redution.A redution given by a minimal Weierstrass equation of additive type is bad re-dution whih is non-stable; non-stable bad redution is sometimes alled uspidalredution.Exerise 11.12. Suppose R = k[T ℄, with hark 6= 2, and let E over K = k(T )be given by the equation Y 2 = X � (X � 1) � (X �T ): Show that any model of thisurve given by a Weierstrass equation has stable redution at the valuation givenby v(T ) = 1. Show that this urve does not have potentially good redution.Exerise 11.13. Let R be a disrete valuation ring, with residue harateristi6= 2, and fration �eld K. Let E be an ellipti urve over K.1. Show that after a suitable extension of R, the urve E admits a minimalWeierstrass equation of the formy2 = x(x � 1)(x� �)for some � 2 R.2. Conlude that this urve has potentially stable redution.Exerise 11.14. � Let Rv be a DVR, with residue harateristi 6= 3: SupposeE is an ellipti urve over K given by a Weierstrass equation E = V (F ) � P2Ksuh that all ex points of E have oordinates in K.1. Show that this urve admits a plane equation (not a Weierstrass equation!)over K of the form �(X3 + Y 3 + Z3) = 3�XY Z;for some (� : �) 2 P1Rv .



62 Dan Abramovih and Frans Oort2. Show that E 
K L has stable redution at v.3. Show that E has potentially stable redution.Conlusion. Every ellipti urve over a �eld K with a disrete valuation haspotentially stable redution at that valuation.This is a speial ase of 11.6, the stable redution theorem for stable urvesof arbitrary genus.Exerise 11.15. �1. Let Rv be a DVR, and E an ellipti urve of the fration �eld K. Show thatE has potentially good redution at Rv if and only if j(E) 2 Rv .2. Can you formulate (and prove?) the same result for urves of arbitrary genus?3. If E is an ellipti urve over a �eld K, and EndK(E) 6= Z, then E haspotentially good redution at every plae of K.11.3 Remarks about monodromyLet C be a non-singular urve over a �eld K, and let v be a disrete valuation ofK. Consider properties of good redution, bad redution at v, and so on. We havequoted that C has stable redution at v i� J := Ja(C) has stable redution, see[17℄, Proposition (2.3).However note that it may happen that J has good redution, and C has badredution; this is the ase if the speial �ber C0 of the minimal model of C at vhas a generalized jaobian J0 = Ja(C0) whih is an abelian variety. Suh a urveC0 is alled a urve of \ompat type", or a \nie urve" (and sometimes alled a\good urve", but we do not like that terminology, beause a urve reduing to a\good urve" may not have good redution...). In this ase the speial �ber C0 is atree of non-singular urves, i.e. every irreduible omponent is non-singular, and inthe dual graph of C0 there are no yles. The easiest example is: a join of two non-singular urves, eah of genus at least one, meeting transversally at one singularpoint. For example a urve of genus two degenerating to a transversal rossing oftwo urves of genus one is the easiest example. Here is another example: take P1with three marked points, and attah three ellipti tails via normal rossings atthe markings, arriving at a nie urve of genus threeMonodromy (ation of the loal fundamental group of the base on ohomol-ogy) deides about the redution of an abelian variety being bad or good, see [67℄,Theorem 1 on page 493. In the analyti ontext one an take the loal fundamen-tal group of a puntured dis ating on ohomology; in all ases one onsiders theinertia-Galois group of v ating on `-adi ohomology, where ` is a prime numbernot equal to the residue harateristi of v.Note that algebrai monodromy has eigenvalues whih are roots of unity.This was proved by Landman, Steenbrink, Brieskorn in various settings, and we



Alterations and resolution of singularities 63�nd a proof by Grothendiek in the appendix of [67℄. For a sketh of that proof,see [49℄, for further referenes, see [52℄.Algebrai monodromy is trivial i� X = J has good redution, i� C has om-pat type redution (whih may be either good redution or bad but \nie" asexplained above).The algebrai monodromy is unipotent (all eigenvalues are equal to one) ifand only if X has stable redution, if and only if C has stable redution.But, how an we distinguish for urves the di�erene between good redutionand bad ompat type redution? As we have seen, this is not possible via algebraimonodromy on ohomology. But, in a beautiful paper, [8℄ we �nd a method whihfor urves unravels these subtle di�erenes for urves: the loal fundamental