
VALUED FIELDS

MICHAEL TEMKIN

1. Real valuations and real valued field

1.1. Some history and plan of the chapter. Early history of the theory of real
valuations is surveyed in detail in the notes [Roq02] of Roquette. Another reference
is [Bou72, Chapter VI, §6]. Here we only mark the main points and the interested
reader is referred to these references.

In 1908 Hensel published a book ..., where he introduced p-adic numbers via
formal series

∑∞
n≥n0

anp
n. This puzzled mathematicians and led to the usual philo-

sophical question: “do they really exist”? Real valuations were defined by Joseph
Kürschák in a work announced in Cambridge in 1912 and published in 1913 in
[Kür13]. His motivation was to provide a rigorous framework for p-adic numbers,
and to show that Qp can be embedded into an algebraically valued complete real
valued field. The main step was to show that real valuation extend through fi-
nite extensions, where he extended to this setting a result of Hadamard on radii
of convergence of algebraic functions. The other steps are easier: one completes
Qp with respect to the obtained valuation and proves that the obtained field Cp is

algebraically closed. Note also that Kürschák suspected that Qp is not complete
and the latter steps are necessary, but this was proved by Ostrowski later.

In 1918 Ostrowski proved two classification theorems: he classified real valuations
on Q by showing that the only non-trivial completions are Qp and R, and showed
that R and C are the only archimedean complete real valued fields. This allowed to
simplify the proof that valuations extend by excluding the archimedean case and
using Hensel’s lemma, which is only available in the non-archimedean setting. In
fact, it was Ostrowski who first proved it in this generality.

1.2. Definitions and Ostrowski’s theorem.

1.2.1. Norms and real valuations. A seminorm on a ring A is a map | | : A→ R≥0

such that |0| = 0, |a| = | − a|, |a + b| ≤ |a| + |b| and |ab| ≤ |a| · |b|. The kernel
Ker(| |) = {x ∈ A| |x| = 0} is obviously an ideal. A seminorm is a non-archimedean
if it satisfies the strong triangle inequality |a + b| ≤ max(|a|, |b|). A seminorm is
power mulitplicative if |an| = |a|n for any a ∈ A and n ∈ N. A power multiplicative
seminorm is called archimedean if the axiom of Archimedes is satisfied: for any
x ∈ A there exists n ∈ N such that |n| > |x|. Clearly, this happens if and only
there exists n ∈ N with |n| > 1.

A seminorm is a real semivaluation if it is multiplicative: |1| = 1 and |ab| = |a|·|b|.
In particular, in this case Ker(| |) is a prime ideal.

A seminorm is a norm (resp. a real semivaluation is a real valuation) if Ker(| |) =
0. A pair (A, | |) will be called seminormed ring (resp. normed ring, real semivalued
ring, or real valued ring).
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1.2.2. Archimedean versus non-archimedean dichotomy. Recall that we have de-
fined the property of being non-archimedean via the strong triangle inequality, and
the property of being archimedean via the archimedes axiom that |N| is unbounded.
The above theorem implies that this is indeed a dichotomy, and there exists no third
possibility.

Theorem 1.2.3. The following conditions for a real semivaluation | | on a ring A
are equivalent:

(1) | | is not archimedean, that is, |Z| ≤ 1,
(2) | | is non-archimedean,
(3) the induced semivaluation | |Z on Z is non-archimedean.

Proof. The implications (2)=⇒(3) is obvious. If (3) holds, then |n+1| ≤ max(|n|, 1)
hence |N| ≤ 1 by induction on n, and hence also |Z| ≤ 1. It remains to prove
(1)=⇒(2), so assume that |Z| ≤ 1. Given x, y ∈ A let r = max(|x|, |y|). Estimating
|x+ y|n = |(x+ y)n| via the binomial expansion yields

|x+ y|n ≤ (n+ 1)rn max
0≤i≤n

∣∣∣∣(ni
)∣∣∣∣ ≤ (n+ 1)rn.

Extracting the n-root and passing to the limit we obtain that |x+ y| ≤ r, that is,
the semivaluation is non-archimedean. �

As an immediate corollary we obtain

Corollary 1.2.4. A semivaluation | | on a ring A is non-archimedean (resp.
archimedean) if and only if so is the induced semivaluation | |Z on Z.

Exercise 1.2.5. An open ball Br(a) (resp. closed ball Er(a)) of radius r with
center at a ∈ A is defined to be the set of all elements x ∈ A such that |x− a| < r
(resp. |x− a| ≤ r). Show that any element of a non-archimedean ball is its center
and a closed unit ball is a union of open ones.

1.2.6. Extension to fields of fractions. Valued rings are analogues of domains in the
seminormed algebra. In particular, this is indicated by the following result.

Lemma 1.2.7. Any real valuation | | on a domain A extends by multiplicativity to
the ring of fractions K = Frac(A), yielding an isometric embedding of (A, | |) into
a real valued field.

Proof. One should only check that |ab |K = |a|
|b| defines a subadditive function on K:

|a|
|b|

+
|c|
|d|
≥ |ad+ bc|

bd
.

This follows from the subadditivity of | |. �

Exercise 1.2.8. Any seminorm | | factors canonically into a composition of A →
A′ = A/Ker(| |) and a norm | |′ : A′ → R≥0. In other words, any seminorm is
induced from the quotient norm on the factor by its kernel.

Any homomorphism from a ring A to a real valued field K induces a real semi-
valuation on A. We say that A → K1 and A → K2 are equivalent if they factor
through A → K and isometric immersions K ↪→ Ki. In particular, each equiv-
alence class contains the minimal element generated (as a field) by the image of
A. Conversely, if A is real semivalued, A/Ker(| |) is real valued and its fraction
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field acquires a natural real valuation by Lemma 1.2.7. This can be summarized as
follows:

Lemma 1.2.9. For a ring A there is a natural bijection between real semivalua-
tions on A and equivalence classes of homomorphism from A to valued fields. The
minimal representative of the class corresponding to | | is A→ Frac(A/Ker(| |)).

1.2.10. First examples. The trivial norm | |0 on A is defined by |a|0 = 1 if a 6= 0.
It is a real valuation if and only if 0 is a prime ideal.

The usual archimedean absolute value | |∞ on C induces a real valuation on any
subring of C. Moreover, | |r∞ satisfies the triangle inequality for 0 < r ≤ 1 and
hence is a real valuation too. The norms in this family are archimedean, and they
tend to | |0 as r tends to 0.

For any prime p the trivial valuation on Fp induces a valuation on Z that we
symbolically denote | |∞p . They satisfy |pZ|∞p = 0 and |Z \ pZ|∞p = 1.

For any n ∈ Z choose maximal power of p dividing n, say pl, and set |n|p = p−l.
This is a non-archimedean real valuation on Z called the p-adic valuation. It extends
to the whole Q by multiplicativity, and |pl mn |p = p−l for any m,n ∈ Z \ pZ. For
any r > 0 the power | |rp is also a non-archimedean valuation.

In the same venue, if k is a field then any element h 6= 0 of k(t) can be represented

as tn f(t)
g(t) with f, g ∈ k[t] \ tk[t]. Fixing any s ∈ (0, 1) and setting |h|t = s−n

one obtains a non-archimedean t-adic valuation. This time there is no natural
normalization, so the choice s ∈ (0, 1) is arbitrary.

Finally, one possible way to generalize the last two examples is as follows. As-
sume that A is a unique factorization domain with K = Frac(A), and π ∈ A is a
prime. Then any element x ∈ K× can be represented as πl ab with a, b ∈ A \ πA,

and setting |x|π = s−l defines a π-adic valuation on A and K.

Exercise 1.2.11. Verify the above examples.

1.2.12. Gauss valuations. Let k be a non-archimedean real valued field. Given
r ≥ 0 consider the real valued function | |r = | |t,r on k[t] given by |

∑
ait

i|t,r =
maxi r

i|ai|. Since k is non-archimedean it is easy to see that | |r is a semivaluation.
One calls | |1 Gauss valuation because the fact that it is a valuation is essentially
the classical Gauss lemma. For r > 0 it is called a generalize Gauss valuation or
t-monomial valuation. The latter notion indicates that the valuation is defined by
its values on the monomials.

Exercise 1.2.13. Check that | |r is indeed a valuation. Describe | |r when k is
trivially valued: if r < 1 then it is t-adic, if r = 1 then it is trivial, and if r > 1
then |f(t)|r = rdeg(f) and the continuation to k(t) is t−1-adic.

1.2.14. Ostrowski’s theorem. Any ring A admits a unique homomorphism Z → A,
hence any real semivaluation | | (or seminorm) on A induces a real semivaluation
on Z. The latter is a simplest invariant of | |, so it is natural to start studying real
semivaluations (or valuations) with classifying them on Z. In fact, we have already
seen all possibilities as the following famous theorem states:

Theorem 1.2.15 (Ostrowski). The full list of real semivaluations on Z is as fol-
lows:

(0) The trivial valuation | |0.
(1) The archimedean valuations | |r∞ with r ∈ (0, 1].
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(2) The p-adic valuations | |rp with r ∈ (0,∞).
(3) The semivaluations | |∞p with non-trivial kernels.

and the full list of real semivaluations on Q is obtained by removing case (3).

Proof. We have checked earlier that everything in the list is a semivaluation on Z
(resp. Q). Let us check that a real semivaluation on Z belongs to the list. Assume
first that | | is not a valuation. Then the kernel is a non-trivial prime ideal, say
pZ. It follows that |a+ pb| = |a|, and hence | | is induced from a semivaluation on
Fp. For any x ∈ F×p we have that |x|p−1 = |xp−1| = |1| = 1. Hence |x| = 1 and we
obtain that the semivaluation on Fp is trivial, and | | = | |∞p .

In the sequel we assume that | | is a valuation. Assume first that the valuation
is archimedean, in particular, there exists a ∈ N with |a| > 1. Fix a natural
m > 1 and set C = max(1, |2|, . . . ,|m − 1|). For any natural n > 1 consider

the base m-decomposition n =
∑d
i=0 aim

i, where d = [logm(n)], and note that

|n| ≤ C
∑d
i=0 |m|d. For |m| < 1 this would imply that |n| < C

1−|m| contradicting

that |N| is unbounded. For |m| = 1 this would imply that |n| ≤ C(d+ 1) and hence
growthes at most linearly in log(n). This contradicts that |al| = |a|l growthes
exponentially in l.

Thus, |m| > 1 and |n| ≤ C ′|m|d, for the constant C ′ = C|m|
|m|−1 . Substituting

nl instead of n and applying log|m| yields l log|m|(|n|) ≤ log|m|(C
′) + [l logm(n)].

Dividing by l and tending it to infinity we obtain that log|m|(|n|) ≤ logm(n). The

same argument with switchedm and n yields the opposite inequality log|m|(|n|)−1 ≤
logm(n)−1. Hence the equality holds and we obtain that |n| = |m|logm(n) for any
n > 1. This implies that |n| = nr, where r = logm(|m|) > 0. Since |2| ≤ |1|+|1| = 2,
we have that r ≤ 1. Finally, since | −n| = | − 1| · |n| = |n| we obtain that | | = | |r∞.

In the sequel we also assume that the valuation is non-archimedean, and so
|Z| ≤ 1. Let I be the set of integers such that |n| < 1. It follows from the strong
triangle inequality that I is an ideal, and using the multiplicativity of | | we even
obtain that I is prime. If I = 0, then | | = | |0, so it remains to consider the case
when I = (p). By our assumptions 0 < |p| < 1, hence there exists r ∈ (0,∞) with
|p| = p−r. We claim that | | = | |rp. Indeed, if n = pla with a ∈ Z \ I, then |a| = 1

by the definition of I, and hence |n| = |pl| = p−rl, as required.
We have shown that in any case | | belongs to the list. Finally, any semivaluation

| |Q on Q is a valuation because Q has no non-zero ideals. Hence the restriction
| | of | |Q onto Z is of the form (0)–(2), and | |Q is determined by | | by the
multiplicativity. �

1.3. Completions.

1.3.1. Metric completion. Any seminorm on a ring A defines a translation invari-

ant semimetric d(x, y) = |x − y| on A. The completion Â of A with respect to
d, also called sometimes separated completion, is the set of equivalence classes of
Cauchy sequences (xn)n∈N. Recall that (xn) is Cauchy if limm,n→∞ d(xm, xn) = 0
and sequences (xn), (yn) are equivalent if limn→∞ d(xn, yn) = 0. Sending aıA to

the constant sequence defines a completion map A → Â. Setting d((xn), (yn)) =

limn d(xn, yn) makes Â a complete metric space, that is, the one for which the
completion is a bijection.

Exercise 1.3.2. (i) Check that indeed Â =
̂̂
A.
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(ii) Show that the completion map factors as A → A/Ker(| |) ↪→ Â, where the

embedding A/Ker(| |) ↪→ Â is the completion map of the ring A/Ker(( |)) with the
quotient norm. In particular, the completion is injective if and only | | is a norm.

1.3.3. Operations. One can also extend the arithmetic operations to Â either by
continuity or just by setting (xn) + (yn) = (xn + yn) and (xn) + (yn) = (xn + yn)
and checking that this definition is independent of the choice of the representatives

(xn), (yn) of elements x, y ∈ Â. In addition, if F is a normed field, then F̂ is a field

because for any a 6= 0 in F̂ only finitely many elements of it representatives are
not zero, and removing them we find a representative (an) with an ∈ F×. Then

(a−1
n ) = (an)−1 in F̂ .

1.3.4. Examples. The trivial case: the trivial norm | |0 defines trivial trivial com-

pletion A = Â and the induced topology is discrete. In the same fashion, Fp is the
completion of Z with respect to | |∞p .

The archimedean case: (R, | |r∞) is the completion (Q, | |r∞), hence also of any
subfield provided with the induced norm. Similarly, (C, | |r∞) is the completion of
any its non-real subfield. The topologies are the usual one and do not depend on r.

The p-adic case: the completion of Q with respect to | |rp is called the field of p-
adic numbers and is denoted Qp. Again, the topology and the field are independent
of r. The subring Zp of integral p-adic numbers is defined as the completion of
(Z, | |rp).

The power series case: the completion of k(t) with respect to the t-adic valuation
is the field k((t)) of Lauernet series over k. Again, the completion of k[t] defines
the subring of integers k[[t]], which is the ring of formal power series over k.

Exercise 1.3.5. (i) Prove that Zp and k[[t]] are the closed unit balls with center
at 0.

(ii) Prove that any p-adic number possesses a unique base-p presentation a =∑∞
n=n0

anp
n with n0 ∈ Z and an ∈ {0, 1, . . . ,p − 1}. What is the presentation of

−1 in Q2?
(iii) Prove that a p-adic number is in Q if and only if its coefficients an are

periodic for large enough n.

1.3.6. Analytic fields. By an analytic field1 we mean a complete real valued field.
These are fields suited for developing analysis via convergent power series. In
particular, one might study classical series in different fields and compare their
radii of convergence. Often this carries a valuable information about algebraic or
algebra-differential properties of the fields.

Remark 1.3.7. On the computational side, the non-archimedean analysis is usu-
ally simpler. For example, a series

∑
an converges if and only if |an| tend to 0. In

particular, there is no distinction between absolute and conditional convergence.

Exercise 1.3.8. (i) For a series f(x) =
∑∞
n=0 anx

n define the radius of convergence

rconv(f) = (lim infn |an|1/n)−1. Show that the series converges whenever |x| <
rconv(f) and does not converge whenever |x| > rconv(f).

(ii) Show that the binomial series (1 +x)1/p =
∑∞
n=0

(
1/p
n

)
xn with a prime p has

radius of convergence 1 in Ql with l 6= p and radius of convergence |p|
p

p−1 in Qp.

1This notion is not common in the literature.
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(As we will later see, this is related to wild ramification phenomena.) Check that
in these cases the series does not converge when |x| = rconv.

(iii) Compute the radii of convergence of exp(x) =
∑∞
n=0

xn

n! and log(1 + x) =∑∞
n=1

(−1)n+1xn

n in Qp.

1.3.9. Completed residue field. Lemma 1.2.9 easily implies the following analytic
version:

Lemma 1.3.10. For a ring A there is a natural bijection between real semivalu-
ations on A and equivalence classes of homomorphism from A to analytic fields.
The minimal representative of the class corresponding to | | is the homomorphism
from A to the completion of Frac(A/Ker(| |)).

1.4. Analytic spectrum and geometry of valuations.

1.4.1. The spectrum. By spectrum or analytic spectrum X = M(A) of a semi-
normed ring A = (A, | |) we mean the set of all bounded real semivaluations on A.
We prefer to think about elements of the spectrum geometrically, so we call them
points of X and denote by letters x, y, etc. The seminorms will be also denoted
| |x, | |y, etc. In addition, X possesses a natural topology whose bases is formed
by the sets {x ∈ X| r1 < |f |x < r2} with f ∈ A and ri ∈ R. This is the weakest
topology in which all functions |f | : X → R are continuous.

Remark 1.4.2. (i) Analytic spectrum of Berkovich spectrum was introduced by
Vladimir Berkovich in [Ber90, Chapter 1], and it serves as a building block of
analytic geometry (also referred to as Berkovich geometry), which can be studied
both over both archimedean and non-archimedean real valued fields, and even over
Z. In the book one considers Banach A (that is normed and complete), but this

does not really restricts the generality asM(A) =M(Â). In particular, Berkovich

proves that M(Â) is compact.
(ii) A far predecessor of this definition is the famous theorem of Gel’fand-

Naymark that spectrum of C∗ algebras defines an anti-equivalence between the
categories of C∗ algebras and compact topological spaces. To some extent this
theorem motivated later definition of spectrum of rings in algebraic geometry.

1.4.3. Completed residue fields. For any point | |x of X we define the completed
residue field H(x) as the completion of the real valued field Frac(A/Ker(| |)),
and denote the corresponding bounded homomorphism by χx : A → H(x). BY
Lemma 1.3.10 we obtain

Lemma 1.4.4. For any seminormed ring A the spectrum M(A) is naturally bi-
jective to the set of equivalence classes of bounded homomorphisms of A to analytic
fields, and χx is the minimal representative of the class corresponding to | |x.

1.4.5. First examples. In fact, Ostrowski’s theorem gives a precise description of
the setM(Z, | |∞). The domination of valuations turns it into an ordered tree with
the root | |∞ and leaves | |∞p . The completed residue field is as follows: (0) Q at
| |0, (1) R at | |r∞, (2) Qp at | |p and its finite powers, (3) Fp at | |∞p .

Exercise 1.4.6. (i) Describe the topology on M(Z, | |∞). For example, describe
the set 0.5 < |57| < 3.

(ii) Obtain a similar description for Ek(r) = M(k[t], | |t,r), where k is an alge-

braically closed field, r > 1 and |f(t)|t,r = rdeg(f).
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Remark 1.4.7. In fact, Ek(r) is a Berkovich analytic closed disc of radius r over
the trivially valued field k. Already here we observe the non-archimedean phe-
nomenon that closed discs over the analytic field k contain “non-classical” points
not corresponding to elements of k. This happens because, unlike the archimedean
case, the valuation can be extended (and in many ways) to k(t).

1.4.8. Non-archimedean affine line. More generally, we define closed Berkovich disc
of radius r over an analytic field k as Ek(r) =M(k[t]r), where k[t]r is the polyno-
mial ring provided with the generalized Gauss norm | |r. If s ≤ r then | |s ≤ | |r
and we obtain a natural embedding Ek(s) ⊆ Ek(r). The union A1

k = ∪rEk(r) is
called Berkovich affine line over k.

