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4 Dan Abramovi
h and Frans Oort0 Introdu
tionH. Hironaka, 1964: In 
hara
teristi
 zeroany variety 
an be modi�ed into a nonsingular variety.A. J. de Jong, 1995:Any variety 
an be altered into a nonsingular variety.On July 26, 1995, at the University of California, Santa Cruz, a young Dut
hmathemati
ian by the name Aise Johan de Jong made a revolution in the study ofthe arithmeti
, geometry and 
ohomology theory of varieties in positive or mixed
hara
teristi
. The talk he delivered, �rst in a series of three entitled \DominatingVarieties by Smooth Varieties", had a 
entral theme: a systemati
 appli
ation of�brations by nodal 
urves. Among the hundreds of awe stru
k members of theaudien
e, parti
ipants of the Ameri
an Mathemati
al So
iety Summer Resear
hInstitute on Algebrai
 Geometry, many re
ognized the great potential of Johande Jong's ideas even for 
omplex algebrai
 varieties, and indeed soon more resultsalong these lines began to form.0.1 The alteration paradigmA.J. de Jong's main result was, that for any variety X , there is a nonsingularvariety Y and an alteration, namely a proper, surje
tive and generi
ally �nitemorphism, Y ! X (see Theorem 2.3 for a pre
ise statement). This is in 
ontrastwith Hironaka's result, whi
h uses only a modi�
ation, namely a proper birationalmorphism.Here is the basi
 stru
ture of the proof by De Jong:� Proje
tion. For a given variety X of dimension d we produ
e a morphismf : X ! P with dimP = d � 1, and all �bers of f are 
urves (we may �rsthave to apply a modi�
ation to X).� Desingularization of �bers. After an alteration of the base P , we arriveat a new morphism f : X ! P where all �bers are 
urves with only ordinarynodes as singularities. The main tool here is the theory of moduli of 
urves.� Desingularization of base. After a further alteration on the base P , wearrive at a new morphism f : X ! P as above, where P is regular. Here weuse indu
tion, i.e. supposing that the theorem is already true for varieties ofdimension d� 1. So here we \desingularize the base".� Desingularization of total spa
e. Given the last two steps, an expli
itand easy method of resolution of singularities �nishes the job.



Alterations and resolution of singularities 50.2 The purpose of this paperThis paper is an outgrowth of our 
ourse material prepared for the Working Weekon Resolution of Singularities, whi
h was held during September 7-14, 1997 inObergurgl, Tirol, Austria. As we did in the workshop, we intend to explain Johande Jong's results in some detail, and give some other results following the sameparadigm, as well as a few appli
ations, both arithmeti
 and in 
hara
teristi
 zero.We hope that the reader will 
ome to share some of the ex
itement we felt on thatbeautiful July day in Santa Cruz.In the rest of this introdu
tion we give an overview of the proof and the materialinvolved. We hope that this introdu
tion will give most readers a general feelingof what the results are about. The body of the paper is divided in two parts.We begin part I by expanding on some of the preliminary material ne
essary forunderstanding the proofs by any student of algebrai
 geometry. Then we go ba
kto the proof of de Jong's main theorem, as well as some generalizations. Proofs ofsome variants and generalizations of de Jong's theorems are indi
ated in the formof exer
ises, with suÆ
ient hints and referen
es, whi
h we hope will enable thereader to appre
iate de Jong's work. Part II is an introdu
tion to an ingredientof the proof - the theory of moduli of 
urves. We aim to indi
ate the main ideasbehind the proofs of the main theorems about existen
e and properties of modulispa
es, again a

ompanied with a 
olle
tion of exer
ises.As a result, this a

ount is mostly expository. The only point where some noveltyappears is in Se
tion 13, where we show the existen
e of tautologi
al families ofstable 
urves over the moduli spa
es of stable pointed 
urves with level stru
ture.This has been \well known to the experts" for years, and 
an be 
olle
ted fromthe literature. However a 
omplete a

ount under one roof has not been published.For the de�nition of a \tautologi
al 
urve" we refer to Se
tion 10.4.0.3 Histori
al 
ontextThere are many 
ases in geometry in whi
h one wants to transform a singularvariety into a non-singular one: on
e arrived in su
h a situation, various te
hni
alsteps 
an be performed, not possible on singular varieties.Sin
e the beginning of the 
entury, partial results in this dire
tion appeared,
rowned by Hironaka's theorem on resolution of singularities in 
hara
teristi
 zero,in 1964.Hironaka's ingenuous proof had many appli
ations, but it was not easy tounderstand the �ne details of his proof. Generalizing that method to varieties inpositive 
hara
teristi
 has failed up to now. Indeed, resolution of singularities inpositive 
hara
teristi
 has been a topi
 to whi
h many years of intensive resear
hhave been devoted, and up to now the status is not yet 
lear: for the generalquestion of resolution of singularities in positive 
hara
teristi
 we have neither a



6 Dan Abramovi
h and Frans Oortfully veri�ed theorem nor a 
ounterexample. In addition, the algorithms involvedin Hironaka's theory were diÆ
ult to generalize, even in 
hara
teristi
 0, to someimportant more 
ompli
ated situations.It seemed that a lull in development of this subje
t had been rea
hed, untila totally new idea 
ame about. In 1995 Johan de Jong approa
hed the problemabove, of transforming a variety into a nonsingular one, from a di�erent angle.The idea of the proof is surprisingly easy, and for many appli
ations his resultis suÆ
ient. His approa
h is very geometri
, and hen
e it works in a wide rangeof situations. The alteration paradigm automati
ally works in all 
hara
teristi
s,and a suitable version works in mixed 
hara
teristi
 as well. It easily gives rise tosome new \semistable redu
tion" type results whi
h are new even over the 
omplexnumbers. Moreover, without mu
h e�ort it give birth to new, \
on
eptually easy"proofs of a weaker form of Hironaka's theorem.0.4 Comparison of approa
hesLet us take a moment to make a qualitative 
omparison of Hironaka's result andde Jong's result.In the approa
h taken by Hironaka, singularities of a variety are studied
losely, invariants measuring the diÆ
ulty of the singularities are de�ned, and asomewhat expli
it algorithm is applied in order to improve the singularities, in thesense that the given invariants get \better". One needs to show that the algorithmterminates (and indeed in 
hara
teristi
 zero it does), resulting in the 
onstru
tionof a regular variety. A big advantage of this pro
ess developed by Hironaka (andby many others) is the fa
t that usually it is very expli
it, it is 
anoni
al in a
ertain sense and on
e it works, the result is in its strongest form, see [70℄ and[11℄, as well as [19℄ in this volume.In the approa
h by Johan de Jong, the singularities are, at �rst, 
ompletelyignored. The idea is to �rst bring the variety to a spe
ial form: a �bration bynodal 
urves. Here one pays a big pri
e: in order to arrive at this spe
ial formone needs to use an operation - 
alled alteration - whi
h extends the fun
tion�eld of the variety. However, on
e we arrive at this form, we 
an use indu
tion onthe dimension for the base spa
e of the �bration, and automati
ally arrive at asituation where the variety has very mild singularities. Only then, �nally, attentionis paid to the singularities. But these are so mild that an easy and expli
it blowingup �nishes the job.0.5 A sket
h of the 
onstru
tion of an alteration giving aregular varietyHere we give a mu
h simpli�ed form of the proof of A.J. de Jong's main Theorem(Theorem 2.3 in this text). We break up the proof in steps. A star atta
hed to astep means that in that phase of the proof a �nite extension of the fun
tion �eld



Alterations and resolution of singularities 7might be involved, i.e. the alteration 
onstru
ted might not be a modi�
ation. Insteps without a star only modi�
ations are used.Before starting, a small te
hni
al point is ne
essary. In the 
ourse of the proofwe use indu
tion on the dimension of the variety X , and it turns out that for theindu
tion to work we need the statement of the theorem to involve a 
losed subsetZ � X as well. Our �nal goal will be to �nd an alteration f : Y ! X su
h thatf�1Z is a normal 
rossings divisor.We start with a �eld k, a variety X and a 
losed subset Z � X, over the �eldk.Step 0.We 
an redu
e to the 
ase where k is algebrai
ally 
losed, thevariety X is proje
tive and normal, and the 
losed subset Z isthe support of an e�e
tive Cartier divisor.We intend to say: if we prove the theorem with this new additional data, then thetheorem in the original, more general form follows. Redu
ing to the algebrai
ally
losed �eld 
ase is standard - in the main body of the paper we avoid it, assumingk is algebrai
ally 
losed. The main ingredient for proje
tivity is Chow's Lemma(see [Red Book℄, pp. 85-89, or [HAG℄, Exer
ise II.4.10): for a variety X over k,there exists a modi�
ation X 0 ! X, su
h that X 0 is quasi-proje
tive. To make Zinto a divisor we simply blow it up inside X .Repla
ement 
onvention. From now on, in ea
h step, we shall repla
e X by a newvariety X 0 over k whi
h admits a modi�
ation or an alteration X 0 ! X , arriving�nally at a regular variety and an alteration of the variety produ
ed in Step 0.Step 1.After modifying X, 
onstru
t a morphism f : X ! P of pro-je
tive varieties whose generi
 �ber is an irredu
ible, 
omplete,non-singular 
urve.Note: dim(P ) = dim(X)� 1, whi
h suggests using indu
tion later.A
tually we need a little more, but the te
hni
al details will be dis
ussed inthe main text.This step follows a 
lassi
al, geometri
 idea. Set dim(X) = d, and assumeX � PN . Using Bertini's theorem we see that we 
an �nd a linear subvarietyL � PN \in general position" with dim(L) = N � d su
h that the proje
tion with
enter L gives a rational map X 9 9 K Pd�1 where the generi
 �ber is a regular
urve. After modifying X we 
an make this rational map into a morphism.The stri
t transform. We will use an operation whi
h de Jong 
alled the \stri
ttransform". (In [10℄, 815-12 the terminology \stri
t alteration" is used). Consider
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h and Frans Oorta morphism X ! S, and a base 
hange T ! S. Assume T to be integral, and let� 2 T be its generi
 point. Then de�ne X 0 � T �S X as the 
losure of the generi
�ber (T �S X)� in (T �S X). A more thorough dis
ussion of this operation willfollow in Se
tion 3.1.In our situation X ! P , we will often repla
e P by an alteration, and thensimply repla
e X by its stri
t transform.Step 2�.After applying alterations to X and to P we 
an arrive at a mor-phism f : X ! P as in Step 1, and se
tions �1; � � � ; �n : P ! X,su
h that every geometri
 
omponent C 0 of every geometri
 �berof f meets at least three of these se
tions in the smooth lo
us off , i.e. in C 0 \ Sm(f).There is a \multi-se
tion" in the situation of Step 1 having this property. After analteration on Y and on X this be
omes a union of se
tions.Stable pointed 
urves. Here we follow Deligne-Mumford and Knudsen. An algebrai

urve is 
alled nodal if it is 
omplete, 
onne
ted and if the singularities of Care not worse than ordinary double points. Its arithmeti
 genus is given by g =dimk H1(C;OC):Suppose C is a nodal 
urve of genus g over a �eld k, and let P1; � � � ; Pn 2 C(k)with 2g � 2 + n > 0; we write P = fP1; � � � ; Png; this is 
alled a stable n-pointed
urve if:� the points are mutually di�erent, i < j =) Pi 6= Pj ,� none of these marked points is singular, Pi 62 Sing(C),� and Aut(C;P) is a �nite group; under the previous 
onditions (and k alge-brai
ally 
losed) this amounts to the 
ondition that for every regular rationalirredu
ible 
omponentP1 �= C 0 � C; then #(C 0 \ (P [ Sing(C))) � 3:A 
at family of 
urves is 
alled \a family of stable n-pointed 
urves" if all geometri
�bers are stable n-pointed 
urves in the sense just de�ned, the markings given byse
tions.Histori
ally, stable 
urves and stable pointed 
urves were introdu
ed in order to
onstru
t, in a natural way, 
ompa
ti�
ations of moduli spa
es (see [17℄). Certainlythe following names should be mentioned: Zariski, A. Mayer, Deligne, Mumford,Grothendie
k, Knudsen, and many more. It 
ame a bit as a surprise when de Jongused these for a desingularization-type problem!



Alterations and resolution of singularities 9Step 3�.After an alteration on the base P , we 
an assume that X ! P isa proje
tive family of stable n-pointed 
urves.We brie
y sket
h the heart of the proof of this step - it will be dis
ussed in detaillater.Extending families of 
urves. We need the following fundamental fa
t: suppose weare given a variety P , an open dense subset U � P , and a family of stable 
urvesCU ! U : CU � ?# #U � P:Then there is an alteration a : P1 ! P su
h that the pullba
k family CU1 ! U1over the open set U1 = a�1U 
an be extended to a family of stable 
urves C1 ! P1:CU1 � C1# #U1 � P1:The �rst result behind this is the existen
e of a moduli spa
e of stable 
urves ([39℄,see also Se
tion 12). Then one needs the fa
t that a �nite 
over M !Mg;n of themoduli spa
e admits a \tautologi
al family" - namely, a family C !M su
h thatthe asso
iated morphism M ! Mg;n is the given �nite 
over. One 
ould 
onsult[16℄ (the pre
ise statement we need follows from that paper), or use [21℄, wherea tautologi
al family of nodal 
urves is 
onstru
ted over a moduli spa
e of stable
urves with a level stru
ture.The se
tionss of the family X ! P 
orrespond to those of the stable n-pointed 
urve C ! P , under the birational transformation thus de�ned. We wantto show this extends to a morphism C ! X .Flattening of the graph. We take the 
losure T � X �P C of the graph of �0 :CU ! XU , and apply the \Flattening Lemma", see 3.2 below. We arrive at newX;T , and C 
at over P . All we have to show (modulo some te
hni
alities) is thatno point of a �ber of C ! P is blown up to a 
omponent of a �ber of X ! P .The Three Point Lemma. Using the markings, and studying 
arefully the geometrywe show that indeed �0 extends to a morphism �. The 
ru
ial point here was thatevery 
omponent of every �ber of X over P has at least three nonsingular pointsmarked by the se
tions �i (see 4.18 - 4.20 of [Alteration℄).Step 4�.After an alteration of P , we may assume that P is nonsingular.



10 Dan Abramovi
h and Frans OortWe simply apply indu
tion on the dimension of the base: we suppose that thetheorem we want to prove is valid for all varieties having dimension less thandim X . Thus after an alteration of the base P we 
an suppose P is regular andthe stri
t transform of X has all the previous properties.Following Z. The argument for the previous two steps should be 
arried throughwith a proper 
are given to the divisor Z. At the end, we 
an guarantee that Z is
ontained in the union of two types of sets:� the images of the se
tions �i, and� the inverse image of a normal 
rossings divisor � � P .Moreover, in the indu
tion hypothesis we 
an guarantee that the �nal family of
urves X ! P degenerates only over the normal 
rossings divisor �.Step 5.The singularities of the resulting family X ! P are so mild thatit is very easy to resolve them expli
itly.Indeed, ea
h singular point 
an be des
ribed in formal 
oordinates by theequation xy = tk11 � � � tkrr . It is a fairly straightforward exer
ise to resolve thesesingularities.



11Part IThe alteration theorem1 Some preliminaries and generalities on varieties1.1 VarietiesTo �x notation, we use the following de�nition of a variety:De�nition. By a variety de�ned over k we mean a separated geometri
ally integrals
heme of �nite type over k. If k � k1 we write Xk1 for X �Spe
k Spe
 k1.In more down to earth terms this means: an aÆne variety de�ned over k is given asa 
losed subvariety of an aÆne spa
e A nk de�ned by an ideal I � k[T1; � � � ; Tn℄ =k[T ℄ su
h that k1�I � k1[T ℄ is a prime ideal for every (equivalently, for some)algebrai
ally 
losed �eld k1 
ontaining k. In general, a variety then is de�ned bygluing a �nite number of aÆne varieties in a separated way. See [Red Book℄, I.5,De�nition 1 (p. 35) and I.6, De�nition 2 (p. 52).Remark. This de�nition di�ers slightly from that in [Alteration℄. De Jong requiresthe algebrai
 s
heme to be integral, and we require that the s
hemes stay integralafter extending the �eld. For example for any �nite �eld extension k � K, thes
heme Spe
(K) is 
alled a k-variety by de Jong, but we only say it is a varietyde�ned over k if k = K. For most geometri
 situations the di�eren
es will not beimportant.1.2 Operations on varietiesDe�nition. A morphism of varieties Y ! X is 
alled a modi�
ation if it is properand birational.A modi�
ation is the type of \surgery operation" usually asso
iated with resolutionof singularities. Johan de Jong introdu
ed the following important variant:De�nition (de Jong). A morphism of varieties Y ! X is 
alled an alteration if itis proper, surje
tive and generi
ally �nite. This notion of alteration will also beused for integral s
hemes.See [Alteration℄, 2.20.Remark. A modi�
ation is a birational alteration.Exer
ise 1.1. Show that an alteration ' : Y ! X 
an be fa
tored asY ��! Z f�! X;where � is a modi�
ation, and f is a �nite morphism.
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h and Frans OortExer
ise 1.2. Suppose moreover that a �nite group G a
ts on Y by automor-phisms su
h that the �eld of invariants K(Y )G 
ontains the fun
tion �eld K(X).Formulate other fa
torizations of '.Remark. Given a variety X and a nonzero 
oherent ideal sheaf I � OX , theblowing up BlIX = ProjX(�j�0Ij) ! X gives naturally a modi�
ation, su
hthat the inverse image of I be
omes invertible. If Z � X is a subs
heme with idealsheaf I, the blowing up BlZ(X) of X with 
enter Z is de�ned to be the blowingup BlIX .See [HAG℄, II.7, p. 163.1.3 Smooth morphisms and regular varietiesThe terminology \smooth" will only be used in a relative situation. Thus a mor-phism 
an be smooth. The terminology \regular", or \non-singular", will be usedin the absolute sense. Thus a variety 
an be regular. This means that for everypoint P in the variety the lo
al ring at P is a regular lo
al ring. If a morphismX ! Spe
(K) is smooth, then X is regular. It is not re
ommended to use theterminology \a smooth variety", whi
h 
an be misleading and 
onfusing.1.4 Resolution, weak and strongWe state what we mean by a resolution of singularities. There are two variants wewill use:De�nition. Let X be a variety. A resolution of singularities in the weak sense is amodi�
ation Y ! X su
h that Y is nonsingular.De�nition. Let X be a variety. A resolution of singularities in the strong sense isa modi�
ation Y ! X , whi
h is an isomorphism over the nonsingular lo
us Xreg ,su
h that Y is nonsingular.1.5 Normal 
rossingsThe following type of \ni
e subs
hemes" of a variety are quite useful in desingu-larization problems and appli
ations:De�nition. Let X be a variety. A subs
heme Z � X is 
alled a stri
t normal
rossings divisor if for ea
h point x 2 Z, there is a regular system of parametersy1; : : : ; yk for x in X (in parti
ular the point x 2 X is supposed to be a regularpoint on X), su
h that Z is given on a Zariski neighborhood of x by the equationy1 � � � yl = 0.Suppose furthermore we have a �nite group a
ting on Z and X equivariantly:G � Aut(Z � X). We say that Z is a G-stri
t normal 
rossings divisor if it hasnormal 
rossings, and for any irredu
ible 
omponent Z 0 � Z, the orbit [g2G g(Z 0)is normal.



Alterations and resolution of singularities 13We say that a 
losed subset Z � X is a stri
t normal 
rossings divisor, if thsredu
ed subs
heme it supports is a stri
t normal 
rossings divisor.See [Alteration℄, 7.1.Stri
t normal 
rossings divisors have played an important role in resolution ofsingularities, and are essential in the proof of de Jong's result.1.6 FlatnessA 
ru
ial idea for studying \families of s
hemes" is Serre's notion of 
atness (see[HAG℄, III.9).De�nition. Let A be a ring and M and A-module. Re
all that M is said to be a
at A-module if the fun
tor N 7!M 
A N is exa
t.A morphism of s
hemes X ! Y is 
at if at any point x 2 X , whose image isy 2 Y , the lo
al ring OX;x is a 
at OY;y-module.There are many important examples of 
at morphisms whi
h we will dis
uss later.The reader is advised to 
onsult [HAG℄ or [43℄ for a more detailed dis
ussion.The general pi
ture should be that in a proper 
at morphism, many essentialnumeri
al invariants (e.g. dimension, degree...) are \
onstant" from �ber to �ber,so we should really think about it as a \family".Here are some instru
tive examples of morphisms whi
h are not 
at:Example 1.3. (See [HAG℄, III 9.7.1.) Let Y be a 
urve with a node (say, thelo
us xy = 0 in the aÆne plane). Let X ! Y be the normalization (in the spe
i�
example, the disjoint union of two lines mapping onto the lo
us xy = 0). Thenf : X ! Y is not 
at. The idea one should have in mind is that sin
e over ageneral point in Y we have one point in X , and over the node we have two pointsin X , this is not really a ni
e family - it jumps in degree.The same reasoning gives a more general example:Example 1.4. Let f : X ! Y be a modi�
ation. Then f is 
at if and only if itis an isomorphism.In parti
ular, a nontrivial blowup is not 
at.1.7 Stable 
urvesWe give a formal de�nition of the fundamental notion introdu
ed in the introdu
-tion:De�nition. An S s
heme C ! S is 
alled a family of nodal 
urves over S if it is of�nite presentation, proper and 
at, and all geometri
 �bers are 
onne
ted redu
ed
urves with at most ordinary double points (lo
ally xy = 0) as singularities.