groupof the base ats via outer automorphisms on the fundamental group of the generi�ber (again, here one an work in the analyti-topologial ontext, or in the `-adialgebrai ontext). This ation is trivial i� C has good redution.12 Constrution of moduli spaesEarly onstrutions of the moduli spaes of smooth urves Mg inluded a om-plex - analyti onstrutions via Teihm�uller theory and via the onstrution ofmoduli of abelian variety using loally symmetri spaes. These onstrutions arenot algebrai in nature and therefore annot be generalized to positive or mixedharateristis.A �rst algebrai approah, whih is still ommonly used today, was given byMumford using his Geometri Invariant Theory [GIT℄. We will sketh one version ofthis approah, due to Gieseker, whih automatially gives also the moduli spaes ofstable urves Mg. There is another approah, due to Artin and Koll�ar [40℄, whihirumvents the use of Geometri Invariant Theory. Nowadays both approaheswork over Z.How does one start? It is evident that if we want to parametrize all stableurves of a ertain genus, we had better have some family of urves in whih allthese urves appear. We know of two general approahes for that. One methoduses parameter spaes for urves embedded in projetive spae, suh as Hilbertshemes (or Chow varieties). We will follow this approah. The other approah,due to Artin [6℄, uses versal deformation spaes. It works in greater generality butinvolves a number of tehniality whih we would rather avoid here.It is easy to see that for any stable urve C of genus g > 1, and any � � 3,the �-anonial series H0(C; !�C) gives an embedding of C as a urve of degreed := �(2g � 2) in a projetive spae of dimension N := �(2g � 2) � g. Thus theHilbert sheme HPN;P (T ) (over Z!) parametrizing subshemes of PN with Hilbertpolynomial P (T ) := dT +1� g arries a universal family CPN;P (T ) ! HPN;P (T ) inwhih eah stable urve of genus g appears at least one.There are two problems with this family:



64 Dan Abramovih and Frans Oort1. Eah urve appears more than one in the family. Indeed, the embedding ofthe urve C in PN involves two hoies: a hoie of a line bundle of degree d,and a hoie of a basis for the linear series. And of ourse the urves ouldalso be embedded in a projetive subspae using a subseries.2. There are many urves in PN with Hilbert polynomial P (T ) whih are farfrom stable.Sine a nodal urve an only deform into nodal urves, it is easy to see that thereis an open subset Hst � HPN;P (T ) whih parametrizes stable urves, embedded bya omplete linear system in PN . Denote the restrition of the universal family toHst by � : Cst ! Hst. Considering the lous in Hst where R1��(O(1)
 !�Cst!Hst)jumps in dimension, we immediately see that there is a losed subsheme Hg �Hst parametrizing stable urves embedded by a omplete �-anonial series. Therestrition of the universal family will be denoted Cg ! Hg .There is a natural ation of the projetive linear group PGL(N + 1) on Hgvia hanging oordinates on PN . It is easy to see that the \ambiguity" for hoosingthe embedding of a urve C in the latter universal family is fully aounted forby the ation of this group. In other words, stable urves orrespond in a one-to one manner with PGL(N + 1) orbits in Hg. Thus, at least set theoretially,Mg = Hg=PGL(N + 1).12.1 Geometri Invariant Theory and Gieseker's approahWe arrived at the following questions:1. Does the quotient Hg=PGL(N + 1) exist as a sheme?2. Can we show that it is projetive?3. Does it satisfy the requirements of a oarse moduli sheme?Geometri Invariant Theory is a method whih allows one to approah the�rst two questions simultaneously. The third question then beomes an easy gluingexerise.The general situation is as follows: Let X � Pn be a quasi-projetive shemeand suppose G is an algebrai group ating on Pn and stabilizing X . One wantsto know whether or not a quotient X=G exists as a sheme and whether or not itis projetive.A natural approah is to look for a spae of invariant setions of some linebundle. Thus assume that the ation of G on Pn lifts to OPn(l). Then it also lifts toany power OPn(l �m), and we an look at the ring of invariants R := �(OPn(l �m)G.We have a natural rational map q : Pn 9 9 KProjR. We would like to know whetheror not this map is well de�ned along X , and what the image is like.First, an easy observation. For any point x 2 X , the map q is well de�ned atx if and only if there exists a nononstant invariant f 2 R suh that f(x) 6= 0.