Exercise 1.4.9. (i) Show that A1
k is the set of all real semivaluations on k[t]

extending the valuation of k and Ek(r) is the set of all real semivaluations | | such
that |t| ≤ r.

(ii) Show that Ek(r) only depends on the completion k̂. Moreover, it is actually

the spectrum of the completion k̂{t}r of k[t]r. Show that k̂{t}r consists of all series∑∞
i=0 ait

i such that limi r
i|ai| = 0.

1.4.10. Monomial points of A1
k. A point x ∈ A1

k and the corresponding real semival-
uation | |x are called monomial if | |x is the generalized Gauss valuation for an appro-
priate coordinate t−a. Geometrically x is obtained from a generalized Gauss point
by translating by a ∈ k. We will use the notation |

∑
i ai(t − a)i|a,r = maxi r

i|ai|.
It follows from the strong triangle inequality that | |a,r = | |b,s if and only if
|a− b| ≤ r = s. Thus, the structure of the set M of monomial points is as follows:
M is covered by rays Ra = {| |a,r} with r ≥ 0 and two rays Ra and Rb collide for
r ≥ |a− b|.

1.4.11. Classification of points on A1
k. Monomial points are divided to 3 types as

follows: (1) r = 0, (2) r ∈ |k×|, (3) r /∈ |k|. Geometrically, A1
k is a huge tree

and points of type 1 are leaves, points of type 2 are vertices, and points of type
3 lie inside the edges. Moreover, one can safely identify points of type 1 with the
elements of k. They are often called classical or rigid points. We will see that there
is just one more (nasty) type of points, which are also leaves. We will call them
points of type 4.

Theorem 1.4.12. Assume that k is an algebraically closed real valued field and
x ∈ A1

k is a point with the corresponding real semivaluation | | on k[t]. Let r =
infa∈k |t− a|, then

(i) The point x is monomial if and only if the infimum is achieved. Furthermore,
if r = |t− a| for some a ∈ k, then | | = | |a,r.

(ii) The point x is of type 4 if and only if the infimum is not achieved. Fur-
thermore, if in this case ai are such that the sequence ri = |t − ai| monotoni-
cally decreases and tends to r, then Ek(ai, ri) is a nested sequence of discs and
{x} = ∩iEk(ai, ri). In particular, this intersection contains no elements of k in the
intersection.

In addition, A1
k contains a point of type 4 if and only if there exists a family of

nested discs E = {Ek(ai, ri)}i whose intersection contains no elements of k.

Proof. Any polynomial splits to linear factors, hence | | is determined by the values
of |t− a|. If the infimum is achieved, say r = |t− a|, then |t− b| ≤ max(r, |a− b|)
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hence |t− b| = r whenever |a− b| ≤ r. If |a− b| > r, the strong triangle inequality
implies that |t−b| = |a−b|. This proves that | | and | |a,r coincide on linear factors,
and hence they are equal.

If the infimum is not achieved then the valuation is obviously non-monomial.
Furthermore, there is no element a ∈ k in the intersection because otherwise |a−t| ≤
ri for any i and hence |a− t| ≤ r. Furthermore, | | is dominated by the real valued
function | |E = infi(| |ai,ri), which is clearly multiplicative. This implies that
necessarily | | = | |E . Finally, any nested family of discs E induces a semivaluation
| |E as above, and it is easy to see that this semivaluation is not monomial if and
only if the intersection does not contain classical points. �

Remark 1.4.13. If k is not algebraically closed, then the most natural approach
is to factor elements of k[t] in k[t]. This leads to a description of A1

k in terms of
A1
k
, but one has to develop the theory of extension of valuations first. Once this

will have been done, we will show that A1
k = A1

k
/Gal(ks/k) for an analytic k.

1.4.14. Existence of points of type 4. We say that r = infa∈k |t−a|x is the radius of
x with respect to the coordinate t on A1

k. Points of type 4 and radius 0 correspond
to intersections of discs of radii tending to 0. Clearly, such points exist if and only
if k is not complete. Furthermore, k is called spherically complete if there exists no
points of type 4 over k.

Remark 1.4.15. (i) We will later see that an algebraically closed k is not spheri-
cally complete in all “reasonably small” non-trivially valued cases. This might look
surprising, but unless k is locally compact, there is no “good reason” why nested
families of discs should have a common element in k.

(ii) We will see that any valued field can be embedded into a spherically complete
one, but this uses Zorn’s lemma, and there is no natural construction in general.

(iii) We will later show that Berkovich affine line is locally compact. Intuitively,
adding points of type 4 to the set of monomial semivaluations is the most natural
way to achieve this property.

1.4.16. The archimedean case. One can develop a similar archimedean theory using
norms (but not valuations) |

∑
i ait

i|r =
∑
i r
i|ai|. However, as we will show below

in this case one does not obtain anything new because there exist only classical
points and hence A1

C = C. Similarly, A1
R is the quotient of C by the complex

conjugation.

1.5. Classification of archimedean valuations. After some preparations we
will show that any archimedean semivaluation is induced from a homomorphism
to C. Naturally, this reduces to showing that one cannot extend the archimedean
valuation to R(x), and for this it suffices to show that any semivaluation on R[x]
has a non-trivial kernel.

1.5.1. Semivaluations on C[t]. We start with studying the situation on C[t]. The
basic idea is the same as in the non-archimedean case: find the center of a semival-
uation, that is, find a which minimizes |t− a|.

Lemma 1.5.2. Any archimedean semivaluation | | on C[t] has a non-trivial kernel.

Proof. By Ostrowski’s theorem there exists r ∈ (0, 1] such that |a| = |a|r∞ for any
a ∈ C. Define a real-valued function on C by f(a) = |t− a|. Then |f(a)− f(b)| ≤
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|a− b| ≤ |a− b|∞ and hence f is continuous in the usual topology (even Lipschitz).
Since f(0) = |t| and f(a) ≥ |a| − |t|, the function f attains a global maximum for
some a0 inside the disc given by |a| ≤ 2|t|. Replacing t by t − a0 we can assume
that |t| ≤ |t− a| for any a ∈ C. We claim that |t| = 0, and so Ker(| |) = (t).

If |t| > 0, then replacing t by ct with c = |t|−1 we can assume that |t| = 1.
Any monic polynomial f(t) is a product of linear monic factors, hence |f | ≥ 1. In
addition, if a ∈ C is a root of f , then f = (t− a)g and |f | ≥ |t− a| · |g| ≥ |t− a|. In
particular, |t − a| ≤ |tn − an| ≤ 1 + |a|n for any a ∈ C and n ∈ N. If |a| < 1 then
tending n to infinity we obtain that |t − a| = 1. Since we can replace t by t − a,
we have actually proved that if |t− a| = 1 then |t− b| = 1 for any b ∈ C such that
|a−b| < 1. Therefore, |t−a| = 1 for any a ∈ C, while the triangle inequality implies
that |t − a| tends to infinity as |a| tends to infinity. The contradiction concludes
the proof. �

1.5.3. Semivaluations on R[t]. Probably, the most natural way to extend this result
to R[t] is by extending the semivaluation, but the following more technical approach
is faster. The idea is to just extend the above argument to irreducible quadratic
polynomials.

Lemma 1.5.4. Any archimedean semivaluation | | on R[t] has a non-trivial kernel.

Proof. As in the proof of Lemma 1.5.2, |t−a| attains its minimum C on R, and we
can assume that C > 0. Setting |t| = r we have that |t2 + at+ b| ≥ |at+ b| − |t2| ≥
C|a|−r2 and |t2 +at+b| ≥ |b|−r2−r|a|. It follows that |t2 +at+b| tends to infinity
when |a|+ |b| tends to infinity, and hence attains its minimum C2 on a polynomial

t2 + a0t + b0. Setting c = max(C−1, C
−1/2
2 ) and replacing t by ct we achieve that

|f | ≥ 1 for monic polynomials of degree 1 and 2, and there exists such an f0 with
|f0| = 1. Since any monic polynomial g is a product of linear and quadratic ones,
this also implies that |g| ≥ 1.

Now, if f0 is linear, then the same argument as in Lemma 1.5.2 concludes the
proof. So, assume that |t−a| > 1 for any a ∈ R. In particular, |f | > 1 for quadratic
reducible polynomials, and hence f0 is quadratic irreducible. By a linear change of
coordinate we can assume that f0 = t2+b2. We claim that in this case |t2+(b+c)2| =
1 for any c ∈ R with |c| < 1. Proving this will conclude the proof because using
this iteratively one obtains that |t| = 1, yielding a contradiction. Note that (b+ c)i
is a root of the complex polynomial h(t) = (t − bi)n − (ci)n, hence the real monic
polynomial hh is divisible by t2 + (b+ c)2 and we obtain that |hh| ≥ |t2 + (b+ c)2|.
Expanding the expression for hh one obtains that hh = (t2 + b2)n + 2cnφ(t) + c2n

for a monic polynomial φ(t). In particular, |hh| ≤ 1 + |2cn| + |c2n| and tending n
to infinity we obtain that |t2 + (b+ c)2| ≤ 1, as required. �

We preferred the above argument because we do not know a too simple proof
that valuations can be extended. In these notes, the archimedean case will just
follow from the classification, and in the non-archimedean one we will use valuation
rings and an algebraic technique.

Exercise 1.5.5. Trying to find a simple proof of the fact that any semivaluation | |
on R[x] extends to a semivaluation | |C on C[x] we came up with the following wrong
argument. Find the mistake: the function | |C := |ff |1/2, where f is the complex
conjugate, is multiplicative. So, we should only prove that |f + g|C ≤ |f |C + |g|C,
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that is, |N(f) + N(g) + fg + fg|1/2 ≤ |N(f)|1/2 + |N(g)|1/2. Taking squares we
obtain that this is equivalent to

|N(f) +N(g) + fg + fg| ≤ |N(f)|+ |N(g)|+ 2|N(f)N(g)|1/2,
and the latter follows from the observation that

|fg + fg| ≤ |gf |+ |fg| = 2|N(f)N(g)|1/2.

Remark 1.5.6. In fact, the same argument would imply that the complex valuation
on k = Q[

√
−2] extends to K = Q[

√
−2, i] by the same formula. The latter is wrong

because although a2 + b2 has no non-trivial zeros in k, it can be arbitrarily small

with respect to min(|a|, |b|). This is also related to the facts that K embeds into k̂
and there are two extensions of the valuation to K corresponding to the conjugate

embeddings of K into k̂. We will later see the same phenomenons in the non-
archimedean situation.

1.5.7. Second Ostrowski’s theorem. Now we can finally classify all archimedean val-
uations.

Theorem 1.5.8. (i) R and C are the only complete archimedean real valued fields,
and the valuation is of the form | |r∞.

(ii) Any archimedean semivaluation | | on a ring A is induced from | |r∞ via a
homomorphism i : A→ C, and | | is a valuation if and only if i is an embedding.

Proof. Part (ii) follows from (i) via Lemma 1.4.4. To prove (i) assume that K is a
complete archimedean field. By Ostrowski’s theorem, K contains R and the valua-
tion on R is | |r∞. By Lemma 1.5.4, K does not contain transcendental extensions
of R, hence either K = R or K = C. In the second case, we should also check
that if a valuation | | on C extends | |r∞ on R, then | | = | |r∞. It suffices to prove

that |a| = |a| for any a ∈ C, since then |a| = |aa|r/2∞ = |a|r∞. Moreover, it suffices
to deal with the case when |a| = 1. By compactness of the unit circle S = e2πiR,
the function f(a) = |x/x| attains its maximum at some a ∈ S. If f(a) > 1, then
f(a2) = f(a)2 > f(a), which is impossible. So f(a) ≤ 1, and in the same way
f(a) ≥ 1. �

Remark 1.5.9. A stronger and somewhat more famous theorem of Gel’fand-Mazur
states that any normed C-algebra which is a field coincides with C. In fact, Sta-
nis law Mazur even proved that R, C and the quaternions H are the only normed
(not necessarily commutative) division R-algebras. One proof can be found in
[Bou72, VI.6.4]: unlike the case of valued fields we have studied, analysis of com-
plete normed fields easily reduces to normed fields over C. As in our argument, this
case is done by studying mina |t−a|, but the argument requires more care. We will
later deduce classification of normed fields from the second Ostrowski’s theorem
and Berkovich’s theorem on analytic spectra.

1.5.10. Archimedean affine lines. As a corollary we now obtain the expected de-
scription of archimedean affine lines.

Corollary 1.5.11. One has that A1
C = C and A1

R = C/σ, where σ is the complex
conjugation.

Proof. These are precisely the isomorphism classes of homomorphisms C[x] → C
and R[x]→ C. �
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1.6. Hensel’s lemma.

1.6.1. Reduction of seminormed rings. If A is a non-archimedean seminormed ring,
then the closed unit ball A◦ := {a ∈ A| |a| ≤ 1} is a subring and the open unit

ball A◦◦ := {a ∈ A| |a| < 1} is an ideal in A◦. The quotient Ã := A◦/A◦◦ is called

the reduction of A. If k is a field then k̃ is a field, called the residue field of k. The

image of a ∈ A◦ in Ã is called the reduction of a and denoted ã.

Exercise 1.6.2. (i) Check that, indeed, if k is a field, then k̃ is a field.
(ii) Show that the seminorm on A is multiplicative (resp. power-multiplicative)

if and only if Ã is a domain (resp. a reduced ring).

1.6.3. Residue field and group of values. For any real-valued field k the group of

values |k×| ⊆ R×>0 and the residue field k̃ are the two most important invariants
of k. The ring k◦ is often called the ring of integers of k. One says that k is

of equal characteristic if char(k) = char(k̃), for example, this is the case with

k((t)). Otherwise, char(k) = 0, char(k̃) = p > 0 and one says that k is of mixed
characteristic. Characteristics divide non-archimedean fields into three classes. We
will later see that the Galois theory in the equal characteristic zero case is relatively
simple, while it is very complicated and of comparable difficulty in the two cases of
residual characteristic zero.

1.6.4. Hensel’s lemma. In the following result we provide K[t] with the Gauss val-
uation. In particular, (K[t])◦ = K◦[t] and the reduction of a polynomial

∑
i ait

i ∈
K◦[t] is simply

∑
ãit̃

i. Here is an extremely important and famous result going
back to Hensel (in the p-adic case), Kürschák and Ostrowski. We start with a gen-
eral version and then deduce corollaries, including those that are often also referred
to as Hensel’s lemma.

Theorem 1.6.5. Let K be an analytic non-archimedean field and let f(t) ∈ K◦[t]
be a polynomial over K whose coefficients are integral. Then any factorization

f̃ = gh of the reduction f̃ ∈ K̃[t̃] with (g, h) = 1 lifts to a factorization f = gh in
K◦[t] such that g̃ = g and deg(g) = deg(g̃). In addition, if g is monic, then one
can take g to be monic.

Proof. Let n = deg(f), m = deg(g) and l = deg(h), in particular, n ≥ l +m. The
additional claim is obvious: if f = gh are as in the formulation and g is monic, then
g = atm + . . . with ã = 1 and the decomposition f = (a−1g)(ah) is as required.
Let us prove the main claim. It is common in the theory of complete fields to solve
problems by successive approximations. In “ramified” problems one has to start
with a good enough approximation, but in the simplest cases like ours, any initial
approximation works well. So choose any lifts g0, h0 ∈ K◦[t] of g and h of degrees
m and l, respectively.

First, we claim that there exist r < 1 such that for any polynomial φ(t) ∈ K[t]
with deg(φ) ≤ n there exist u, v ∈ K[t] with |u| ≤ |φ|, |v| ≤ |φ|, deg(v) < m,
deg(u) ≤ n−m and such that the inequality |φ− ug0 − vh0| ≤ r|φ| holds. Indeed,

since (g, h) = 1, for any natural i there exists a decomposition t̃i = uig + vih in

K̃[t̃] such that deg(vi) < m, and hence for i ≤ n one also has that

deg(ui) ≤ max(i, l +m− 1)−m ≤ n−m.
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Taking lifts ui, vi ∈ K◦[t] with deg(ui) = deg(ui), deg(vi) = deg(vi) we obtain
that ri := |ti − uig0 − vih0| < 1 and then r = maxi≤n(ri) is as required, since for
φ(t) =

∑n
i=0 ait

i one can take u =
∑n
i=0 aiui and v =

∑n
i=0 aivi. Furthermore, the

same claim holds for any g′, h′ ∈ K[t] such that |g′ − g0| ≤ r and |h′ − h0| ≤ r
because one can choose the same u, v as for g0, h0.

Now, let us deduce the theorem from the claim. The polynomial φ0 = f − g0h0

satisfies |φ0| < 1, hence enlarging r we can assume that |φ0| < r < 1. Using the
above claim we inductively choose ud, vd ∈ K[t] such that |φd−udgd−vdhd| ≤ r|φd|,
and set gd+1 = gd + vd, hd+1 = hd + ud and φd+1 = f − gd+1hd+1. Then

|φd+1| = |(φd − udgd − vdhd)− udvdφ2
d|

and by induction on d we obtain that |ud| < rd, |vd| < rd (in particular, |gd −
g0| < r and |hd − h0| < r, and the claim applies to gd, hd) and |φd+1| < rd+1.
Moreover, since deg(vd) < m and deg(ud) ≤ n−m, the series g0 +v0 +v1 + . . . and
h0 +u0 +u1 + . . . converge to polynomials g and h of degrees at most m and n−m,
and we have that f − gh = limφd = 0. It remains to note that |g − g0| < r and

|h− h0| < r, hence the reductions g̃ = g̃0 = g and h̃ = h̃0 = h are as required. �

Remark 1.6.6. The case when the valuation is discrete, is slightly easier because
one should only worry for iterative approximations modulo (πn), where K◦◦ = (π).
We will illustrate this in Exercise 1.6.14 below. In our proof, we had to care that
the approximation will be improved by a fixed factor r < 1, and the choice of this
r required some care.

1.6.7. Corollaries. Now, let us work out corollaries and particular case of general

Hensel’s lemma. Taking g = f̃ and h = 1 we obtain

Corollary 1.6.8. If K is an analytic non-archimedean field, then any polynomial
f ∈ K◦[t] splits in K◦[t] as f = gh, where |h− 1| < 1 and deg(g) = deg(g̃).

Remark 1.6.9. (i) Based on this corollary we will easily show in the sequel that
the valuation of K extends to the algebraic closure Ka. This allows the following
geometric interpretation of this result. If |a| ≤ 1 then |h(a)| = 1, in particular,
all roots of h satisfy |a| > 1. On the other side, g(t) = ant

n + . . . with |an| = 1,
and it follows easily that all roots of g satisfy |a| ≤ 1. So this factorization simply
separates roots of f in the unit disc Ek(1) from the roots in its complement (which
can also be viewed as an open disc around infinity). This also indicates that h

should be invertible on Ek(1), and indeed h−1 =
∑
i(1− h)i in K̂[T ]. Finally, it is

worth to note that this splitting is actually an instance of the Weierstrass division
theorem for functions on the unit disc.

(ii) Even more generally, the geometric meaning of Hensel’s lemma is that the
separation of roots of f ∈ K◦[t] by irreducible factors (or by conjugation over K) is
finer than the separation to open discs of radius one. Indeed, assume for simplicity

that f̃ =
∏
i gi with gi = (t̃− ãi)ni and distinct ãi, for example, this happens when

K̃ is algebraically closed. By Hensel’s lemma the factorization lifts to f = h
∏
i gi

with monic gi of degrees ni, and it is easy to see that all roots of gi are contained
in the open disc around ai of radius 1.