14 Dan Abramovi
h and Frans OortRemark. The terminology a nodal 
urve over S 
an be used inter
hangeably witha family of nodal 
urves over S. Indeed, if C ! S 
omes by way of an extensionof a nodal 
urve C� over the generi
 point �S of S, it may be natural to 
all it anodal 
urve over S.De�nition. The dis
riminant lo
us � � S is the 
losed subset over whi
h C ! Sis not smooth.De�nition (Deligne and Mumford). A family of nodal 
urvesf : C ! S;together with se
tions si : S ! C; i = 1; : : : ; n with image s
hemes Si = si(S),is 
alled a family of stable n-pointed 
urves of genus g if1. The s
hemes Si are mutually disjoint.2. The s
hemes Si are disjoint from the non-smooth lo
us Sing(f).3. All the geometri
 �bers have arithmeti
 genus g.4. The sheaf !C=S(PSi) is f -ample (namely, it is ample on fall �bers of f).In 
ase n = 0 we simply 
all these stable 
urves (rather than stable 0-pointed
urves).The de�nition is made so that a stable pointed 
urve has a �nite automorphismgroup (relative over S). It agrees with that made (informally) in the introdu
tion.It is dis
ussed in detail in [17℄.Remark. In the litterature one sometimes �nds the terminology \n-pointed stable
urve" instead of \stable n-pointed 
urve". We try to sti
k to the latter, sin
eit e�e
tively 
onveys the idea that the 
urve with the points is stable. The otherterminology might give the impression we are dealing with stable 
urve with somepoints on them. This would be a di�erent notion in general!1.8 Minimal models, existen
e and uniquenessAn important stepping stone for understanding moduli of stable 
urves is thenotion of minimal models of 1-parameter families of 
urves.Let K be a �eld, and C a 
omplete, geometri
ally irredu
ible algebrai
 
urvesmooth overK; suppose the genus of C is at least 2. Let v be a dis
rete valuation onK, and R � K its valuation ring. Pi
k a proje
tive model C0 of C over R. FollowingAbhyankar (1963) we 
an resolve singularities in dimension 2, therefore we mayassume C0 is nonsingular. Following Shafarevi
h (1966) and Lipman (1969) we havethe notion of the minimal model of C over S := Spe
(R) (see Li
htenbaum, [41℄,Th. 4.4; also (see [17℄, page 87). We thus arrive at a family of 
urves C ! Spe
(R)whi
h is a regular 2-dimensional s
heme, and whi
h is relatively minimal.Remark. Here we use a spe
ial 
ase of resolution of singularities, namely in the
ase of s
hemes of dimension 2.



Alterations and resolution of singularities 152 ResultsFirst re
all Hironaka's theorem:Theorem 2.1 (Hironaka). Let X be a variety over a �eld k of 
hara
teristi
 0.Then there exists a sequen
e of modi�
ationsXn ! Xn�1 ! � � � ! X1 ! X0 = X;where ea
h Xi ! Xi�1 is a blowing up with nonsingular 
enter, and the 
enterlies over the singular lo
us Sing(X). In parti
ular, Xn ! X is a resolution ofsingularities in the strong sense.See the original [29℄. Hironaka's theorem and its re�nements will be dis
ussed in[19℄ in this volume.Our main goal is to prove the following result, due to A. J. de Jong:Theorem 2.2. Let X be a variety over an algebrai
ally 
losed �eld. There is aseparable alteration Y ! X su
h that Y is quasi proje
tive and regular.Corollary. Let X=k be a variety. There is a �nite extension k � k1 and a sepa-rable alteration Y ! Xk1 su
h that Y is quasi proje
tive and regular.In order for the indu
tion in the proof to work, de Jong's theorem gives more:Theorem 2.3 (de Jong). Let X be a variety over an algebrai
ally 
losed �eld,Z � X a proper 
losed subset. There is a separable alteration f : Y ! X, and anopen immersion j : Y � �Y , su
h that �Y is proje
tive and regular, and the subsetj(f�1Z) [ ��Y Y � is the support of a stri
t normal 
rossings divisor.See [Alteration℄, 4.1. The proof of this result will be given in Se
tion 4.De Jong's theorem has a few important variants. First, a theorem of semistableredu
tion up to alteration over a one dimensional base:Theorem 2.4 (de Jong). Let R be a dis
rete valuation ring, with fra
tion �eldK and residue �eld k. Let X ! Spe
R be an integral s
heme of �nite type su
hthat XK is a variety. There exists a �nite extension R � R1, where R1 is a dis
retevaluation ring with residue �eld k1, and an alteration Y ! XR1 , su
h that Y isnonsingular, and the spe
ial �ber Yk1 is a redu
ed, stri
t normal 
rossings divisor.See [Alteration℄, 6.5. The proof is detailed in Se
tion 5.This theorem belongs to a 
lass of theorems about \desingularization of mor-phisms". A \dual" 
ase, whi
h 
an a
tually serve as a building blo
k in provingthe alteration type theorems, is the 
ase where the base is arbitrary dimensional,and the �bers are 
urves. A proof 
an be found in [31℄.Theorem 2.5 (de Jong). Let � : X ! B be a proper surje
tive morphism ofintegral s
hemes, with dimX = dimB + 1. Let Z � X be a proper 
losed subset.There exists an alteration B1 ! B, a modi�
ation X1 ! ~XB1 of the stri
t trans-form ~XB1 (see Se
tion 3.1), se
tions si : B1 ! X1, and a proper 
losed subset� � B1 su
h that



16 Dan Abramovi
h and Frans Oort1. �1 : X1 ! B1 is a family of pointed nodal 
urves,2. si are disjoint se
tions, landing in the smooth lo
us of �1, and3. the inverse image Z1 of Z in X1 is 
ontained in the union of ��11 � (the\verti
al part") and si(B1) (the \horizontal part").The reader who has solved the exer
ises in Se
tion 5 will be able to 
ompletethe proof of this theorem. From this de Jong dedu
ed the following re�nement ofTheorem 2.4:Theorem 2.6 (de Jong). Let � : X ! B be a proper surje
tive morphism ofintegral s
hemes, dimX = dimB + r. Assume that B admits a proper morphismto an ex
ellent two-dimensional s
heme S. Then there are alterations B1 ! B andX1 ! ~XB1 , a fa
torization X1 ! X2 ! � � � ! Xr ! Xr+1 = B, and subs
hemes�i = �hori [ �veri , su
h that1. Xi are nonsingular and �i are normal 
rossings divisors, i = 1; : : : ; r + 1;2. �i : Xi ! Xi+1 are families of nodal 
urves, smooth away from �i+1, and3. �hori is the union of disjoint se
tions of �i, lying in the smooth lo
us of �i.See [31℄. Alternative proofs of di�erent versions of this theorem were provided in[1℄ and [44℄.Next, we 
onsider a �nite group a
tion:Theorem 2.7 (de Jong). Let X be a variety over an algebrai
ally 
losed �eld,Z � X a proper 
losed subset, G � Aut(Z � X). There is an alteration f : Y !X, and a �nite subgroup G1 � Aut Y , satisfying:1. there is a surje
tion G1 ! G su
h that f is G1 equivariant, and the �eldextension K(X)G � K(Y )G1 is purely inseparable;2. Y is quasi proje
tive and nonsingular; and3. f�1Z is the support of a G-stri
t normal 
rossings divisor.See [Alteration℄, 7.3. The proof is detailed in exer
ises in Se
tion 5.Note that, taking G = fidg, this implies:Corollary. Let X be a variety over an algebrai
ally 
losed �eld. There is a purelyinseparable alteration Y ! X where Y is a quotient of a nonsingular variety bythe a
tion of a �nite group.Remark. For generalizations whi
h 
ombine both Theorem 2.4 and Theorem 2.7,see [31℄.In 
hara
teristi
 0, any purely inseparable alteration is birational, and the quotientsingularities 
an be improved:



Alterations and resolution of singularities 17Theorem 2.8 (See [2℄ and [12℄). Let X be a variety over an algebrai
ally 
losed�eld of 
hara
teristi
 0. Then there is a proje
tive resolution of singularities in theweak sense Y ! X.Remark. This is a rather weak version of Hironaka's theorem. The point is, thatnew proofs, by Abramovi
h and de Jong [2℄, and by Bogomolov and Pantev [12℄,were given based on de Jong's ideas. The proof by Bogomolov and Pantev isextremely simple, drawing only on tori
 geometry. Its proof is detailed in Se
tion7.Question 2.9. Can we improve the methods and obtain a weak resolution of sin-gularities in all 
hara
teristi
s? Or, at least weak resolution up to purely insepa-rable alterations?The proof by Abramovi
h and de Jong, detailed in Se
tion 8, lends itself to gen-eralizations in the 
avor of de Jong's semistable redu
tion theorem, su
h as thefollowing two results:Theorem 2.10 (Abramovi
h - Karu). Let X ! B be a dominant morphismof 
omplex proje
tive varieties. There exists a 
ommutative diagramUX0 � X 0 ! X# # #UB0 � B0 ! Bsu
h that1. X 0 ! X and B0 ! B are modi�
ations,2. X 0 and B0 are nonsingular,3. UX0 � X 0 and UB0 � B0 are toroidal embeddings, and the morphism X 0 ! B0is a toroidal morphism (see de�nition in 6).Theorem 2.11 (Abramovi
h - Karu). Let X ! B be a dominant morphismof 
omplex proje
tive varieties. There exists a 
ommutative diagramUX � X1 ! X# # �1 # �UB � B1 ! Bwhere B1 ! B is an alteration, X1 ! ~XB1 is a modi�
ation of the stri
t trans-form, UX � X1 and UB � B1 are toroidal, the morphism �1 : X1 ! B1 is toroidalwith ��11 UB = UX , the variety B1 is nonsingular and1. the morphism �1 is equidimensional and2. all �bers of �1 are redu
ed.See [3℄ for details. A re�nement is given in [33℄, and an appli
ation in [34℄.
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h and Frans Oort3 Some toolsIn this se
tion we gather some basi
 tools whi
h we are going to use. Some of thesetools seem to be of vital importan
e in algebrai
 geometry, and it is instru
tiveto see them fun
tioning in the 
ontext of de Jong's theorem. We have in
ludedsome indi
ations of proofs for the interested reader. For the proof of the alterationtheorem only the following will be ne
essary: Se
tion 3.1, Lemmas 3.1, 3.2 and 3.4,and Theorem 3.6.3.1 The stri
t transformSee [Alteration℄, 2.18.As mentioned in the introdu
tion, we need an operation 
alled the \stri
ttransform". Let us re
all the de�nition.De�nition. Consider a morphism X ! S, and a base 
hange T ! S. Assume Tto be integral, and let � 2 T be its generi
 point. Then de�ne the stri
t transform~XT � T �S X as the Zariski 
losure of the generi
 �ber � �S X :~XT def= � �S XZar � T �S X �! X& ??y ??yT �! S:Note that if the image of � is not in the image of X ! S (i.e. if T �S X ! T isnot dominant), then the stri
t transform in the sense explained here is empty.Remark. The notion given here is di�erent from the usual notion of the \stri
ttransform" of a subvariety under a modi�
ation (
ompare with [HAG℄, II.7, thede�nition after 7.15). For example 
onsider a blowing up T ! S of a surfa
e Sin a point P 2 S, and let C � S be a 
urve in S passing through P . The \stri
talteration" (or \stri
t transform" in the terminology above) of C under T ! S isempty; the \stri
t transform" of C under T ! S in the 
lassi
al sense, as explainedin [HAG℄, II.7, is a 
urve in T .Some people have suggested the use of terminology \essential pullba
k of Xalong T ! S", whi
h may have some merits. After all, ~XT 
ontains only the \part"of T �S X whi
h dominates T , whi
h is in some sense its essential part.3.2 Chow's lemmaAn algebrai
 
urve and a regular algebrai
 surfa
e are quasi-proje
tive. However inhigher dimension an \abstra
t variety" need not be quasi-proje
tive. A beautifulexample by Hironaka (of a variety of dimension three) is des
ribed in [HAG℄,Appendix B, Example (3.4.1). However in 
ertain situations (su
h as the alterationmethod des
ribed below) we like to work with proje
tive varieties.



Alterations and resolution of singularities 19Lemma 3.1. Given a variety X, there is a modi�
ation Y ! X su
h that Y isquasi-proje
tive.See [Red Book℄ , I.10, p. 85, or [HAG℄, Ex
. II.4.10 p. 107. 	3.3 The 
attening lemmaIn some situations we want to repla
e a morphism by a 
at morphism. One 
anshow this is possible after a modi�
ation of the base. The general situation isstudied in [60℄. We only need this in an easier, spe
ial situation, as follows:Lemma 3.2 (The Flattening Lemma). Let X and Z be varieties over a per-fe
t �eld K (more generally, integral s
hemes of �nite presentation) and X ! Z aproje
tive, dominant morphism. There exists a modi�
ation f : Y ! Z su
h thatthe stri
t transform f 0 : ~XY ! Y is 
at.The main ingredient in the proof is the existen
e and proje
tivity of theHilbert s
heme. Hilbert s
hemes were introdu
ed and 
onstru
ted by Grothen-die
k in [24℄, Exp. 221 (see [47℄ for simpli�ed proofs, [18℄ for dis
ussion). We will
ome ba
k to them in Se
tion 10. Their purpose is to parametrize all subs
hemesof a �xed proje
tive spa
e PN . Of 
ourse, the set of all subs
hemes of a proje
tivespa
e is rather large, so we 
ut it down into bounded pie
es by �xing the Hilbertpolynomial PW (T ) = �(W;OW (T )) for a subs
heme W � PN . Grothendie
k'sresult may be summarized as follows:Theorem 3.3. There is a proje
tive s
heme HPN;P (T ) over Spe
Z and a 
losedsubs
heme XPN;P (T ) � PN � HPN;P (T ) whi
h is 
at over HPN;P (T ), su
h thatHPN;P (T ) parametrizes subs
hemes of PN with Hilbert polynomial P (T ), and whereXPN;P (T ) ! HPN;P (T ) is a universal family, in the following sense:Given a s
heme T , let X � PN � T be a 
losed subs
heme whi
h is 
at overT and su
h that the Hilbert polynomial of the �bers is P (T ). Then there exists aunique morphism h : T ! HPN;P (T ), su
h thatX = T �HPN;P (T ) XPN;P (T )Ba
k to the proof of Lemma 3.2. Sin
e X ! Z is proje
tive, we 
an 
hoose anembedding X � PN � T for some N . Note that the generi
 �ber of f is redu
ed.By generi
 
atness, there exists a dense, open subset i : U ,! Z su
h thatfU : XU := X jU �! Uis 
at. Let P be Hilbert polynomial of the �bers of fU (all �bers in a 
at familyover an irredu
ible base have the same Hilbert polynomial), and let X ! H be the
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h and Frans Oortuniversal family over the Hilbert s
heme asso
iated to this polynomial. We have a
artesian 
ommutative diagram: XU �! X# #U g�! H:Note that X ! H is a 
at morphism. We have a morphism i � g : U ! Z �H.De�ne Z 0 := i� g(U)Zar � Z �H;and let X 0 ! Z 0 be the pull ba
k:X 0 = Z 0�H X :Note that the base 
hange of a 
at morphism is 
at, hen
e X 0 ! Z 0 is 
at.It follows from [HAG℄ III.9.8 that X 0 is the stri
t transform under Z 0 ! Z ofX ! Z. 	3.2Remark. We 
ited [HAG℄ III.9.8, whi
h is in fa
t an important building blo
k inthe 
onstru
tion of Hilbert s
hemes.Remark. We 
an delete the word \dominant" in the 
attening lemma, and stillprove the 
on
lusion, but we do not gain mu
h: if X ! Z is not dominant, theidentity on Z gives a stri
t transform (in the sense explained above) of X su
hthat X 0 = ;, and 
atness trivially follows.Remark. In the proof above we note a general method, whi
h will also be used inthe question of extending 
urves below: suppose we study a 
ertain property (e.g.
atness of a map). Suppose there is a \universal family" having this property (e.g.,the Hilbert s
heme). Suppose also that in a given family the property holds overa dense open subset U in the base. Then, after a modi�
ation, or an alteration ofthe base, depending on the situation, we 
an a
hieve that property by mappingU to the base of the universal family, taking the 
losure of the graph, and pullingba
k the universal family.We en
ounter a similar situation, in the 
ontext of extending stable 
urves,in Se
tion 3.6 below.3.4 Deforming a nodeAn important fa
t underlying the role of stable 
urves, whi
h is impli
itly invokedin several pla
es in this paper, is that a node uv = 0 
an only deform in a 
ertainway. To be pre
ise:Lemma 3.4. Let R be a 
omplete lo
al ring with maximal ideal m and alge-brai
ally 
losed residue �eld. Let S = Spe
R and denote the spe
ial point by s. LetX ! S be the 
ompletion of a nodal 
urve at a 
losed point x on the �ber Xs overs, so Xs = Spe
(R=m[�u; �v℄=(�u�v))^. Then there is an element f 2 m, and liftingsu of �u and v of �v, su
h that X ' Spe
(R[u; v℄=(uv � f))^.
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an prove this using the deformation theory of a node: the versal defor-mation spa
e (see [6℄) of the 
ompletion Xs of a nodal 
urve has dimensiondimExt1(
1Xs ;OXs) = 1, and it is easy to see that the equation uv = t is versal.An elementary proof by lifting the equation is sket
hed in [Alteration℄, Se
tion2.23.3.5 Serre's lemmaA 
riti
al result in the theory of moduli of 
urves is, that a 1-parameter family of
urves admits stable redu
tion after a base 
hange (see Theorem 11.2). A 
ru
ialpoint in the proof is the relationship between the automorphisms of a 
urve andthe automorphisms of its ja
obian, as in the following lemma.Lemma 3.5. Let C be a stable 
urve de�ned over an algebrai
ally 
losed �eld k,let m 2 Z�3, not divisible by the 
hara
teristi
 of k, and let ' 2 Aut(C) su
h thatthe indu
ed map on lo
ally free sheaves of order m'� : Pi
0C [m℄ �! Pi
0C [m℄is the identity map. Then ' = 1C , the identity morphism on C.Proof (see [65℄, or [16℄, 3.5.1). Let ~C ! C be the normalization of C (namelythe disjoint union of the normalizations of all irredu
ible 
omponents). DenoteJ := Pi
0C and X := Pi
0~C . Consider the \Chevalley de
omposition" (as in [14℄):0! T �! J �! X ! 0;i.e. T � J is the maximal 
onne
ted linear subgroup in J , the quotient is anabelian variety, and J=T �= Pi
0~C . Note that T �= (Gm )s is a split torus. De�nef := '� � 1J 2 End(J). Using Hom(T;X) = 0we obtain a 
ommutative diagram0 ! T �! J �! X ! 0g # f # h #0 ! T �! J �! X ! 0:By the original lemma of Serre we dedu
e that h = 0; let us sket
h the argument.The automorphism ' is of �nite order (be
ause C is stable), hen
e the indu
ed 2 Aut( ~C) is of �nite order, hen
e  � = 1+h is of �nite order. Note that the ringEnd(X) is torsion free, and sin
e  is of �nite order the subring Z[ �℄ � End(X)is 
y
lotomi
. By assumption the element  � 
Z Z=m = 1 in End(X) 
Z Z=m.Sin
e  � is a root of unity, and m � 3, this implies  � = 1X , hen
e h = 0.
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h and Frans OortMoreover an analogous reasoning implies that g = 0: use that End(T ) =Mat(s;Z) is torsion-free. From h = 0 and g = 0 we dedu
e that f : J ! J fa
torsas J ! X f 0�! T ! J:Using Hom(X;T ) = 0we 
on
lude f 0 = 0, hen
e f = 0. Hen
e '� = 1J , and this implies that ' =1C . 	3.5Remark. We have used the fa
t that for p � 3, even modulo p, the root of unity�p is not equal to 1: indeed, the ring OQ(�p)=p is artinian, with generator �p.3.6 Extending stable 
urvesSuppose we are given a stable 
urve CU ! U over an open set U � S of a bases
heme S. Can it be extended to a stable 
urve C ! S? In general the answer isnegative. This question is dis
ussed in [32℄ and [44℄, where we �nd 
riteria whi
hensure that in 
ertain 
ases this is possible. The general situation has the followinganswer: an extension to a stable 
urves is possible after an alteration on the base.Note the di�eren
e from the Flattening Lemma, whi
h has to do with extendingfamilies of 
at subs
hemes of a �xed s
heme.Theorem 3.6 (Stable Extension Theorem). Let S be a lo
ally noetherian in-tegral s
heme, let U � S be a dense open subset, and let C ! U with se
tionssUi : U ! C be a stable pointed 
urve. There exists an alteration ' : T ! S, anda stable pointed 
urve D ! T with se
tions �i : T ! D, su
h that, if we write'�1(U) =: U 0 � T , we have an isomorphismDjU 0 ��! U 0 �U C;su
h that ��sUi = �i.Remark. A proof for unpointed 
urves 
an be found in [16℄, Lemma 1.6. We presenthere a somewhat di�erent proof. For simpli
ity of notation the proof is stated inthe 
ase of unpointed 
urves.The �rst step is to extend isomorphisms of stable 
urves. The �rst lemma is thefollowing:Lemma 3.7. Suppose T is the spe
trum of a dis
rete valuation ring, and D ! Tand D0 ! T are stable (pointed) 
urves, su
h that the generi
 �bers are isomorphi
:D� �= D0�. Then this extends a unique isomorphism: D �=T D0.For the proof see [17℄, Lemma 1.12. The main point is that the minimal modelsof D and D0 
oin
ide, and D or D0 are obtained from the minimal model in aunique way by blowing down (�2)-
urves. This lemma implies the following (see[17℄, 1.11):