Alterations and resolution of singularities 65We want to hek whether q is a quotient map in a neighborhood of x. To goany further, we need to assume that the group G is redutive. Assuming that G isredutive, then the question whether map q is a quotient map at a neighborhood ofx an be translated to a question about the losure Gx of the orbit of x: one needsto hek that for any point y 2 Gx Gx there is an invariant f 2 R whih vanishesat y but not at x. A point x is alled GIT-stable if it satis�es this ondition.Mumford's numerial riterion for stability (see [GIT℄) gives a way to hekGIT-stability in some situations.Let us onsider our situation. The sheme Hg is quasi projetive - from itsonstrution one sees that it naturally sits inside a Grassmannian, whih has aPl�uker embedding in some Pn. It is easy to see that the ation of PGL(N +1) extends to Pn, and lifts to some line bundle OPn(k). Applying this riterionsystematially, Gieseker veri�ed in [22℄ that1. If a point x 2 HPN;P (T ) orresponds to a sheme whih is not a stable urve,or to a urve whih is not embedded by a omplete linear series, then everynononstant invariant vanishes at x.2. If a point x 2 HPN;P (T ) orresponds to a stable urve embedded by theomplete �-anonial linear series, then x is GIT-stable.Using the two statements, and the fat that G is redutive, it is not diÆultto realize that1. the map Hg ! ProjR is a quotient map, and2. the image of Hg is projetive.This proves the existene and projetivity of Mg.12.2 Existene of Mg;nThere is no known analogue of Gieseker's result for stable pointed urves. It isnot diÆult to onstrut a Hilbert-type sheme for stable pointed urves, with aredutive group ation, and suh that the quotient is set-theoretially Mg;n. Butin order to tell that the quotient is isomorphi to Mg;n as a sheme, we �rst needto onstrut Mg;n in some other way.But there is a very useful trik, whih redues the onstrution of Mg;n tothe existene of Mg for some larger value of g. We give the redution over a �eld,but it works similarly over Z:Fix n irreduible stable urves Ci of genus gi > g, all nonisomorphi toeah other, and �x a rational point xi 2 Ci. For any stable n-pointed urve(C; p1; : : : ; pn) of genus g, we an onstrut a stable urve C 0 of genus g0 = g+Pgias follows: C 0 = ([Ci) [ C, where we glue together C and Ci by identifying piwith xi.