Another immediate corollary is obtained by restricting to the case of monic
polynomials, because in this case the degree is preserved under reduction.
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Corollary 1.6.10. If K is an analytic non-archimedean field and f(t) ∈ K◦[t] is

monic, then any factorization f̃ = gh in K̃[t̃] with monic and co-prime g and h
lifts to a factorization f = gh in K◦[t] with monic g, h.

Remark 1.6.11. This monic version of Hensel’s lemma is more usual. Our more
general variant is equivalent to the combination of the monic version and the Weier-
strass division. This formulation of the non-monic version (with a different proof)
can be found, for example, in [BGR84, Proposition 3.3.4/3].

Perhaps here is the most classical (and basic) version of Hensel’s lemma, which
claims that simple roots of the reduction polynomial lift to K uniquely.

Corollary 1.6.12. If K is an analytic non-archimedean field, f(t) ∈ K◦[t] is a

polynomial with integral coefficients and a is a simple root of the reduction f̃(t̃),
then there exists precisely one root a of f such that |a| ≤ 1 and ã = a.

Proof. By our assumption f̃ = (x−a)h, and a is not a root of h. By Theorem 1.6.5,
we obtain a factorization f = (x− a)h, with ã = a, that is, a is a root of f which

lifts ã. If there exists another lifting α, then h(α) = 0 and hence 0 = h̃(α̃) = h̃(a),
yielding a contradiction. �

Remark 1.6.13. The fact that there is a unique lifting explains why in our (and
any other) proof of Hensel’s lemma one can start with an arbitrary initial lifting
a′ of ã. If two liftings would exist (as happens in “ramified problems”), then one
should have started with a good enough approximation which distinguishes one
solution from the others.

Exercise 1.6.14. 2 For the sake of comparison and illustration let us work out a
(technically) simpler proof in the case when K is discrete valued with uniformizer

π and a is a simple root of f̃ . Complete details in the following argument: taking
a lift a1 ∈ K◦ of a we achieve that |f(a1)| < 1. By induction, we assume that
|f(an)| ≤ |πn| and we should find an+1 = an − un such that |un| ≤ |πn| and
|f(an+1)| ≤ |πn+1|. Using the Taylor expansion f(an−un) = f(an)−f ′(an)un+. . .

it suffices to find un ∈ πnK◦ such that f(an)−f ′(an)un ∈ πn+1K◦. Since f̃ ′(a) 6= 0
and ãn = a by induction, we have that |f ′(an)| = 1. So, we can simply take

un = f(an)
f ′(an) .

Remark 1.6.15. (i) Clearly, the above method is just the non-archimedean version
of the classical Newton-Raphson method. In particular, its convergence is faster
than what we showed – the mistake behaves as |u2

n|, so one can essentially double
n on each step.

(ii) Another interesting observation is that finding successive approximation al-
lows to linearize problem – one just has to solve linear equations modulo πn.

Finally, we will need the following very important corollary.

Corollary 1.6.16. If K is an analytic non-archimedean field and f(t) = td +
a1t

d−1 + · · · + ad is an irreducible monic polynomial such that ad ∈ K◦, then
f(t) ∈ K◦[t].

2Should put this before the proof of Hensel’s lemma and motivate the proof given where.
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Proof. The corollary holds if and only if r = maxi |ai| ≤ 1. Assume that this is
not the case, and take the minimal i such that |ai| = r. Then the polynomial
g(t) = a−1

i f(t) lies in K◦[t] and its reduction is a monic polynomial of degree
i > 0. By Corollary 1.6.8, f(t) = u(t)h(t) with deg(h) = i, which contradicts the
irreducibility of f . �

Remark 1.6.17. (i) The non-monic Hensel’s lemma was essentially used in the
proof.

(ii) This result was used already by Kürschák in 1913 to extend non-archimedean
valuations to algebraic extensions, and we will use the same argument. In fact,
Kürschák did not prove this claim, but remarked that it is proved as the analogous
result in Hensel’s book about p-adic numbers.

1.7. Extensions of valuations for complete fields.

1.7.1. Normed vector spaces. A normed vector space over a valued field k is a k-
vector space V provided with a norm ‖ ‖ such that ‖av‖ = |a|‖v‖ for any a ∈ k and
v ∈ V . Seminormed vector spacs are defined similarly. If k is non-archimedean,

then we automatically consider only non-archimedean k-norms on V . Note that V̂

is a normed vector space over k̂.
A typical example is the L∞-norm defined by the condition that there exists a

basis {vi} such that ‖
∑
i aivi‖ = maxi |ai|‖vi‖ for any ai ∈ k. Since we are mainly

interested in the non-archimedean case, we will say that such a norm Cartesian and
the basis {vi} is orthogonal. More generally, a basis is r-orthogonal for r ∈ (0, 1] if
‖
∑
i aivi‖ ≥ rmaxi |ai|‖vi‖.

Lemma 1.7.2. If V is a finite dimensional vector space over a valued field k,
then any k-norm on V is bounded by a Cartesian norm and any two Cartesian

norms on V are equivalent. In addition, if V = Spank(v1, . . . ,vn), then V̂ =
Spank̂(v1, . . . ,vn).

Proof. The boundedness is obvious since ‖
∑n
i=1 aivi‖ ≤ nmaxi |ai|‖vi‖ for any

choice of the basis. If ‖ ‖ and ‖ ‖′ are Cartesian norms corresponding to two bases
and A ∈ GLn(k) is the transition matrix between the bases, then it is easy to see
that ‖ ‖ ≤ C‖ ‖′ for C =

∑n
i,j=1 |aij |. �

In the finite-dimensional case, the dimension can only drop under completion.

Lemma 1.7.3. If a finite dimensional normed vector space over a valued field k is

spanned by a set v1, . . . ,vd, then V̂ is spanned over k̂ by the same set. In particular,

dimk(V ) ≥ dimk̂(V̂ ).

Proof. Set v = v1 and U = Spank(v2, . . . ,vd). We can assume by induction on

dim(V ) that v2, . . . ,vd span Û , and it remains to prove that Û + k̂v = V̂ . If v ∈ Û
this is obvious, hence we can assume that there exists r > 0 such that ‖v − u‖ > r
for any u ∈ U . It follows that ‖av + u‖ ≥ r|a| for any a ∈ k and u ∈ U . Given

an element v̂ ∈ V̂ find a sequence wi of elements of V converging to v̂. Writing
wi = aiv + ui with ai ∈ k, ui ∈ U we obtain from this inequality that (ai) is a
Cauchy sequence in k, and hence (ui) is a Cauchy sequence in U . Taking the limits

â ∈ k̂ and û ∈ Û we obtain that v̂ = âv + û, as required. �
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A typical example of a norm non-equivalent to a Cartesian one is obtained as

follows. Assume that k is not complete and choose a ∈ k̂ \ k. Then V = k ⊕ ak
embeds into k̂ and the induced norm is easily seen to be non-Cartesian. In addition,

in this case the dimension drops under completion since V̂ = k̂. The following
important result provides useful criteria for a norm to be Cartesian and shows that
the above is essentially the only mechanism for constructing norms non-equivalent
to Cartesian ones.

Theorem 1.7.4. Let V be a finite dimensional normed vector space over a valued
field k. Then the following conditions are equivalent:

(i) ‖ ‖ is equivalent to a Cartesian norm.
(ii) V possesses an r-orthogonal basis for some r ∈ (0, 1].
(iii) Any basis of V is r-orthogonal for some r ∈ (0, 1].

(iv) The inequality dimk(V ) ≥ dimk̂(V̂ ) is an equality.

Proof. Let b = {vi} be a basis and let ‖ ‖b be the Cartesian norm defined by b.
Then automatically ‖ ‖ ≤ ‖ ‖b, and an inequality r‖ ‖b ≤ ‖ ‖ holds if and only if b is
r-orthogonal with respect to ‖ ‖. This proves that (i)⇐⇒(ii), and by Lemma 1.7.2,
we also obtain that (i)⇐⇒(iii). It now suffices to prove that (iii)⇐⇒(iv).

Using induction on d = dim(V ) we can assume that d > 0 and the theorem
holds for smaller values of d. Set v = v1 and U = Spank(v2, . . . ,vd). By induction,

dimk̂(Û) < d − 1 if and only if the basis v2, . . . ,vd of U is not r-orthogonal for

any r > 0. Clearly, in this case dimk̂(V̂ ) < d and b is not r-orthogonal for any
r > 0. So, the equivalence holds in this case, and we can assume in the sequel that

dimk̂(Û) = d− 1, and hence also v2, . . . ,vd is r-orthogonal for some r > 0. In this

case dimk̂(V̂ ) < d if and only if v ∈ Û . In the latter case, for any s > 0 there exist
a2, . . . ,ad such that ‖v + a2v2 + · · · + advd‖ < s, and hence b is not s-orthogonal.
Conversely, assume that b is not s-orthogonal for any s ∈ (0, r). Choose a vector
x = a1v1 + . . . advd such that ‖x‖ < smaxi ‖aivi‖. Since v2, . . . ,vd is r-orthogonal,
this implies that a1 6= 0 and dividing by a1 we can assume that x = v+ a2v2 + . . . .
Tending s to 0 we obtain a sequence us ∈ U such that ‖v−us‖ < s. It follows that

us is a Cauchy sequence in U and hence v ∈ Û . �

As a corollary, we obtain the following important result, which is classical in the
archimedean setting. Usually one proves the latter using local compactness, which
is a stronger condition than completeness of k.

Corollary 1.7.5. If V is a finite dimensional normed vector space over an analytic

field k, then V = V̂ and the norm is equivalent to a Cartesian one.

Proof. Since V → V̂ is injective we obtain that V = V̂ by Lemma 1.7.3, and then
the norm is equivalent to a Cartesian one by Theorem 1.7.4. �

1.7.6. Extension of valuations. Now we are going to use Hensel’s lemma and unique-
ness of norms to prove the following foundational result. As usually, by the norm
N r(α) of an element α algebraic over K we mean the product of all its conjugates
with correct multiplicity in case of inseparable extensions.

Theorem 1.7.7. Assume that K is an analytic valued field and L/K is an algebraic
field extension. Then there exists a unique way to extend the valuation | | of K to
a valuation | |L on L. In fact, for an element α ∈ L of degree d it is given by the
formula |α|L = |N r(α)|1/d.
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Proof. The archimedean case is covered by the second Ostrowski’s theorem, so we
assume that K is non-archimedean. To prove existence we should check that | |L
defined by the above formula is a valuation. Clearly it is multiplicative and coincides
with | | on K, so we should only check that |x+ y|L ≤ |x|L + |y|L. Dividing by x or
y we reduce this claim to the following particular case: if α ∈ L satisfies |α|L ≤ 1,
then |1 + α|L ≤ 1. Let f(t) = td + a1t

d−1 + · · ·+ ad be the minimal polynomial of
α. By our assumption ad = (−1)dN r(α) satisfies |ad| ≤ 1, and hence |ai| ≤ 1 for
any i by Corollary 1.6.16. Since (−1)dN r(α+ 1) is the free coefficient of f(t− 1),
we have that |N r(α + 1)| = |1 − a1 + a2 − . . . | ≤ 1 and thus |N r(α + 1)| ≤ 1, as
required.

To prove uniqueness assume, to the contrary, that | |′L is another valuation on
L extending | |. In particular, there exists α ∈ L such that |α|L 6= |α|L′ . Since
both | |L and | |L′ are K-norms on L, their restrictions onto K(α) are equivalent
by Corollary 1.7.5. Thus, there exists C > 0 such that C−1|a|L ≤ |a|′L ≤ C|a|L for
any a ∈ K(α). This contradicts the obvious fact that |αd|L/|αd|′L = (|α|L/|α|′L)d

tends to either zero or infinity. �

By the theorem the valuation of an analytic field K extends to the algebraic

closure Ka uniquely. In the sequel, writing K̂a we always mean completing K with

respect to this valuation. Similarly to Ka, the completed algebraic closure K̂a is
unique up to an automorphism. One can also phrase this as follows.

Corollary 1.7.8. If K is an analytic field, then K̂a is the minimal analytic exten-
sion of K containing the algebraic closure of K. Namely, any embedding of analytic
fields K ↪→ L such that L contains Ka factors into a composition of embeddings of

valued field K ↪→ K̂a ↪→ L.

We record another immediate corollary, which could also be proved in a simple
straightforward way.

Corollary 1.7.9. If l/k is an algebraic extension of real valued fields and K is
trivially valued, then l is trivially valued.

1.7.10. Preservation of completeness. The next natural question is whether an ex-
tension of a complete field must be complete.

Lemma 1.7.11. Assume that K is an analytic field and L/K a finite extension.
Then L is complete with respect to the valuation extending that of K.

Proof. Since the valuation on L is a K-norm, this follows from Corollary 1.7.5. �

The case of infinite extensions is outlined in the exercise.

Exercise 1.7.12. Assume that K is an analytic field with a non-trivial valuation
and L/K is an infinite algebraic extension.

(i) Assume that the degree of elements of L over K is unbounded (for example,
this is the case when L/K is separable). Show that L is not complete.

(ii) Give examples when the degree of elements is bounded and L is complete or
incomplete. (Hint: if [K : Kp] = ∞ then L = K1/p is an infinite extension and L
is complete and L/K contains incomplete subextensions.)
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1.7.13. Bounding the roots. Our next goal is to show that K̂a is, in fact, alge-
braically closed. For this we will show that roots of polynomials depend contin-
uously on the coefficients, and the first task is to bound them is terms of the
coefficients. As usually, we provide K[t] with the Gauss norm.

Lemma 1.7.14. Assume that f is a monic polynomial over a non-archimedean
valued field k and a ∈ k is a root of f . Then |a| ≤ |f |.

Proof. Assume, to the contrary, that |a| > |f | and note that |f | ≥ 1. Writing
f = tn+

∑n
i=1 ait

n−i we obtain that |an| > |aian−1| ≥ |aian−i| for any i, and hence
|f(a)| = |an|. Since |a| ≥ 1 we obtain that a is not a root of f . �

Corollary 1.7.15. Assume that f, g are monic polynomials of degree n over a non-
archimedean valued field k and a ∈ k is a root of f . Then |g(a)| ≤ |f − g| · |f |n−1.

Proof. Assume that f = tn +
∑n
i=1 ait

n−i and g = tn +
∑n
i=1 bit

n−i, then

|g(a)| = |g(a)−f(a)| ≤ max
1≤i≤n

|ai−bi| · |a|n−i ≤ max
1≤i≤n

|f−g| · |f |n−i = |f−g| · |f |n−1.

�

1.7.16. Continuity of roots. Now we can prove that roots of f(t) vary continuously
with it.

Theorem 1.7.17. Assume that f ∈ K[t] is a monic polynomial of degree n over a
non-archimedean analytic field K and ε > 0 a positive number. If g ∈ K[t] is monic
of degree n and such that |f − g| < min(1, εn|f |1−n), then for any root b ∈ Ka of g
there exists a root a ∈ Ka of f such that |a− b| < ε.

Proof. Note that |f | = |g| since |f − g| < 1 ≤ |f |. If a1, . . . ,an ∈ Ka are the roots
of f , then by Corollary 1.7.15

n∏
i=1

|ai − b| = |f(b)| ≤ |f − g| · |g|n−1 = |f − g| · |f |n−1 < εn.

So, for some choice of a = ai we necessarily have that |a− b| < ε. �

One can easily extend the above results to the archimedean case after replac-
ing the Gauss norm by its archimedean (non-multiplicative) analogue |

∑
i ait

i| =∑
i |ai|.

Exercise 1.7.18. Adjust formulations and proofs of Lemma 1.7.14, Corollary 1.7.15
and Theorem 1.7.17 to the archimedean case. For example, in the corollary one
should relax the bound to |g(a)| ≤ n|f − g| · |f |n−1.

1.7.19. Completed algebraic closure. Now, we can finally prove that algebraic closed-
ness is preserved by completions. In fact, even slightly more is true since insepara-
bility of a polynomial is a closed condition which is destroyed by small deformations.

Corollary 1.7.20. If k is a separably closed real valued field with a non-trivial

valuation, then the completion k̂ is algebraically closed.

Proof. Set K = k̂. It suffices to prove that any monic polynomial f ∈ K[t] has
a root in K. Let d = deg(f) and a1, . . . ,ad ∈ Ka the roots of f . Since k is
dense in K, we can choose a family of monic polynomials fn ∈ k[t] such that
|f − fn| < min(1, 1

nd |f |1−d). Moreover, we can achieve that the linear terms of
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fn are non-zero (this is the only place where we use that the valuation is non-
trivial). The non-vanishing of the linear term implies that fn has a separable
root bn ∈ ks = k. By Theorem 1.7.17 for each n there exists i = i(n) such that
|bn−ai| < 1

n . In particular, at least one ai satisfies infinitely many such inequalities
and hence lies in the closure of k. �

Combining this with Corollary 1.7.8 we can now characterize the analogue of
algebraic closure in the category of analytic fields.

Corollary 1.7.21. If K is an analytic field, then K̂a is the minimal algebraically
closed analytic extension of K. Furthermore, if the valuation is non-trivial, then

K̂s = K̂a.

1.7.22. Examples. The completed algebraic closure Q̂ap is usually denoted Cp. Con-
structing it and proving that it is algebraically closed was one of main achievements
of Kürschák work in 1913.

Lemma 1.7.23. The field Cp is the minimal algebraically closed analytic field of
mixed characteristic. Moreover, for any analytic algebraically closed field K of
mixed characteristic there exists a unique embedding of analytic fields Cp ↪→ K.

Proof. By Ostrowski theorem the valuation of K restricts to | |rp on Q, hence the
embedding Q ↪→ K factors uniquely through Qp. Since K is algebraically closed it
factors uniquely through Cp. �

The minimal analytic algebraically closed equicharacteristic fields are Fap and
Qa with trivial valuations. For non-trivial valuations there is the following weaker
minimality claim, where the embedding is not unique at all.

Lemma 1.7.24. If K is an analytic algebraically closed field K of equal charac-
teristic and the valuation is non-trivial, then there exists an embedding of valued

fields F̂((t))a ↪→ K, where F is a trivially valued prime field.

Proof. By Ostrowski’s theorem the valuation of K is trivial on the prime field
contained in K. So, we can simply take any t ∈ K with 0 < |t| < 1. �

To obtain a broader picture let us also outline some results that will be proved
later.

Remark 1.7.25. (i) Let k be a trivially valued field and K = k((t)). After
developing a theory of transcendental extensions we will show that char(k) = 0

if and only if any k-endomorphism of the analytic field K̂a is an isomorphism. In

particular, ̂Fp((t))a contains elements x transcendental over Fp((t)) such that the

embedding ̂Fp((x))a ↪→ ̂Fp((t))a is not an isomorphism. This surprising fact was
independently rediscovered few times, and also its converse has a story of “proofs”.

(ii) After developing a basic ramification theory we will prove that if k = ka and
char(k) = 0, then the Galois theory of K = k((t)) is very simple: Ka = K(t1/∞) :=

∪nK(t1/n). In particular, K̂a consists of sums
∑∞
i=0 ait

qi , where ai ∈ k and (qi) is
a strictly increasing unbounded set of rational numbers.