Alterations and resolution of singularities 23Lemma 3.8. Suppose T is a s
heme, and D ! T and D0 ! T are stable (pointed)
urves. Then IsomT (D;D0)! T is �nite and unrami�ed.Indeed, the previous lemma implies that IsomT (D;D0)! T is proper. Sin
e stable
urves have a �nite automorphism groups, the morphism is �nite. And sin
e stable
urves have no nonzero ve
tor �elds, the morphism is unrami�ed.As a 
onsequen
e we get the following general result about extending isomor-phisms:Lemma 3.9. Suppose T is an integral normal s
heme, and D ! T and D0 ! Tare stable (pointed) 
urves, su
h that the generi
 �bers are isomorphi
: D� �= D0�.Then this indu
es an isomorphism: D �=T D0.Proof. The given isomorphism over the generi
 point � gives a lifting � !IsomT (D;D0). The 
losure of its image in IsomT (D;D0) maps �nitely and bira-tionally to T . By Zariski's Main theorem it is isomorphi
 to T , and therefore givesa se
tion of IsomT (D;D0)! T . 	Exer
ise 3.10. We show that the 
ondition \normal" in the previous lemma isneeded. To this end, 
hoose a regular 
urve T0, and a smooth 
urve D0 ! T0.Choose it in su
h a way that the geometri
 generi
 �ber has only the identity asautomorphism, and su
h that there exist 
losed points x; y 2 T0 and two di�erentisomorphisms �; � : (D0)x ��! (D0)y:Let T0 ! T be the nodal 
urve obtained by identifying x and y as a nodal pointP 2 T (and the 
urves isomorphi
 outside these points). Constru
t D� ! T by\identifying (D0)x and (D0)y via �". Analogously D� ! T . Show thatD� 6�=T D� ; and (D�)�T = (D0)�T 0 = (D�)�T :It is instru
tive to des
ribe IsomT (D�;D�).Remark. The phenomenon des
ribed in the exer
ise is 
hara
teristi
 of situationswhere one has a 
oarse moduli spa
e rather than a �ne one. See Se
tion 10.4 fordetails.The following is an analogous lemma about isomorphisms of the geometri
 generi
�bers:Lemma 3.11. Suppose T is an integral s
heme, D ! T and D0 ! T stable(pointed) 
urves, su
h that the geometri
 generi
 �bers are isomorphi
:D� �= D0�:Then there exists a �nite surje
tive morphism T 0 ! T and an isomorphismD�T T 0 �=T 0 D0�T T 0:
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h and Frans OortRemark. It is easy to give examples where the isomorphism requested does notexist even over the generi
 point of T .Proof. As in [17℄, 1.10 we 
onsider IsomT (D;D0). The 
ondition in the lemmaassures that this is not empty, it is �nite and dominant over T , and the lemmafollows. 	Proof of Theorem 3.6: Here we use the fa
t that there exists a \tautologi-
al family" of 
urves over the 
ompa
ti�ed moduli spa
e of 
urves with a levelstru
ture. For stable 
urves without points, this is given in [21℄. For the 
ase ofstable pointed 
urves, use Theorem 13.2. Another proof, more in the line of [17℄,is sket
hed in Se
tion 13.4Let us suppose that there exists m 2 Z�3 su
h that S ! Spe
(Z[1=m℄).Hen
e the family C ! U de�nes a moduli morphismf : U !Mg[1=m℄ :=Mg �Spe
Z Spe
Z[1=m℄:We writeM :=M (m)g (after having �xed g and m) for the moduli s
heme of stable
urves of genus g with level-m stru
ture (see [21℄ and Se
tion 13.2). We havea 
urve Z ! M su
h that the asso
iated moduli morphism to Mg [1=m℄ is thenatural morphism � :M !Mg [1=m℄ (we say that Z !M is a tautologi
al family;see Se
tion 10.4). Let U 00 := U �Mg M , let U 0 � U 00 be a redu
ed, irredu
ible
omponent of U 00 dominant over U , and let C0 be the pull ba
k C0 = C �U U 0. LetZ 0 ! U 0 be the pull ba
k of the tautologi
al family, Z 0 = Z �M U 0. The very fa
tthatMg os a 
oarse moduli s
heme (see Se
tion 10.4, 
ondition 1) guarantees thatover the geometri
 generi
 point we have C0� ' Z 0� . By the previous lemma we 
anrepla
e U 0 by a �nite 
over (
all it again U 0) for whi
h there is a U 0 isomorphismC0 ' Z 0. Let S0 be the normalization of S in the fun
tion �eld of U 0. We de�neV � S0 �M to be the image of U 0 by the two morphisms into S0 and M , and letT = V Zar � S0 �M .By 
onstru
tion there is a stable 
urve over T , obtained by pulling ba
kZ ! M , whi
h moreover by 
onstru
tion extends the pull ba
k of C0 ! V . Thisproves the theorem in 
ase S ! Sm := Spe
(Z[1=m℄).In 
ase S ! Spe
(Z) is surje
tive, one does the 
onstru
tion for two di�erentvalues of m, and then one pastes the result using Lemma 3.11. 	3.63.7 Contra
tion and stabilizationIn [39℄, II, Se
tion 3, pp. 173-179, we �nd a des
ription of the following two 
on-stru
tions.1. Consider a stable (n + 1)-pointed 
urve (X ;P) ! S with 2g � 2 + n > 0.Deleting one se
tion gives a nodal n-pointed 
urve (with an extra se
tion),whi
h need not be a stable n-pointed 
urve. However, if ne
essary one 
an
ontra
t \non-stable 
omponents" of �bers (regular rational 
urves 
ontain-ing not enough singularities and marked points). After this blowing down one
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urve (X 0;Q)! S, and an S-morphism X ! X 0mapping the �rst n se
tions of P to Q. This pro
ess, whi
h arrives at aunique solution to this problem, is 
alled \
ontra
tion".2. Consider a stable n-pointed 
urve (Y ;Q)! S plus an extra se
tion � : S !Y not in Q. This extra se
tion may meet se
tions in Q, or meet the nodesof Y ! S. One 
an blow up Y in su
h a way that the stri
t transforms (inthe old sense) of elements of Q and of the extra se
tion give a stable (n+1)-pointed 
urve (X ;P)! S, and an S-morphism X ! Y mapping the �rst nse
tions of P to Q. This pro
ess, whi
h arrives at a unique solution to thisproblem, is 
alled \stabilization".4 Proof of de Jong's main theoremOne striking feature of the proofs of de Jong's theorem and its derivatives is, thatall the ingredients, with the ex
eption of one subtle, but still natural, result (theThree Point Lemma), were known and understood nearly two de
ades before. Theway they are put together is quite ingenious.4.1 Preparatory steps and observationsThe proof of de Jong's theorem starts with a series of simple redu
tion steps.The situation. We want to prove de Jong's Theorem 2.3. Thus we are given avariety X de�ned over an algebrai
ally 
losed �eld k, and a Zariski - 
losed subsetZ � X . We perform some elementary redu
tions:Repla
ing X by an alteration. In order to prove the theorem for a variety Xand a 
losed subset Z, it is enough to prove it for an alteration X 0 of X whilerepla
ing Z by its inverse image Z 0 in X 0. Thus in several stages of the proof, on
ewe �nd an alteration X 0 ! X whi
h we like better than X , we simply repla
e thepair (X;Z) by (X 0; Z 0).Making Z into a divisor. By blowing up Z in X , and using the observationabove, we may assume that Z is the support of an e�e
tive Cartier divisor. Wewill slightly abuse terminology, and say that \Z is a divisor" when we mean thatZ is a 
losed subset supporting an e�e
tive Cartier divisor.Enlarging Z. Suppose Zi � X are divisors and Z1 � Z2, then to prove thetheorem for (X;Z1) it suÆ
es to prove it for (X;Z2). Indeed, if f : Y ! X isan alteration su
h that Y is nonsingular and f�1(Z2) is a stri
t normal 
rossingsdivisor, then f�1(Z1) is a Cartier divisor 
ontained in f�1(Z2), and it is 
learfrom the de�nition that it is a stri
t normal 
rossings divisor as well. Thus we mayalways enlarge the divisor Z.Making X quasi-proje
tive. Using Chow's Lemma 3.1, we may assume X isquasi-proje
tive. Indeed, by Chow's lemma there is a modi�
ation X 0 ! X su
hthat X 0 is quasi-proje
tive. We may repla
e X by X 0.
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h and Frans OortEnlarging X. Suppose X � X1 is an open embedding of varieties, Z1 � X1 adivisor whi
h 
ontaining X1 X , and Z = X \ Z1. Then evidently to prove thetheorem for (X;Z) it suÆ
es to prove it for (X1; Z1).Making X proje
tive. Sin
e X is quasi-proje
tive, there is an open embeddingX � X where X is proje
tive. Denote Z1 = Z [ (X X). We may repla
e X bythe blowup of Z1, thus we may assume that Z1 is the support of a Cartier divisor.By the previous observation it is enough to prove the result for (X;Z1).We may assume X is normal. Indeed, we 
an simply repla
e X by its normal-ization.To summarize, one may assume that the variety X is proje
tive and normal, andthe subset Z is the support of an e�e
tive Cartier divisor. Moreover, one mayalways repla
e Z by a larger divisor.4.2 Produ
ing a proje
tionThe next step is to produ
e a proje
tion with some ni
e properties. We �rst startwith some general fa
ts about proje
tions in proje
tive spa
es.Let Y � PN be a proje
tive variety over an algebrai
ally 
losed �eld (infa
t, separably 
losed would suÆ
e). For any 
losed point p 2 PN Y we have aproje
tion prp : Y ! PN�1.Lemma 4.1. Suppose dimY < N�1. Then there is a nonempty open set U � PN ,su
h that if p 2 U then prp sends Y birationally to its image.Proof. Let q 2 Y be a regular point. De�ne the 
one CY;q over Y with vertex q tobe the Zariski 
losure of the union of all se
ant lines lines 
ontaining q and anotherq0, for all q0 2 Y . It is easy to see that CY;q has dimension � dimY + 1 < N .Note that CY;q 
ontains (as \limit points") the proje
tive tangent spa
e TY;q at q.Therefore if p 2 PN CY;q then the line through p and q meets Y transversally, atq only. This property holds as well for the line through p and q0, for any q0 2 Y ina neighborhood of q. Hen
e the lemma. 	Lemma 4.2. Suppose dimY = N�1. Then there is a nonempty open set U � PN ,su
h that if p 2 U then prp maps Y generi
ally �etale to PN�1.Proof. Same as before, using TY;q instead of CY;q. 	We go ba
k to our X and Z.Lemma 4.3. There exists a modi�
ation � : X 0 ! X and a morphism f : X 0 !Pd�1 su
h that1. There exists a �nite set of nonsingular 
losed points S � Xns disjoint fromZ, su
h that X 0 is the blowup of X at the points of S.2. f is equidimensional of relative dimension 1
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us of f is dense in all �bers4. Let Z 0 = ��1Z. Then f jZ0 is �nite and generi
ally �etale5. At least one �ber of f is smooth.Proof. First proje
t � : X ! Pd using the previous lemmas N � d� 1 times.Let B � Pd be the lo
us over whi
h � is not �etale.If we 
hoose a general p 2 Pd, then prp : �(Z) ! Pd�1 is generi
ally �etale -simply use the lemma above for all irredu
ible 
omponents of �(Z).We 
hoose su
h a p away from B. By the lo
al des
ription of blowing up, we
an identify the varietyX 0 = f(x; `) 2 X � Pd�1j�(x) 2 `gwith the blowing up of X at the points in ��1(p).We de�ne f : X 0 ! Pd�1 to be the se
ond proje
tion.We 
an identify the �bers: the �ber over a point ` is the s
heme theoreti
inverse image ��1(L) where L is the line 
orresponding to `.It follows immediately that f is equidimensional: all �bers have dimension atmost 1, and are de�ned by d� 1 equations (the equations of L).Sin
e no line through p is 
ontained in B, every �ber has a dense smoothlo
us.The last assertion follows by Bertini's theorem, sin
e the �bers are obtainedby interse
ting X with linear subspa
es.Lemma 4.4. The morphism f has 
onne
ted �bers.Proof. Sin
e the smooth lo
us is dense in every �ber, the Stein fa
torization is�etale. Sin
e proje
tive spa
e has no nontrivial �nite �etale 
overs, the Stein fa
tor-ization is trivial.Remark. 1. The last assertion is not really ne
essary: if f did not have 
on-ne
ted �bers, we 
ould repla
e f : X 0 ! Pd�1 by its Stein fa
torization.2. The proje
tion above is the only point where it is 
ru
ial that X should benormal, to guarantee that the generi
 �ber is smooth. From here on we willallow ourselves to make redu
tions after whi
h X might not be normal.To summarize, one may assume that we have a morphism of varietiesX ! P ,for some variety P , whi
h makes X into a generi
ally smooth family of 
urves,satisfying some ni
e properties, in parti
ular Z ! P is �nite and generi
ally �etale.4.3 Enlarging the divisor ZIn order to \rigidify" the situation, it will be useful to enlarge Z so it meets every�ber \suÆ
iently". This is done as follows:
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h and Frans OortLemma 4.5. Let X ! P be as above. There exists a divisor H � X su
h that1. f jH : H ! P is �nite and generi
ally �etale, and2. for any irredu
ible 
omponent C of a geometri
 �ber of f , we have#sm(X=P ) \ C \H � 3:Here we 
ount the points without multipli
ities.Proof. Let n � 1 be an integer. Given a very ample line bundle L on X , 
onsiderthe embedding i : X ,! P = P(�(X;L
n))asso
iated to L
n.Claim. Given any irredu
ible 
urve C � X , the image i(C) � P is not 
ontainedin any linear subspa
e of dimension n� 1.Proof of 
laim. Sin
e L is very ample, the image of �(X;L)! �(C;LjC) 
ontainsa rank-2 subspa
e V � �(C;LjC) su
h that the 
orresponding linear series (ofdimension 1) has no base points. The map SymmV ! �(C;L
njC ) has rank �n + 1, therefore �(X;L
n) ! �(C;L
njC ) has rank � n + 1, whi
h is what we
laimed. 	(Claim)The divisors of se
tions of L
n are parametrized by the dual proje
tive spa
eP_. We 
onsider the 
olle
tion of \bad" divisors and show that there are \good"ones left. So 
onsiderT = f(H; y) 2 P_ � P j dim f�1y \H = 1g � P_ � P:It is 
lear that T is a Zariski 
losed subset. We 
an des
ribe the �bers ofpr2 : T ! P using irredu
ible 
omponents of the �bers:pr�12 (y) = [C�f�1yfH ji(C) � Hg:But by the fa
t that i(C) is not 
ontained in any linear subspa
e of dimensionn� 1, we have 
odim(pr�12 (y);P_) � n:Therefore dimT � dimP + dimP_ � n.Thus if n is large enough, pr1(T ) � P_ is of large 
odimension (at leastn� dimP ). In parti
ular pr1(T ) 6= P_.We �x su
h large n. Thus there are plenty of H whi
h map �nitely to P .For a �xed 
losed point y 2 P (k) 
onsider the setU(y) =8<:H 2 P_(k) ������ H 62pr1(T )H \ f�1y � sm(X=P )H \ f�1y is redu
ed 9=; :
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learly a nonempty open set of P_. Moreover, if H 2 U(y) then H 2 U(y0)for all y0 in a neighborhood of y.If moreover n � 3, then we have that #H \ f�1y � 3. so we are done for allpoints in a neighborhood V of y.We deal with points in P V in the same way. Using Noetherian indu
tionwe are done. 	(Lemma)Summarizing, one may assume that Z meets every irredu
ible 
omponent ofevery geometri
 �ber in at least three smooth points.4.4 The idea of simplifying the �bersDe Jong's idea is to simplify the �bers of the morphismX ! P . Then by indu
tionon dimension one 
an simplify the base P , and �nally put these simpli�
ationstogether.The method of simplifying the �bers uses the deepest ingredient in the pro-gram: the theory of moduli of 
urves (see Se
tion 10 for dis
ussion).Here is the general plan. First, as we will see below, it is easy to make analteration of P , and repla
e X and Z by their pullba
ks, su
h that Z be
omes theunion of se
tions of X ! P .We 
an think of the generi
 �ber of X ! P as a smooth 
urve with a numberof points marked on it. Say the genus of this 
urve is g, and the number of points isn. By the Stable Extension Theorem 3.6, the generi
 �ber 
an be extended, afteran alteration P1 ! P , to a family of stable 
urves X1 ! P1:X1 9 9 K X# #P1 ! PThe new morphism f1 : X1 ! P1 is mu
h ni
er than f , sin
e at least the �bersare as ni
e as one 
an expe
t: they are nodal 
urves. Moreover, Z was made mu
hni
er: it is repla
ed by n se
tions whi
h are mutually disjoint, and pass throughthe smooth lo
us of f1.If we 
an resolve P1 (say using indu
tion on dimension), then it is easy toresolve X1 as well.There is a problem though: if we want to repeat this indu
tively, we 
annotallow a rational map X1 9 9 KX whi
h is not a morphism - sin
e we 
annot pullba
k ni
ely along rational maps. So we want to �nd a way to make sure thatX1 9 9 KX is a
tually a regular map.Remark. If one is satis�ed with proving a weaker result, namely that every varietyadmits a \rational alteration" by a nonsingular variety, then there is an alternativeway to avoid the issue. This is 
arried out by S. Mo
hizuki in [44℄.Remark. Another way to 
ir
umvent the issue of extending � to a morphism, is toensure that it extends automati
ally, by using a moduli spa
e into whi
h a mor-phism is built in: the spa
e of stable maps. This was 
arried out, in 
hara
teristi
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h and Frans Oort0, in [1℄, Lemma 4.2. Unfortunately the details of 
onstru
ting moduli spa
es ofstable maps have not yet been written out in positive or mixed 
hara
teristi
s,although this would not be diÆ
ult: the results of [9℄ imply that the moduli ofstable maps forms a proper Artin sta
k, and the results of [37℄ imply that thissta
k admits a proper algebrai
 spa
e as a 
oarse moduli spa
e. One should evenbe able to modify the argument of [40℄, Proposition 4.5 and show that this spa
eis proje
tive, but this is not essential for the argument.Let us go into details.4.5 Straightening out ZLemma 4.6. There exists a normal variety P1 and a separable �nite morphismP1 ! P satisfying the following property:Let X1 = ~XP1 be the stri
t transform (see Se
tion 3.1), and let Z1 be theinverse image of Z in X1. Then there is an integer n � 3, and n distin
t se
tionssi : P1 ! X1; i = 1; : : : ; n su
h thatZ1 = n[i=1 si(P1):Proof. This 
an be proven by indu
tion on the degree n of Z ! P as follows: LetZ1 be an irredu
ible 
omponent of Z and let P 0 := Z�1 be its normalization. Wehave a generi
ally �etale morphism P 0 ! P . Denote X 0 = ~XP 0 and let Z 0 be theinverse image of Z. The morphism P 0 ! Z gives rise to a se
tion sk+1 : P 0 ! Z 0,and therefore we 
an write Z 0 = sk+1(P 0)[Z 00. We have deg(Z 00 ! P 0) = deg(Z !P )� 1, and therefore the indu
tive assumption holds for Z 00. 	Thus one 
an assume Z is the union of se
tions of X ! P .4.6 Produ
ing a family of stable pointed 
urvesLet X ! P; si : P ! X be the new family. Let U � P be an open set satisfyingthe following assumptions:1. XU ! U is smooth;2. the se
tions sijU : U ! XU are disjoint.Su
h an open set 
learly exists.Sin
e n � 3 this gives the morphism XU ! U the stru
ture of a family ofstable n-pointed 
urves.And here 
omes the point where moduli theory is used: by Theorem 3.6,there exists an alteration P1 ! P , a family of stable pointed 
urves C ! P1, withse
tions �i : P1 ! C, su
h that over the open set U1 = P1 �P U � P1 we have anisomorphism � : CU1 ! U1 �P X , satisfying ��si = �i.