66 Dan Abramovih and Frans OortClearly this onstrution gives a set theoreti embedding Mg;n ! Mg0 . Theimage set is easily seen to be a sheme, and by working the onstrution in a familyit is easy to see that it is a oarse moduli sheme.13 Existene of tautologial familiesFor almost any appliation of moduli spaes of urves inluding the alterationtheorem, it is neessary to know that there exists a family C !M over a shemeM suh that the assoiated morphism to the moduli spae is �nite and surjetive.Suh a family is alled a tautologial family; see Setion 10.4. Various authors havedevised general methods of showing this, but for the moduli spaes of urves thereis a \very nie" way to �nd suh a over, using level strutures. The ase of themoduli spae Mg of stable (unpointed) urves is disussed in detail in [21℄. In thissetion we desribe how this an be generalized for sable pointed urves as well.We rely throughout on the treatment in [21℄. In Setion 13.4 we outline anotherway to onstrut tautologial families, whih works in greater generality.13.1 Hilbert shemes and level struturesFix:� an integer g 2 Z�0 (the genus),� an integer n 2 Z�0 (the number of marked points),� suh that 2g � 2 + n > 0,� and an integer m 2 Z�1 (the level).� Fix an integer � 2 Z�5, whih will be used to study �-anonial embeddingsof urves into a projetive spae.Remark. If n = 0 or m = 1 these data will be omitted from the notation, e.g.Mg;0 =Mg. If g = 0, the level struture is irrelevant, M (m)0;n =M0;n.Let C be a urve whose jaobian is an abelian variety. By a level-m struture onC we mean a sympleti level struture as explained in [21℄. If a level-m strutureis onsidered we assume that all shemes, varieties are over a base on whih m isinvertible, i.e. are shemes over Spe(Z[1=m℄).Reall that there is a Hilbert shemeHP parametrizing urves C � PN , whereN = ��(2g� 2+ n)� g, with Hilbert polynomial P (t) = ��(2g� 2+ n) � t� g +1.We want to �nd a sheme parametrizing pointed urves - this is done in a standardway as follows. Observe that there is a losed subsheme HP;n � HP � (PN)nparametrising pairs (C; (p1; : : : ; pn)) where pi 2 C. There is an open subshemeHst � HP;n where the urves are nodal, the points are distint and regular pointson the urves, and the pairs (C; (p1; : : : ; pn)) are stable. Last, there is a losed



Alterations and resolution of singularities 67subsheme Hg;n � Hst where the embedding line bundle of C � PN is isomorphito (!C(p1 + : : :+ pn))� .Over Hg;n there is a universal family Cg;n ! Hg;n with setions si : Hg;n !Cg;n of stable pointed urves, embedded in PN by the hosen line bundle. The lineargroup PGL = PGL(N) ats on Cg;n ! Hg;n equivariantly, andMg;n = Hg;n=PGLis the quotient.Note that there is an open subset H0st � Hg;n parametrizing smooth stablepointed urves.13.2 Moduli with level strutureTheorem 13.1. For m � 3, and 2g�2+n > 0, there exists a �ne moduli shemeM (m)g;n for smooth stable n-pointed urves with level-m struture. In partiular thereexists a universal urve with level struture over M (m)g;n . This moduli sheme issmooth over Spe(Z[1=m℄).Note in partiular that M (m)g;n is a normal sheme, and that M (m)g;n ! Mg;n is aGalois over with Galois group Sp(2g;Z=m).We use the notation Sm := Spe(Z[1=m℄).De�nition. Let g 2 Z�1. Fix n 2 Z�0, with 2g� 2+ n > 0. For any m 2 Z�3, thesheme M (m)g;n �! Smis de�ned as the normalization of Mg;n[1=m℄ =Mg;n �ZSm in M (m)g;n .For simpliity of notation in this setion, we write M =M (m)g;n and M0 =M (m)g;n �M .Theorem 13.2. Fix g; n, and m as above. Suppose m � 3. There exist a stablen-pointed urve (C;P)!M , and a level-m-struture � on C0 := CjM0 suh that(C;P)!M is tautologial for M !Mg;n;and suh that (C0;P0; �)!M0represents the funtorM(m)g;n .We give an argument for 13.1 and 13.2 following the line of [21℄. This is akind of \boot-strap" argument, whih uses the idea that one one quotient spaeexists, many others follow. We also sketh another argument whih redues theproblem to the ase of [21℄.There is a relative jaobian sheme J(C0g;n) ! H0g;n. This is an abeliansheme, so we an look at its group-subsheme of m-torsion points. Taking a sym-pleti rigidi�ation of this group sheme we arrive at H(m);0g;n - the Hilbert sheme