(iii) If char(k) > 0, then the Galois closure of K is much larger than K(t1/∞),
and cannot be described so explicitly. The Galois theories of Qp and Fp((t)) are
complicated and similar in many aspects. In particular, there is a natural isomor-
phism between the the absolute Galois groups of the fields Fp((t)) (or its perfection

∪nFp((t1/p
n

))) and ∪nQp(ξpn), where ξpn is a primitive root of unity of order pn.



VALUED FIELDS 19

Exercise 1.7.26. (i) Show that any analytic field ̂k((t1/∞)) is not spherically
complete.

(ii) Let k be a field and let Γ ⊆ R be a divisible subgroup, for example, Q. Let
K = k((tΓ)) be the set of well-ordered formal series

∑
i∈I ait

i, where ai ∈ k× and I
is a well-ordered subset of Γ (i.e. any finite strictly decreasing subset of I is finite).
In particular, 0 ∈ K is the empty sum. Provide K with the natural structure of
a field and a non-archimedean real valuation such that |k×| = 1 and |tγ | = rγ for
a fixed r ∈ (0, 1). (The main point is to show that multipication involves only
finite sums and preserves well-orderedness). Show that K is a spherically complete
analytic field. (In fact, we will later show that if k is algebraically closed then K is
also algebraically closed.)

(iii)** Prove claim (i) of the remark.

1.7.27. Krasner’s lemma. Assume now that K is an analytic field and α ∈ Ka is
algebraic over K. Let α = α1, α2, . . . ,αd be the set of all roots of the minimal
polynomial of α. The number rα,k = min2≤i≤d |α − αi|, which is well defined by
Theorem 1.7.7, will be called the splitting radius of α, and we will omit k from the
notation when possible. Clearly, rα = 0 if and only if α is not separable over k.
The following famous result is called Krasner’s lemma, though it is essentially due
to Ostrowski.

Theorem 1.7.28. Assume that K/k is an extension of non-archimedean real valued
fields and K is complete, and provide Ka with the valuation extending that of K.
Assume further that α ∈ Ka is algebraic over k and K contains an element α0 such
that |α− α0| < rα. Then α ∈ K.

Proof. Clearly rα > 0 and hence α is separable over k. We should prove that the
minimal polynomial of α over K is linear. If f(t) denotes this polynomial, then
f(t+α0) is an irreducible polynomial over K which vanishes at α−α0 and has all
other roots of the form αi − α0 for i > 1. On the other hand, all roots of f(t+ α0)
are of the same absolute value by Theorem 1.7.7, while |α1 − α0| < r ≤ |αi − α0|
for i > 1. This implies that f is necessarily linear. �

Remark 1.7.29. (i) In fact, in the classical formulation one only considers the
case when K/k is algebraic, which is equivalent to the case K = k(α0).

(ii) The geometric meaning of Krasner’s lemma is that the Berkovich disc E in
A1
k with center at α and of radius smaller than rα is defined over the extension

k(α). In particular, k(α) ⊆ H(x) for any point x ∈ E, including the (non-classical)
points with non-algebraic H(x)/k.

In our proof that algebraic closedness is preserved by completions we used a
relatively implicit convergence process. Krasner’s lemma provides a much better
control. In fact, for any separable monic polynomial f it provides an explicit
threshold δf so that any smaller deformation of f has the same Galois theory.

Corollary 1.7.30. Assume that K is an analytic field and f ∈ K[t] is a separable
monic polynomial with roots a1, . . . ,an ∈ Ka, and set rf = min1≤i<j≤n |ai−aj | and
δf = min(1, rnf |f |1−n). Then for any monic polynomial g such that |f−g| < δf one

can order the roots b1, . . . ,bn ∈ Ka of g so that K(ai) = K(bi) for any i ∈ {1, . . . ,n}.

Proof. Combine Corollary 1.7.15 and Theorem 1.7.28. �
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Remark 1.7.31. Naturally, the minimal distance rf between the roots affects the
deformation threshold. For example, we know that the statement fails for insepa-
rable polynomials because they can be approximated by separable ones with any
precision. This situation is an instance of a general principle that smooth objects
are stable under small deformations, while singularities can be destroyed/changed
by arbitrarily small ones.

Exercise 1.7.32. Use Krasner’s lemma to prove that Cp is not spherically com-
plete.

1.8. Extension of valuations: the non-complete case. In this section we will
use the theory developed in the complete case to study extensions of non-complete
real valued fields. The main novelty is that extension of a valuation to l/k is not
unique anymore, and we will see that they are parameterized by conjugacy classes

of embedding l ↪→ k̂a.

1.8.1. The set of extensions. Let k be a real valued field, l/k an algebraic exten-
sion, and Vl/k the set of real valuations on l extending the valuation of k. Any
embedding of k-fields l ↪→ Ka induces a k-valuation on l, hence we obtain a map
φ : Homk(l,Ka) → Vl/k. Moreover, any σ ∈ Aut(Ka/K) acts on Ka by isome-
tries because the extension of the valuation to Ka is unique, so the map φ factors
through Homk(l,Ka)/Aut(Ka/K).

Theorem 1.8.2. Assume that k is a real valued field with K = k̂, and l/k is an
algebraic extension. Then there always exists an extension of valuation to l, each
such extension is induced by a k-embedding l ↪→ Ka, and two embedding induce the
same valuation if and only if they are conjugate over K. Equivalently, we have a
natural bijection of non-empty sets Homk(l,Ka)/Aut(Ka/K) = Vl/k.

Proof. Clearly, Homk(l,Ka) is non-empty, hence Vl/k is non-empty too.

If l is provided with a k-valuation, then the analytic field L = l̂ is the completion

of its subfield Kl. In particular, L embeds into K̂a as a real valued field, and
we obtain that the valuation on l is induced from the corresponding embedding
l ↪→ Ka. This proves that φ is onto.

It remains to show that if two embeddings i : l ↪→ Ka and j : l ↪→ Ka induce

the same valuation on l, then they are conjugated over K. Letting L = l̂ denote
the completion of l with respect to the induced valuation, we obtain embeddings

î : L ↪→ K̂a and ĵ : L ↪→ K̂a. Since K̂a is the minimal analytic algebraically closed
field containing L, and such a field is unique by Corollary 1.7.21, the identity L = L

extends to an isomorphism σ : K̂a ∼−→K̂a such that ĵ = σ ◦ î. Since i and j coincide
on k, the automorphism σ fixes k and, hence, also K. Therefore σ restricts to a
K-automorphism of Ka which conjugates i and j. �

1.8.3. Conjugation of extensions. Note that the group Aut(l/k) acts on the k-
valuation on the set Vl/k via |x|σ = |σ(x)|.

Corollary 1.8.4. In the situation of Theorem 1.8.2 assume that l/k is normal.
Then the group Aut(l/k) acts transitively on the set of Vl/k.

Proof. Indeed, if l/k is normal, then by the usual Galois theory any two embeddings
of l into any extension of k are conjugated by an element of Aut(l/k). Therefore
Aut(l/k) acts transitively on Homk(l,Ka)/Aut(Ka/K) = Vl/k. �
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Example 1.8.5. A classical example is obtained when k = Q with the archimedean
valuation and l/k is finite. Then any archimedean valuation on l is obtained from
an embedding l ↪→ C and two embeddings induce the same valuation if and only
they are conjugate over R. If l is a Galois extension of Q, then all its archimedean
valuations are either real or complex.

1.8.6. The tensor product formula. Now we would like to reformulate the above
Galois theoretic statement to something more concrete, and a very useful way is to

combine all extensions of the valuation via the tensor product l⊗k k̂. In Galois the-
ory one usually composes subfields of a given field. By an abstract composite lK we
mean a k-field F with k-embeddings l ↪→ F and K ↪→ F such that F is generated
by their images. A general theory of tensor products easily implies that the reduc-
tion A = Red(l ⊗k K) (i.e. the quotient of A by the ideal of nilpotent elements) is
a product of fields

∏n
i=1 Li, where L1, . . . ,Ln are precisely the isomorphism classes

of abstract composites lK. Using this Theorem 1.8.2 can be reformulated for finite
extensions as follows

Theorem 1.8.7. Assume that k is a real valued field with K = k̂, and l/k is
a finite extension. Then the set Vl/k is finite, say Vl/k = {| |1, . . . ,| |n}, and if
Li are the completions of l with respect | |i, then there is natural isomorphism
Red(l ⊗k K) =

∏n
i=i Li of k-algebras.

Proof. Any σ ∈ Homk(l,Ka) gives rise to a composite σ(l)K of l and K, and two
composites are isomorphic as abstract composites if and only if they are conjugate
over K. In addition, σ induces a real valuation | |i on l, and clearly l is dense in
σ(l)K. Since σ(l)K is complete by Lemma 1.7.11, we obtain that σ(l)K = Li. By
Theorem 1.8.2 elements of Homk(l,Ka) induce the same valuation on l if and only
if they are conjugate over K, and this implies that L1, . . . ,Ln with embeddings
l ↪→ Li and K ↪→ Li are precisely all isomorphism classes of abstract composites.
So, general Galois theory implies the theorem. �

1.8.8. The degree formula. Now we can relate the degrees of extensions and bound
the size of Vl/k.

Corollary 1.8.9. Keep assumption of Theorem 1.8.7. Then

[l : k] =

n∑
i=1

di[Li : K],

where di = 1 whenever l/k or K/k is separable, and di are powers of char(k)
otherwise. In particular, there are at most [l : k] extensions of the valuation of k
to l.

Proof. This follows from Theorem 1.8.7 and the following facts about the K-algebra
A = l ⊗k K known from the usual theory of fields: dimk(l) = dimK(A), the
ring A is a product of local Artin rings Ai, where Ai is reduced whenever l/k is
separable, and otherwise Li := Red(Ai) is a field and dimK(Ai) = pndimK(li),
where p = char(k). �

Example 1.8.10. It is the classical fact in number theory that for a number field
l one has that l ⊗ R is the product of s copies of R and t copies of C, where s is

the number of real valuations with l̂ = R (or embeddings of l into R) and t is the
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number of real valuations with l̂ = C (or pairs of conjugate embeddings l ↪→ C). In
particular, s+ 2t = [l : Q].

Exercise 1.8.11. (i) Take F a field of characteristic p and consider K = F ((t))
with the t-adic valuation. Take x = x(t) ∈ F a transcendental element, which is not
a p-th power and let k = F (t, xp) with the real valuation induced from K. Show
that k is a discrete valued field, whose completion is K. Show also that l = F (t, x)
is an inseparable extension of k, there is only one extension of the valuation to l

and l̂ = K. In particular, in this case d1 = p. Finally, show that the extension
l◦/k◦ of rings of integers is not finitely generated.

(ii) Using Zorn’s lemma one can obtain even worse examples. Show that there
exists a maximal subfield E of K such that k ⊆ E and x /∈ E, and then necessarily
K/E is algebraic and purely inseparable. Thus one obtains a non-complete field E
whose completion K is algebraic and purely inseparable over it.

Remark 1.8.12. A pathological discrete valuation ring k◦ as above often appears
as a counter-example to many properties one might naively expect. In particular, it
is a simplest example of so called not quasi-excellent ring (in this case, its completion
is not separable over it). Also, the integral closure of k◦ in the finite extension l is
easily seen to be l◦, but the integral ring extension l◦/k◦ is not finite.

1.8.13. Independence of valuations and weak approximation. Real valuations on a
ring A are called equivalent if each of them is a power of the other. It turns out
that non-equivalent valuations satisfy a strong independence condition, often called
the weak approximation theorem.

Theorem 1.8.14. Assume that k is a field and | |i, 1 ≤ i ≤ n is a finite set of
pairwise non-equivalent non-trivial real valuations on k. Then for any elements
a1, . . . ,an ∈ k and a real number ε > 0 there exist a ∈ k such that |a− ai|i < ε.

Proof. It suffices to prove this when some ai equals 1 and others vanish. Indeed,
in this case for r = nmaxi,j |ai|j we can choose d1, . . . ,dn ∈ k so that r|di− 1|i < ε
and r|dj |i < ε for j 6= i, and then a =

∑n
i=1 aidi is as required because for any i

|a− ai|i ≤ |ai|i · |di − 1|i +
∑
j 6=i

|aj |i · |dj |i ≤ rmax

(
|di − 1|i,max

j 6=i
|dj |i

)
< ε.

So, in the sequel we can assume that a1 = 1 and ai = 0 for 2 ≤ i ≤ n.
We claim that for any i ∈ {2, . . . ,n} there exists zi with |zi|1 < 1 and |zi|i > 1.

Assume this claim fails. Since the valuations | |1 and | |i are not equivalent, there

exist x, y ∈ k such that C1 = log |x|1
log |y|1 and C2 = log |x|i

log |y|i are different. Clearly we can

replace either of x and y by its inverse, hence we can also assume that |x|1 > 1
and |y|1 > 1, and then by our assumption |x|i > 1 and |y|i > 1. Switching x and
y if necessary we can assume that C1 < C2. Then for any choice of m,n ∈ N with
C1 <

m
n < C2 the element zi = xn

ym is as required.

Replacing z2, . . . ,zn by their powers zlii with general enough l2, . . . ,ln ∈ N we
can achieve, in addition, that no i, j, k ∈ {2, . . . ,n} satisfy |zi|k = |zj |k > 1. Set
bm =

∑n
i=2 z

m
i . Clearly limm |bm|1 = 0, and we claim that also limm |bm|i = ∞

for 2 ≤ i ≤ n. Indeed, maxj |zj |i > 1, and if it is achieved for j = k, then
|zmj |i = o(|zmk |i) for j 6= k and hence |bm|i = |zmk |i(1 + o(1)) tends to infinity. It

follows immediately that the sequence | 1
1+bm

|1 tends to 1 and | 1
1+bm

|i tends to 0

when 2 ≤ i ≤ n. So, we can take a = 1
1+bm

with a large enough m. �
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Importance of this theorem is reflected in the following result.

Corollary 1.8.15. Assume that k is a field and | |i, 1 ≤ i ≤ n is a finite set of
pairwise non-equivalent real valuations on k and Ki are the completions of k with
respect to | |i, then

(i) The field k is dense in the ring K :=
∏n
i=1Ki provided with the product

seminorm |(x1, . . . ,xn)| = maxi |xi|i.
(ii) The completion of k with respect to the norm |x| = maxi |x|i is K.

Proof. Both claims are obviously equivalent, and (i) is nothing else but just a
reformulation of Theorem 1.8.14. �

Example 1.8.16. (i) For example, the completion of Q with respect to the 10-adic
norm is Q10 = Q2 ×Q5.

(ii) In the situation of Theorem 1.8.7 let | |i, 1 ≤ i ≤ n be the elements of Vl/k
and define the max norm on l by |a|max = maxi |a|i. Then

∏
i Li is the completion

of l with respect to | |max.

1.8.17. The max norm. More generally, for a real valued field k we provide its
algebraic closure ka with the max norm | |max obtained by maximizing all extensions
of the valuation: |x|max = max| |i∈Vl/k

|x|i. This is well defined since there only

finitely many extensions of the valuation on k(x) by Corollary 1.8.9. Our next goal
is to obtain a nice formula for the max norm, which generalizes the formula for
extended valuation in the analytic case. Note that in general the extension is not
unique, so one should expect a simple formula for each extension separately.

1.8.18. The spectral value. For a monic polynomial f(t) = td+c1t
d−1+. . .+cd over a

non-archimedean valued field k we define its spectral value σ(f) := max1≤i≤d |ci|1/i.

Lemma 1.8.19. If f splits completely in k, say f(t) =
∏d
i=1(t− ai), then σ(f) =

maxi |ai|.

Proof. Set r = maxi |ai|. Since (−1)ncn is the sum of products of n roots of f ,
we have that |cn| ≤ rn. It remains to show that the equality is achieved for some
n. Let n be the number of roots satisfying |ai| = r, and order the roots so that
|ai| = r for 1 ≤ i ≤ n and |ai| < r for n + 1 ≤ i ≤ d. Then (−1)ncn equals to the
sum of a1 . . . an, which is of valuation rn, and other products, which are of smaller
valuation. Thus, |an| = rn, as required. �

Exercise 1.8.20. Prove the following properties of the spectral value:

(i) σ(fg) = max(σ(f), σ(g)).
(ii) Assume that f, g, h have roots α, β, γ ∈ ka, respectively.

(a) If γ = α+ β, then σ(h) ≤ max(σ(f), σ(g)).
(b) If γ = αβ, then σ(h) ≤ σ(f)σ(g).

(iii) If f =
∏n
i=1(t− αi) and g =

∏n
i=1(t− αni ), then σ(g) = σ(f)n.

Note that the simplest proof is to use Lemma 1.8.19 and the fact that the valuation
of k can be extended to ka, but this can be also checked directly on the level of
coefficients of f , g and h.

Remark 1.8.21. The exercise shows that the formula |α|sp := σ(fα) defines a
power multiplicative norm on ka called the spectral norm. This also follows from
Theorem 1.8.23 below asserting that | |sp = | |max. A much more general instance
of this phenomenon will be established in §1.10.
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1.8.22. The spectral norm. The spectral value provides the promised formula for
the max norm.

Theorem 1.8.23. Assume that k is a non-archimedean real-valued field. Then for
any α ∈ ka with minimal polynomial fα ∈ k[t] one has that |α|max = σ(fα).

Proof. Let l be the splitting field of fα, let α = α1, . . . ,αm be all conjugates of
α, and let | |1, . . . ,| |n be all elements of Vl/k. By Lemma 1.8.19 we have that
σ(fα) = maxi |αi|1. Since all elements of Vl/k are conjugate by Corollary 1.8.4, we
obtain that maxi |αi|1 = maxj |α|j = |α|max, as required. �

Corollary 1.8.24. Let k be a non-archimedean real valued field, and assume that
k is henselian (for example, k is complete). Then for any irreducible monic poly-
nomial f = td + c1t

d−1 + . . .+ cd ∈ k[t] over k, the inequality |ci|1/i ≤ |cd|1/d holds
for any i with 1 ≤ i ≤ d.

Proof. Let α be a root of k. Since the extension of the valuation to ka is unique, all
conjugates of α have the same absolute value and hence |α| = |cd|1/d. In addition,
since the valuation is unique |α| = |α|max = σ(f) ≥ |ci|1/i. �

Remark 1.8.25. (i) The above corollary is a variation on the theme of Hensel’s
lemma. In fact, a particular case with |cd| = 1 proved in Corollary 1.6.16 was used
to extend the valuation first in the analytic case and then in general. So, our proof
of Corollary 1.8.24 is based on it.

(ii) An alternative construction of the theory of extensions of valuation is as
follows: first one solves Exercise 1.8.20 directly by computations with coefficients,
obtaining an elementary proof that | |sp is a norm. Then one shows the version

1.8.24 of Hensel’s lemma over a complete k, and deduces that | |sp = |ad|1/d. In
particular, | |sp is a valuation. To large extent, this order of exposition is chosen in
[BGR84, Chapter 3]. The notion of the spectral value of a polynomial is also taken
from there. See [BGR84, Remark in §1.5.4] for the history of this notion.

1.9. Henselian fields.

1.9.1. Henselian fields and extensions. We say that an algebraic extension of real
valued fields l/k is henselian if |Vl/k| = 1. A valued field k is called henselian if the
extension ka/k is henselian.

Remark 1.9.2. (i) For fields, the terminology is standard. We will see that in the
non-archimedean case henselian fields are directly related to the Hensel’s lemma,
but the notion is valuable (though simple) in the archimedean case too.

(ii) Our terminology is not standard for algebraic extension, but we feel free to
introduce it because this is an important class of extensions, and it seems no special
name had been chosen so far.