Alterations and resolution of singularities 314.7 The three point lemmaAs usual, we repla
e P by P1 and X by its stri
t transform. Thus we may assumethat we have a diagram as follows:C �9 9 K X& #PThe 
ru
ial point, for whi
h we needed to \enlarge Z" in a previous step, is thefollowing:Lemma 4.7 (Three Point Lemma). Suppose Z meets the smooth lo
us of ev-ery irredu
ible 
omponent of every �ber in at least three points. Then, at least aftera modi�
ation of P , the rational map � : C 9 9 KX extends to a morphism.The proof of this lemma, whi
h is detailed in the next few paragraphs, is probablythe most subtle point in this 
hapter.4.8 Flattening the graphLet T � X �P C be the 
losure of the graph of the rational map �. We have twoproje
tion maps pr1 : T ! C and pr2 : T ! X .Claim. There exists a modi�
ation P 0 of P su
h that the stri
t transform of X,and the 
losure of the graph of C 9 9 K X are both 
at. Thus we might as wellassume X ! P and T ! P are 
at.Proof. By the Flattening Lemma 3.2 there exists a modi�
ation P 0 ! P su
hthat ~XP 0 and ~TP 0 are both 
at. Evidently the 
losure of the graph of the rationalmap C �P P 0 ! ~XP 0 is 
ontained in ~TP 0 , and sin
e ~TP 0 is 
at they 
oin
ide by[HAG℄ III.9.8. 	(Claim)Let p be a geometri
 point on P , and denote by Xp; Tp; Cp the �bers overp. There exists a �nite set W � Xp su
h that Tp ! Xp is �nite away from W .Indeed, the 
atness implies that dimTp = dimXp = 1.Thus, for any x 2 Xp W , there is an open neighborhood x 2 V � X su
hthat pr�12 V ! V is �nite and birational.In 
ase x 2 Sm(Xp) W , we may 
hoose V � Sm(X ! P ). Using the as-sumption that P is normal, it follows that V is normal. In this 
ase, by Zariski'smain theorem, pr�12 V ! V is an isomorphism.Note that the assumption that x 2 Sm(Xp) ex
ludes only �nitely manypoints, sin
e our proje
tion X ! P is smooth at the generi
 point of ea
h 
ompo-nent of the geometri
 �ber Xp. Therefore we 
on
lude that the following lemmaholds:



32 Dan Abramovi
h and Frans OortLemma 4.8. If X 0 � Xp is an irredu
ible 
omponent, then there is a unique irre-du
ible 
omponent T 0 of Tp mapping �nitely onto X 0 via pr2 : T ! X. Moreover,T 0 ! X 0 is birational.Repeating the argument for pr1 : T ! C, we also have:Lemma 4.9. If C 00 � Cp is an irredu
ible 
omponent, then there is a unique irre-du
ible 
omponent T 00 of Tp mapping �nitely onto C 00 via pr1 : T ! C. Moreover,T 00 ! C 00 is birational.Let x 2 Sm(Xp) be a 
losed point. Considering the Stein fa
torization T ! ~X !X , we have that the �ber pr�12 (x) is 
onne
ted. Indeed, sin
e X is normal at x,we have that ~X ! X is an isomorphism at x.4.9 Using the three point assumptionLet X 0 � Xp be an irredu
ible 
omponent, and T 0 � Tp the unique 
omponentmapping �nitely (and birationally) onto it, as in Lemma 4.8 above. We will provethat pr1 : T 0 ! C is non-
onstant. Assume by 
ontradi
tion that pr1(T 0) = f
g isa point.We will use the three point assumption. Let si : P ! X; i = 1; : : : ; 3 be threeof the given se
tions su
h that si(p) = xi are three distin
t points on Sm(X 0). LetTi = pr�12 xi. Let �i(p) = 
i 2 Cp.Note that the point ti = (
i; xi) 2 C �X is in T .Assume 
 62 f
i; i = 1; : : : ; 3g. Then ea
h of Ti; i = 1; : : : ; 3 
ontains anirredu
ible 
omponent T 0i whose image in C is again a 
urve passing through
. These image 
omponents are distin
t. Indeed, Ti are disjoint subs
hemes ofTp, whose images in C 
onne
t 
 with 
i, and therefore ea
h has an irredu
ible
omponent whose image 
ontains 
. These 
omponents are distin
t, and by Lemma4.9 their images are distin
t.This 
ontradi
ts the fa
t that Cp is nodal. Thus 
 is among the 
i.Assume, without loss of generality, 
 = 
1. Repeating the argument of theprevious paragraph we 
on
lude that there are two distin
t 
omponents of Cppassing through 
. This 
ontradi
ts the fa
t that Cp has a marked point at 
 = 
1.Thus we 
on
lude that pr1 : T ! C is �nite and birational.By Serre's 
riterion C is normal: it is 
learly regular in 
odimension 1, and
ondition S2 follows sin
e C ! P has redu
ed one-dimensional �bers and P isnormal.We 
on
lude that T ! C is an isomorphism, hen
e � extends as a morphism!	4.7
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tionWe arrived at the following situation:C �! X& #PWe may repla
e X by C, and Z by its inverse image in C. Note that Z is no longer�nite over P : it has a\�nite part", the union of the se
tions �i : P ! C = X , butthere is a \verti
al" part Zvert, whi
h is the union of irredu
ible 
omponents ofsingular �bers of X ! P .Let � � P be the 
losed subset over whi
h f : X ! P is not smooth. Bythe indu
tion assumption there is a proje
tive alteration P1 ! P su
h that P1is nonsingular and the inverse image of � is a stri
t normal 
rossings divisor. Wemay repla
e X by its pullba
k to P1, and repla
e P by P1. It is 
onvenient torepla
e Z by its union with f�1(�).We arrived at a situation where both P , and the morphism f : X ! P , aresimpli�ed. The resulting variety has very simple singularities, and its desingular-ization results from the following exer
ises.4.11 Exer
ises on blowing up of nodal familiesThe exer
ises below, whi
h aim at 
ompleting the proof, are adapted from DeJong's 
omplete exposition in [Alteration℄. We have not reprodu
ed his proofshere. The reader may 
onsult [Alteration℄, pages 63-64 (Se
tion 3.4) and 75-76(Se
tions 4.23-4.28). We �nd it hard to improve upon that text, but we hope thereader will enjoy unraveling the details by following the exer
ises below.Let f : X ! S be a 
at morphism of varieties over an algebrai
ally 
losed�eld k, with n = dimX = dimS + 1. Let D � S be a redu
ed divisor. We makethe following assumptions.N1 The base S is nonsingular.N2 The divisor D has stri
t normal 
rossings.N3 The morphism f is smooth over S D.N4 The morphism f : X ! S is a nodal 
urve.Let x 2 X be a 
losed point and let s = f(x) 2 S. By assumption we may
hoose a regular system of parameters t1; :::; tn�1 at s su
h that D 
oin
ides ona neighborhood with the zero lo
us of t1 � � � tr for some r � n � 1. It 
an be seenthat if x is a singular point of X , then the 
ompleted lo
al ring of X at x 
an bedes
ribed as (�) k[[u; v℄℄=(uv � tn11 � � � � � tnrr )



34 Dan Abramovi
h and Frans Oort.Step 1: Assume 
odimX Sing(X) = 2.1. Show that there is an irredu
ible 
omponent D1 � D and �1 � Sing(X)su
h that f(�1) = D1.2. Fix a point x 2 �1, and use formal 
oordinates as in (�), su
h that D1 =V (t1). Show that the power n1 of t1 is > 1.3. Show that the ideal of �1 in the formal 
ompletion is (u; v; t1).4. Con
lude that �1 ! D1 is �etale, in parti
ular �1 is nonsingular.5. Let X1 = Bl�1X: Show that X1 ! S satis�es 
onditions N1-N4, there is atmost one 
omponent of Sing(X1) over �1, with the exponent n1 repla
ed byn1 � 26. Con
lude by indu
tion that there is a blowup X 0 ! X 
entered aboveSing(X), su
h that X 0 satis�es N1-N4, and 
odimX Sing(X) > 2.7. Show that ea
h 
omponent of Sing(X 0) is de�ned by u = v = ti = tj inequation (�), in parti
ular it is nonsingular.Step 2: Assume 
odimX Sing(X) > 2. De�ne Z = f�1D. Unfortunately here weneed to abandon the stru
ture X ! B of a family of nodal 
urves. Instead we lookat X itself. The situation is as follows:T1 whenever x is a nonsingular point of X , Z has normal 
rossings at x.T2 whenever x 2 Sing(X), we have formal des
ription(��) k[[u; v℄℄=(uv � t1 � � � ts); 2 � s � r � n� 1and Z = V (t1 � � � tr).T3 All 
omponents of Sing(X) are nonsingular.1. Let E � Sing(X) be an irredu
ible 
omponent. Show that the blowup BlEXsatis�es T1-T3, and its singular lo
us has one fewer irredu
ible 
omponent.2. Con
lude by indu
tion that there is a resolution of singularities X 0 ! X .This 
on
ludes the proof of Theorem 2.3 	
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ations of the proof for Theorems 2.4 and2.75.1 Exer
ises on removing the 
onditions on the proje
tionAn important step in the proof of de Jong's theorem was, that given the proje
tionX ! P , one 
ould 
onstru
t an alteration P1 ! P and a diagramC �! X# #P1 ! Pwhere C ! P1 was a family of nodal 
urves. In order for the proof to go through,we made several assumptions on the proje
tion X ! P . Here we will show thateven if these 
onditions fail, we 
an still redu
e to the 
ase where they do hold.Exer
ise 5.1. Using an alteration, show that the 
ondition that Z ! P be �nitein Lemma 4.3 (4) is unne
essary for the rest of the proof.Exer
ise 5.2. Show that, if one is willing to a

ept inseparable alterations inthe theorem, the 
ondition that Z ! P be generi
ally �etale in Lemma 4.3 (4) isunne
essary for the rest of the proof.Exer
ise 5.3. � By reviewing the arguments, show that the 
ondition that every
omponent of every �ber of X ! P be generi
ally smooth is unne
essary.Here a modi�
ation of the three point lemma is be ne
essary! In [31℄, de Jong usesa tri
k of \raising the genus of the 
urves" with �nite 
overs. Another way goesas follows: in the proof of the Three Point Lemma 4.7, after 
attening X and T ,one works with �bers of the normalizations X� and T � . This way one avoids theneed for Sm(Xp) to be dense. One notes that the se
tions si lift to X� , and atleast three meet every 
omponent of every �ber, sin
e Z is the support of a Cartierdivisor! The details are left to the reader.Exer
ise 5.4. Using the 
attening lemma and the previous exer
ise, show thatthe 
ondition that X ! P be equidimensional is unne
essary.Exer
ise 5.5. Show that, if one is willing to a

ept inseparable alterations in thetheorem, the 
ondition that the generi
 �ber of X ! P be smooth is unne
essary.5.2 Exer
ises on Theorem 2.4Let us address Theorem 2.4 on semistable redu
tion up to alteration. SupposeS = Spe
R where R is a dis
rete valuation ring, X ! S is a morphism as in thetheorem, and Z a proper 
losed subset.Exer
ise 5.6. Show that we may assume X proje
tive over S, that Z is thesupport of a Cartier divisor.
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h and Frans OortExer
ise 5.7. Show that we may assume that the generi
 �ber is a normal variety,and that X is a normal s
heme. (You may need an inseparable base 
hange!)Exer
ise 5.8. Let d be the dimension of X�. Produ
e a proje
tion X ! Pd�1Swith 
onne
ted �bers.Exer
ise 5.9. Use the semistable redu
tion argument, with the Three Point Lemma,and the results of Se
tion 5.1 to repla
e X by a ni
e family of 
urves X ! P ! S.Exer
ise 5.10. Use indu
tion on the dimension to 
on
lude the proof of the the-orem.Exer
ise 5.11. Can you think of other situations where a similar theorem 
anbe proven, where S is not ne
essarily the spe
trum of a dis
rete valuation ring?(This is interesting even in 
hara
teristi
 0!)5.3 Exer
ises on Theorem 2.7We address the equivariant version of the theorem. Suppose X is a variety, Z aproper 
losed subset, and a �nite group G a
ts on X stabilizing Z. We wish toprove Theorem 2.7.Exer
ise 5.12. Produ
e an equivariant version of Chow's lemma, so that we mayassume X is proje
tive.Exer
ise 5.13. Show that, to prove the theorem, it suÆ
es to 
onsider the 
asewhere Z is a divisor.Exer
ise 5.14. Show that we may repla
e Z by a bigger equivariant divisor; inparti
ular we may assume Z 
ontains the �xed point lo
i of elements in G.Exer
ise 5.15. Using a proje
tion of X=G, show that we may assume we havean equivariant proje
tion X ! P making X into a ni
e family of 
urves.Exer
ise 5.16. Consider the 
ase X = A 2k where 
har k = p, and G = Z=pZa
ting via (x; y) 7! (x; x + y). Show that the �xed point set maps inseparablyto the image. In parti
ular, the map Z ! P in the previous exer
ise might beinseparable!Exer
ise 5.17. Making an alteration \Galois": Given a varietyW , a �nite groupa
tion H � AutW and an alteration V0 !W , show that there exists an alterationV ! V0, and a �nite group H 0 with a surje
tion H 0 ! H , and a lifting of theH a
tion H 0 � Aut(V ! W ) su
h that the extension of �xed �elds K(W )H �K(V )H0 is purely inseparable.Exer
ise 5.18. � Use the uniqueness in the stable redu
tion theorem to showthat there is an alteration P 0 ! P , a family of stable pointed 
urves C ! P 0 and



Alterations and resolution of singularities 37a �nite group G0 with a quotient G0 ! G and a diagramC ! X# #P 0 ! Pon whi
h G0 a
ts equivariantly, su
h that C is birational to gXP 0 , and the extensionsK(X)G � K(C)G0 and K(P )G � K(P 0)G0 are purely inseparable.Exer
ise 5.19. Use indu
tion on the dimension and a suitable modi�
ation ofthe elementary blowups argument to 
on
lude the theorem.6 Toroidal geometryToroidal geometry is a generalization of the more well known geometry of tori
varieties. In this se
tion we will show that various aspe
ts of tori
 varieties gener-alize with few diÆ
ulties to the toroidal 
ase. The reader is assumed to be familiarwith the basi
 fa
ts about tori
 varieties, as given in [15℄ in this volume.6.1 Basi
 de�nitionsFor simpli
ity we work over an algebrai
ally 
losed �eld. We re
all the notion of atori
 variety (a more thorough dis
ussion is available in [15℄):De�nition. A variety X together with an open dense embedding T � X is 
alleda tori
 variety if X is normal, T is a torus (geometri
ally isomorphi
 to G km ), andthe a
tion of T on itself by translations extends to an a
tion on X .To get an intuitive idea about the singularities of a tori
 variety, it is worth notingthat a normal, aÆne variety, de�ned by equations between monomials (su
h asz2 = xy) is tori
, and every tori
 variety is lo
ally of this type.For many purposes tori
 varieties are too restri
tive. A more general notionwas introdu
ed by Mumford in [38℄:De�nition. A variety X together with an open embedding U � X is 
alled atoroidal embedding if any point x 2 X has an �etale neighborhood X 0 su
h thatX 0 is isomorphi
 to an �etale neighborhood of a point on a tori
 variety, and theisomorphism 
arries the open subset U 0 = X 0�X U � X 0 to the torus of the tori
variety.Thus a toroidal embedding looks lo
ally like a tori
 variety, and the big open setU is a devi
e whi
h ties together these \lo
al pi
tures". In a sense, this notion issuitable for studying varieties whose singularities are like those of tori
 varieties.In this se
tion we re
all fa
ts about tori
 varieties and brie
y indi
ate how one
an obtain analogous fa
ts about toroidal embeddings. The details are availablein [38℄.
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h and Frans OortRemark. A more sheaf - theoreti
 approa
h was introdu
ed by K. Kato, see [35℄,[36℄.De�nition. A toroidal embedding is said to be stri
t (or a toroidal embeddingwithout self interse
tions) if every irredu
ible 
omponent of X U is normal.For instan
e, if X is a nonsingular variety, D � X is a stri
t normal 
rossingsdivisor, and U = X D, then U � X is a stri
t toroidal embedding.We will only work with stri
t toroidal embeddings.De�nition. If G � Aut(U � X) is a �nite group, we say that G a
ts toroidally iffor any point x 2 X , the stabilizer Gx of x 
an be identi�ed with a subgroup ofthe torus in an appropriate �etale neighborhood of x.De�nition. A morphism between tori
 varieties is 
alled a tori
 morphism, if itis surje
tive and torus-equivariant. A morphism of toroidal embeddings (UX �X)! (UY � Y ) is 
alled a toroidal morphism if lo
ally on X it looks like a tori
morphism.6.2 The 
oneFirst re
all some notation (see [15℄):M = Hom(T; Gm ) - this is the group of algebrai
 
hara
ters of T ;MR =M 
 RN = Hom(M;Z) = Hom(Gm ; T ) - this is the group of 1-parameter subgroupson T ;NR = N 
 RIt is 
ommon to 
all the fun
tions de�ned by elements of M the monomials.One uses the notation xm for the monomial asso
iated with the element m 2M .Re
all the basi
 
orresponden
e betweenfaÆne tori
 varieties T � Xgandfstri
tly 
onvex rational polyhedral 
ones � � NRgwhi
h 
an be de�ned in one dire
tion viaX = V� := Spe
 k[�_ \M ℄;and in the other dire
tion by� = the 
one spanned by the 1-parameter subgroups � : Gm ! Tsu
h that \the limit limz!0 �(z) exists inX", that is, � extendsto a morphism A 1 ! X .There is another, less well known 
hara
terization of �, whi
h is less depen-dent on the torus a
tion, and is therefore useful for toroidal embeddings:



Alterations and resolution of singularities 39Any monomial m 2M de�nes a Cartier divisor Div(xm) supported on X T .If �_ 
ontains a line through the origin, then for any m on this line the divisor iseasily seen to be trivial (both m and �m give regular fun
tions).We use the following notation:�? = fm 2MRjhm;�i = 0gM� = Cartier divisors supported on X T .One 
an easily see that M� =M=�? \M .N� = span(�): Clearly N� = Hom(M� ;Z).Let M�+ �M�: the e�e
tive Cartier divisors.We have that M�+ = �_ \M=�? \M .It is not hard to see that � = (M�+)_R, the dual 
one of the 
one spanned byM�+. In short: � is the dual 
one to the 
one of e�e
tive Cartier divisors supportedon X T .6.3 The toroidal pi
tureWe wish to mimi
 the 
onstru
tion of the 
one in the toroidal 
ase. We follow [38℄,Chapter II.Let U � X be a stri
t toroidal embedding. X U = [Di; where Di normal.We de
ompose \i2IDi = [X�; the lo
ally 
losed subsetsX� are 
alled strata.Ea
h stratum has its star: Star(X�) = [X��X�X� .Note: X� is the unique 
losed stratum in Star(X�). In a sense it is analogousto the unique 
losed orbit in an aÆne tori
 variety.De�ne:M� = group of Cartier divisors supported on Star(X�) U ;M�+ = subset of e�e
tive Cartier divisors;N� = Hom(M�;Z);�� = (M�+)_R.Thus, to ea
h stratum we asso
iated a stri
tly 
onvex rational polyhedral
one.Remark. The 
one �� has a des
ription analogous to the tori
 one using 1-parametersubgroups, in terms of valuations. Let RS(X) be the dis
rete valuations on X . Letv be a valuation 
entered in Star(X�). Let fj be rational fun
tion de�ning gen-erators of M� on a small aÆne open. Then v(fj) is a ve
tor in ��, and in fa
t�� 
an be des
ribed as a set of equivalen
e 
lasses of dis
rete valuations 
enteredin Star(X�), the equivalen
e being de�ned by equality of the valuations of thesefun
tions fj .6.4 Birational aÆne morphismsRe
all: if � � � are two stri
tly 
onvex rational polyhedral 
ones, then �_ � �_gives rise to a morphism V� ! V� , whi
h is birational and aÆne.