68 Dan Abramovih and Frans Oortof smooth stable n-pointed urves with sympleti level-m struture - embeddedin projetive spae as above.The ation of PGL on H0g;n learly lifts to H(m);0g;n . This immediately impliesthat M (m)g;n = Hg;n = PGLexists, sine it is �nite overMg;n. By Serre's lemma this ation has no �xed points,and it also lifts to C(m);0g;n = Cg;n �Hg;n H(m);0g;n . This means that the quotientPGLnC(m);0g;n ! M (m)g;n is a universal family of smooth stable pointed urves withlevel struture.This proves Theorem 13.1.The normalization of Hg;n in H(m);0g;n will be denoted by H(m)g;n . The argumentof [21℄, (2.6) works word for word, and shows that PGL still ats without �xedpoints on H(m)g;n . This gives the existene of the quotientM (m)g;n = H(m)g;n = PGL:Again the universal family over H(m)g;n desends to a family overM (m)g;n , this extendsthe universal family overM (m)g;n , and learly it is tautologial. This proves Theorem13.2. 	13.3 Proof by redution to the unpointed aseStarting from M (m)g and its tautologial family we an onstrut M (m)g;n and itstautologial family by indution on the number of points n in the manner desribedbelow.Denote by D ! M (m)g;n the tautologial family. It is easy to see that in fatD =M (m)g;n+1. So D�M(m)g;n D !M (m)g;n+1 is a family of stable n-pointed urves withlevel struture, but with an additional setion given by the diagonal. Using thestabilization proess as desribed in [39℄ (see Setion 3.7 above) one blows thissheme up, to obtain the tautologial family over M (m)g;n+1 as desired.Remark. The moduli spae M (m)g;n is smooth over Sm for m � 3; this follows fromSerre's lemma and deformation theory. However, the moduli spaeM (m)g;n is singularif g > 2; Serre's lemma holds also in this situation, but the spae is not the oarse(or �ne) moduli spae of a moduli funtor whose deformation spaes oinide withthe deformations of stable urves. For more explanation, see [45℄ or [21℄.The argument above works for g > 1 when M (m)g exists. For rational urves thesetheorems are relatively easy, and known, sine the moduli spaes are �ne modulispaes in genus 0. For ellipti urves these theorems are known by the theory ofmodular urves.



Alterations and resolution of singularities 6913.4 Artin's approah via sliingA general approah for onstruting tautologial families over �nite overs of oarsemoduli spae was developed by Artin (see desription in [40℄). Here we present aversion of this approah adapted to stable pointed urves.Step 1: sliing Consider the loally losed subset of the Hilbert sheme Hg;ndisussed above. It arries a universal family of stable pointed urves Cg;n ! Hg;nsuitably embedded in a projetive spae. This family indues a natural morphismHg;n ! Mg;n. The �bers oinide with the G-orbits assoiated to the embeddedurves, where G = PGL.Fix a point x 2 Hg;n. By repeatedly taking hyperplane setions, we an �nda loally losed subsheme Vx � Hg;n suh that1. Gx \ Vx 6= ;;2. If x0 2 Hg;n and Gx0 \Vx 6= ;, then there exists a neighborhood x0 2 U suhthat for any y 2 U we have that Gy \ V 6= ;; and3. for any y 2 Hg;n we have that Vx\Gy onsists of �nitely many losed points.These Vx are \multi-setions" of the map Hg;n !Mg;n in a neighborhood ofGx. The essential point is that all orbits in Hg;n are of the same dimension.Using the Noetherian property, we an hoose �nitely many of these, sayV1; : : : ; Vl, suh that every orbit meets at least one of them.Step 2: normalization. Let K be the join of the funtion �elds of Vi overMg;n.Let V be the normalization of Mg;n in the Galois losure of K. The sheme Vadmits many rational maps to the Vi. It is not hard to see that for every pointv 2 V at least one of these maps is well de�ned at v! Pulling bak the families onVi, we see that V is overed by open sets, eah of whih arries a family of stablepointed urves, ompatible with the given morphism V !Mg;n.Step 3: Gluing. Now we an use Lemma 3.11 indutively. We obtain a �nitesurjetive M ! V over whih the families glue together to a family C !M suhthat the assoiated moduli morphism is the omposition M ! V ! Mg;n. SineV is �nite over Mg;n, this forms a tautologial family.Remark. It is not hard to onstrut a tautologial as above without using theexistene of Mg;n! One an use this to onstrut the moduli spae \from srath"as a proper algebrai spae, whih is roughly speaking a quotient of a sheme bya �nite equivalene relation. Koll�ar in [40℄ has shown how to use this to prove,without GIT, that Mg;n is projetive.