Since valuations always extend through finite extension the following result is
obvious.

Lemma 1.9.3. Assume that k is a real valued field and m/l/k is a tower of alge-
braic extensions, then

(i) m/k is henselian if and only if l/k is henselian and m/l is henselian with
respect to the extension of the valuation to l.

(ii) k is henselian if and only if l/k is henselian and l is henselian with respect
to the extension of the valuation.



VALUED FIELDS 25

1.9.4. A general criterion. Recall that an algebraic extension l/k is called linearly

disjoint from k̂/k (for example, in k̂a) if [lk̂ : k̂] = [l : k], and this happens if and

only if l⊗k k̂ is a field, and then l⊗k k̂ = lk̂. Moreover, if l/k is separable, then this

happens if and only if k̂/k does not contain non-trivial subextensions of the Galois
closure lnor of l/k. Combining this with Theorem 1.8.7 we obtain the following
general criterion of henselianity.

Theorem 1.9.5. Assume that k is a real valued field and l/k is an algebraic ex-
tension with the maximal separable subextension ls/k. Then,

(i) The extension l/k is henselian if and only if k̂/k is linearly disjoint from
ls/k.

(ii) The field k is henselian if and only if it is separably closed in k̂.

Proof. First, any purely inseparable extension l/k is henselian, because any x ∈ l
satisfies y = xp

n ∈ k for p = char(k) and a large enough n, and hence |x|l = |y|1/pn

defines the only extension of the valuation of k.
By Lemma 1.9.3, l/k is henselian if and only if ls/k is, and this reduces the proof

of (i) to the case when l = ls is separable over k. Furthermore, it is easy to see that

l/k is henselian (resp. linearly disjoint from k̂) if and only if any finite subextension
li/k is so. This reduces us further to the case when l/k is finite and separable. In

this case l ⊗k k̂ is a product of fields, and we obtain that Red(l ⊗k k̂) is a field if

and only if k̂/k is linearly disjoint from l/k. By Theorem 1.8.7 the former happens
if and only if l/k is henselian.

By Lemma 1.9.3, k is henselian if and only if ks/k is henselian. By claim (i) this

happens if and only if k̂/k is linearly disjoint from ks/k, and since ks/k is Galois,

this happens if and only if k is separably closed in k̂. �

Remark 1.9.6. This theorem and some results below indicate that, from algebraic
point of view, henselian fields behave rather similarly to complete ones, though
one must be careful about inseparable extensions: Exercise 1.8.11(ii) provides an
example of a henselian dvr which is not algebraically closed in its completion. In
fact, henselian fields were called “quasi-complete” in [Ber93].

1.9.7. Henselization. For a real valued field k we define its henselization kh to be
the separable closure of k in k̂. This is the minimal valued extension l/k such that
l is henselian:

Lemma 1.9.8. Assume that l/k is an extension of valued fields and l is henselian.
Then there exists a unique factorization k ↪→ kh ↪→ l.

Proof. We have that k̂ ⊆ l̂ and l is separably closed in l̂, in particular, l contains the

separable closure of k in k̂. We obtained an embeddings of valued fields k ↪→ kh ↪→ l,
and it is unique because k is dense in kh. �

Remark 1.9.9. In the same venue as Remark 1.9.6, henselization can be viewed as
an algebraic (and much finer) analogue of completion. In the sequel, we will study
valuations of larger height, in which case completions are rather meaningless while
henselizations make a perfect sense and are very useful. However, to obtain this
generalization we will first have to provide a new characterization of henselization,
and this will involve the theory of unramified extensions.
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1.9.10. Archimedean henselian fields. Recall that a field l is real closed if and only if
char(l) = 0 and l * la = l(

√
−1). By a theorem of Artin-Shreier these are precisely

the fields F such that F a/F is a non-trivial finite extension. Any archimedean
valuation on k is induced from either k ↪→ R or k ↪→ C. In the second case we
assume that k * R, and we say that the valuation is real or complex, accordingly.
By Theorem 1.9.5(ii), k is henselian if and only if it is algebraically closed in R or
C, respectively, hence we obtain the following classification:

Lemma 1.9.11. An archimedean real valued field k is henselian if and only if
either the valuation is complex and k is algebraically closed, or the valuation is real
and k is real closed.

1.9.12. Henselian fields and Hensel’s lemma. Now we are going to prove that in the
non-archimedean case, a field is henselian if and only if it satisfies Hensel’s lemma.
We proved various versions of this lemma and its corollaries, and essentially any
such statement can be used here. We do not try to make a full list, but prove this
for quit a few most useful versions.

Theorem 1.9.13. Assume that k is a non-archimedean real valued field. Then the
following conditions are equivalent:

(i) k is henselian.

(ii) For any f ∈ k◦[t] and a factorization f̃ = gh with (g, h) = 1 in k̃[t̃], there
exists a lifting f = gh with g̃ = g and deg(g) = deg(g).

(iii) Any f ∈ k◦[t] splits as f = gh with |h− 1| < 1 and deg(g) = deg(g̃).

(iv) For any f ∈ k◦[t] and a simple root a ∈ k̃ of f̃ there exists a root a ∈ k of
f such that ã = a.

(v) Any irreducible monic polynomial f = td + a1t
d−1 + . . . + ad ∈ k[t] with

ad ∈ k◦ lies in k◦[t].
(vi) Any irreducible monic polynomial f = td + a1t

d−1 + . . .+ ad ∈ k[t] satisfies
|ai|1/i ≤ |ad|1/d for 1 ≤ i ≤ d.

Proof. We can assume that the valuation is non-trivial since otherwise (i)–(vi)
are automatically satisfied. Also, we record the obvious implications (vi)=⇒(v),
(ii)=⇒(iv) and (ii)=⇒(iii), where the latter one is obtained by taking h = 1.

Next, let us show that (i) implies everything else. If k is henselian, then (vi) is

satisfied by Corollary 1.8.24. It remains to show that (i)=⇒(ii). Set K = k̂. By
Hensel’s lemma, there exists a required splitting f = gh in K[t], so we should only
check that g, h ∈ k[t]. Recall that k is separably closed in K by Theorem 1.9.5(ii),
and hence any irreducible polynomial f ∈ k[t] splits in K[t] as f = gp

n

, where g
is irreducible and p is the characteristic exponent of k. In particular, it suffices
to show that (g, h) = 1 because then the factorization f = gh holds already in
k[t]. Let α ∈ Ka be any root of g. Since g = adt

d + . . . with |ad| = 1, it follows
that |α| ≤ 1, and hence α̃ is a root of g. By our assumption h(α̃) 6= 0 and hence
h(α) 6= 0. This proves that (g, h) = 1, as required.

Now, we will show that if (i) fails, then all other claims fail too. Clearly, it
suffices to deal with (iii), (iv) and (v). By Theorem 1.9.5, there exists α ∈ K \ k
such that α is algebraic and separable over k. Set l = k(α) and let L1, . . . ,Ln be
all completions of l with respect to the extended valuations. Moreover, we can take
the first valuation | |1 to be the one induced by the obvious embedding i : l ↪→ K
and then L1 = K. For a sequel use, we also extend | |1 from l to ka in an arbitrary
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way. Since l/k is separable, l ⊗k K is reduced and hence l ⊗k K =
∏n
i=1 Lj by

Theorem 1.8.7. By the weak approximation theorem, see Theorem 1.8.14, there
exists a ∈ l such that |a|1 < 1 and |a− 1|j < 1 for 2 ≤ j ≤ n.

Set a1 = i(a) ∈ K, let a1, . . . ,ad ∈ Ka be all conjugates of a1 over k, and let
σj : k(a) ↪→ Ka be the k-embedding sending a to aj . Then σ1 = i|k(a) induces the
valuation | |1 on k(a) and for any j > 1 the induced valuation is one of | |2, . . . ,| |n.
In particular, this implies that |aj − 1|1 < 1 for j > 1. It follows that the mini-

mal polynomial fa =
∏d
j=1(t − aj) of a satisfies f̃a = t̃(t̃ − 1)d−1, and hence the

irreducible polynomial fa ∈ k[t] violates (iv).
In the same fashion, we can fix π ∈ k with |π| = r > 1 and find b = b1 ∈ l

such that |b|1 < r1−[l:k] and its conjugates b2, . . . ,bd ∈ ka satisfy |bj − π|1 < r. In
this case, the minimal polynomial fb is of the form td + . . . + et + c with |e| =
|b2 . . . bd| = rd−1 > 1 and |c| = |b1 . . . bd| < rd−[l:k] ≤ 1, hence fb violates (v).

Finally, its rescaling g = (b2 . . . bd)
−1fb = (t − b1)

∏d
j=2(1 − b−1

j t) satisfies g̃ = t̃

because b̃1 = b̃−1
j = 0. In particular, the irreducible polynomial g violates (iii). �

1.10. Basic properties of analytic spectrum.

1.10.1. Spectral seminorm. For any seminormed ring A one defines the spectral
seminorm ρA to be ρ(a) = lim infn |an|1/n. Here some easy facts whose proof
copies the well-known case from the classical functional analysis.

Exercise 1.10.2. (i) In fact, one even has that ρ(a) = limn |an|1/n, that is, the
limit exists.

(ii) ρA is the maximal power-multiplicative seminorm on A dominated by | |,
and ρA is non-archimedean if | | is.

1.10.3. The main theorem. Here is the main theorem about Berkovich spectrum.
It is a tremendous generalization of the theorem on extension of valuations and of
the max norm formula. For the proof we refer to [Ber90, Theorems 1.2.1 and 1.3.1].

Theorem 1.10.4. Let A be a seminormed ring and let X = M(A) denote its
Berkovich spectrum. Then,

(i) X = ∅ if and only if A = 0.
(ii) X is compact.
(iii) For any element f ∈ A one has that ρ(f) = maxx∈X |f |x.
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2. Valuations and valued fields

2.1. Ordered groups.

2.1.1. Multiplicative and additive notation. We will usually work with ordered groups
written multiplicatively, but sometimes additive notation will also be used. It is
important to remember that for most of what follows the correct translation be-
tween the two languages is an analogue of − log rather than the usual logarithm.
The minus sign is responsible for numerous sign inversion that require some care,
but it is this way that makes the theory of valuations most intuitive.

2.1.2. Ordered groups. In this notes an ordered group always means a totally ordered
abelian group (G,≤), that is, an abelian group G provided with a total order <
such that if a1 ≤ b1 and a2 ≤ b2, then a1b1 ≤ a2b2. After the trivial case G = 1,
the main example is the group R×>0 of positive real numbers. On the additive side
it corresponds to R.

2.1.3. Augmentation. Sometimes it will be convenient to augment an ordered group
G to an ordered monoid G = {0} ∪ G, by adding a minimal element 0 such that
0 · G = 0. By our convention, in the additive case, we augment ordered groups
(A,+) by maximal elements ∞.

2.1.4. Lexicographic order. For most of applications of this paper we will only the
groups (R×>0)n (or Rn) provided with the lexicographic order and their subgroups.
Nevertheless one can extend this construction as follows:

Exercise 2.1.5. Assume that {Gi}i∈I is a family of ordered groups indexed by a
totaly ordered set I.

(i) Define a natural lexicographic order on ⊕i∈IGi and show that it becomes an
ordered group.

(ii) Assuming that I is well ordered (that is, any subset of I possesses a minimal
element), define a natural lexicographic order on

∏
i∈I Gi and show that it becomes

an ordered group.

2.1.6. Cuts. For any a ∈ G let G≥a, G>a, G≤a and G<a denote the subset of all
elements x ∈ G such that x ≥ a, x > a, x ≤ a and x < a, respectively.

Lemma 2.1.7. Let G be an ordered group, then
(i) If B is any relation from the set {<,>,≤,≥} and a1, a2, b1, b2 ∈ G satisfy

a1 B b1, a2 B b2, then also a1b1 B a2b2 is satisfied. In particular, the opposite
order on G also defines an ordered group.

(ii) G is torsion free.
(iii) The set G≤1 is a monoid and the sets G≤a and G<a with a ≤ 1 are ideals

of G≤1. The same is true for opposite inequalities.

Proof. Exercise. �

Exercise 2.1.8. (i) Prove the lemma.
(ii) Show that ideals of G≤1 are nothing else but cuts, that is, subsets I such

that if a ≤ b and b ∈ I, then a ∈ I.
(iii) Show that R× and C× cannot be provided with an order.



VALUED FIELDS 29

2.1.9. Divisible hull. Let G be a torsion free group. In additive notation, G ⊗Z Q
is the divisible hull of G, while in the multiplicative case we will use the notation√
G. For example, if G ⊆ R×>0 then

√
G is literally the set of all positive roots of

elements of G.

Lemma 2.1.10. If G is an ordered group, then the order extends to
√
G uniquely.

Proof. For x, y ∈
√
G there exists n > 0 such that xn, yn ∈ G and then any

extension of the order satisfies x < y if and only if xn < yn. This shows that there
is at most one extension, and one checks straightforwardly that this receipt does
define an order on

√
G. �

2.1.11. Convex subgroups. A subgroup H of an ordered group G is called convex
if for any interval I = [a, b] in G with a, b ∈ H one has that I ⊆ H. Convex
subgroups are analogs of normal subgroups in the theory of groups as the following
simple result shows.

Exercise 2.1.12. Let H be a subgroup of an ordered group G.
(i) Show that H is convex if and only if for any x ∈ H with x ≤ 1, the interval

[x, 1] lies in H.
(ii) Show that H is convex if and only if for any pair of cosets xH, yH the same

relation x′ B y′ with B∈ {<,>,=} is satisfied for any x′ ∈ xH and y′ ∈ yH. In
particular, the order induces a structure of an ordered group on the quotient G/H
if and only if H is convex.

2.1.13. Composed order. One can also compose order from short exact sequences.
This reverses the above construction and generalizes lexicographic order on prod-
ucts G1 ×G2.

Exercise 2.1.14. Let H ⊆ G be abelian groups and assume that H and G/H are
ordered. Show that there exists a unique order on G such that H becomes a convex
subgroup and the order on G/H coincides with the order induced from G.

2.1.15. Comparable elements. Let x, y > 1 be two elements of an ordered group G.
We say that x dominates y and denote y ≺ x if x � yn for any n. We say that x
and y are comparable and denote x ∼ y if neither of them dominates the other. Let
Z (resp. Z ′) be the set of elements z ∈ G>1 such that z ≺ x (resp. z � x), and set
G≺x = Z ∪ {e} ∪ Z−1 and G�x = Z ′ ∪ {e} ∪ Z ′−1.

Lemma 2.1.16. Let G be an ordered group and x > 1 an element of G. Then G≺x
and G�x are convex subgroups of G.

Proof. Straightforward. �

2.1.17. Height of ordered groups. Height ht(G) of an ordered group G is the cardinal
of the set of its proper convex subgroups. Other names often appearing in the
literature are rank or a convex rank.

Exercise 2.1.18. (i) The set of convex subgroups of G is totally ordered by inclu-
sion.

(ii) A totally ordered set I is the set of convex subgroups of some ordered group
G if and only if all cuts in I are principal (that is, of the form I≤a or I≥a).

(iii) Let G be an ordered group with a convex subgroup H and ordered quotient
G/H. Then ht(G) = ht(H) + ht(G/H).
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(iv) Find the height of Rn provided with the lexicographic order.
(v) Show that ht(G) = n < ∞ if and only if n + 1 is the maximal length of a

chain x0 = 1 < x1 ≺ x2 ≺ . . ..
(vi) If H ↪→ G is an embedding of ordered groups and G/H is torsion, then the

map Γ 7→ Γ∩H induces a bijection between the sets of convex subgroups of G and
H.

For convenience, we formulate the following result using additive notation.

Lemma 2.1.19. Any ordered group (A,+) of height n < ∞ can be embedded as
an ordered subgroup into Rn.

Proof. The case n = 0 is obvious. If n = 1, then fix any x ∈ G>0. For any y consider
the sets of rational numbers S−y = {mn | mx < ny} and S+

y = {mn | mx > ny}. Both
are non-empty because A has no non-trivial convex subgroups and hence G≺x = 0
and G�x = G. Clearly, S±y are convex and their union omits at most one element of
Q, hence they define a real number ry as a Dedekind cut. It is now straightforward
to check that sending y to ry defines an ordered embedding G→ R.

Now, we will act by induction on n. First, it follows from Exercise 2.1.18(v)
that the divisible GQ (see Lemma 2.1.10) also has height n. Therefore it suffices
to embed GQ into Rn, and we can assume that G is divisible. Since n > 1, there
exists a non-proper convex subgroup H. Then ht(H) = l ∈ {1, . . . ,n − 1} and
ht(G/H) = n − l by Exercise 2.1.18(iii). Since G/H is ordered, it is torsion free

and hence G is divisible and we obtain a non-canonical splitting G
∼−→G/H ⊕ H.

We claim that the order corresponds to the lex order on the target. Indeed, x < y
in G if and only if the images xh, yh in H satisfy xh < yh, and if xh = yh, then
x − xh < y − xh in H (where we view xh as an element of G via the splitting
G/H ↪→ G). By induction, H ↪→ Rl and G/H ↪→ Rn−l, so their lex sum embeds
into Rn. �

Remark 2.1.20. In fact, we already proved that if G is of height one, then for
x ∈ G>0 there exists unique ordered embedding G ↪→ R sending x to 1.

2.2. Valuations.

2.2.1. Multiplicative semivaluations and valuations. In the definition of non-archi-
medean real-valuations one only uses multiplication and order on R, while addition
plays no role. Therefore, this notion extends as follows: a semivaluation on a ring
A is a multiplicative homomorphism | | : A → Γ = Γ ∪ {0}, where Γ = (Γ, ·) is an
ordered group, and |a + b| ≥ max(|a|, |b|) for any a, b ∈ A. The kernel of | | is a
prime ideal, and a semivaluation with a trivial kernel is called a valuation.

2.2.2. Additive valuations. Additive valuations are defined similarly, but this time
Γ = (Γ,+) is an additive ordered group, Γ = Γ ∪ {∞}, and the strong triangle
inequality is reversed to ν(a+ b) ≥ min(ν(a), ν(b)). Naturally, additive valuations
are denoted like ν : A→ Γ rather than | |. As we remarked earlier, they should be
thought off as − log of multiplicative ones.

2.2.3. Group of values. By an abuse of notation, for a semivaluation | | : A→ Γ we
denote by |A| the subgroup of Γ generated by Im(| |) \ {0}. In most of the notes A
will be a field, and then we will use the non-abused notation |A×| instead.
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2.2.4. Equivalence of valuations. Since the group Γ is not fixed in the theory of
general valuations, the natural notion of equivalence also plays with Γ. Namely,

semivaluations | | : A → Γ and | |′ : A → Γ
′

are called equivalent if there is an

isomorphism of ordered groups φ : |A| ∼−→|A|′ such that | |′ = φ ◦ | |.

Remark 2.2.5. The smallest element | | : A → |A| ∪ {0} of the equivalence class
is unique up to an isomorphism, and it encodes the information we really care of.
Nevertheless, it is often convenient to consider semivaluations with a larger Γ. For
example, this was the case of real semivaluations. In addition, in order to extend a
valuation through finite field extensions one might want to extend Γ as well.

2.2.6. Height of valuations. By height or convex rank of a semivaluation we mean
the height of the ordered group |A|.

Lemma 2.2.7. A semivaluation A→ Γ is equivalent to a real semivaluation if and
only if its height does not exceed one.

