
Math599, HW7

1. Mandatory problems

Please submit these problems by December 14 midnight.

Disclaimer: the problems are new, so some mistakes may happen. If you think
you see a question with a mistake please contact me.

Definition 1.1. Recall that we defined the Zariski topology on the affine spaces
An

k by taking the closed sets to be (affine) varieties V = V (I) ⊆ An
k . The Zariski

topology on any variety V ⊆ An
k is the topology induced from the Zariski topology

of An
k . In particular, closed subsets of V are precisely varieties U ⊆ An

k contained
in V , so we will say that such U is a closed subvariety of V .

1. (i) Show that sending an ideal I of k[V ] to its set of zeros on V provides a
bijection between the radical ideals of k[V ] and the closed subvarieties of V .

(ii) Show that if U,W are closed subsets of V corresponding to radical ideals I
and J of k[V ], then U ∪W corresponds to I ∩ J , which is radical.

(iii) Keep above notation. Show that U ∩W corresponds to the radical of I + J
and k[U ∩W ] is the reduction of k[U ]⊗k[V ] k[W ], in particular, U ∩W = U ×V W .

Give an example, where I + J 6=
√
I + J and k[U ]⊗k[V ] k[W ] is not reduced.

2. Let f : U → V be a morphism of algebraic spaces and φ : k[V ] → k[U ] the
corresponding homomorphism.

(i) Show that if V ′ is a closed subvariety of V corresponding to I ⊆ k[V ] then
U ′ = f−1(V ′) is a closed subvariety of U corresponding to the radical of Ie = Ik[U ]
and U ′ = U ×V V ′.

(ii) Show that if U ′ is a closed subvariety of U corresponding to J , then Jc =
φ−1(J) is radical and corresponds to the Zariski closure V ′ of f(U ′). Give an
example when V ′ is strictly larger than f(U ′).

Definition 1.2. Given a variety V with a point x ∈ V , consider the function ring
k[V ] with the corresponding ideal mx. Then T ∗V,x := mx/m

2
x is a vector space over

k = k[V ]/mx called the cotangent space to V at x. Its dual TV,x = (mx/m
2
x)∗ is

called the tangent space at x.

3. (i) Show that for any point of x ∈ An
k , the tangent and cotangent spaces to

x are n-dimensional.
(ii) For any morphism f : U → V and points x ∈ U and y = f(x) ∈ V construct

natural maps αx : TU,x → TV,y and α∗x : T ∗V,y → T ∗U,x. (In fact, α∗x is often called the

differential of f at x.)
(iii) Show that if U is a closed subvariety of V then αx is injective and α∗x is

surjective for any x ∈ U . Deduce that these spaces are always finite-dimensional.
(iv) Let C be the union of n coordinate axis in An. Prove that C cannot be

embedded into Am with m < n. (Hint: show that the tangent space to C at the
origin is n-dimensional.)

Remark 1.3. (i) The dimension ex = dimk(mx/m
2
x) is an important invariant

of the pair (V, x). In a more advanced theory (that we will probably not reach),
one uses it to study smoothness of varieties: one always has that ex is at least the
dimension of V at x and the equality holds iff V is smooth at x. Moreover, ex is
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called the embedding dimension because it is the minimal dimension of a smooth
variety M so that V can be embedded into M locally at x. (This M does not have
to be An, though.)

(ii) There is a (rather easy) theorem that any smooth affine curve can be em-
bedded into A3. We saw that for singular curves the situation is different.

4. Consider the map f : X = A2
k → Y = A2

k corresponding to the homomor-
phism φ : k[y1, y2] → k[x1, x2] given by φ(y1) = x1, φ(y2) = x1x2. For any point
y ∈ Y find the fiber f−1(y). In particular, show that almost all fibers consist of
a single point (in other words, f is generically an isomorphism), there is a line of
empty fibers, and one fiber is a line.

Remark 1.4. The map in problem 4 is a simplest example of a so-called blow up
(or its affine chart). In this case, one “blows up” Y at the origin. We saw that
the dimension of the fibers jumps at the origin. Such a thing can only happen
for non-flat morphisms (i.e. morphisms with k[X] non-flat over k[Y ]). A rather
difficult theorem states that the dimension is additive for flat morphisms:

dimx(X) = dimx(f−1(y)) + dimy(Y ),

i.e. the dimension of X at x is the dimension of Y at y = f(x) plus the dimension
at x of the fiber over y. In a loose sense, the geometric meaning of flatness is that
the fibers of a morphism vary in a “continuous way”.

The following exercise corrects what I said in class in the end about non-algebrai-
cally closed fields.

5. (i) Assume that k is an arbitrary field with algebraic closure k. You can
assume for simplicity that k is perfect, so k/k is separable. Deduce from the weak

Nullstellensatz that Max(k[t1, . . . , tn]) = k
n
/Galk/k, where any σ ∈ Galk/k acts

via σ(a1, . . . , an) = (σa1, . . . , σan). (Hint: the idea is to compute the fibers of the
map Max(k[t1, . . . , tn]) → Max(k[t1, . . . , tn]), which boils down to studying the k-
algebras (k[t1, . . . , tn]/m)⊗k k. You can try to solve it now, or wait until the next
class where a brief outline will be given.)

(ii) Show that k
n
/Galk/k 6= (k/Galk/k)n already for k = R and n = 2.

2. Non-mandatory problems

Non-mandatory problems – do not submit them but I will be glad to discuss
them if you wish.

6. Compute X ×Y X in problem 4. Namely, show that it is a union of two
components – one canonically isomorphic to X and another is also a copy of A2

k,
which is canonically isomorphic to the square of the exceptional fiber of f .