40 Dan Abramovi
h and Frans OortNote that V� ! V� 
an be des
ribed in the following invariant manner:V� = Spe
V� XE2M�+OV� (�E);where the sum is taken inside the �eld of rational fun
tions of V� .This 
learly works over Star(X�) in the toroidal 
ase as well.6.5 Prin
ipal aÆne opensIf m 2 �_ then � = fn 2 �j < n;m >= 0g is a fa
e of �. We have �_ = �_+R �m,and therefore V� is the prin
ipal open set on V� obtained by inverting the monomialxm. Again, this 
an be des
ribed divisorially in terms of Div(m). Thus the sameis true for Star(X�): given a fa
e � of ��, we get an open setStar(X�) � Star(X�)su
h that � = �� .The most important fa
e of a 
one is the vertex. It 
orresponds to the openset T � V . In the toroidal 
ase you get U .6.6 Fans and polyhedral 
omplexesRe
all: if �1 and �2 interse
t along a 
ommon fa
e � , then V�1 and V�2 
an beglued together along the 
ommon open set V� , forming a new tori
 variety.In general, whenever you have a fan � in N , namely a 
olle
tion of 
ones �iinterse
ting along fa
es, you 
an glue together the V�i and get a tori
 variety V�.It is not hard to see that every tori
 variety is obtained in this way in aunique manner. The point is that every tori
 variety is 
overed by aÆne open tori
varieties.In the toroidal 
ase, X is 
overed by the open sets fStar(X�)g�.In general Star(X�) \ Star(X�) = [ Star(X
i);so �
i are possibly several fa
es of both �� and �� .Still these 
an be glued together, as a rational 
oni
al polyhedral 
omplex.The main di�eren
e from the tori
 
ase, is that it is abstra
tly de�ned, and ingeneral it is not linearly 
ontained in some ve
tor spa
e NR.6.7 Modi�
ations and subdivisionsLet � be a fan, and �0 ! � a (
omplete) subdivision. This 
orresponds to a tori
modi�
ation V�0 ! V�.Sin
e the 
onstru
tion is lo
al (the Spe
 
onstru
tion, as in Se
tion 6.4, andgluing) it works word for word in the toroidal 
ase. There is a small issue in
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he
king that the resulting modi�
ation is still a stri
t toroidal embedding; this isdis
ussed in detail in [38℄.In [38℄ (see also [15℄) it is shown that a modi�
ation is proje
tive if and onlyif the subdivision is indu
ed by a support fun
tion - one asso
iates to a supportfun
tion an ideal, whose blowup gives the modi�
ation. This works in the toroidal
ase as well.6.8 NonsingularityRe
all: an aÆne tori
 variety V� is nonsingular if and only if � is simpli
ial, gen-erated by a basis of N� (namely, part of a basis of N). Su
h a 
one is 
allednonsingular.In general: a tori
 variety V� is nonsingular if and only if every 
one � 2 �is nonsingular.This is a lo
al fa
t, so it is true in the toroidal 
ase as well.6.9 DesingularizationRe
all that it is easy to resolve singularities of a tori
 variety: one �nds a simpli
ialsubdivision su
h that every 
one is nonsingular.Obviously, the same works in toroidal 
ase! We obtained:Theorem 6.1. For any toroidal embedding U � X there is a proje
tive toroidalmodi�
ation U � X 0 ! X su
h that X 0 is nonsingular.See [38℄, Theorem 11*, page 94.6.10 Exer
ises on tori
 varieties and toroidal embeddings1. Show that G nm � A n is a tori
 variety. Des
ribe its 
one.2. Show that G nm � Pn is a tori
 variety. Des
ribe its fan.3. Let X � A n be a normal variety de�ned by moni
 monomial equations oftype Yxnjj =Yxmjj :Show that X is tori
. (Identify the torus!)4. Do the same if the monomial equations are not ne
essarily with 
oeÆ
ients= 1.5. Des
ribe the 
one asso
iated to the aÆne tori
 variety de�ned byxy = tk11 � � � tkrr :



42 Dan Abramovi
h and Frans Oort6. Look at the aÆne 3-fold xy = zw. Let X 0 ! X be the blowup of X at theideal (x; z). Des
ribe this blowup, show that it is tori
, and des
ribe the 
onesubdivision asso
iated to it.7. Let X = A 2 , D = fxy(x + y � 1) = 0g, U = X D. Show that U � X is atoroidal embedding. Des
ribe its 
oni
al polyhedral 
omplex. (Compare withthe fan of P2!)8. Do the same for D = fy(x2+ y2� 1) = 0g. Show that the resulting 
omplex
an not be linearly embedded in a ve
tor spa
e.9. Consider the surfa
e X = fz2 = xyg, U = fz 6= 0g. Show that U � X istori
 and des
ribe its 
one.10. Consider the surfa
e X above, let D1 = fx = 0g, D2 = fy = x(x �1)2 and z = x(x� 1)g. Let U = X (D1 [D2). Show that U � X is toroidal.Des
ribe its 
oni
al polyhedral 
omplex. Make sure to des
ribe the integralstru
ture!6.11 Abhyankar's lemma in toroidal termsAbhyankar's lemma about fundamental groups (see [25℄, [26℄) des
ribes the lo
altame fundamental group of a variety around a normal 
rossings divisor. Let X =Spe
 k[[t1; : : : ; tn℄℄ and letD = V (t1 � � � tn). Let Y ! X be a �nite alteration whi
his tamely bran
hed alongD, and �etale away fromD. Form prime to 
har k, denoteXm = Spe
 k[[t1=m1 ; : : : ; t1=mn ℄℄. Abhyankar's lemma says that the normalization ofY �X Xm is �etale over Xm.In the following exer
ises we interpret this in toroidal terms.Exer
ise 6.2. Let U � X be a nonsingular stri
t toroidal embedding. Let f :Y ! X be a �nite 
over, whi
h is tame, and �etale over U . Then f�1U � Y is astri
t toroidal embedding.Exer
ise 6.3. Suppose further that Y ! X is Galois, with Galois group G. Showthat G a
ts toroidally on Y .7 Weak resolution of singularities IGiven the existen
e of toroidal resolution, the proof of weak resolution of sin-gularities in 
hara
teristi
 0 by Bogomolov and Pantev is arguably the simplestavailable. It does not even require surfa
e resolution.We will go through this proof. The steps of proof here in
lude some simpli-�
ations on the arguments in [12℄, whi
h 
ame up in dis
ussions with T. Pantev.These and additional simpli�
ations were dis
overed independently by K. Paran-jape [53℄, and we have used his exposition in some of the following exer
ises. Theversion given in [53℄ has the advantage that it does not even require moduli spa
es.
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tionLet X be a variety over an algebrai
ally 
losed �eld of 
hara
teristi
 0, and Z � Xa proper 
losed subset. Let n = dimX , and again assume we know the weakresolution theorem for varieties of dimension n� 1.First a few redu
tion steps:1. Show, as in 4.1 that we may assume X proje
tive and normal, and Z thesupport of a Cartier divisor.2. Show that there is a �nite proje
tion X ! Pn.3. Let P ! Pn be the blowup at a 
losed point. Show thatP ' PPn�1(OPn�1 �OPn�1(1)):Denote by E the ex
eptional divisor of P ! Pn.4. By blowing up a general point on Pn, and blowing up X at the points above,show that we may assume we have a �nite morphism f : X ! P , whi
h is�etale along E, su
h that the image of Z is disjoint from E, and maps �nitelyto Pn�1.5. By the Nagata - Zariski purity theorem, note that the bran
h lo
us ofX ! Pis a divisor B, disjoint from E, mapping �nitely to Pn�1.We repla
e Z by Z [ f�1B.7.2 Ve
tor bundlesThe next steps are aimed at repla
ing P by another P1-bundle Q ! Pn�1, su
hthat the bran
h lo
us in Q of X ! Q be
omes simpler. Let Y be any variety, F arank-2 ve
tor bundle on Y , P = PY (E). Let E � P be a divisor whi
h is a se
tionof � : P ! Y and let D � P be another e�e
tive divisor disjoint from E. Denoteby OP (1) the tautologi
al bundle, and by d the relative degree of D over Y .1. Consider the exa
t sequen
e0! ID(d)! OP (d)! OP (d)jD ! 0:Use this to show that there is an invertible sheaf LD on Y su
h that ID(d) '��LD.2. If D1; D2 � P are any two disjoint divisors �nite of degree d over Y , showthat there is an embedding of ve
tor bundles LD1 �LD2 � symdF indu
inga surje
tion ��(LD1 �LD2)! OP (d):
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h and Frans Oort3. Assume the 
hara
teristi
 is 0. Consider the 
ase D1 = dE;D2 = D. showthat the resulting morphism P ! PY (LD1 �LD2) = P 0 maps E to a se
tionE0 andD to a disjoint se
tion; and its bran
h lo
us is of the form (d�1)E+D0where D0 has degree d� 1 over Y and is disjoint from E0.4. Continue by indu
tion to show that there is a P1 bundle Q ! Y and amorphism g : P ! Q over Y , su
h that the image of D and the bran
h lo
usof g form a union of se
tions of �Q : Q! Y .7.3 Con
lusion of the proofBa
k to our theorem, where Y = Pn�1. Composing with the morphism f : X ! P ,we obtain that the image g(f(Z)) � Q is the image D1 of a se
tion s1 : Pn�1 ! Qof Q ! Pn�1 and the bran
h lo
us of g Æ f is the union of images Di se
tionssi : Pn�1 ! Q as well. Denote � = �Q([i6=jDi \Dj).The following steps use moduli theory; however it has been shown (in thepreprint version of [12℄, and in Paranjape's exposition [53℄) that the use of modulitheory 
an be 
ir
umvented within a few pages of work.1. � Use the stable redu
tion argument to show that there is a modi�
ationY 0 ! Y , and a modi�
ation Q0 ! Q�Y Y 0 su
h that Q0 ! Y is a family ofnodal 
urves of genus 0, and the se
tions lift to disjoint se
tions s0i : Y 0 ! Q0.We repla
e Y by Y 0, � by its inverse image, et
.Hints. The point is that the generi
 �ber of Q! Y is a proje
tive line witha number (say k) of points marked by the se
tions we obtained. This givesa rational map Y 9 9 KM0;k, whi
h 
an be repla
ed by a morphism after amodi�
ation Y 0 ! Y .Sin
e the moduli s
hemes in genus 0 are �ne moduli s
hemes, there is afamily of pointed rational 
urves Q0 ! Y 0. one would like to use the ThreePoint Lemma to get a morphism Q0 ! Q. However, the argument above onlyguarantees that every �ber of Q has two marked points, and not ne
essarilythree. This is easy to 
orre
t by adding se
tions on the P1-bundle Q ! Ybefore applying the moduli argument.Another approa
h is to use Knudsen's stabilization method dire
tly. Thedetails of this 
an be found in [12℄.2. Use indu
tion on the dimension to repla
e Y by a nonsingular variety su
hthat � be
omes a stri
t divisor of normal 
rossings.3. Use either toroidal geometry, or Se
tion 4.11, to repla
e Q by a nonsingularvariety, su
h that the inverse image of D is a stri
t normal 
rossings divi-sor. (Note that at this point Q ! Y is a family of nodal pointed 
urves,degenerating over the divisor of normal 
rossings D.)
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tion �eld of X . Use Abhyankar'slemma (Se
tion 6.11) to show that ~X has a toroidal stru
ture, su
h that theinverse image ~Z of Z is a toroidal divisor.5. Con
lude that there is a weak resolution of singularities r : X 0 ! X su
hthat r�1Z is a stri
t divisor of normal 
rossings.8 Weak resolution of singularities IIThe weak resolution argument a

ording to Abramovi
h - de Jong starts verymu
h like de Jong's theorem: a proje
tion X ! P is produ
ed, and a Galoisalteration P1 ! P over whi
h one has stable redu
tion X1 ! P1, equivariantunder the Galois group G, is produ
ed. Indu
tion on the dimension for P allowsone to assume that X1 and P1 are toroidal, and the Galois a
tion on P1 is toroidalas well. The only point left is to make the group a
tion on X1 toroidal, so thatthe quotient should be toroidal, and therefore admit toroidal resolution.Let us go through the steps. Let X be a variety over an algebrai
ally 
losed�eld of 
hara
teristi
 0, and let Z � X be a Zariski-
losed subset. We want to �nda nonsingular, quasi-proje
tive variety X 0 and a modi�
ation f : X 0 ! X su
hthat f�1Z is a divisor with simple normal 
rossings.8.1 Redu
tion stepsExer
ise 8.1. Show that it is enough to prove the result when X is proje
tiveand normal, and Z a Cartier divisor.Exer
ise 8.2. Redu
e to the 
ase where there is a proje
tion X ! P , su
h thatthe generi
 �ber is a smooth 
urve.Exer
ise 8.3. �Using the tri
k of enlarging Z and stable redu
tion, show thatthere is a diagram as follows: X1 ! X# #P1 ! Psu
h that P1 ! P is an alteration, X1 ! ~XP1 is birational, and X1 ! P1 hasse
tion si : P1 ! X1 making it a family of stable pointed 
urves, and the imageof these se
tions in X 
ontains Z.Exer
ise 8.4. Show that you 
an make P1 ! P a Galois alteration. Call theGalois group G. Show, using the uniqueness of stable redu
tion3.7, that the a
tionof G on P1 lifts to an a
tion on X1, whi
h permutes the se
tions si.You 
an repla
e X by X1=G and P by P1=G
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h and Frans OortExer
ise 8.5. Use indu
tion on the dimension to redu
e to the 
ase where:1. P is nonsingular, with a normal 
rossings divisor �;2. The bran
h lo
us of P1 ! P is 
ontained in Æ;3. The lo
us where X1 ! P is not smooth is 
ontained in Æ.Exer
ise 8.6. Show that in this 
ase P1 ! P is a toroidal morphism, G a
tstoroidally on X , and X1 ! P1 is a toroidal morphism as well.The only point left is to make the a
tion of G on X1 toroidal - if it were, then Xwould be toroidal and we 
ould easily resolve its singularities.Looking lo
ally, the question boils down to the following situation:Let T0 � X0 be an aÆne torus embedding, X0 = Spe
 R. Let G � T0 be a�nite subgroup of T0, let p0 2 X0 be a �xed point of the a
tion of G, and let  u bea 
hara
ter of G. Consider the torus embedding of T = T0 � Spe
 k[u; u�1℄ intoX = X0�Spe
 k[u℄, and let G a
t on u via the 
hara
ter  u. Write p = (p0; 0) 2 Xand write D = (X0 T0)�Spe
 k[u℄. We wish to �nd a 
anoni
al blowup X1 ! X ,su
h that if U � X1 is the inverse image of T0, then it is a toroidal embedding,and the group G a
ts toroidally.8.2 The idealLet M � R[u℄ be the set of monomials. For ea
h t 2 M let �t be the asso
iated
hara
ter of T , and let let  t : G ! k� be the restri
tion of � to G. De�neMu = ftj t =  ug, the set of monomials on whi
h G a
ts as it a
ts on u. De�neIG = hMui, the ideal generated by Mu.Exer
ise 8.7 (
anoni
ity). � Show that if X 00; T 00; G0; p00 and  0u is a se
ondset of su
h data, and if we have an isomorphism of formal 
ompletions' : X̂p �! X̂ 0p0 ;whi
h indu
es isomorphisms G �= G0 and D̂p �= D̂0p0 , then ' pulls ba
k IG to theideal IG0 .Exer
ise 8.8 (gluing property). � If q0 is any point of X0 and if Gq � G isthe stabilizer of q = (q0; 0) in G, then the stalk of IG at q is the same as the stalkof IGq at q.Exer
ise 8.9. Show that IG is generated by u and a �nite number of monomialst1; : : : ; tm in Mu \ R.Exer
ise 8.10. Let X 0 = BIG(X) be the blowup. Let X 0u be the 
hart with
oordinates u; tj=u. Show that the a
tion of G on X 0u is toroidal.
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ise 8.11. Let X 0i be the 
hart on X 0 with 
oordinates ti; v = u=ti; sj =tj=ti. Show that G a
ts trivially on v, and that X 0i = Spe
 R0i[v℄ where R0i isgenerated over R by sj .Exer
ise 8.12. Let X1 be the normalization of X 0. Show that if U � X1 isthe inverse image of T0, then it is a toroidal embedding, and the group G a
tstoroidally.9 Interse
tion multipli
itiesInterse
tion theory has a long history, and 
ertainly we are not going to say mu
habout it here. One aspe
t is, that it is not so easy to have a good de�nition forinterse
tion multipli
ities.Remark, exer
ise: let C � P2k be a plane algebrai
 
urve, P 2 C a 
losed pointat whi
h C is regular, and D = Z(F ) � P2 a plane 
urve given by a homogeneouspolynomial F ; suppose F is not identi
al zero on a neighborhood of P in C (i.e.no 
omponent of D 
ontains the 
omponent of C 
ontaining P ). Show that thefollowing two de�nitions of the interse
tion multipli
ity i(C;D;P ) of C and D atP are equivalent:� the dimension of the k-ve
tor spa
eOC;P 
OP2;P OD;P ;� the value of the valuation v = vC;P de�ned by the dis
rete valuation ringOC;P 
omputed on the fun
tion on C given by F ,see [HAG℄, Exer
ise (5.4) on page 36, and Remark (7.8.1) on page 54.Consider two varieties V;W � Pn whi
h have an isolated point of interse
tionat P 2 V \W . One 
ould try to de�ne the interse
tion of V and W at P as thelength of OV;P 
OPn;P OW;P :Analogous situations of interse
tions of arbitrary s
hemes in some regular ambients
heme 
an be 
onsidered.Exer
ise 9.1. (See Gr�obner [23℄, 144.10/11, also see [66℄, [62℄, [10℄, see [HAG℄,I.7): a) Let C � P3 be the spa
e 
urve with parameterization(x1 : x2 : x3 : x4) = (t4 : t3�s : t�s3 : s4)(we work over some �eld K). Show that the prime ideal given by this 
urve equalsj := (T 21 T3�T 32 ; T1T4�T2T3 ; T1T 23 �T 22 T4 ; T2T 24 �T 33 ) � K[T1; T2; T3; T4℄:
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h and Frans Oortb) Consider C as a 
urve embedded in P4: 
hoose the hyper plane P3 �= Z(T0) =H , and we get C � H � P4. Let P := (x0 = 1 : 0 : 0 : 0 : 0) 2 P4. De�ne V � P4as the 
one with vertex P over the 
urve C � P4, i.e. V is de�ned by the idealJ := K[T0; T1; T2; T3; T4℄ � j; V = Z(J):Note that the dimension of V equals two, that the degree of V � P4 equals four.
) Let W be the 2-plane given byI := (T1; T4) � K[T0; T1; T2; T3; T4℄; W := Z(I):Note that P 2 W . Remark that (set-theoreti
ally):W \ V = fPg(use the geometri
 situation, or give an algebrai
 
omputation).We like to have a B�ezout type of theorem for the situation W \ V � P4, however:d) De�ne M := OW;P ; A := OP4;P ; N := OV;P ;and 
ompute dimK (M 
A N)(surprise: this is not equal to four).e) Compute dimK �TorAi (M;N)� ; 8i(either using, or reproving �A(M;N) = 4, for notation see below).Hen
e we see that just the length of the appropriate tensor produ
t does notde�ne ne
essarily the 
orre
t 
on
ept. Serre proposed in 1957/58 to de�ne theinterse
tion multipli
ity as the alternating sum of the lengths of the Tori (notethat Tor0 = 
), i.e. by�A(M;N) :=Xi�0 (�1)i lengthATorAi (M;N)(we follow notation of [66℄, also see [10℄, 6.1, see [62℄), here A is a regular lo
alring, and M and N are A-modules su
h that M 
A N has �nite length. In equal
hara
teristi
 this is the right geometri
 
on
ept (i.e. satis�es B�ezout's theorem,
oin
ides with previously de�ned interse
tion multipli
ities et
.).The following theorem was 
onje
tured by Serre, proved by Gabber (usingde Jong's alteration result), and written up by Berthelot (in [10℄, 6.1):Theorem 9.2. Let the 
hara
teristi
 of A be equal to zero. Suppose p 2 m2, hen
eits residue �eld A=m has 
hara
teristi
 p > 0. Then:�A(M;N) � 0:
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urves10 Introdu
tion to moduli of 
urvesIt is an important feature of algebrai
 geometry, that the set of all obje
ts (e.g.smooth proje
tive 
urves) of the same a �xed geometri
 nature (e.g. genus) oftenhas the stru
ture of an algebrai
 variety itself. Su
h a spa
e is a \moduli spa
e",whi
h gives a good algebrai
 meaning to the problem of \
lassi�
ation". It isfair to say that this \self referential" nature of algebrai
 geometry is one of themain reasons for the depth of the subje
t - it is impossible to overestimate itsimportan
e.The �rst instan
es of this phenomenon to be dis
overed were those of embed-ded variety: the proje
tive spa
e as a parameter spa
e for lines in a ve
tor spa
e;Grassmannians parametrizing ve
tor subspa
es of arbitrary dimension; the pro-je
tive spa
e (of dimension (d2+3d)=2) parametrizing all plane 
urves of degree d,and so on. The 
ase of abstra
t varieties, su
h as smooth 
urves, had to await forsome te
hni
al advan
es, although already Riemann knew that algebrai
 
urves ofgenus g \vary in 3g � 3 parameters"; see [61℄, page 124:\Die 3p�3 �ubrigen Verzweigungswerthe in jenen Systemen glei
hverzweig-ter �-werthiger Fun
tionen k�onnen daher beliebige Werthe annehmen;und es h�angt also eine Klasse von Systemen glei
hverzweigter (2p+1)-fa
h zusammenh�angender Fun
tionen und die zu ihr geh�orende Klassealgebrais
her Glei
hungen von 3p�3 stetig ver�anderli
hen Gr�ossen ab,wel
he die Moduln dieser Klasse genannt werden sollen."Histori
ally moduli spa
es of 
urves, or of 
urves with points on them, were
onstru
ted with more or less ad ho
 methods. Moduli spa
es for 3 or 4 points onrational 
urves have been known for ages, using the so 
alled \
ross ratio" (seeexer
ise 10.9 below). For genus 1, the modular fun
tion j was used (see exer
ise10.12). The 
ase of genus 2 was already quite diÆ
ult to a
hieve by algebrai
methods [30℄. For years, moduli spa
es for higher genus were only known to existusing Tei
hm�uller theory.One problem whi
h took years to solve was, that no good understanding of\what moduli spa
es really are" was available. Then Grothendie
k introdu
ed thenotion of \representable fun
tor", des
ribing the best possible meaning for modulispa
es. This had a great su