Proof. By Lemma 2.1.19, |A| embeds into R×>0 if and only if its height is at most
one. The lemma follows. �

2.2.8. Rational rank. We also define the rational rank of a semivaluation to be the
dimension of the (exponential) Q-vector space

√
|A|.

Lemma 2.2.9. If a semivaluation on a ring A is of finite height h, then its rational
rank is at least h.

Proof. This is a statement about the ordered group Γ = |A|. Let Γ0 = 0 ( Γ1 (
· · · ( Γh = Γ be all isolated subgroups of Γ. For i ∈ {1, . . . ,h} choose ri ∈ Γi \Γi−1.
Then r1, . . . ,rh are linearly independent because rni ∈ Γi\Γi−1 for any i ∈ {1, . . . ,h}
and n > 0. �

Exercise 2.2.10. Show that the above claim fails for infinite ranks. (Hint: take
|A| of the form ZQ with lex order induced by Q.)

2.2.11. Discrete valuations. A valuation on a field k is called discrete if |k×| is a
cyclic group. In particular, any such valuation is of height 1.

2.2.12. Valued fields. By a valued field we mean a field k provided with a valuation
| | : k → Γ. Similarly to the real-valued case, we introduce the ring of integers
k◦ = {x ∈ k| |x| ≤ 1}, also called the valuation ring of k, and note that k◦ is a

local ring with maximal ideal k◦◦ = {x ∈ k| |x| < 1} and residue field k̃ = k◦/k◦◦.

2.3. Extensions of valued fields.

2.3.1. The definition. An extension of valued fields is an embedding k ↪→ l such
that the restriction of | |l onto k is equivalent to | |k. Clearly, this happens if and
only if the extension respects the associated valuation rings, that is, k◦ = k ∩ l◦.
For any such extension, k◦ ↪→ l◦ is a local homomorphism (that is, k◦◦ ↪→ l◦◦),

hence an extension of residue fields k̃ ↪→ l̃ arises. In addition, an embedding of
group of values |k×| ↪→ |l×| is well defined up to a unique isomorphism.
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2.3.2. The invariants fl/k and ek/l. The most basic way to study an extension l/k

of valued fields is via the induced extensions |l×|/|k×| and l̃/k̃. In particular, we

define the cardinals fl/k = [l̃ : k̃] and el/k = #(|l×|/|k×|). They are analogues of
the degree of an extension.

Lemma 2.3.3. Assume that l/k is an extension of valued fields, A = {ai}i∈I is
a family of elements of l× such that the map A → |l×|/|k×| is injective, and B =

{bj}j∈J is a family of elements of k◦ such that the reduction family B̃ = {b̃j}j∈J of

elements of l̃ is linearly independent over k̃. Then the family AB = {aibj}i∈I,j∈J
is orthogonal over k. In particular, it is linearly independent over k.

Proof. Assume, conversely that there is a linear combination s =
∑
i∈I′,j∈J′ sij

with |s| < r = maxi,j |sij |, where sij = aibjcij for cij ∈ k and finite I ′ ⊆ I, J ′ ⊆ J ′.
Fix i0 ∈ I ′, j0 ∈ J ′ such that r = |si0j0 |. Then r ∈ |ai0 | · |k×| and by our assumption
on A, if a pair (i, j) ∈ I ′ × J ′ satisfies r = |sij |, then necessarily i = i0. It follows
that already si0 =

∑
j∈J′ si0j satisfies |si0 | < r.

By our assumption, b̃j 6= 0 and hence |bj | = 1. Dividing si0 by ai0ci0j0 we obtain
a linear combination s′ =

∑
j∈J′ c

′
jbj such that c′j = ci0j/ci0j0 ∈ k◦, c′j0 = 1, and

|s′| < 1. It follows that the reduction 0 =
∑
j∈J′ c̃

′
j b̃j yields a non-trivial linear

dependence on B̃, a contradiction. �

2.3.4. Fundamental inequality. As an easy corollary of the previous lemma we ob-
tain a bound on e and f in terms of the degree. This is often called the fundamental
inequality. Note that we prove it for cardinals rather than for finite numbers.

Corollary 2.3.5. Any extension of valued fields l/k satisfies the inequality

el/kfl/k ≤ [l : k].

Proof. Choose any basis B of l̃ over k̃ and lift it to a family B ⊂ l, and choose any

family A ⊂ l× which maps bijectively onto |l̃×|/|k̃×|. The family AB is linearly
independent over k by Lemma 2.3.3, hence [l : k] ≥ |AB| = el/kfl/k. �

2.3.6. The invariants Fl/k and Ek/l. One can also define analogues of transcen-

dence degrees as follows: Fl/k = tr.deg.(l̃/k̃) and El/k = dimQ(
√
|l×|/

√
|k×|). In

addition, we will denote the rational rank of k by Ek.

Lemma 2.3.7. Assume that l/k is an extension of valued fields, A = {ai}i∈I is

a family of elements of l× such that the images of ai in
√
|l×|/

√
|k×| are linearly

independent over Q, and B = {bj}j∈J is a family of elements of k◦ such that the

reduction family B̃ = {b̃j}j∈J is algebraically independent over k̃. Then the family
of monomials

∏
i∈I′ a

ni
i ·

∏
j∈J′ b

mj

j in l is orthogonal over k. In particular, the

homomorphism k[A ∪ B] → l is injective and the family A ∪ B is algebraically
independent over k.

Proof. The argument is essentially the same as in the proof of Lemma 2.3.3, so
we outline main points. First, one assumes that there is a linear combination
s =

∑
n,m cnma

nbm of monomials an =
∏
ani
i , bm =

∏
b
mj

j with coefficients cmn ∈
k such that |s| < r = maxn,m |snm| for snm = cnma

nbm. Fix m0, n0 so that
|sn0m0 | = r. By our assumption on |A|, if |snm| = |sn0m0 |, then necessarily n = n0.
It follows that already sn0 =

∑
m sn0m satisfies |sn0 | < r. Dividing by cn0m0a

n0
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we obtain a linear combination s′ =
∑
m c
′
mb

m such that c′m ∈ k◦, c′m0
= 1 and

|s′| < 1. Therefore, the reduction 0 =
∑
m c̃
′
mb̃

m provides a non-trivial algebraic

dependency on B̃, a contradiction. �

Remark 2.3.8. The notation el/k and fl/k are classical. There is no usual notation
for the transcendental invariants, so we choose notation which stresses the analogy
and indicates that the transcendental invariants measure larger extensions.

2.3.9. Abhyankar’s inequality. Again, as a corollary we obtain a bound on the in-
variants, but this time in terms of the transcendence degree. This result is often
called Abhyankar’s inequality.

Corollary 2.3.10. Any extension of valued fields l/k satisfies the inequality Fl/k+
El/k ≤ tr.deg.(l/k) of cardinals.

Proof. Choose any transcendence basisB of l̃ over k̃ and lift it to a familyB ⊂ l, and
choose any family A ⊂ l× which maps bijectively onto a Q-basis of

√
|l×|/

√
|k×|.

The family A ∪ B is algebraically independent over k by Lemma 2.3.3, hence
tr.deg.(l/k) ≥ |A ∪B| = El/k + Fl/k. �

2.3.11. Algebraic extensions. As an application, we obtain the following result for
algebraic extensions. In particular, El/k = Fl/k = 0 algebraic extensions, hence we
obtain the following result.

Corollary 2.3.12. if l/k is an algebraic extension of valued fields, then l̃/k̃ is
an algebraic extension and |l×|/|k×| is a torsion group. In particular, the map
Conv(|l×|)→ Conv(|k×|) is a bijection and ht(k) = ht(l).

Proof. The first claim is equivalent to the equalities El/k = Fl/k = 0, which hold
by Anhyankar’s inequality. The second claim follows from Exercise 2.1.18 (vi). �

2.3.13. Transcendental defect. If tr.deg.(l/k) is finite, then we define the transcen-
dental defect of l/k to be Dl/k = tr.deg.(l/k) − El/k − Fl/k. By Abhyankar’s
inequality this is a non-negative number.

2.3.14. Transitivity of invariants. Multiplicativity and additivity of usual invari-
ants, such as degree and transcendence degree, imply the following result.

Lemma 2.3.15. Assume that m/l/k is a tower of extensions of valued fields. Then
fm/k = fm/lfl/k, em/k = em/lel/k, Fm/k = Fm/l + Fl/k, Em/k = Em/l + El/k, and
El = Ek + El/k. If tr.deg.(l/k) <∞, then also Dm/k = Dm/l +Dl/k.

Corollary 2.3.16. Assume that k is a valued field which has a finite transcendence
degree n over its prime subfield. Then ht(k) ≤ Ek ≤ n+ 1.

Proof. We have proved the first inequality in Lemma 2.2.9. If l is the prime sub-
field of k, then El ≤ 1 by Ostrowski’s classification. Therefore, by Abhyankar’s
inequality and the above lemma Ek = El + El/k ≤ 1 + n. �

Corollary 2.3.17. Any valued field k is a filtered limit of valued subfields of finite
height.

Proof. Clearly, k is the filtered union of subfields ki finitely generated over the
prime subfield of k. By the above corollary ht(ki) <∞. �
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2.3.18. Immediate extensions. An extension l/k is called immediate if k̃ = l̃ and

|k̃×| = |l̃×|. In other words, el/k = fl/k = 1. More generally, we say that l/k

is transcendentally immediate if l̃/k̃ is algebraic and |l̃×|/|k̃×| is torsion. In other
words, El/k = Fl/k = 0.

Example 2.3.19. (i) If m/l/k is a tower of extensions of valued fields, then m/k
is immediate (resp. transcendentally immediate) if and only if m/l and l/k are so.

(ii) The completion k̂/k of a real valued field is an immediate extension.
(iii) Any algebraic extension is transcendentally immediate.

2.3.20. Invariants of the algebraic closure. Naturally, maximal algebraic extension
of a valued field induces a maximal algebraic extension of the residue field and
group of values.

Lemma 2.3.21. (i) If l is an algebraically closed valued field, then the residue field

l̃ is algebraically closed and the group of values |l×| is divisible.
(ii) If k is a valued field and l = ka is provided with an extension of the valuation

of k, then l̃ = (k̃)a and |l×| =
√
|k×|.

Proof. Since l× is divisible, its image |l×| is also divisible. The field l̃ is algebraically

closed because any polynomial f(t) ∈ l̃[t] can be lifted to a polynomial f(t) ∈ l◦[t]
of the same degree, and then any root α ∈ l of f(t) satisfies |α| ≤ 1, and hence

α̃ ∈ l̃ is a root of f . We have proved (i), and combining it with Corollary 2.3.12
one also obtains (ii). �

2.4. Valuation rings. In this section we will see that the ring k◦ determines the
valuation and study its basic properties.

2.4.1. The definition. A valuation ring is an integral domain R such that for any
c ∈ Frac(R) \R one has that c−1 ∈ R. If K is a field and R ⊆ K is a valuation ring
such that Frac(R) = K, then one says that R is a valuation ring of K. There is an
enormous amount of equivalent characterizations of this property, and for now we
list few most basic ones.

Lemma 2.4.2. Let R be a domain with fraction field K. Then the following prop-
erties are equivalent:

(i) R is a valuation ring.
(ii) For any a, b ∈ R either a|b or b|a.
(ii)’ For any a, b ∈ K either a|b, in the sense that b ∈ aR, or b|a.
(iii) The divisibility relation induces a total order on the group K×/R×.
(iv) The set of principal ideals of R is totally ordered by inclusion.
(iv)’ The set of all ideals of R is totally ordered by inclusion.
(v) R is local and any finitely generated ideal in R is principal.

Proof. Clearly, (i)⇐⇒(ii)’, and this is also equivalent to (ii) because any c ∈ K is
of the form a/b. In addition, (ii) is clearly equivalent to (iii) and (iv). Obviously,
(iv)’⇐⇒(iv). Conversely, assume that (iv) holds but (iv)’ fails, say I and J are two
ideals not contained one in another. Choose a ∈ I \ J and b ∈ J \ I. Then either
a ∈ (b) ⊆ J or b ∈ (a) ⊆ I, a contradiction.

It remains to prove that (ii)⇐⇒(iv). Assume (ii) holds. If I = (a1, . . . ,an) is
a finitely generated ideal, then one ai divides all the rest by and hence I = (ai).
In addition, if a, b are non-invertible, then one of them divides the sum a+ b, and
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hence a + b 6= 1. This proves that R is local. Conversely, assume that (v) holds.
For any pair a, b the ideal (a, b) is principal, say (a, b) = (c). Hence (ac ,

b
c ) = (1),

and since R is local, this implies that either a
c or b

c is a unit u. This proves that
either (a, b) = (a) and then a|b, or (a, b) = (b) and then b|a. �

The following corollary is an analogue of the fact that a norm on a vector space
is determined by its unit ball.

Corollary 2.4.3. For any field k there is a one-to-one correspondence between
valuation rings of k and equivalence classes of valuations on k.

Proof. If k is provided with a valuation, then k◦ is a obviously a valuation ring of
k which depends only on the equivalence class of the valuation. Conversely, if R
is a valuation ring of k, then Γ = k×/R× is an ordered group by Lemma 2.4.2.
The induced map | | : k → Γ satisfies the strong triangle inequality because for
any a, b ∈ K either a|b or b|a and hence either a or b divides a + b. Thus, | | is a
valuation, and it is a straightforward check that the above constructions are inverse
one to another. �

Remark 2.4.4. The above corollary allows one to view a valued field as a field
k with a fixed valuation ring k◦ of k. In particular, extensions of valued fields
are precisely extensions l/k that agree with the valuation rings in the sense that
k◦ = k ∩ l◦. In particular, the valuation induced on a subfield F of k is described
by the ring F ∩ k◦, which is obviously a valuation ring.

2.4.5. Spectrum. Recall that an ideal in a monoidM is a subset I such thatMI = I.
As for rings, an ideal is prime if and only if S = M \I is closed under multiplication.
In particular, S is non-empty, but I can be empty.

Lemma 2.4.6. If k is a valued field with group of values Γ = |k×|, then | | induces
a bijection between ideals of k◦ and ideals of the monoid Γ≤1. Furthermore, an
ideal I ⊆ k◦ is prime if and only if the ideal |I| := {|x| : 0 6= x ∈ I} is prime
in Γ≤1, and the latter happens if and only if |I| = Γ≤1 \ Γ′ for a convex subgroup
Γ′ ⊆ Γ.

Proof. Exercise. �

2.4.7. Coarsening of a valuation. Let R be a valuation ring with field of fractions
K and induced valuation | | : K � Γ. Any convex subgroup Γv ⊆ Γ with quotient

Γv = Γ/Γv gives rise to a composed valuation | |v : K → Γ → Γ
v
. This valuation

looses information, so we call it the coarsening of | | associated with the quotient
Γv of Γ. The valuation ring Rv of | |v is obtained by inverting the multiplicative
set Sv all elements x ∈ R with |x| ∈ Γv. Note that pv = R \ Sv is the prime ideal
corresponding to Γv.

Conversely, any overring of R, that is a ring A with R ⊆ A ⊆ K, is a valuation
ring and the associated group of values K×/A× is a quotient of Γ = K×/R×. So,
combining these constructions with Lemma 2.4.6 we obtain the following result,
where orders of involved sets can be increasing or decreasing.

Lemma 2.4.8. Let K be a valued field with ring of integers R and group of values
Γ. Assigning | |v, Rv, Sv and pv to a convex subgroup Γv ⊆ Γ gives rise to bijections
between the ordered sets of

(1) convex subgroups of Γ,
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(2) coarsenings of | |,
(3) overrings of R,
(3’) localizations of R,
(4) multiplicative subsets S ⊆ R \ {0} such that if x|y and y ∈ S then x ∈ S,
(5) prime ideals of R.

2.4.9. The overring criterion. Using overrings one can provide a non-trivial alterna-
tive description of valuation rings, which explains their geometric meaning. Recall
that given a ring A and local subrings Ai ⊆ A, i = 1, 2 with maximal ideals mi,
one says that A1 dominates A2 if A2 ⊆ A1 and m2 = m1 ∩A2.

Theorem 2.4.10. Let R be a domain with field of fractions K. Then the following
conditions are equivalent:

(i) R is a valuation ring.
(ii) R is local and any overring of R in K is a localization of R.
(iii) R is a maximal local ring in K with respect to domination.

Proof. We know that (i)=⇒ by the previous paragraph. In addition, (ii)=⇒(iii)
because any non-trivial localization of R inverts some elements of the maximal
ideal and hence does not dominate R. To close the circle we will prove that if R
is local with maximal ideal m, but R is not a valuation ring, then (iii) fails too.
By Lemma 2.4.2, there exists elements a, b ∈ R such that neither of them divides
the other. Set x = a

b and let A = R[x] denote the R-subalgebra of K generated by
x. By Corollary 2.4.14 that we will prove below, up to a switch of a and b we can
assume that mA 6= (1). Then the localization of A at mA is a local ring dominating
R. Since x ∈ A \R, we obtain that R is not maximal. �

Before completing the proof we explain the geometric meaning of the argument
and the main reason valuation rings show up in basic algebraic geometry. This
remark assumes some familiarity with algebraic geometry.

Remark 2.4.11. (i) The reader might have noticed that the black box result whose
proof we postponed is equivalent to the following: the blow up X ′ of X = Spec(R)
along the non-principal ideal (a, b) is glued from the two charts X ′a = Spec(R[ab ])

and X ′b = Spec(R[ ba ]), and our result simply claims that the closed point of X has

a preimage in X ′, that is, m lifts to either R[ab ] or R[ ba ]. This is an absolutely
standard claim in algebraic geometry since X ′ → X is projective and hence proper.
However, the proof is in fact not so trivial. Harthorne’s proof uses the valuative
criterion, hence it is based on our Theorem 2.4.10 or its sibling. Grothendieck’s
proof in [Gro67] does no involve valuations, but uses quit a bit machinery on graded
rings.

(ii) The main geometric property of valuation rings is that these are precisely
local domains R such that S = Spec(R) does no possess non-trivial blow ups. Even
more than that spectra of valuation rings are precisely the points of the birational
topology generated by open covers and birational proper morphisms. In particular,
these explains why they appear in valuative criteria. Valuations also lie in the basis
of Zariski’s and Nagata’s approaches to birational geometry. We will expand on
this topic later.

2.4.12. Lifting ideals to overrings. The result we have used about lifting of ideals
is based on the following
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Lemma 2.4.13. Assume that R is a domain with field of fractions K, and x ∈ K×
is an element not integral over R. Then A = R[x−1] contains a maximal ideal n
such that x−1 ∈ n, and for any such ideal n ∩R is a maximal ideal of R.

Proof. Note that x /∈ A because otherwise x =
∑n
i=0 aix

−i and multiplying by xn

we obtain an integral equation for x over R. Thus x−1 is not invertible in A, and
hence lies in a maximal ideal n ⊆ A. So A/n is a field, and since x−1 ∈ n, we have
that A/n = R/(n ∩R), and hence n ∩R is a maximal ideal. �

Corollary 2.4.14. Assume that (R,m) is a local domain with field of fractions K,
and x ∈ K× is an element. Then either mR[x] 6= (1) or mR[x−1] 6= (1).