70 Dan Abramovih and Frans Oort14 Moduli, automorphisms, and familiesThis setion will not be needed in the proofs above. The entral theme here is therelationship between automorphisms, oarseness of moduli, and the existene offamilies. The main priniple whih will emerge is:a moduli spae M is a �ne moduli spaemobjets parametrized by M have no nontrivial automorphismsmM arries a unique tautologial family.We also touh on the issue of singularities of moduli spaes.For rational urves, and n � 3, the moduli shemes M0;n and M0;n exist,these are smooth over Spe(Z), these are �ne moduli shemes, i.e. they arry auniversal family.However, the moduli spae M1;1 and the moduli spaes Mg for g > 1 are not�ne for the related moduli funtor.Exerise 14.1 (Deuring). Let K be a �eld, let x 2 K. Then there exists anellipti urve E de�ned over k with j(E) = x. [ Suppose har(K) 6= 2; 6= 3, supposeE is is given over K by the equation Y 2 = X3 +AX + B; with 4A3 + 27B2 6= 0.Then de�ne j(E) := 1728�4�A3=(4A3 + 27B2):For the de�nition of the j-invariant, see [69℄.℄This an partly be made more preise as follows:Exerise 14.2. ConsiderM0;1 �= A 1Z, and remove the setions j = 0 and j = 1728:U := A 1Z f0; 1728gZ:There exists a tautologial urve E ! U:1. This annot be extended over any of the deleted points.2. This family is not at all unique.Exerise 14.3. Consider U := C f0; 1728g. Show: up to isomorphisms there existexatly 4 tautologial urves (stable, one pointed smooth urves of genus 1 withj invariant di�erent from 0 and 1728) over this moduli spae. Show that for theground �eld K = Q there are in�nitely many tautologial urves over the modulispae A 1Q f0; 1728g. Charaterize them all.