ess with the development of Hilbert s
hemes. Fora while one hoped that nature would be as ideal as expe
ted (see Grothendie
khopeful Conje
ture 8.1 in [24℄ 212-18, and its retra
tion in the Additif of [24℄ 221-28). But it was soon seen that in general moduli fun
tors are not representable, oras we say now, some moduli fun
tors do not give rise to \�ne moduli spa
es" dueto existen
e of automorphisms. Finally, Mumford pinned down the 
ompromise
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h and Frans Oortnotion of a \
oarse moduli s
heme", whi
h enables us to have a good insight invarious aspe
ts of moduli theory. This is what we shall try to des
ribe here. Itshould be said that sin
e then, other good approa
hes were developed, by wayof \enlarging the 
ategory of s
hemes" to in
lude some \moduli obje
ts", 
alledsta
ks. For details see [17℄, Se
tion 4. We will not pursue this dire
tion here.In this se
tion we gather some basi
 de�nitions on fun
tors of moduli for
urves. In the next se
tions we dis
uss existen
e theorems for moduli spa
es of
urves, and for 
omplete moduli spa
es with extra stru
ture 
arrying a \tautolog-i
al family". Se
tion 14 is devoted to some further questions, examples and fa
ts,not needed for the methods of alterations, but in order to give a more 
ompletepi
ture of this topi
.10.1 The fun
tor of points and representabilityTo any s
heme M one naturally asso
iates a 
ontravariant fun
torFM : fS
hemesg ! fSetsgvia X 7! Mor(X;M):This is known as the fun
tor of points of M , see [Red Book℄, II x6.We say that a 
ontravariant fun
tor F : fS
hemesg ! fSetsg is representableby a s
heme M , if it is isomorphi
 to FM , i.e. there is a fun
torial isomorphism� : F(�) ��! Mor(�;M):Remark. Stri
tly speaking, it is the pair (M; �), 
onsisting of the obje
t M andthe isomorphism �, whi
h represent F . But it has be
ome 
ustomary to say \Mrepresents F", suppressing �.Already in the early Bourbaki literature one �nds this notion in the disguise ofa \universal property". The question of representability of fun
tors 
an also beposed in 
ategories other than the 
ategory of s
hemes.Exer
ise 10.1. 1. Fix an integer N , and let V be a ve
tor spa
e of dimensionN + 1 over C . Consider the fun
tor FC that asso
iates to a s
heme T overC , the set fL � T � V g of all line sub-bundles of the trivial ve
tor bundleT � V . Show that FC is represented by PNC .2. Let F be the fun
tor that asso
iates to any s
heme T (over Z) the setfL � ON+1T g of all lo
ally free subsheaves of rank 1 of the trivial sheaf ON+1Thaving lo
ally free quotient. Show that F is represented by the proje
tives
heme PNZ.3. In general, show that the Grassmannian s
heme Grass(n; r) represents thefun
tor of lo
ally free subsheaves of rank r of the trivial free sheaf OnT ofrank n having lo
ally free quotients.
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ise 10.2. Fix integers N and d, and let G be the fun
tor that asso
iates toa s
heme T the set fX � PNT g of all 
at families of hypersurfa
es of degree d inproje
tive N -spa
e over T . Show that G is represented (over Z) by a proje
tivespa
e PM�1, where M = �N+dd � is the dimension of the spa
e of homogeneouspolynomials of degree d in N + 1 variables.Exer
ise 10.3. Show that the Hilbert s
heme HPN;P (T ) represents the \Hilbert"fun
tor, that asso
iates to a s
heme T , the set of all subs
hemes X � PNT , whi
hare 
at over T and su
h that the geometri
 �bers have Hilbert polynomial P (T ).10.2 Moduli fun
tors and �ne moduli s
hemesSuppose a 
ontravariant fun
tor F has the nature of a moduli fun
tor, namely,it assigns to a s
heme S the set fC ! Sg= �= of isomorphism 
lasses of 
ertainfamilies of obje
ts over S. As a guiding example, let us �x an integer g, withg 2 Z�0, and de�ne the moduli fun
tor for smooth 
urves:Mg(S) = fisom. 
lasses of families of 
urves of genus g over Sg:A morphism T ! S de�nes (by pulling ba
k families) a map of sets in the oppositedire
tion:Mg(T ) Mg(S), and we have obtained a 
ontravariant fun
tor.Assume the fun
tor F were represented by a s
heme M . Then we would 
allM a �ne moduli s
heme for this fun
tor F , and the obje
tC !M 
orresponding to the identity id 2= Mor(M;M)would be 
alled a universal family.Remark. Note that in the exer
ise above on the Hilbert s
heme, we 
an view it asa �ne moduli s
heme, if we agree that \families up to isomorphism" means \up toisomorphisms as subfamilies of the �xed PNT , namely up to equality.It is a fa
t of life that for every g � 0 the fun
tor Mg is not representable. Wewill explain later why this is true in general, but for the moment let us 
onsiderthe easiest 
ase:Exer
ise 10.4. Let us say that C is a \
urve of genus 0", if it is an algebrai

urve de�ned over a �eld K, and over some extension of K � L it is isomorphi
with P1L. In other words: C is geometri
ally irredu
ible, redu
ed, it is 
ompleteand of genus equal to zero.1. Let K be a �eld. Show there exist an extension K � K 0, and two 
urves ofgenus 0 over K 0 whi
h are not isomorphi
.2. For every algebrai
ally 
losed �eld k, the setM0(k) 
onsists of one element,M0(k) = fP1kg.3. Show that the moduli fun
torM0 is not representable.
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h and Frans Oort10.3 Histori
al interludeThe �rst 
ase of a highly nontrivial algebrai
 
onstru
tion of a moduli spa
e of
urves in all 
hara
tersiti
s, appeared in Igusa's work [30℄. This is a 
onstru
tion ofa \moduli s
heme for non-singular 
urves of genus two in all 
hara
teristi
s", whi
hwould now be denoted byM2 ! Spe
(Z). This happened almost 
on
urrently withGrothendie
k's study of representability of fun
tors. But noti
e that, when Samueldis
ussed these beautiful results by Igusa in S�eminaire Bourbaki (see [63℄), his very�rst 
omment was:\Signalons ausitôt que le travail d' Igusa ne r�esoud pas pour les 
ourbesde genre 2, le \probl�eme des modules" tel qu'il a �et�e pos�e par Grothen-die
k �a diverses reprises dans 
e S�eminaire."It really seemed that Nature was working against algebrai
 geometers, refusing toprovide us with these �ne moduli s
hemes...The truth is, Nature does provide us with a repla
ement. Indeed, not mu
hlater, Mumford (see [GIT℄, 5.2) dis
overed how to follow nature's di
tations and
ome to a good working de�nition, requiring that the s
heme gives geometri
allywhat you want, and does it in the best possible way.10.4 Coarse moduli s
hemesHere is the de�nition:De�nition. A s
heme M and a morphism of fun
tors' : F ! MorS(�;M)is 
alled a 
oarse moduli s
heme for F if:1. for every algebrai
ally 
losed �eld k the map'(k) : F (Spe
(k))! MorS(Spe
(k);M) =M(k)is bije
tive, and2. for any s
heme N and any morphism  : F (�) ! MorS(�; N) there is aunique � :M ! N fa
toring  :By de�nition, a 
oarse moduli s
heme does not 
arry a universal family, unlessit is a �ne moduli s
heme. A repla
ement, 
alled a tautologi
al family, is de�nedas follows:De�nition. Let F be a moduli fun
tor. Suppose T is a s
heme, and let f : T !Mbe a morphism. A family C ! T giving an element of F(T ), is 
alled a tautologi
alfamily if it de�nes f , namely  (C ! T ) = f . In parti
ular this implies that forevery geometri
 point t 2 T the �ber Ct is an obje
t whose isomorphism 
lassde�nes the image under f , i.e.: [Ct℄ = f(t).
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ases (and we shall give examples), where a moduli fun
toris not representable, where there is no (unique) universal family, but where atautologi
al family does exist. In su
h 
ases the use of the word \tautologi
al",and the distin
tion between \universal" and \tautologi
al" is ne
essary, and it pinsdown the di�eren
es.The terminology \tautologi
al" will also be used in 
ases su
h as pointed
urves, 
urves with a level stru
ture, and so on.Here is the �rst triumphant su

ess of the notion of 
oarse moduli s
heme:Theorem 10.5 (Mumford). Suppose g � 2. The fun
tor Mg of smooth 
urvesof genus g admits a quasi-proje
tive 
oarse moduli s
heme.See [GIT℄, Th. 5.11 and Se
tion 7.4, or [17℄, Coroll. 7.14. We will denote the 
oarsemoduli s
heme ofMg by Mg ! Spe
Z.We note some properties of Mg:� As we mentioned before, for every g � 2 the fun
torMg is not representable:there does not exist a universal family of 
urves over Mg whi
h 
an give anisomorphism betweenMg and Mg.� For every g � 2 and for any �eld K, the variety (Mg)K =Mg�Spe
ZSpe
Kis not 
omplete. A fortiori, the morphism Mg ! Spe
(Z) is not proper.� At least for the sake of de Jong's theorem, we need a moduli spa
e of 
urveswith points on them.The �rst problem is solved by introdu
ing a �nite 
overing M !Mg admitting atautologi
al family, namely a family realizing the morphismM !Mg as its modulimorphism. The ni
est way of doing this is by introdu
ing a new moduli fun
tor,of smooth 
urves \enri
hed" with a �nite amount of \extra stru
ture", whi
h doesadmit a �ne moduli s
heme. See Se
tion 13.In order to \
ompa
tify" these spa
es, the notion of stable 
urves was in-vented. Histori
ally, the in
uential paper [17℄ by Deligne and Mumford seems tobe one of the �rst printed versions in whi
h the 
on
ept of stability, espe
ially inthe 
ase of algebrai
 
urves is explained and used. In [46℄ we see that already in1964 Mumford was trying to �nd the appropriate notions assuring good 
ompa
t-i�
ations. In [GIT℄, page 228, Mumford attributes the notion of a stable 
urve tounpublished joint work with Alan Mayer.As it turns out, the third problem was solved almost 
on
urrently with these
ond.First, the moduli spa
e of smooth pointed 
urves:Theorem 10.6. Let g 2 Z�0, and n 2 Z�0 su
h that 2g�2+n > 0. Consider thefun
torMg;n of isomorphism 
lasses of families of stable smooth n-pointed 
urvesof genus g. This fun
tor admits a quasi-proje
tive 
oarse moduli s
heme.We will denote this moduli spa
e by Mg;n ! Spe
(Z).
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h and Frans OortRemark. 1. Note that this in
ludes the previous theorem.2. For g = 0 and n = 3 this spa
e is proper over Spe
(Z). However in all other
ases in the theorem Mg;n is not proper. In many 
ases it will not representthe fun
tor (see Se
tion 14 for a further dis
ussion), in other words, in generalthis is not a �ne moduli s
heme.3. It is important to note that these spa
es exist over Spe
(Z), whi
h is usefulfor arithmeti
al appli
ations.4. The litterature poses diÆ
ulties in 
hoosing notations. In [GIT℄ the subs
riptn denotes a level stru
ture, but in [39℄ it indi
ates the number of markedpoints. We have 
hosen to indi
ate the markings as lower index, using n, andthe level stru
ture as upper index, using (m).Finally the moduli spa
e of stable pointed 
urves:Theorem 10.7 (Knudsen and Mumford). Let g 2 Z�0, and n 2 Z�0 su
hthat 2g� 2+n > 0. Consider the fun
torMg;n of isomorphism 
lasses of familiesof stable n-pointed 
urves of genus g. This fun
tor admits a proje
tive 
oarsemoduli s
heme.See [39℄, part II, Theorem 2.7 and part III, Theorem 6.1, or [22℄, Theorem 2.0.2.We will denote this moduli s
heme by Mg;n ! Spe
(Z).The following exer
ise should give you an idea why the moduli spa
e M0;n is
omplete. This is dis
ussed in further detail in the next se
tion.Exer
ise 10.8. Let K be a �eld, and let R � K be a dis
rete valuation ringhaving K as �eld of fra
tions. Consider the proje
tive line P1 over K and supposen � 3, let P1; � � � ; Pn 2 P1(K) are distin
t points. Write P = fP1; � � � ; Png.Constru
t a stable n-pointed 
urve (C;P)! Spe
(R) extending (P1; P ). (You willneed to blow up 
losed points over the spe
ial �ber where the Zariski 
losures ofPi meet. Then you may need to blow down some 
omponents! See [39℄.)Exer
ise 10.9. 1. Let K be a �eld. Given three distin
t �nite points P1; P2and P3 on P1k 
onsider the 
ross ratio�(P1; P2; P3; z) = (z � P1)(P2 � P3)(z � P3)(P2 � P1) :Show that, as a fun
tion of z, the 
ross ratio is an automorphism of P1 
ar-rying P1; P2; P3 to 0; 1; and1, respe
tively. Show that this automorphism isthe unique one with this property. Che
k that this de�nition 
an be extendedto the 
ase where one of the points is 1.2. Using the 
ross ratio � de�ned above, des
ribe M0;3.3. Show thatM0;3 is a �ne moduli s
heme by exhibiting a universal family overit!
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ross ratio to give an expli
it des
ription of M0;4. Show that it is a�ne moduli s
heme by expli
itly 
onstru
ting a universal family.6. Use the above (possibly together with the previous exer
ise) to des
ribeM0;4 �M0;4.7. Show that M0;4 is a �ne moduli s
heme, and give expli
it des
riptions of theuniversal family.8. Show that the universal family over M0;4 is 
anoni
ally isomorphi
 to M0;5.Exer
ise 10.10. Give an alternative des
ription of M0;4 as follows: 
onsider theproje
tive spa
e P of dimension 5 parametrizing 
oni
s in P2. Choose four pointsin general position in P2 (for instan
e (1 : 0 : 0); (0 : 1 : 0); (0 : 0 : 1); (1 : 1 : 1)will do). Let M � P be the subs
heme parametrizing 
oni
s passing through thesefour points. Show that M =M0;4 and the universal family of 
oni
s is a universalfamily for M0;4.Exer
ise 10.11.1. Show that M0;n exists and is a �ne moduli s
heme (you may exhibit it as anopen subs
heme of (P1)n�3).2. Show that, assuming M0;n is a �ne moduli s
heme, then there is a 
anoni
almorphism M0;n+1 ! M0;n whi
h exhibits M0;n+1 as the universal familyover M0;n.3. � Show that for every n � 3, the s
hemeM0;n is a �ne moduli s
heme. (Youmay want to use Knudsen's stabilization te
hnique.)Remark. For every n � 3, let (C;P ) be a stable n-pointed rational 
urve. ThenAut(C;P ) = fidg. You do not need to know this in the previous exer
ise, but it\explains" why the result should be true.Exer
ise 10.12. Let k be a �eld of 
hara
teristi
 6= 2 and let (E;O) be an ellipti

urve, namely a proje
tive, smooth and 
onne
ted 
urve E of genus 1 with a k-rational point O on it.1. Considering the linear series of OE(2O), show that E 
an be exhibited as abran
h 
overing of P1 of degree 2.2. Show that the bran
h divisor B on P1 is redu
ed and has degree 4.3. If k is algebrai
ally 
losed, show that E is determined up to isomorphism bythe divisor B.4. Con
lude that M1;1 is isomorphi
 to the quotient of M0;4 by the a
tion ofthe symmetri
 group S4, permuting the four points.
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har k 6= 3, so that every ellipti
 
urve 
an be writtenin aÆne 
oordinates as y2 = x3 + ax+ b. Show thatj(E) = 1728 4a34a3 + 27b2is an invariant 
hara
terizing the �k-isomorphism 
lass ofE, exhibitingM1;1 =A 1 .11 Stable redu
tion and 
ompleteness of modulispa
es11.1 General theoryIn order to understand the reason whyMg;n is proje
tive, let us re
all the following:Theorem 11.1 (The valuative 
riterion for properness). A morphismf : X ! Yof �nite type is proper, if and only if the following holds:Let R be a dis
rete valuation ring, and let S := Spe
(R) be the 
orresponding\germ of a non-singular 
urve", with generi
 point �. Let ' : S ! Y and let � : � ! X be a lifting: �  �! X# #S '! Y:Then there is an extension  : S ! X, lifting ':�  �! X#  % #S '! Y:See [HAG℄, II, Theorem (4.7) for a pre
ise formulation.Let us translate this to our moduli s
heme. Keeping in mind the relationshipbetween the fun
torMg;n and the spa
e Mg;n, one might hope that every familyof stable pointed 
urves over � as in the theorem above might extend to R. Thisis not the 
ase, as we shall see later. However, a weaker result, sometimes 
alled\the weak valuative 
riterion for properness", does hold for the fun
torMg;n, andit does imply the valuative 
riterion for Mg;n. The �rst 
ase to 
onsider is whenthe generi
 �ber is smooth and n = 0. This is the 
ontent of the following result,the Stable Redu
tion Theorem for a one parameter family of 
urves:
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(R) be the spe
trum of a dis
rete valuation ringR, � 2 S the generi
 point, 
orresponding with the �eld of fra
tions K of R. LetC� ! � be a smooth stable 
urve of genus g > 1. There exists a �nite extension ofdis
rete valuation rings R ,! R1, with S1 = Spe
R1 and generi
 point �1, and anextension C�1 ,! C1# #f�1g ,! S1;su
h that C1 ! S1 is a family of stable 
urves.Proofs of this theorem, using di�erent methods, may be found in various referen
es.One proof whi
h works in pure 
hara
teristi
 0 is relatively simple. As the readerwill noti
e, none of the general proofs is easy or elementary.Most proofs of this theorem use resolution of singularities of 2-dimensionals
hemes (Abhyankar).Exer
ise 11.3. Suppose R is of pure 
hara
teristi
 0. Let s 2 Spe
R be the 
losedpoint.1. Show that there exists an extension � : C ! S su
h that � is proper and
at, C is nonsingular, and Cs � C is a normal 
rossings divisor.2. Let x 2 Cs be a singular point. After passing to the algebrai
 
losure of the�eld of 
onstant, let �x 2 Ĉ�k be the 
ompletion. Show that one 
an �nd lo
alparameters u; v at �x and t at �s 2 Ŝ�k, and positive integers kx; lx, su
h thatt = ukxvlx .3. Let S1 ! S be a �nite 
over obtained by extra
ting the n-th root of auniformizer, where n is divisible by all the non-zero kx; lx given above. LetC 01 be the normalization of C �S S1. Show that the spe
ial �ber is redu
edand nodal.4. Show that the minimal model C1 of C 01 ! S1 is stable.We list some approa
hes for positive and mixed 
hara
teristi
:Artin-Winters. This proof 
an be found in [7℄. A pre
ise and ni
e des
riptionand analysis of the proof is given by Raynaud, see [59℄.In this proof one atta
hes an numeri
al invariant to a given genus, and oneproves that by 
hoosing a prime number q larger than this invariant, and notequal to the residue 
hara
teristi
, and by extending the �eld of de�nition of a
urve of that genus su
h that all q-torsion point on the ja
obian are rationalover the extension, then one a
quires stable redu
tion. The proof 
onsists of a
areful numeri
al analysis of the possible interse
tion matri
es of 
omponents ofdegenerating 
urves. The proof does not rely on a lot of theory, but is quite subtle.Grothendie
k, Deligne-Mumford. This proof 
an be found in [17℄, Theorem(2.4) and Corollary (2.7).
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h and Frans OortIn this proof one shows that a 
urve has stable redu
tion if and only ifits ja
obian has stable redu
tion. Then one shows following Grothendie
k thateigenvalues of algebrai
 `-adi
 monodromy are roots of unity (see [67℄, Appendix).Moreover, again following Grothendie
k one shows that these eigenvalues are allequal to one i� the abelian variety in question has stable redu
tion. The advantageof this proof is that it has a more 
on
eptual basis. The big disadvantage is thatit relies on the theory of N�eron models, whose foundations are quite diÆ
ult.Hilbert s
hemes and GIT - Gieseker. See [22℄, Chapter 2, Proposition(0.0.2).He says on the �rst page of the introdu
tion: \...we use results of Chapter 1 togive an indire
t proof that the n-
anoni
al embedding of a stable 
urve is stableif n � 10, and to 
onstru
t the proje
tive moduli spa
e for stable 
urves. As
orollaries, we obtain proofs of the stable redu
tion theorem for 
urves, and ofthe irredu
ibility for smooth 
urves." The proof uses Geometri
 Invariant Theoryto prove dire
tly that Mg exists and is proje
tive, and then one 
an easily derivethe theorem. This proof does not use resolution of singularities for surfa
es in anyexpli
it manner.Remark. This theorem is an instan
e of the semistable redu
tion problem. In [10℄,1.3, the de�nition of semistable redu
tion, over a one-dimensional base, and ar-bitrary �ber dimension, is re
alled. As we have seen above, it is true that if therelative dimension is one, stable redu
tion, hen
e semistable redu
tion, exists overa one-dimensional base. For higher relative dimension an analogous result holds inpure 
hara
teristi
 zero - see [38℄. The general 
ase is an important open problem,whi
h seems diÆ
ult.On
e Theorem 11.2 is known, it is easy to generalize it. The pointed 
ase 
an beeasily proven using Knudsen's stabilization te
hnique:Exer
ise 11.4. Let R be a dis
rete valuation ring, with �eld of fra
tions K,suppose (C; p1; : : : ; pn) is a smooth, stable n-pointed 
urve of genus g > 1 de�nedover K. There exists a �nite extension R � R1 of valuation rings, with K1 the�eld of fra
tions of R1, su
h that C1 = C
K1 extends to a stable n-pointed 
urveC1 ! Spe
(R1).The 
ase of genus zero follows from Exer
ise 10.9. We will dis
uss the 
ase of genus1 in Se
tion 11.2 below.We 
an also 
onsider the 
ase when the generi
 �ber is not ne
essarily smooth:Exer
ise 11.5. Let R be a dis
rete valuation ring, with �eld of fra
tions K,suppose C is a stable 
urve de�ned over K. There exists a �nite extension R � R1of valuation rings, with K1 the �eld of fra
tions of R1, su
h that C1 = C 
 K1extends to a stable 
urve C1 ! Spe
(R1). [Below we formulate a generalization tostable pointed 
urves of this.℄We give a full generalization of (11.2):Exer
ise 11.6. Let S be the spe
trum of a dis
rete valuation ring, � 2 S thegeneri
 point. Let (C;P )! f�g be a stable n-pointed 
urve of genus g, i.e., C is a