Proof. If x is integral over R, then R[x] is a finite R-module, and hence mR[x] 6=
R[x] by Nakayama’s lemma. If x is not integral over R, then by Lemma 2.4.13
A = R[x−1] contains a maximal ideal n such that n ∩ R is a maximal ideal of R,
and hence coincides with m. In particular, mA 6= (1). �

2.4.15. Valuation rings and the integral closure. As an application, we can now
prove the following important result.

Theorem 2.4.16. Let K be a field and A ⊆ K a subring with the integral closure
B = NorK(A) in K. Then

(i) B coincides with the intersection of all valuation rings of K containing A.
(ii) If A is local, then B coincides with the intersection of all valuation rings of

K dominating A.

Proof. Any valuation ring R is integrally closed. Indeed, if x ∈ Frac(R)\R satisfies
xd + a1x

d−1 + . . . + ad = 0 with ai ∈ R, then |x| > 1 and |ai| ≤ 1 for the induced
valuation, and this implies that |xd| > |aixi| for 1 ≤ i ≤ d, which is impossible. As
a consequence we obtain that the intersections of the valuation rings in the theorem
contain NorK(A).

To prove the converse we should show that if x ∈ K is not integral over A, then
there exists a valuation ring of K containing or dominating A, respectively, and
such that x /∈ A. By Lemma 2.4.13 there exists a maximal ideal n of A[x−1] such
that x /∈ n, and then m = n∩A is a maximal ideal of A. Let A′ be the localization
of A[x−1] at n and m′ = nA′ its maximal ideal. Then (A′,m′) is a local ring such
that x−1 ∈ m′ and A′ contains or dominates A, respectively. By Theorem 2.4.10
there exists a valuation ring R of K which dominates A′. Then R contains or
dominates A, and x−1 lies in the maximal ideal of R and hence x /∈ R. �

2.5. Independence and extension of valuations.

2.5.1. Two valuations. Let | |1 and | |2 be two valuation an a field K with associated
valuation rings Ri and groups of values Γi. Let R = R1R2 denote the subring of K
generated by R1 and R2. If R = K, then one says that | |1 and | |2 are independent.
By Lemma 2.4.6, the valuation | | associated with R is the finest joint coarsening of
| |i. In particular, for any a ∈ K the images of |a|1 and |a|2 in Γ = |K×| are equal,
which is a non-trivial compatibility condition if R 6= K. We will later see that this
is the only restriction, so a general pair is “maximally independent up to a natural
constraint”.

Lemma 2.5.2. Keep the above notation and let Gi be the kernels of Γi → Γ. Then
for any gi ∈ Gi there exists a ∈ K such that |a|1 ≥ g1 and |a|2 ≤ g2.
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Proof. First assume that g1 > 1, g2 = 1. Choose any x ∈ K with |x|1 = g1, then
x ∈ R and hence x =

∑n
i=1 aibi with ai ∈ R1, bi ∈ R2. Then there exists i such

that b = bi satisfies |b|1 ≥ g1. Replacing b by b− 1, if needed, we preserve |b|1 and
achieve that |b|2 = 1.

If g2 ≥ 1 we can take a = b. Otherwise, in the same way we find c ∈ K such
that |c|1 = 1 and |c|2 ≥ g−1

2 and set a = b/c. �

2.5.3. Finitely many valuations. To go further we should extend the above to
finitely many valuations.

Lemma 2.5.4. Assume that R1, . . . ,Rn is a finite set of valuation rings of a field K
such that neither of them contains the other, and let | |i : K× � Γi be the associated
valuations. Set R′i = R1Ri for i ≥ 2 and R′1 = ∩ni=2R

′
i, and let | |′i : K× � Γ′i be

the associated valuations and Gi = Ker(Γi � Γ′i). Then for any elements gi ∈ Gi,
1 ≤ i ≤ n there exists x ∈ K such that |x|1 ≤ g1 and |x|i ≥ gi for 2 ≤ i ≤ n.

Proof. Throughout the proof i ∈ {2, . . . ,n}. By our assumptions Ri ( R′i, hence
Gi are non-trivial. Since R1 ( R′i, the rings R′i are ordered by inclusion and
hence R′1 coincides with some R′i. Therefore, G1 is also non-trivial. Enlarging
gi and decreasing g1 we can assume that g1 < 1 and gi > 1. By Lemma 2.5.2
there exist xi such that |xi|1 ≤ g1 and |xi|i > gi. The same argument as in the
proof of Theorem 1.8.14 shows that for generic enough l2, . . . ,ln > 0 the element
x =

∑n
i=2 x

li
i satisfies |x|j = max2≤i≤n |ylii |j ≥ gj for 2 ≤ j ≤ m. Clearly, |x|1 ≤ g1,

hence x is as required. �

2.5.5. The independence theorem. Now we can prove a general independence result,
which is an algebraic description of the ring ∩iRi and its spectrum.

Theorem 2.5.6. Let K be a field and let R1, . . . ,Rn be valuation rings of K num-
bered so that R1, . . . ,Rl are precisely the valuation rings from this set which are not
contained in other ones. Then R = ∩ni=1Ri is a semi-local ring, each prime ideal
mi = mRi ∩ R satisfies Rmi = Ri, and mi is prime if and only if i ≤ l. In partic-
ular, sending a prime ideal p ⊂ R to Rp one obtains a bijection between Spec(R)
and the set of valuation rings containing one of Ri.

Proof. Let i ∈ {1, . . . ,l}. We should prove that: (1) Ri = Rmi
, (2) mi is maximal,

(3) each maximal ideal m ⊂ R is one of mi. The rest follows since each Rj with
j > l is a localization of one of Ri with i ≤ l. In the sequel, we will only work
with R1, . . . ,Rl. Without limitation of generality, it suffices to prove (1) and (2)
for i = 1.

(1) Clearly Rm1
⊆ R1, so we should prove that any x ∈ R1 also lies in Rm1

.
Replacing x by x+ 1 if needed we can assume that |x|1 = 1. In the terminology of
Lemma 2.5.4 this implies that |x|i ∈ Gi for i > 1, hence by the same lemma there
exists t ∈ K such that |t|1 ≤ 1 and |t|i ≥ |x|i for i ∈ {2, . . . ,l}. In addition, Gi are
non-trivial, hence we can also achieve that |t|1 < 1 and |t|i > 1 for 2 ≤ i ≤ l. Set
s = 1

1+t , then s ∈ R\m1 and |xs|i ≤ 1 for 1 ≤ i ≤ l. In particular, xs ∈ ∩li=1Ri = R
and x = xs

s ∈ Rm1
.

(2) We should prove that R/m1 is a field, that is any y ∈ R \m1 is invertible
modulo m1. Applying the argument of (1) to x = y−1 ∈ R1 one finds s ∈ R such
that sx ∈ R and |s − 1|1 < 1. Then sxy − 1 ∈ m1, and therefore sx is the inverse
of y modulo m1.
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(3) Assume that m is a maximal ideal not contained in {m1, . . . ,ml}. By Chinese
remainder theorem there exists x ∈ m \ ∪li=1mi. Then |x|i = 1 for 1 ≤ i ≤ l, and
hence x ∈ ∩li=1R

×
i = R×, a contradiction. �

Remark 2.5.7. (i) The theorem implies that on the level of sets Spec(R) is glued
from the sets Si = Spec(Ri) by identifying the subsets Sij = Spec(RiRj) in
Spec(Ri) and Spec(Rj). In fact, using a minimal amount of algebraic geometry one
can define a scheme S by gluing Si along open subschemes Sij , and then the above
theorem is essentially equivalent to showing that S is affine. Since Γ(OS) = R, the
latter means that S = Spec(R), and in this way it would suffice to check that each
Ri is a localization of R.

(ii) A domain is called Prüfer if its localization at prime ideals are valuation
ring. Theorem 2.5.6 implies that R is a semilocal Prüfer ring if and only if it is the
intersection of finitely many valuation rings of Frac(R).

2.5.8. The set Vl/k. If k is a valued field and l/k is a field extension, we denote
the set of all equivalence classes of extensions of the valuation to l by Vl/k. This
coincides with the set of all valuation rings of l that dominate k◦.

2.5.9. The extension theorem. Now, we can give an algebraic description of the set
of extensions of a valuation through finite and even algebraic extensions.

Theorem 2.5.10. Assume that k is a valued field and l/k is an algebraic extension.
Let R = Norl(k

◦) be the integral closure of k◦ in l and let {mi}i∈I be the set of
maximal ideals of R. Then,

(i) Each localizations Rmi
is a valuation ring dominating k◦ and this gives rise

to a bijection I = Vl/k. In particular, Vl/k is non-empty.
(ii) If l/k is normal, then Aut(l/k) acts transitively on Vl/k.

Proof. A colimit argument reduces this to the case when l/k if finite. By Theo-
rem 2.4.16 R = ∩Vl/k

Ri, in particular, Vl/k 6= ∅. In addition, the maps Spec(Ri)→
Spec(k◦) are bijections by Corollary 2.3.12 and Lemma 2.4.8, hence no Ri is a
localization of another one. We claim that |Vl/k| < ∞. Since we already proved
that valuations extend through finite extensions, it suffices to prove this for a larger
finite extension of k. Thus, we can assume that l/k is normal, and then it suffices
to prove (ii).

First, if l/k is purely inseparable of degree pn, then any x ∈ l satisfies xp
n ∈ k.

Therefore, the set l◦ of all x ∈ l such that xp
n ∈ k◦ is a valuation ring. Since l◦ ⊆ R

this implies that R = l◦ is the only extension of the valuation to l. Let ls is the
separable closure of k in l. Then we have proved that Vls/k = Vl/k, hence it remains
to prove (ii) for the Galois extension ls/k. For shortness of notation, assume l = ls.
Take any R1 ∈ Vl/k and set R′ = ∩g∈GgR1, where G = Gl/k. Then for any α ∈ R′
the minimal polynomial fα =

∏
g∈G(t − gα) over k lies in R1[t] ∩ k[t] = k◦[t].

This proves that the embedding R ↪→ R′ is an equality. By Theorem 2.5.6, if Vl/k
contains a valuation ring R2 not of the form gR1, then R2 ∩ (∩g∈GgR1) is strictly
smaller than R, which is impossible. So, G acts on Vl/k transitively. �

2.5.11. Algebraic closure of a valued field. One of the most important corollaries is
that valued algebraic closure is unique up to a (non-unique) isomorphism.
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Corollary 2.5.12. Assume that k1/k and k2/k are extensions of valued fields such
that on the level k1 and k2 are algebraic closures of k on the level of valued field.
Then there exists an isomorphism k1

∼−→k2 of valued k-fields.

Remark 2.5.13. The corollary shows that one can work with valued algebraic
closures precisely as one works with algebraic closures in Galois theory. The only
subtle thing is that on a fixed algebraic closure ka there might exist many non-
equivalent extensions of valuations | |i. This happens because the automorphism
group Di of (ka, | |i) is the stabilizer of | |i in G = Aut(ka/k), and for non-henselian
fields, Di is smaller than G. The group Di is called the decomposition group of the
extended valuation | |i.
2.5.14. Multiplicity of extended valuation. Assume that k is a valued field, l/k a
finite extension, and | |1, . . . ,| |m the valuations of Vl/k. Since any | |i can be
extended to ka, it follows from Corollary 2.5.12 that | |i is induced from a fixed
valuation | | on ka via an embedding l ↪→ ka. Let n = [l : k] and let σ1, . . . ,σn
be the k-embeddings of l into ka, where each embedding appears pl-times for the
inseparability index pl. Let ni be the number of times | |i appears as the valuation
induced via σj for 1 ≤ j ≤ n. We call ni the multiplicity the valuation | |i in l/k.
In addition, if li = (l, | |i) is the corresponding valued extension of k then we call
nli/k = ni the multiplicity of the extension. Obviously, n =

∑m
i=1 ni.

More generally, for any algebraic extension of valued fields l/k we define nl/k =
maxi nli/k, where li/k run through finite subextensions of l/k. This can be a finite
number or infinity.

Exercise 2.5.15. (i) For any algebraic tower of extensions of valued fields m/l/k
one has that nm/k = nm/lnl/k.

(ii) If L/k is an extension of valued fields and l,K are two subextensions such
that L = lK, then nL/K ≤ nl/k.

2.5.16. The defect. For a finite extension of valued fields we also introduce the
defect dl/k =

nl/k

el/kfl/k
. We will later show that dl/k is either 1 or a power of the

residual characteristic of k, but even proving that dl/k ≥ 1 will be a difficult task
for valuations of arbitrary height. At this point we only know that dl/k is a rational
number and it is multiplicative in towers because the invariants n, e and f are. We
also define the defect of an arbitrary algebraic extension to be the maximum of
defects over its subextensions.

Note that for a finite extension l/k and all extension of the valuation to l the
equality [l : k] =

∑
i eli/kfli/kdli/k holds in a tautological way, but it is useless until

we at least prove that dli/k ≥ 1.

2.5.17. Basic types of extensions. Using invariants one can introduce the following
basic classes of algebraic extensions of valued fields. In Chapter 3, we will study
them extensively and explain why they naturally arise in the Galois theory of valued

fields. By p = exp.char(k̃) we denote the residual characteristic exponent, that is,

p = 1 is char(k̃) = 0 and p = char(k̃) otherwise.

(1) L/k is strictly unramified if nL/k = 1.

(2) L/k is unramified if nl/k = el/k and l̃/k̃ is separable for any finite subex-
tension l/k.

(3) L/k is tame if nl/k = el/kfl/k, l̃/k̃ is separable, and (p, fl/k) = 1 for any
finite subextension l/k.
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Each of these classes has a natural complementary class of extensions as follows.

(1) Henselian extensions L/k. Note that L/k is henselian if nl/k equals to
separability degree of l/k for any finite subextension l/k.

(2) L/k is totally ramified if it is henselian and L̃/k̃ is purely inseparable.

(3) L/k is purely wild if it is henselian, L̃/k̃ is purely inseparable, and |L×|/|k×|
is a p-torsion group.

Note that if p = 1, that is the residual characteristic is zero, then there are no
non-trivial purely wild extensions.

2.5.18. Some complements. The following results will not be used, so we leave them
as exercises.

Exercise 2.5.19. Assume that K/k is an extension of valued fields and l/k is an
algebraic extension such that L = l ⊗k K is a field.

(i) Show that the map ψ : VL/K → Vl/k induced by restriction of the valuation
is surjective.

(ii) Show that ψ is not injective in general. (Hint: take k = (Q, | |3), l = k(
√

3)

and K = k(
√

21). Then l/k and K/k are henselian, but L = lK/k is not henselian

because it contains k(
√

7), which is not henselian over k. In particular, L/l and
L/K are not henselian.)

(iii)* Show that ψ is bijective whenever k is separably closed in K.

2.5.20. The max formula. If k is a valued field, then by Lemma 2.3.21(ii), up to
equivalence, any extended valuation on ka can be viewed as a valuation ka →√
|k|. In particular, we can define a non-archimedean power-multiplicative map

| |max : ka →
√
|k| by the formula |α|max = maxi∈Vl/k

|α|i. Note that the maximum

is achieved because |Vk(α)/k| <∞. By a slight abuse of language, we will call it the
max-norm, similarly to the real valued case. In fact, the theory we developed in the
real valued case generalizes straightforwardly, so we will refer to that case for details.

As in that case, for any α ∈ ka with minimal polynomial fα(t) = td +
∑d
i=1 ait

d−1

we also define the spectral norm |α|sp = σ(f) = maxi |ai|.

Theorem 2.5.21. For any valued field k there is an equality | |sp = | |max of

functions ka →
√
|k|.

Proof. The proof copies the proof of Theorem 1.8.23. First, for any fixed valuation
| | ∈ Vka/k one checks that |α|sp = maxj |α|j , where α1, . . . ,αn are the roots of fα.
This verbatim the same computation as in the proof of Lemma 1.8.19. Then, using
that by Theorem 2.5.10(ii) Aut(ka/k) acts transitively on Vka/k, one obtains that
maxj |α|j = maxi∈Vka/k

|α|i. �

2.6. Henselian valued fields.

2.6.1. Henselian fields and extensions. As in the case of real valued fields, an al-
gebraic extension of valued fields l/k is henselian if |Vl/k| = 1. A valued field k is
called henselian if the extension ka/k is henselian.

Lemma 2.6.2. Assume that k is a real valued field and m/l/k is a tower of alge-
braic extensions, then

(i) m/k is henselian if and only if l/k is henselian and m/l is henselian with
respect to the extension of the valuation to l.
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(ii) k is henselian if and only if l/k is henselian and l is henselian with respect
to the extension of the valuation.

(iii) If l/k is purely inseparable, then it is henselian. In particular, if k is sepa-
rably closed, then it is henselian.

Proof. Claims (i) and (ii) follow from the fact that Vl/k is non-empty by The-
orem 2.5.10(i). If l/k is purely inseparable, then it is normal, and by Theo-
rem 2.5.10(ii) Aut(l/k) = 1 acts transitively on Vl/k. Thus |Vl/k| = 1, as claimed.

�

2.6.3. Krasner’s lemma. Krasner’s lemma that we earlier proved for complete fields
in fact only needs the assumption that a field k is henselian. As in the real valued
case, for any α ∈ ka we set rα = infi>1 |α−αi| where α = α1 and fα =

∏
i(t−αi).

Theorem 2.6.4. Assume that K/k is an extension of valued fields with a henselian
K, and provide Ka with the valuation extending that of K. Assume further that
α ∈ Ka is algebraic over k and K contains an element α0 such that |α− α0| < rα.
Then α ∈ K.

Proof. We just copy the proof of Theorem 1.7.28. Clearly α is separable over k.
Let f be the minimal polynomial of α over K. Then f(t + α0) is an irreducible
polynomial over K which vanishes at α − α0 and has all other roots of the form
αi − α0 for i > 1. Since all roots of f(t− α0) are conjugated over K and there is a
unique extension of the valuation to Ka, all these roots have the same valuation.
It remains to note that |α1 − α0| < r ≤ |αi − α0| for i > 1, and hence f(t+ α0) =
t− (α− α0). In particular, α ∈ K. �

2.6.5. Application to existence of roots. As a corollary we will now prove for general
henselian field a criterion on existence of roots.

Corollary 2.6.6. Assume that k is a henselian field, a ∈ k an element and d a

natural number invertible in k̃. Then k contains a root a1/d if and only if there
exists c ∈ k such that |a− cd| < |a|.

Proof. Fix a root α = a1/d ∈ ka and set β = c
α . Since |αd − cd| < |αd|, we have

that |βd − 1| < 1, and hence β̃ is a d-th root of unity. It follows that there exists
a d-th root of unity ξ ∈ ka such that |β − ξ| < 1 and hence also |c − ξα| < |α|.
Replacing α by ξα for simplicity we can assume that |c− α| < |α|.

We claim that α ∈ k by Krasner’s lemma. Indeed, it suffices to check that if
α′ 6= α is a conjugate of α, then |α−α′| = |α|. But α′ = αξ for a d-th root of unity

ξ 6= 1, and since the polynomial td − 1 is separable over k̃, we have that ξ̃ 6= 1.
Thus |ξ − 1| = 1 and so |α− α′| = |α|. �

Exercise 2.6.7. * Assume now that k is of mixed characteristic and d = pnm,

where p = char(k̃) and (p,m) = 1. Show that a1/d ∈ k if and only if there exists
c ∈ k such that |a− cd| < |p|(np+1−n)/(p−1) · |a|. Also, in the case of an analytic k
prove this directly by computing the convergence radius of the binomial series of
(1 + t)1/d.