Alterations and resolution of singularities 71We have seen the di�erene between a universal urve and a tautologial urve: themoduli problem for ellipti urves with geometrially no non-trivial automorphismsadmits a oarse moduli sheme; over that sheme there is a tautologial urve, butthe sheme is not a �ne moduli sheme (not every family is a pull-bak from onehosen tautologial urve). Here is another example:De�nition. A urve C ! S is alled a hyperellipti urve if it is smooth, of relativegenus g with g � 2, and if there exists an involution � 2 Aut(C=S) suh that thequotient C= < � >! S is a smooth family of rational urves.Remark. Ellipti urves and rational urves are not alled \hyperellipti", butsometimes the terminology \quasi-hyperellipti" is used for urves having an in-volution with rational quotient.Theorem 14.4. Consider the moduli spae Hipg of hyperellipti urves of genusg � 2 (even over C ). If g is even there does not exist a urve de�ned over thefuntion �eld C (Hipg) having as moduli point the generi point of Hipg.(See Shimura [68℄, Theorem 3.)In di�erent terminology: For no open dense subset U � Hg does there exist atautologial urve when g is even.There does exist a open dense subset U � Hg and a tautologial urve CUwhen g is odd.Corollary. No dense open subset in M2 or in M2
K arries a tautologial urve.Exerise 14.5. Choose g 2 Z>2, and onsider nonsingular urves of genus g.1. Show that there exists suh a urve whih has no nontrivial automorphisms.2. (variant:) Show that a general urve of genus > 2 has no nontrivial auto-morphisms.Remark. There is a morphism Mg;n+1 ! Mg;n ("forgetting the last marking").Sometimes this is alled the \universal urve over Mg;n", but we think in generalthis terminology is not justi�ed in all ases possible.Theorem 14.6. Let U �Mg with g � 3 �xed, be the set of points orrespondingwith urves whih have geometrially no non-trivial automorphisms. This set isdense and open. Let MU be the orresponding moduli funtor. This funtor isrepresentable.In other terminology: there does exist a (unique) universal urve CU ! U forthe moduli problem of urves of genus g � 3 with geometrially no non-trivialautomorphisms.In partiular: Let K be a �eld, g 2 Z�3, and � be the generi point ofMg 
 K. There exists an algebrai urve de�ned over K(�) having � as modulipoint. However the universal family as indiated above over U � Mg does notextend to any smooth family of urves over Mg .



72 Dan Abramovih and Frans OortExerise 14.7. Formulate and prove a generalization of previous theorems to thease of stable pointed urves.Exerise 14.8. Let n > 2g + 2 and let (C;P1; � � � ; Pn) be any stable n-pointedurve of genus g. Suppose that C is regular (and hene irreduible). Show thatAut((C;P1; � � � ; Pn)) = f1g(if you want, assume that har(k) = 0).Exerise 14.9. Let g 2 Z�1 and 2� 2g < n � 2g+2 and 0 � n. Show that Mg;nis a oarse, but not a �ne moduli spae.Exerise 14.10. Choose g 2 Z�0, and let n > 2g + 2. Show that Mg;n is a �nemoduli spae. Show that the universal urve over Mg;n is not smooth if n � 2.Exerise 14.11. Consider all stable n-pointed urves of genus g. Suppose that2g � 2 + n � 3:1. Show that there exists suh a urve whih has no nontrivial automorphisms.2. (variant:) Show that a general urve as above has no nontrivial automor-phisms.Exerise 14.12. Choose some g (e.g. g = 3), hoose a very large integer n (e.g.n = 1997), and onstrut a stable n-pointed urve of genus g whih has a non-trivial group of automorphisms.Variant: Let 2g � 2 + n � 2; show that there exist stable n-pointed urvesof genus g � 3 in odimension two in the moduli spae with non-trivial groups ofautomorphisms.Exerise 14.13. Let g 2 Z�1, and n > 2� 2g and n � 0. Show that Mg;n is nota �ne moduli spae.Choose 2g � 2 + n > 0, hoose m � 1 and let M be one of the following spaes:M (m)g;n , or Mg;n (all these spaes are de�ned by a moduli funtor). Let x 2 M(k)be a geometri point, and let X0 := (C;P; �) be the orresponding objet overk (if C is non-smooth there is no level struture, the genus of C is g, we haveP = ; if n = 0, we have � = id if m = 1). Let D = Def(X0) be the universaldeformation spae; i.e. onsider � = k if har(k) = 0, and � = W1(k) in ase ofpositive harateristi, onsider all loal artin �-algebras, and onsider the objetprorepresenting all deformations of X0 over suh algebras (see [64℄). This universaldeformation objet exists, and it is formally smooth over � on 3g�3+n variables;in ase n = 0 this an be found in [17℄, page 81, the ase of pointed urvesfollows along the same lines; in ase m > 1, we have required that m is invertiblein k, �nite, at group shemes of m-power order on suh bases are �etale, anddeformations of level strutures are unique by EGA IV4, 18.1. Let G := Aut(X0).Note that G is a �nite group (beause we work with stable urves). Note that Gats in a natural way on D = Def(X0) by \transport of struture".