Alterations and resolution of singularities 59
omplete, nodal 
urve de�ned over a �eld K, and P := fP1; � � � ; Png are distin
t
losed points Pj 2 C(K), with su
h that (C;P ) is stable n-pointed over K.Then there exists a �nite extension of dis
rete valuation rings S ,! S1, withgeneri
 point �1, and an extension(C�1 ; P ) ,! (C;P)# #Spe
(K1) ,! S1su
h that (C;P)! S1 is a family of stable n-pointed 
urves.This is the \weak valuative 
riterion for properness" of the fun
torMg;n.Remark. Here is a hint about a te
hni
al detail whi
h 
an be used in solving theprevious exer
ises, \The normalization of a stable n-pointed 
urve": Suppose givena stable n-pointed 
urve (C;P ) over a �eldK, with P = fP1; � � � ; Png. There existsa �nite extensionK � L, a �nite disjoint union (D;Q) of stable pointed 
urves, anda morphism (\the normalization") ' : (D;Q)! (C;P )L = (C;P )
K L su
h that:D =`D(t), let the singular points of CL be: Rj 2 C(L), with 1 � j � d, moreoverQ = fQ1; � � � ; Qng [ fSj ; Tj j 1 � j � dg, for every irredu
ible 
omponent of CLthere is a unique 
omponent of D mapping birationally onto it, the morphism ' isan isomorphism outside Sing(CL), the markings Qi 
orresponds with the markingsPi of the pointed 
urve (C;P ), and the markings fSj ; Tjg are pre
isely the pointsmapping to Rj .You need to show this 
hoi
e 
an be made, and show it is unique in 
aseK = k is an algebrai
ally 
losed �eld.Corollary. Let g 2 Z�0, and n 2 Z�0 su
h that 2g�2+n > 0. The 
oarse modulis
heme � :Mg;n ! Spe
(Z) is proper over Spe
(Z).Proof. We use the valuative 
riterion for properness setting X = Mg;n and Y =Spe
(Z): Suppose R is a dis
rete valuation ring, with �eld of fra
tions K, andsuppose given Spe
K  K! X# #Spe
R '! Y:By the de�nition of a 
oarse moduli s
heme, there is a �nite extensionK � K 0su
h that the point  K(Spe
(K)) 2 X 
orresponds to a stable pointed 
urve (C;P )over K 0. By the stable redu
tion theorem there is a �nite extension K 0 � K1su
h that (C;P ) �Spe
K0 Spe
K1 extends to a stable pointed 
urve; this de�nesa morphism � : Spe
(R1) ! X , \extending" ' and  K . It fa
tors over Spe
(R),be
ause R = K \ R1. This shows that the 
ondition for the valuative 
riterionholds in our situation, hen
e that � :Mg;n ! Spe
(Z) is proper. 	
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tion for ellipti
 
urves.In these exer
ises we illustrate the 
on
ept of stable redu
tion by studying the
ase of ellipti
 
urves. The 
on
epts, ideas and examples below 
an be found inSilverman's book [69℄. In this 
ase examples are easy to give be
ause in many 
aseswe 
an 
hoose plane models (Weierstrass equations). These exer
ises 
an be usedat motivation for more abstra
t methods whi
h apply for higher genus. You 
ando the exer
ises by expli
it methods and 
al
ulations.For details on ellipti
 
urves, Weierstrass equations, the j-fun
tion, and re-lated issues, see [69℄, Chapters III and VII.A non-singular one-pointed 
urve of genus one is 
alled an ellipti
 
urve. Inother words: an ellipti
 
urve is an algebrai
 
urve E de�ned over a �eld, absolutelyirredu
ible, non-singular, of genus one, with a marked point P 2 E(K). Morphismsare supposed to respe
t the marked point.The following exer
ise is an easy exer
ise using the theorem of Riemann-Ro
h.Exer
ise 11.7. Show the following are equivalent:1. (E;P ) is an ellipti
 
urve over K.2. E � P2K is a plane, nonsingular 
ubi
 
urve, with a marked point P 2 E(K).3. (E;P ) is an abelian variety of dimension one over K.De�nition. Let R = Rv be a dis
rete valuation ring, with K = fra
t(R) its �eldof fra
tions, and k = Rv=mv the residue 
lass �eld.1. An ellipti
 
urve E de�ned over K is said to have good redu
tion (at thegiven valuation) if there exists a smooth proper morphism E ! Spe
(R)with generi
 �ber isomorphi
 to E ! Spe
(K). If E does not have goodredu
tion, we say that it has bad redu
tion.2. We say E has stable redu
tion at v if either it has good redu
tion, or thereexists a nodal E ! Spe
(R) with generi
 �ber isomorphi
 to E ! Spe
(K).De�nition. We say that E has potentially good redu
tion, if there exists a �niteextension K � L, where B is the integral 
losure of R in L, and w a valuationover v, su
h that E 
 L has good redu
tion at w.We de�ne potentially stable redu
tion analogously.Here are some exer
ises to warm up:Exer
ise 11.8. Suppose R = k[T ℄, with 
har(k) 6= 2; 6= 3, and let E over K =k(T ) be given by the equation Y 2 = X3+T 6: Show that E has good redu
tion atthe valuation given by v(T ) = 1:Exer
ise 11.9. Suppose R = k[S℄, with 
har(k) 6= 2; 6= 3, and let E over K =k(S) be given by the equation Y 2 = X3 + S: Show that E has bad redu
tion atthe valuation v given by v(S) = 1:
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ise 11.10. Suppose R = k[S℄, with 
har(k) 6= 2; 6= 3, and let E over K =k(S) be given by the equation Y 2 = X3 + S: Show that E has potentially goodredu
tion at the valuation v given by v(S) = 1:Suppose that E is given over K by a Weierstrass equation with 
oeÆ
ients inR (see [69℄, III). Su
h an equation de�nes an aÆne plane 
urve E � A 2B overSpe
(R) = B, and it is easy to see that the 
urve E0 := E 
R k is irredu
ible andhas at most one singular point. The 
urve E is obtained by adding the point atin�nity to E0. Suppose the Weierstrass equation is minimal at v. If this singularpoint is a 
usp, we say that this redu
tion is of additive type, if it is a node we saythat this redu
tion is of multipli
ative type, or we say in this 
ase the redu
tion isstable.Exer
ise 11.11. Show that the notion of \good redu
tion" as de�ned earlier isequivalent by saying there is Weierstrass equation de�ning good redu
tion. Showthat a redu
tion of multipli
ative type is a stable redu
tion.A redu
tion given by a minimal Weierstrass equation of additive type is bad re-du
tion whi
h is non-stable; non-stable bad redu
tion is sometimes 
alled 
uspidalredu
tion.Exer
ise 11.12. Suppose R = k[T ℄, with 
hark 6= 2, and let E over K = k(T )be given by the equation Y 2 = X � (X � 1) � (X �T ): Show that any model of this
urve given by a Weierstrass equation has stable redu
tion at the valuation givenby v(T ) = 1. Show that this 
urve does not have potentially good redu
tion.Exer
ise 11.13. Let R be a dis
rete valuation ring, with residue 
hara
teristi
6= 2, and fra
tion �eld K. Let E be an ellipti
 
urve over K.1. Show that after a suitable extension of R, the 
urve E admits a minimalWeierstrass equation of the formy2 = x(x � 1)(x� �)for some � 2 R.2. Con
lude that this 
urve has potentially stable redu
tion.Exer
ise 11.14. � Let Rv be a DVR, with residue 
hara
teristi
 6= 3: SupposeE is an ellipti
 
urve over K given by a Weierstrass equation E = V (F ) � P2Ksu
h that all 
ex points of E have 
oordinates in K.1. Show that this 
urve admits a plane equation (not a Weierstrass equation!)over K of the form �(X3 + Y 3 + Z3) = 3�XY Z;for some (� : �) 2 P1Rv .
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K L has stable redu
tion at v.3. Show that E has potentially stable redu
tion.Con
lusion. Every ellipti
 
urve over a �eld K with a dis
rete valuation haspotentially stable redu
tion at that valuation.This is a spe
ial 
ase of 11.6, the stable redu
tion theorem for stable 
urvesof arbitrary genus.Exer
ise 11.15. �1. Let Rv be a DVR, and E an ellipti
 
urve of the fra
tion �eld K. Show thatE has potentially good redu
tion at Rv if and only if j(E) 2 Rv .2. Can you formulate (and prove?) the same result for 
urves of arbitrary genus?3. If E is an ellipti
 
urve over a �eld K, and EndK(E) 6= Z, then E haspotentially good redu
tion at every pla
e of K.11.3 Remarks about monodromyLet C be a non-singular 
urve over a �eld K, and let v be a dis
rete valuation ofK. Consider properties of good redu
tion, bad redu
tion at v, and so on. We havequoted that C has stable redu
tion at v i� J := Ja
(C) has stable redu
tion, see[17℄, Proposition (2.3).However note that it may happen that J has good redu
tion, and C has badredu
tion; this is the 
ase if the spe
ial �ber C0 of the minimal model of C at vhas a generalized ja
obian J0 = Ja
(C0) whi
h is an abelian variety. Su
h a 
urveC0 is 
alled a 
urve of \
ompa
t type", or a \ni
e 
urve" (and sometimes 
alled a\good 
urve", but we do not like that terminology, be
ause a 
urve redu
ing to a\good 
urve" may not have good redu
tion...). In this 
ase the spe
ial �ber C0 is atree of non-singular 
urves, i.e. every irredu
ible 
omponent is non-singular, and inthe dual graph of C0 there are no 
y
les. The easiest example is: a join of two non-singular 
urves, ea
h of genus at least one, meeting transversally at one singularpoint. For example a 
urve of genus two degenerating to a transversal 
rossing oftwo 
urves of genus one is the easiest example. Here is another example: take P1with three marked points, and atta
h three ellipti
 tails via normal 
rossings atthe markings, arriving at a ni
e 
urve of genus threeMonodromy (a
tion of the lo
al fundamental group of the base on 
ohomol-ogy) de
ides about the redu
tion of an abelian variety being bad or good, see [67℄,Theorem 1 on page 493. In the analyti
 
ontext one 
an take the lo
al fundamen-tal group of a pun
tured dis
 a
ting on 
ohomology; in all 
ases one 
onsiders theinertia-Galois group of v a
ting on `-adi
 
ohomology, where ` is a prime numbernot equal to the residue 
hara
teristi
 of v.Note that algebrai
 monodromy has eigenvalues whi
h are roots of unity.This was proved by Landman, Steenbrink, Brieskorn in various settings, and we
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k in the appendix of [67℄. For a sket
h of that proof,see [49℄, for further referen
es, see [52℄.Algebrai
 monodromy is trivial i� X = J has good redu
tion, i� C has 
om-pa
t type redu
tion (whi
h may be either good redu
tion or bad but \ni
e" asexplained above).The algebrai
 monodromy is unipotent (all eigenvalues are equal to one) ifand only if X has stable redu
tion, if and only if C has stable redu
tion.But, how 
an we distinguish for 
urves the di�eren
e between good redu
tionand bad 
ompa
t type redu
tion? As we have seen, this is not possible via algebrai
monodromy on 
ohomology. But, in a beautiful paper, [8℄ we �nd a method whi
hfor 
urves unravels these subtle di�eren
es for 
urves: the lo
al fundamental groupof the base a
ts via outer automorphisms on the fundamental group of the generi
�ber (again, here one 
an work in the analyti
-topologi
al 
ontext, or in the `-adi
algebrai
 
ontext). This a
tion is trivial i� C has good redu
tion.12 Constru
tion of moduli spa
esEarly 
onstru
tions of the moduli spa
es of smooth 
urves Mg in
luded a 
om-plex - analyti
 
onstru
tions via Tei
hm�uller theory and via the 
onstru
tion ofmoduli of abelian variety using lo
ally symmetri
 spa
es. These 
onstru
tions arenot algebrai
 in nature and therefore 
annot be generalized to positive or mixed
hara
teristi
s.A �rst algebrai
 approa
h, whi
h is still 
ommonly used today, was given byMumford using his Geometri
 Invariant Theory [GIT℄. We will sket
h one version ofthis approa
h, due to Gieseker, whi
h automati
ally gives also the moduli spa
es ofstable 
urves Mg. There is another approa
h, due to Artin and Koll�ar [40℄, whi
h
ir
umvents the use of Geometri
 Invariant Theory. Nowadays both approa
heswork over Z.How does one start? It is evident that if we want to parametrize all stable
urves of a 
ertain genus, we had better have some family of 
urves in whi
h allthese 
urves appear. We know of two general approa
hes for that. One methoduses parameter spa
es for 
urves embedded in proje
tive spa
e, su
h as Hilberts
hemes (or Chow varieties). We will follow this approa
h. The other approa
h,due to Artin [6℄, uses versal deformation spa
es. It works in greater generality butinvolves a number of te
hni
ality whi
h we would rather avoid here.It is easy to see that for any stable 
urve C of genus g > 1, and any � � 3,the �-
anoni
al series H0(C; !�C) gives an embedding of C as a 
urve of degreed := �(2g � 2) in a proje
tive spa
e of dimension N := �(2g � 2) � g. Thus theHilbert s
heme HPN;P (T ) (over Z!) parametrizing subs
hemes of PN with Hilbertpolynomial P (T ) := dT +1� g 
arries a universal family CPN;P (T ) ! HPN;P (T ) inwhi
h ea
h stable 
urve of genus g appears at least on
e.There are two problems with this family:



64 Dan Abramovi
h and Frans Oort1. Ea
h 
urve appears more than on
e in the family. Indeed, the embedding ofthe 
urve C in PN involves two 
hoi
es: a 
hoi
e of a line bundle of degree d,and a 
hoi
e of a basis for the linear series. And of 
ourse the 
urves 
ouldalso be embedded in a proje
tive subspa
e using a subseries.2. There are many 
urves in PN with Hilbert polynomial P (T ) whi
h are farfrom stable.Sin
e a nodal 
urve 
an only deform into nodal 
urves, it is easy to see that thereis an open subset Hst � HPN;P (T ) whi
h parametrizes stable 
urves, embedded bya 
omplete linear system in PN . Denote the restri
tion of the universal family toHst by � : Cst ! Hst. Considering the lo
us in Hst where R1��(O(1)
 !�Cst!Hst)jumps in dimension, we immediately see that there is a 
losed subs
heme Hg �Hst parametrizing stable 
urves embedded by a 
omplete �-
anoni
al series. Therestri
tion of the universal family will be denoted Cg ! Hg .There is a natural a
tion of the proje
tive linear group PGL(N + 1) on Hgvia 
hanging 
oordinates on PN . It is easy to see that the \ambiguity" for 
hoosingthe embedding of a 
urve C in the latter universal family is fully a

