Math599, HW3

1. Mandatory problems

Please submit these problems by November 16 midnight.

- 1. (i) For any set X consider the functors T_X : Sets \to Sets and h^X : Sets \to Sets given by $h^X(Z) = \operatorname{Hom}_{\operatorname{Sets}}(X, Z)$ and $T_X(Z) = X \times Z$. Show that h^X is continuous and T_X is cocontinuous.
- (ii) Show that if $|X| \neq 1$, then h^X does not possess a right adjoint and T_X does not possess a left adjoint.
 - 2. Describe all adjoint pairs \mathcal{F}, \mathcal{G} of functors from the category of sets to itself.
 - 3. Let I be a set and C be a complete and cocomplete category.
- (i) Find left adjoint to the functor T_I defined by $T_I(X) = X^I = \prod_{i \in I} X$ for any $X \in \mathcal{C}^0$.
- (ii) Specify I and C so that T_I is adjoint to itself (both from the left and from the right) but is not isomorphic to the identity (in particular, |I| = 1 does not count as an answer).
- 4. Let R_1, \ldots, R_n be rings and $R = \prod_{i=1}^n R_i$. Show that any R module M decomposes as $M = \bigoplus_{i=1}^n M_i$ where each M_i is an R_i -module and R acts on M_i through R_i . (Hint: probably, the shortest argument is to use the projectors $M \mapsto e_i M$, where $e_i \in R$'s are the idempotents that correspond to the decomposition of R.)
- 5. Show that (unlike the category of rings) both monomorphisms and epimorphisms in the category of R-modules are compatible with the forgetful functor to the category of sets:
- (i) A homomorphism of R-modules $M \to N$ is a categorical monomorphism if and only if it is injective.
- (ii) A homomorphism of R-modules $M \to N$ is a categorical epimorphism if and only if it is surjective.
- 6. (i) Let $f: L \to M$ and $g: L \to N$ be two homomorphisms of R-modules show that $M \sqcup_L N$ is isomorphic to the module $M \oplus_L N$, which, by definition, is the cokernel of $(f, -g): L \to M \oplus N$.
- (ii) Let $f: M \to L$ and $g: N \to L$ be two homomorphisms of R-modules show that $M \times_L N$ is isomorphic to the kernel of $(f, 0) (0, g): M \oplus N \to L$.

2. Non-mandatory problems

Non-mandatory problems – do not submit them but I will be glad to discuss them if you wish.

- 7*. Prove Yoneda's lemma or check the argument in the notes (or even in the wikipedia).
- 8*. Prove Freyd's theorem on existence of adjoint functors or read the proof in the literature (e.g. MacLane's book on categories for working mathematician).

1