Alterations and resolution of singularities 73Theorem 14.14. In the ases desribed, the formal ompletion of M at x isanonially isomorphi with the quotientDef(X0) = G ��! Mx̂ :This is well-known, e.g. see [27℄, x1.Exerise 14.15. (Rauh, Popp): Let g 2 Z�4, and let A �Mg be an irreduibleomponent of the set of all points orresponding with urves with non-trivial au-tomorphisms. Show that the odimension of A � Mg is � 2. (In positive hara-teristi this is also orret, but you might need some extra insight to prove alsothose ases.)Remark. Stable rational pointed urves have no non-trivial automorphisms. For el-lipti urves there are urves with more than 2 automorphisms in odimension one.For urves of genus two we �nd a desription of all urves with \many automor-phisms" in [30℄. Note that hyperellipti urves of genus three are in odimensionone.Exerise 14.16. Show that non-hyperellipti urves of genus three with non-trivial automorphisms are in odimension at least two.Exerise 14.17. (Rauh [58℄, Popp [57℄): Let g 2 Z�4, and let [C℄ = x 2 Mg bea geometri point. Show that x is a singular point on Mg i� Aut 6= fidg. [Youmight like to use: [5℄, Coroll. 3.6 on page 95: A quasi-�nite loal homomorphismof regular loal rings having the same dimension is at. Also you might like to usepurity of branh lous: a rami�ed at overing is rami�ed in odimension one.℄Remark. For singularities ofM2 see [30℄. Show that for genus three non-hyperelliptipoints are singular i� there are non-trivial automorphisms, e.g. see [50℄. For sin-gularities of moduli shemes of abelian varieties, see [51℄.Remark. As we have seen in [21℄, the moduli shemes M (m)g have singularities forall g � 3 and m � 3 (these spaes annot be handled with the methods just dis-ussed, these spaes are not given by \an obvious" moduli funtor !). As Looijenga,see [42℄, in harateristi zero, and Pikaart and De Jong, see [54℄ showed, thereexist a �nite map M ! Mg with M regular (using non-abelian level strutures)(it is even true that M is smooth over Q, or smooth over Z[1=r℄ for some naturalnumber r > 1).Summary about M (m)g;n ,!M (m)g;n �! Spe(Z[1=m℄) =: Smfor g 2 Z�0; n 2 Z�0; m 2 Z�1; with 2g � 2 + n > 0;



74 Dan Abramovih and Frans OortM (m)g;n and Mg;n exist as oarse moduli shemes, we have onstruted M (m)g;n . Wehave seen:� For g � 2 the oarse moduli sheme Mg ! S = Spe(Z) exists. These arenot �ne moduli spaes. They do not arry a tautologial family. For every gthis is singular.� For g � 2 the oarse moduli sheme Mg ! S = Spe(Z) exists. These arenot �ne moduli spaes. They do not arry a tautologial family. They aresingular.� A dense open set inM1;1 arries a tautologial family, and it is not universal.� No dense open set in M2 arries a tautologial family.� For g � 3 a dense open set in Mg;n arries a universal family.� For n � 3 the moduli spaesM0;n �M0;n exist, they are �ne moduli spaes,they are smooth over S = Spe(Z).� For 2g� 2+ n > 0, and m � 0 the moduli spaes Mg;n ! S, and Mg;n ! Sand M (m)g ! Sm exist, they oarsely represent a moduli funtor. For n >2g + 2 the moduli spae Mg;n is �ne, and smooth over Spe(Z) (but theuniversal family is not smooth for n > 1). For m � 3 the spae M (m)g is �neand smooth over Sm.� For 2g � 2 + n > 0, and m � 0 there is a moduli spae, and a tautologialfamily, with properties as in 13.2. For g � 3 the morphism M (m)g;n ! Sm isnot smooth.
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