ounted forby the a
tion of this group. In other words, stable 
urves 
orrespond in a one-to one manner with PGL(N + 1) orbits in Hg. Thus, at least set theoreti
ally,Mg = Hg=PGL(N + 1).12.1 Geometri
 Invariant Theory and Gieseker's approa
hWe arrived at the following questions:1. Does the quotient Hg=PGL(N + 1) exist as a s
heme?2. Can we show that it is proje
tive?3. Does it satisfy the requirements of a 
oarse moduli s
heme?Geometri
 Invariant Theory is a method whi
h allows one to approa
h the�rst two questions simultaneously. The third question then be
omes an easy gluingexer
ise.The general situation is as follows: Let X � Pn be a quasi-proje
tive s
hemeand suppose G is an algebrai
 group a
ting on Pn and stabilizing X . One wantsto know whether or not a quotient X=G exists as a s
heme and whether or not itis proje
tive.A natural approa
h is to look for a spa
e of invariant se
tions of some linebundle. Thus assume that the a
tion of G on Pn lifts to OPn(l). Then it also lifts toany power OPn(l �m), and we 
an look at the ring of invariants R := �(OPn(l �m)G.We have a natural rational map q : Pn 9 9 KProjR. We would like to know whetheror not this map is well de�ned along X , and what the image is like.First, an easy observation. For any point x 2 X , the map q is well de�ned atx if and only if there exists a non
onstant invariant f 2 R su
h that f(x) 6= 0.
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he
k whether q is a quotient map in a neighborhood of x. To goany further, we need to assume that the group G is redu
tive. Assuming that G isredu
tive, then the question whether map q is a quotient map at a neighborhood ofx 
an be translated to a question about the 
losure Gx of the orbit of x: one needsto 
he
k that for any point y 2 Gx Gx there is an invariant f 2 R whi
h vanishesat y but not at x. A point x is 
alled GIT-stable if it satis�es this 
ondition.Mumford's numeri
al 
riterion for stability (see [GIT℄) gives a way to 
he
kGIT-stability in some situations.Let us 
onsider our situation. The s
heme Hg is quasi proje
tive - from its
onstru
tion one sees that it naturally sits inside a Grassmannian, whi
h has aPl�u
ker embedding in some Pn. It is easy to see that the a
tion of PGL(N +1) extends to Pn, and lifts to some line bundle OPn(k). Applying this 
riterionsystemati
ally, Gieseker veri�ed in [22℄ that1. If a point x 2 HPN;P (T ) 
orresponds to a s
heme whi
h is not a stable 
urve,or to a 
urve whi
h is not embedded by a 
omplete linear series, then everynon
onstant invariant vanishes at x.2. If a point x 2 HPN;P (T ) 
orresponds to a stable 
urve embedded by the
omplete �-
anoni
al linear series, then x is GIT-stable.Using the two statements, and the fa
t that G is redu
tive, it is not diÆ
ultto realize that1. the map Hg ! ProjR is a quotient map, and2. the image of Hg is proje
tive.This proves the existen
e and proje
tivity of Mg.12.2 Existen
e of Mg;nThere is no known analogue of Gieseker's result for stable pointed 
urves. It isnot diÆ
ult to 
onstru
t a Hilbert-type s
heme for stable pointed 
urves, with aredu
tive group a
tion, and su
h that the quotient is set-theoreti
ally Mg;n. Butin order to tell that the quotient is isomorphi
 to Mg;n as a s
heme, we �rst needto 
onstru
t Mg;n in some other way.But there is a very useful tri
k, whi
h redu
es the 
onstru
tion of Mg;n tothe existen
e of Mg for some larger value of g. We give the redu
tion over a �eld,but it works similarly over Z:Fix n irredu
ible stable 
urves Ci of genus gi > g, all nonisomorphi
 toea
h other, and �x a rational point xi 2 Ci. For any stable n-pointed 
urve(C; p1; : : : ; pn) of genus g, we 
an 
onstru
t a stable 
urve C 0 of genus g0 = g+Pgias follows: C 0 = ([Ci) [ C, where we glue together C and Ci by identifying piwith xi.
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h and Frans OortClearly this 
onstru
tion gives a set theoreti
 embedding Mg;n ! Mg0 . Theimage set is easily seen to be a s
heme, and by working the 
onstru
tion in a familyit is easy to see that it is a 
oarse moduli s
heme.13 Existen
e of tautologi
al familiesFor almost any appli
ation of moduli spa
es of 
urves in
luding the alterationtheorem, it is ne
essary to know that there exists a family C !M over a s
hemeM su
h that the asso
iated morphism to the moduli spa
e is �nite and surje
tive.Su
h a family is 
alled a tautologi
al family; see Se
tion 10.4. Various authors havedevised general methods of showing this, but for the moduli spa
es of 
urves thereis a \very ni
e" way to �nd su
h a 
over, using level stru
tures. The 
ase of themoduli spa
e Mg of stable (unpointed) 
urves is dis
ussed in detail in [21℄. In thisse
tion we des
ribe how this 
an be generalized for sable pointed 
urves as well.We rely throughout on the treatment in [21℄. In Se
tion 13.4 we outline anotherway to 
onstru
t tautologi
al families, whi
h works in greater generality.13.1 Hilbert s
hemes and level stru
turesFix:� an integer g 2 Z�0 (the genus),� an integer n 2 Z�0 (the number of marked points),� su
h that 2g � 2 + n > 0,� and an integer m 2 Z�1 (the level).� Fix an integer � 2 Z�5, whi
h will be used to study �-
anoni
al embeddingsof 
urves into a proje
tive spa
e.Remark. If n = 0 or m = 1 these data will be omitted from the notation, e.g.Mg;0 =Mg. If g = 0, the level stru
ture is irrelevant, M (m)0;n =M0;n.Let C be a 
urve whose ja
obian is an abelian variety. By a level-m stru
ture onC we mean a symple
ti
 level stru
ture as explained in [21℄. If a level-m stru
tureis 
onsidered we assume that all s
hemes, varieties are over a base on whi
h m isinvertible, i.e. are s
hemes over Spe
(Z[1=m℄).Re
all that there is a Hilbert s
hemeHP parametrizing 
urves C � PN , whereN = ��(2g� 2+ n)� g, with Hilbert polynomial P (t) = ��(2g� 2+ n) � t� g +1.We want to �nd a s
heme parametrizing pointed 
urves - this is done in a standardway as follows. Observe that there is a 
losed subs
heme HP;n � HP � (PN)nparametrising pairs (C; (p1; : : : ; pn)) where pi 2 C. There is an open subs
hemeHst � HP;n where the 
urves are nodal, the points are distin
t and regular pointson the 
urves, and the pairs (C; (p1; : : : ; pn)) are stable. Last, there is a 
losed
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heme Hg;n � Hst where the embedding line bundle of C � PN is isomorphi
to (!C(p1 + : : :+ pn))� .Over Hg;n there is a universal family Cg;n ! Hg;n with se
tions si : Hg;n !Cg;n of stable pointed 
urves, embedded in PN by the 
hosen line bundle. The lineargroup PGL = PGL(N) a
ts on Cg;n ! Hg;n equivariantly, andMg;n = Hg;n=PGLis the quotient.Note that there is an open subset H0st � Hg;n parametrizing smooth stablepointed 
urves.13.2 Moduli with level stru
tureTheorem 13.1. For m � 3, and 2g�2+n > 0, there exists a �ne moduli s
hemeM (m)g;n for smooth stable n-pointed 
urves with level-m stru
ture. In parti
ular thereexists a universal 
urve with level stru
ture over M (m)g;n . This moduli s
heme issmooth over Spe
(Z[1=m℄).Note in parti
ular that M (m)g;n is a normal s
heme, and that M (m)g;n ! Mg;n is aGalois 
over with Galois group Sp(2g;Z=m).We use the notation Sm := Spe
(Z[1=m℄).De�nition. Let g 2 Z�1. Fix n 2 Z�0, with 2g� 2+ n > 0. For any m 2 Z�3, thes
heme M (m)g;n �! Smis de�ned as the normalization of Mg;n[1=m℄ =Mg;n �ZSm in M (m)g;n .For simpli
ity of notation in this se
tion, we write M =M (m)g;n and M0 =M (m)g;n �M .Theorem 13.2. Fix g; n, and m as above. Suppose m � 3. There exist a stablen-pointed 
urve (C;P)!M , and a level-m-stru
ture � on C0 := CjM0 su
h that(C;P)!M is tautologi
al for M !Mg;n;and su
h that (C0;P0; �)!M0represents the fun
torM(m)g;n .We give an argument for 13.1 and 13.2 following the line of [21℄. This is akind of \boot-strap" argument, whi
h uses the idea that on
e one quotient spa
eexists, many others follow. We also sket
h another argument whi
h redu
es theproblem to the 
ase of [21℄.There is a relative ja
obian s
heme J(C0g;n) ! H0g;n. This is an abelians
heme, so we 
an look at its group-subs
heme of m-torsion points. Taking a sym-ple
ti
 rigidi�
ation of this group s
heme we arrive at H(m);0g;n - the Hilbert s
heme
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h and Frans Oortof smooth stable n-pointed 
urves with symple
ti
 level-m stru
ture - embeddedin proje
tive spa
e as above.The a
tion of PGL on H0g;n 
learly lifts to H(m);0g;n . This immediately impliesthat M (m)g;n = Hg;n = PGLexists, sin
e it is �nite overMg;n. By Serre's lemma this a
tion has no �xed points,and it also lifts to C(m);0g;n = Cg;n �Hg;n H(m);0g;n . This means that the quotientPGLnC(m);0g;n ! M (m)g;n is a universal family of smooth stable pointed 
urves withlevel stru
ture.This proves Theorem 13.1.The normalization of Hg;n in H(m);0g;n will be denoted by H(m)g;n . The argumentof [21℄, (2.6) works word for word, and shows that PGL still a
ts without �xedpoints on H(m)g;n . This gives the existen
e of the quotientM (m)g;n = H(m)g;n = PGL:Again the universal family over H(m)g;n des
ends to a family overM (m)g;n , this extendsthe universal family overM (m)g;n , and 
learly it is tautologi
al. This proves Theorem13.2. 	13.3 Proof by redu
tion to the unpointed 
aseStarting from M (m)g and its tautologi
al family we 
an 
onstru
t M (m)g;n and itstautologi
al family by indu
tion on the number of points n in the manner des
ribedbelow.Denote by D ! M (m)g;n the tautologi
al family. It is easy to see that in fa
tD =M (m)g;n+1. So D�M(m)g;n D !M (m)g;n+1 is a family of stable n-pointed 
urves withlevel stru
ture, but with an additional se
tion given by the diagonal. Using thestabilization pro
ess as des
ribed in [39℄ (see Se
tion 3.7 above) one blows thiss
heme up, to obtain the tautologi
al family over M (m)g;n+1 as desired.Remark. The moduli spa
e M (m)g;n is smooth over Sm for m � 3; this follows fromSerre's lemma and deformation theory. However, the moduli spa
eM (m)g;n is singularif g > 2; Serre's lemma holds also in this situation, but the spa
e is not the 
oarse(or �ne) moduli spa
e of a moduli fun
tor whose deformation spa
es 
oin
ide withthe deformations of stable 
urves. For more explanation, see [45℄ or [21℄.The argument above works for g > 1 when M (m)g exists. For rational 
urves thesetheorems are relatively easy, and known, sin
e the moduli spa
es are �ne modulispa
es in genus 0. For ellipti
 
urves these theorems are known by the theory ofmodular 
urves.
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h via sli
ingA general approa
h for 
onstru
ting tautologi
al families over �nite 
overs of 
oarsemoduli spa
e was developed by Artin (see des
ription in [40℄). Here we present aversion of this approa
h adapted to stable pointed 
urves.Step 1: sli
ing Consider the lo
ally 
losed subset of the Hilbert s
heme Hg;ndis
ussed above. It 
arries a universal family of stable pointed 
urves Cg;n ! Hg;nsuitably embedded in a proje
tive spa
e. This family indu
es a natural morphismHg;n ! Mg;n. The �bers 
oin
ide with the G-orbits asso
iated to the embedded
urves, where G = PGL.Fix a point x 2 Hg;n. By repeatedly taking hyperplane se
tions, we 
an �nda lo
ally 
losed subs
heme Vx � Hg;n su
h that1. Gx \ Vx 6= ;;2. If x0 2 Hg;n and Gx0 \Vx 6= ;, then there exists a neighborhood x0 2 U su
hthat for any y 2 U we have that Gy \ V 6= ;; and3. for any y 2 Hg;n we have that Vx\Gy 
onsists of �nitely many 
losed points.These Vx are \multi-se
tions" of the map Hg;n !Mg;n in a neighborhood ofGx. The essential point is that all orbits in Hg;n are of the same dimension.Using the Noetherian property, we 
an 
hoose �nitely many of these, sayV1; : : : ; Vl, su
h that every orbit meets at least one of them.Step 2: normalization. Let K be the join of the fun
tion �elds of Vi overMg;n.Let V be the normalization of Mg;n in the Galois 
losure of K. The s
heme Vadmits many rational maps to the Vi. It is not hard to see that for every pointv 2 V at least one of these maps is well de�ned at v! Pulling ba
k the families onVi, we see that V is 
overed by open sets, ea
h of whi
h 
arries a family of stablepointed 
urves, 
ompatible with the given morphism V !Mg;n.Step 3: Gluing. Now we 
an use Lemma 3.11 indu
tively. We obtain a �nitesurje
tive M ! V over whi
h the families glue together to a family C !M su
hthat the asso
iated moduli morphism is the 
omposition M ! V ! Mg;n. Sin
eV is �nite over Mg;n, this forms a tautologi
al family.Remark. It is not hard to 
onstru
t a tautologi
al as above without using theexisten
e of Mg;n! One 
an use this to 
onstru
t the moduli spa
e \from s
rat
h"as a proper algebrai
 spa
e, whi
h is roughly speaking a quotient of a s
heme bya �nite equivalen
e relation. Koll�ar in [40℄ has shown how to use this to prove,without GIT, that Mg;n is proje
tive.
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h and Frans Oort14 Moduli, automorphisms, and familiesThis se
tion will not be needed in the proofs above. The 
entral theme here is therelationship between automorphisms, 
oarseness of moduli, and the existen
e offamilies. The main prin
iple whi
h will emerge is:a moduli spa
e M is a �ne moduli spa
emobje
ts parametrized by M have no nontrivial automorphismsmM 
arries a unique tautologi
al family.We also tou
h on the issue of singularities of moduli spa
es.For rational 
urves, and n � 3, the moduli s
hemes M0;n and M0;n exist,these are smooth over Spe
(Z), these are �ne moduli s
hemes, i.e. they 
arry auniversal family.However, the moduli spa
e M1;1 and the moduli spa
es Mg for g > 1 are not�ne for the related moduli fun
tor.Exer
ise 14.1 (Deuring). Let K be a �eld, let x 2 K. Then there exists anellipti
 
urve E de�ned over k with j(E) = x. [ Suppose 
har(K) 6= 2; 6= 3, supposeE is is given over K by the equation Y 2 = X3 +AX + B; with 4A3 + 27B2 6= 0.Then de�ne j(E) := 1728�4�A3=(4A3 + 27B2):For the de�nition of the j-invariant, see [69℄.℄This 
an partly be made more pre
ise as follows:Exer
ise 14.2. ConsiderM0;1 �= A 1Z, and remove the se
tions j = 0 and j = 1728:U := A 1Z f0; 1728gZ:There exists a tautologi
al 
urve E ! U:1. This 
annot be extended over any of the deleted points.2. This family is not at all unique.Exer
ise 14.3. Consider U := C f0; 1728g. Show: up to isomorphisms there existexa
tly 4 tautologi
al 
urves (stable, one pointed smooth 
urves of genus 1 withj invariant di�erent from 0 and 1728) over this moduli spa
e. Show that for theground �eld K = Q there are in�nitely many tautologi
al 
urves over the modulispa
e A 1Q f0; 1728g. Chara
terize them all.
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e between a universal 
urve and a tautologi
al 
urve: themoduli problem for ellipti
 
urves with geometri
ally no non-trivial automorphismsadmits a 
oarse moduli s
heme; over that s
heme there is a tautologi
al 
urve, butthe s
heme is not a �ne moduli s
heme (not every family is a pull-ba
k from one
hosen tautologi
al 
urve). Here is another example:De�nition. A 
urve C ! S is 
alled a hyperellipti
 
urve if it is smooth, of relativegenus g with g � 2, and if there exists an involution � 2 Aut(C=S) su
h that thequotient C= < � >! S is a smooth family of rational 
urves.Remark. Ellipti
 
urves and rational 
urves are not 
alled \hyperellipti
", butsometimes the terminology \quasi-hyperellipti
" is used for 
urves having an in-volution with rational quotient.Theorem 14.4. Consider the moduli spa
e Hipg of hyperellipti
 
urves of genusg � 2 (even over C ). If g is even there does not exist a 
urve de�ned over thefun
tion �eld C (Hipg) having as moduli point the generi
 point of Hipg.(See Shimura [68℄, Theorem 3.)In di�erent terminology: For no open dense subset U � Hg does there exist atautologi
al 
urve when g is even.There does exist a open dense subset U � Hg and a tautologi
al 
urve CUwhen g is odd.Corollary. No dense open subset in M2 or in M2
K 
arries a tautologi
al 
urve.Exer
ise 14.5. Choose g 2 Z>2, and 
onsider nonsingular 
urves of genus g.1. Show that there exists su
h a 
urve whi
h has no nontrivial automorphisms.2. (variant:) Show that a general 
urve of genus > 2 has no nontrivial auto-morphisms.Remark. There is a morphism Mg;n+1 ! Mg;n ("forgetting the last marking").Sometimes this is 
alled the \universal 
urve over Mg;n", but we think in generalthis terminology is not justi�ed in all 
ases possible.Theorem 14.6. Let U �Mg with g � 3 �xed, be the set of points 
orrespondingwith 
urves whi
h have geometri
ally no non-trivial automorphisms. This set isdense and open. Let MU be the 
orresponding moduli fun
tor. This fun
tor isrepresentable.In other terminology: there does exist a (unique) universal 
urve CU ! U forthe moduli problem of 
urves of genus g � 3 with geometri
ally no non-trivialautomorphisms.In parti
ular: Let K be a �eld, g 2 Z�3, and � be the generi
 point ofMg 
 K. There exists an algebrai
 
urve de�ned over K(�) having � as modulipoint. However the universal family as indi
ated above over U � Mg does notextend to any smooth family of 
urves over Mg .
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h and Frans OortExer
ise 14.7. Formulate and prove a generalization of previous theorems to the
ase of stable pointed 
urves.Exer
ise 14.8. Let n > 2g + 2 and let (C;P1; � � � ; Pn) be any stable n-pointed
urve of genus g. Suppose that C is regular (and hen
e irredu
ible). Show thatAut((C;P1; � � � ; Pn)) = f1g(if you want, assume that 
har(k) = 0).Exer
ise 14.9. Let g 2 Z�1 and 2� 2g < n � 2g+2 and 0 � n. Show that Mg;nis a 
oarse, but not a �ne moduli spa
e.Exer
ise 14.10. Choose g 2 Z�0, and let n > 2g + 2. Show that Mg;n is a �nemoduli spa
e. Show that the universal 
urve over Mg;n is not smooth if n � 2.Exer
ise 14.11. Consider all stable n-pointed 
urves of genus g. Suppose that2g � 2 + n � 3:1. Show that there exists su
h a 
urve whi
h has no nontrivial automorphisms.2. (variant:) Show that a general 
urve as above has no nontrivial automor-phisms.Exer
ise 14.12. Choose some g (e.g. g = 3), 
hoose a very large integer n (e.g.n = 1997), and 
onstru
t a stable n-pointed 
urve of genus g whi
h has a non-trivial group of automorphisms.Variant: Let 2g � 2 + n � 2; show that there exist stable n-pointed 
urvesof genus g � 3 in 
odimension two in the moduli spa
e with non-trivial groups ofautomorphisms.Exer
ise 14.13. Let g 2 Z�1, and n > 2� 2g and n � 0. Show that Mg;n is nota �ne moduli spa
e.Choose 2g � 2 + n > 0, 
hoose m � 1 and let M be one of the following spa
es:M (m)g;n , or Mg;n (all these spa
es are de�ned by a moduli fun
tor). Let x 2 M(k)be a geometri
 point, and let X0 := (C;P; �) be the 
orresponding obje
t overk (if C is non-smooth there is no level stru
ture, the genus of C is g, we haveP = ; if n = 0, we have � = id if m = 1). Let D = Def(X0) be the universaldeformation spa
e; i.e. 
onsider � = k if 
har(k) = 0, and � = W1(k) in 
ase ofpositive 
hara
teristi
, 
onsider all lo
al artin �-algebras, and 
onsider the obje
tprorepresenting all deformations of X0 over su
h algebras (see [64℄). This universaldeformation obje
t exists, and it is formally smooth over � on 3g�3+n variables;in 
ase n = 0 this 
an be found in [17℄, page 81, the 
ase of pointed 
urvesfollows along the same lines; in 
ase m > 1, we have required that m is invertiblein k, �nite, 
at group s
hemes of m-power order on su
h bases are �etale, anddeformations of level stru
tures are unique by EGA IV4, 18.1. Let G := Aut(X0).Note that G is a �nite group (be
ause we work with stable 
urves). Note that Ga
ts in a natural way on D = Def(X0) by \transport of stru
ture".
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ases des
ribed, the formal 
ompletion of M at x is
anoni
ally isomorphi
 with the quotientDef(X0) = G ��! Mx̂ :This is well-known, e.g. see [27℄, x1.Exer
ise 14.15. (Rau
h, Popp): Let g 2 Z�4, and let A �Mg be an irredu
ible
omponent of the set of all points 
orresponding with 
urves with non-trivial au-tomorphisms. Show that the 
odimension of A � Mg is � 2. (In positive 
hara
-teristi
 this is also 
orre
t, but you might need some extra insight to prove alsothose 
ases.)Remark. Stable rational pointed 
urves have no non-trivial automorphisms. For el-lipti
 
urves there are 
urves with more than 2 automorphisms in 
odimension one.For 
urves of genus two we �nd a des
ription of all 
urves with \many automor-phisms" in [30℄. Note that hyperellipti
 
urves of genus three are in 
odimensionone.Exer
ise 14.16. Show that non-hyperellipti
 
urves of genus three with non-trivial automorphisms are in 
odimension at least two.Exer
ise 14.17. (Rau
h [58℄, Popp [57℄): Let g 2 Z�4, and let [C℄ = x 2 Mg bea geometri
 point. Show that x is a singular point on Mg i� Aut 6= fidg. [Youmight like to use: [5℄, Coroll. 3.6 on page 95: A quasi-�nite lo
al homomorphismof regular lo
al rings having the same dimension is 
at. Also you might like to usepurity of bran
h lo
us: a rami�ed 
at 
overing is rami�ed in 
odimension one.℄Remark. For singularities ofM2 see [30℄. Show that for genus three non-hyperellipti
points are singular i� there are non-trivial automorphisms, e.g. see [50℄. For sin-gularities of moduli s
hemes of abelian varieties, see [51℄.Remark. As we have seen in [21℄, the moduli s
hemes M (m)g have singularities forall g � 3 and m � 3 (these spa
es 
annot be handled with the methods just dis-
ussed, these spa
es are not given by \an obvious" moduli fun
tor !). As Looijenga,see [42℄, in 
hara
teristi
 zero, and Pikaart and De Jong, see [54℄ showed, thereexist a �nite map M ! Mg with M regular (using non-abelian level stru
tures)(it is even true that M is smooth over Q, or smooth over Z[1=r℄ for some naturalnumber r > 1).Summary about M (m)g;n ,!M (m)g;n �! Spe
(Z[1=m℄) =: Smfor g 2 Z�0; n 2 Z�0; m 2 Z�1; with 2g � 2 + n > 0;
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h and Frans OortM (m)g;n and Mg;n exist as 
oarse moduli s
hemes, we have 
onstru
ted M (m)g;n . Wehave seen:� For g � 2 the 
oarse moduli s
heme Mg ! S = Spe
(Z) exists. These arenot �ne moduli spa
es. They do not 
arry a tautologi
al family. For every gthis is singular.� For g � 2 the 
oarse moduli s
heme Mg ! S = Spe
(Z) exists. These arenot �ne moduli spa
es. They do not 
arry a tautologi
al family. They aresingular.� A dense open set inM1;1 
arries a tautologi
al family, and it is not universal.� No dense open set in M2 
arries a tautologi
al family.� For g � 3 a dense open set in Mg;n 
arries a universal family.� For n � 3 the moduli spa
esM0;n �M0;n exist, they are �ne moduli spa
es,they are smooth over S = Spe
(Z).� For 2g� 2+ n > 0, and m � 0 the moduli spa
es Mg;n ! S, and Mg;n ! Sand M (m)g ! Sm exist, they 
oarsely represent a moduli fun
tor. For n >2g + 2 the moduli spa
e Mg;n is �ne, and smooth over Spe
(Z) (but theuniversal family is not smooth for n > 1). For m � 3 the spa
e M (m)g is �neand smooth over Sm.� For 2g � 2 + n > 0, and m � 0 there is a moduli spa
e, and a tautologi
alfamily, with properties as in 13.2. For g � 3 the morphism M (m)g;n ! Sm isnot smooth.
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