2.6.8. A criteria of henselianity of extensions. Next, we work out some criteria for
being henselian, and we start with the case of extensions.
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Theorem 2.6.9. Let k be a valued field and let l/k be an algebraic extension. Then
the following conditions are equivalent:

(i) l/k is henselian.
(ii) The max norm on l is a valuation.
(iii) The ring R = Norl(k

◦) is local.
(iv) There exists no x ∈ R such that both x and 1− x are non-invertible.

Proof. By independence of valuations, neither extension of the valuation of k to l
dominate other ones. So, the equivalence (i)⇐⇒(ii) follows from Theorem 2.5.21.
The equivalence (ii)⇐⇒(iii) is due to Theorem 2.5.10(i), and the equivalence (iii)⇐⇒(iv)
is a simple basic fact in commutative algebra. �

The following exercise makes the latter criterion more practical.

Exercise 2.6.10. Prove that x ∈ Norl(k
◦) is invertible if and only if N rl/k(x) is

invertible in k◦. (Hint: use the Galois action.)

2.6.11. Hensel’s lemma. Now we are going to extend the Hensel’s lemma to henselian
valued fields. In fact, it even extends to arbitrary henselian extensions using the
following notion. We say that a polynomial f(t) ∈ k[t] over a valued field k is
henselian if its splitting field is henselian.

Theorem 2.6.12. Let k be a valued field and f(t) ∈ k◦[t] an irreducible henselian

polynomial with integral coefficients. Then the reduction f̃ is either a constant or
a constant times a power of an irreducible polynomial.

Proof. Let l be the splitting field of f and f(t) = c
∏
i(t − αi) the splitting of f

in l[t]. Since the valuation of k extends uniquely to l, the values of |αi| coincide.
In particular, either |αi| > 1 for any i, and then the reduction is easily seen to

be constant, or αi ∈ l◦ for any i. In the latter case, the reduction f̃ splits as
c̃
∏
i(t− α̃i). It remains to note that Aut(l/k) acts transitively on the set {αi} and

preserves the valuation, hence it descends to a k̃-action on l̃ which acts transitively

on the set of roots of f̃ . This implies that f̃ is as required. �

Exercise 2.6.13. Deduce the usual versions of Hensel’s lemma. For example, if f

is a henselian polynomial and its reductions splits as f̃ = gh with corpime factors,
then f splits as f = gh with g̃ = g and deg(g) = deg(g̃).

2.6.14. Specialization of the Galois group. If l/k is a henselian extension of valued
fields, then the action of Aut(l/k) preserves the valuation, and hence it acts on l◦

and l̃. In particular, a homomorphism Aut(l/k)→ Aut(l̃/k̃) arises.

Lemma 2.6.15. If l/k is a normal finite henselian extension of valued fields, then

the homomorphism φ : Aut(l/k)→ Aut(l̃/k̃) is surjective and l̃/k̃ is normal.

Proof. Let F be the separable closure of k̃ in l̃. By the primitive element theorem

there exists α ∈ l̃ such that F = k̃(α). Choose any α ∈ l◦ with α̃ = α. The same
argument as in the proof of Theorem 2.6.12 shows that if α = α1, . . . ,αn are the
conjugates of α, then α̃1, . . . ,α̃n are the conjugates of α̃. Therefore, the image of
φ acts transitively on the set of conjugates of α̃, and this implies that φ is onto.

Moreover, this proves that all elements α̃i are in l̃, and hence l̃/k̃ is normal. �
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2.6.16. Criteria of henselianity of a field. Now we can extend Theorem 1.9.13 to
the case of general valued fields.

Theorem 2.6.17. Assume that k is a non-archimedean valued field. Then the
following conditions are equivalent:

(i) k is henselian.

(ii) For any f ∈ k◦[t] and a factorization f̃ = gh with (g, h) = 1 in k̃[t̃], there
exists a lifting f = gh with g̃ = g and deg(g) = deg(g).

(iii) Any f ∈ k◦[t] splits as f = gh with |h− 1| < 1 and deg(g) = deg(g̃).

(iv) For any monic f ∈ k◦[t] and a simple root a ∈ k̃ of f̃ there exists a root
a ∈ k of f such that ã = a.

(v) Any irreducible monic polynomial f = td + a1t
d−1 + . . . + ad ∈ k[t] with

ad ∈ k◦ lies in k◦[t].
(vi) Any irreducible monic polynomial f = td + a1t

d−1 + . . .+ ad ∈ k[t] satisfies
|ai|1/i ≤ |ad|1/d for 1 ≤ i ≤ d.

Proof. We can assume that the valuation is non-trivial, and the implications (vi)=⇒(v),
(ii)=⇒(iv), and (ii)=⇒(iii) are clear. Furthermore, (i) implies (ii) by Theorem 2.6.12
(and Exercise 2.6.13), and (i) implies (vi) by Theorem 2.5.21. So far, this is the
same argument as in the proof of Theorem 1.9.13.

It remains to show that if k is not henselian, then (iii), (iv) and (vi) fail. This
time we cannot use completions, so a new argument is needed. Fix a finite non-
henselian extension L/k. By Lemma 2.6.2, we can replace L by the separable
closure of k in it, we can assume that L/k is separable. Then, replacing L by its
Galois closure over k we can assume that L/k is Galois. Fix an extension of th
evaluation to L, and denote it also by | |. Let G = GL/k, let H be the subgroup of

elements h ∈ G that preserve | |, and let l = LH . Let | |1, . . . ,| |n be the elements
of Vl/k with | |1 = | |. Embeddings of l into L are parameterized by the elements
of G/H. The trivial embedding induces the valuation | |1, and, by the definition of
H, other embeddings induce valuations | |i with i > 1.

The remaining argument proceeds as in the proof of Theorem 1.9.13. By inde-
pendence of valuations, see Lemma 2.5.4, there exists a ∈ l such that |a|1 < 1 and
|a − 1|j < 1 for 2 ≤ j ≤ n. It follows that if a1 = a, a2, . . . ,ad are all conjugates
of a, then |a1| < 1 and |ai − 1| < 1 for i ≥ 2. In particular, the minimal poly-

nomial fa satisfies f̃a = t(t − 1)d−1 and hence violates (iv). Polynomials violating
(iii) and (v) are constructed similarly – see the last paragraph from the proof of
Theorem 1.9.13. �

2.7. Henselization. In Chapter 1 we have used completions to construct henseliza-
tions of real valued fields. In this section, we will provide an algebraic construction
which applies to arbitrary valued fields as well. Then we will use henselizations
to extend to the general case results that were proved for real valued fields using
completions.

2.7.1. Liftings of simple roots. For brevity, we used independence of valuations to
prove all criteria of henselianity, but the only one where it was really important is
criterion (iv). It is the most non-trivial and useful criterion, which will be used to
construct henselizations of valued field. The key observation is the following result.

Lemma 2.7.2. Assume that k is a valued field, f ∈ k◦[t] is an irreducible monic

polynomial with integral coefficients such that the reduction f̃ has a simple root
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α. Let l = k(α) be the simple extension generated by a root α of f . Then there
exists a unique extension | |l of the valuation of k to l such that α̃ = α. Moreover,
if ka is provided with a valuation extending that of k, then there exists a unique
k-embedding l ↪→ ka inducing | |l on l.

Proof. By Theorem 2.5.10(ii) any other valuation from Vka/k is obtained by con-
jugating | | by an element of Aut(ka/k). Since any valuation on l extends to
a valuation on ka, it follows that any valuation on l is induced from | | via a k-
embedding σ : l ↪→ ka. If f =

∏
i(t−αi) is the splitting of f in ka[t], then αi = σ(α)

determines σ. A standard argument, shows that |αi| ≤ 1, hence f̃ =
∏
i(t̃ − α̃i)

and we can renumber the roots so that α̃1 = α and α̃i 6= α for i > 1. Then it is
clear that the only valuation on l, such that α is the reduction of α, corresponds to
the embedding sending α to α1. �

Corollary 2.7.3. Assume that k is a valued field and provide ka with an extended
valuation. Then there exists a minimal k-subfield l ⊆ ka such that any monic

polynomial f(t) ∈ l◦[t] with a simple root α of the reduction f̃(t̃) there exists a root
α ∈ l◦ of f such that α̃ = α.

Proof. Let {(fi, αi)} be the set of all irreducible monic polynomials in k◦ and simple

roots αi of f̃i. By Lema 2.7.2 there exists a unique subfield k(i) = k(αi) of ka such
that f(αi) = 0 and α̃i = αi. Take l1 to be the composite of all ki. In the same
way define l2 by adjoining to l1 all liftings of simple roots of irreducible monic
polynomials from l◦1[t], etc. The field l = ∪ili is as required. �

In fact, one can shorten the above construction, but this requires an additional
work and will not be needed.

Exercise 2.7.4. * Similarly to the construction of the algebraic closure in Galois
theory, show that in fact l = l1 and the subsequent extensions are trivial.

2.7.5. Henselization. The valued extension l of k which was defined in Corollary
2.7.3 is usually denoted kh/k and called the henselization of k. This is justified by
the following result.

Theorem 2.7.6. Let k be a valued field. Then the valued field kh is the minimal
henselian valued field containing kh. Namely, for any embedding of valued fields
k ↪→ K with a henselian target factors through k ↪→ kh uniquely.

Proof. By the equivalence (i)⇐⇒(iv) in Theorem 2.6.17, the field kh is henselian.
Moreover, by the same theorem any extension K/k with a henselian K contains

any subfield k(α) such that α̃ is a simple root of f̃α. Therefore, in the situation of
Corollary 2.7.3, we see that k ↪→ K factors through l1. In the same way, l1 ↪→ K
factors through l2, and so on, proving the theorem. �

Exercise 2.7.7. (i) Show that nkh/k = 1. In particular, kh/k is separable.

(ii) Show that kh/k is the maximal valued algebraic extension l/k such that
nl/k = 1.

(iii) Let | | denote the extended valuation from kh to ks and let D ⊂ Gal(ks/k)
be the decomposition group of | |. Show that kh = (ks)D.

Remark 2.7.8. This provides another way to construct kh. Namely, one fixes
any extension of the valuation to ks, and then takes kh to be the fixed field of its
decomposition group.
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Exercise 2.7.9. Let D ⊆ Gal(ks/k) be the decomposition group of a valuation.
Show that D coincides with its normalizer, and explain why this is equivalent to
the fact that kh has no automorphisms over k preserving the valuation.

2.7.10. A description of Vl/k. Henselization is a finer analogue of completion, and
we wil now use it to extend some results about real valued fields. We start with a
Galois-theoritc description of the set Vl/k.

Theorem 2.7.11. Assume that k is a valued field and let ka be the valued alge-
braic closure. For any algebraic extension l/k there always exists an extension of
valuation to l, each such extension is induced by a k-embedding l ↪→ ka, and two
embedding induce the same valuation if and only if they are conjugate over kh.
Equivalently, Homk(l, ka)/Aut(ka/kh) = Vl/k.

Proof. We should only prove that valuations obtained from σ1, σ2 ∈ Homk(l, ka) are
equivalent if and only if they are conjugate over kh. Since the decomposition group
D = Aut(ka/kh) preserves the valuation, if σi are conjugate, then the induced
valuations coincide. Conversely, assume that they induce the same valuation on l.
Let lh be the henselization of h with respect to this valuations, and consider the
induced embeddings σhi : lh ↪→ ka. By uniqueness of the valued algebraic closure
there exists an automorphism τ of ka such that τ ◦ σh1 = σh2 . Since τ fixes k and
preserves the valuation, it also fixes kh. Thus, τ ∈ Aut(ka/kh), as required. �

2.7.12. The tensor product formula. As a corollary, we again obtain a tensor prod-
uct formula, and this time one even does not have to apply reduction.

Theorem 2.7.13. Assume that k is a valued field, l/k is a finite extension, | |i,
1 ≤ i ≤ d are the elements of Vl/k, and li = (l, | |i) are the corresponding valued

fields. Then l ⊗k kh =
∏d
i=1 l

h
i and nli/k = [lhi : kh].

Proof. Since kh/k is separable, l⊗kkh =
∏
F∈C F , where C is the set of isomorphism

classes of abstract composites lkh. Note that each composite F possesses a canonical
valuation by the henselianity of kh and F = lh, where l is provided with the induced
valuation. Indeed, kh ⊆ lh, hence F = lkh ⊆ lh, and since F is henselian this is an
equality.

An element σ ∈ Homk(l, ka) gives rise to a composite σ(l)kh, and two such
composites are isomorphic as abstract composites if and only if they are conjugate
over kh. So, Homk(l, ka)/Aut(ka/kh) = C, and by Theorem 2.7.11 we obtain that

C
∼−→Vl/k, where a composite F is sent to the valuation it induces on l. At this

stage we already obtain that

l ⊗k kh =
∏
F∈C

F =

d∏
i=1

lhi .

Let n = [l : k] and σ1, . . . ,σn be the elements of Homk(l, ka) repeated pm times,
where pm is the inseparability degree of l/k. Then each composite F is obtained
as σi(l)k

h precisely [F : kh] times. On the other hand, this is precisely the number
of times the corresponding valuation on l is induced from σi. This proves that
nli/k = [F : kh] = [lhi : kh]. �
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2.8. Compositions and limit argument. In this section we will develop a tech-
nique, which often allows to reduce various problems about valued fields to the case
of real valued ones, and we will immediately test it on extensions of valuations. The
technique is two-step: first one reduces to finite height by a limit argument, and
then one inducts on height by composing valuations of smaller height.

2.8.1. Limits and finite extensions. The following simple result can be viewed as a
part of Galois theory, so we only indicate a proof.

Lemma 2.8.2. Assume that a field k is a filtered union of its subfields ki, i ∈ I.
Then for any finite extension l/k there exists i0 ∈ I and an extension li0/ki0 such
that l = li0 ⊗ki0 k. Moreover, in this case li = li0 ⊗ki0 ki is a field, l = li ⊗ki k,

and the separable and inseparable degrees of li/ki are equal to those of l/k for any
i ≥ i0.

Proof. Choose any basis x1, . . . ,xn of l over k and consider the multiplication table
xαxβ =

∑n
γ=1 cαβγxγ with cαβγ ∈ k. Then we can take any ki0 such that all cαβγ

lie in ki0 and set li0 = k(x1, . . . ,xn). �

2.8.3. The limit principle. Lemma 2.8.2 is an illustration of the following general
limit principle: any algebraic construction over k which operates with finitely many
elements is already defined over some ki. We will mainly use this in the case
of valued fields. In this case, one can always take ki to be of finite height, see
Corollary 2.3.17, reducing nearly all algebraic problems about valued fields to the
case of a finite height.

2.8.4. Continuity of invariants of valued extensions. As a first instance of the limit
principle, we will prove that all numerical invariants of valued extensions are com-
patible with filtered unions.

Theorem 2.8.5. Let k = ∪i∈Iki, l/k, i0 and li be as in Lemma 2.8.2, and assume
that k is valued and ki are provided with the induced valuation. Then there exists
i1 ≥ i0 such that for any i ≥ i1 the natural restriction map Vl/k → Vli/ki is a
bijection, and for any valuation of Vl/k on the induced valuation on li, one has

that nl/k = nli/ki , el/k = eli/ki , fl/k = fli/ki , dl/k = dli/ki and l̃ = k̃ ⊗k̃i l̃i. In

particular, l/k is henselian, unramified, tame, totally ramified, etc., if and only if
each li/ki with i ≥ i1 is so.

Proof. Fix a valued algebraic closure ka and fix the induced valuation on its sub-
fields kai . The restriction maps Ψi : Homk(l, ka) → Homki(li, k

a
i ) are surjective by

the usual Galois theory, hence they are bijective for i ≥ i0. (We use that the
separable degrees of l/k and li/ki coincide for i ≥ i0.) By Theorem 2.7.11, the
map ψi : Vl/k → Vli/ki is obtained by dividing both sides of Ψi by the action of the
decomposition groups. If two embeddings l ↪→ ka are conjugate by an element of
the decomposition group, then the same is true for their restrictions li ↪→ kai , hence
ψi is surjective. Since l = ∪ili, if two embeddings induce different valuations on l,
then they also induce different valuations on li for i large enough. This proves that
ψi is also injective for i large enough.

Now, fix a k-valuation on l and provide all its subfields with the induced val-
uation. Recall that nl/k equals to the size of the corresponding fiber of the map
Homk(l, ka)→ Vl/k times the inseparability degree. Using analogous description of
nli/ki and the above paragraph we obtain that nl/k = nli/ki .
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Note that l̃ = ∪i l̃i, and hence there exists i1 such that l̃ = k̃l̃i1 . It follows that

l̃i = k̃i l̃i1 for i ≥ i1, and hence eli/ki = [l̃i : k̃i] decreases monotonically with i.

Increasing i1 we can assume that [l̃i : k̃i] = [l̃i1 : k̃i1 ] for each i ≥ i1, and then

also [l̃ : k̃] = [l̃i : k̃i]. Thus, el/k = eli/ki and the composite coincides with the

tensor product: l̃ = k̃ ⊗k̃i l̃i. The equality fl/k = fli/ki is even easier, so we skip
the argument, and the equality dl/k = dli/ki follows from the others. �

2.8.6. Unions and henselization. As an application we obtain a very important
property of henselization.

Corollary 2.8.7. Assume that a valued field k is a filtered union of its valued
subfields, say k = ∪i∈Iki. Then kh = ∪i∈Ikhi . In particular, if ki are henselian for
i ≥ i0, then k is henselian.

Proof. Clearly, K = ∪i∈Ikhi is a subfield of kh. Any finite extension of K is
henselian by Lemma 2.8.2 and Theorem 2.8.5, hence K is henselian and we ac-
tually have that K = kh. �

Remark 2.8.8. It may freely happen that each ki is not henselian, but k is.
This happens because being a henselian field is a property that addresses all finite
extensions of k and it cannot be determined by finitely many conditions.

Exercise 2.8.9. Show that the henselization l = kh of k = (Q, | |p) is infinite over
k. In particular, l is henselian, but it is a filtered limit of fields li which are finite
over k, and hence are not henselian. (Hint: for example, if p > 2, then l contains
any element of the form

√
1 + pn, and if p = 2, then l contains any element of the

form
√

1 + 8n.)

2.8.10. Disassembling valuations. Assume that k is a valued field with Γ = |k×|.
Since we will play with many valuations, it will be convenient to denote the ring
of integers by O = k◦. Given an element v ∈ Spec(O), let Γv be the corresponding

convex subgroup and Γv = Γ/Γv. Denote by | |v : k → Γ
v

the corresponding
coarsening, then the ring of integers Ov of the valued field kv = (k, | |v) is the

localization of O at v. The image of O in the residue field k̃v will be denoted Ov.

Lemma 2.8.11. Keep the above notation, then Ov is a valuation ring and denoting

by kv the field k̃v provided with the induced valuation | |v one has that |k×v |v = Γv.
In addition, O is the preimage of Ov under the map Ov � kv.

Proof. Exercise. �

2.8.12. Composing valuations. Since valuation is determined by the valuation ring,
Lemma 2.8.11 implies that | | is determined by the coarse valuation | |v and the
induced valuation on | |v the residue field. Therefore, we say that | | is composed
from these two valuations. Conversely, one can compose valuations as follows.

Lemma 2.8.13. Assume that K1 = (K, | |1) is a valued field and the residue field k
is provided with a valuation | |2. Then the preimage K◦ of k◦ in K◦1 is a valuation
ring, and the induced valuation | | on K is composed from | |1 and | |2. In particular,
there is an exact sequence 1→ |K×|1 → |K×| → |k×|2 → 1.

Proof. Exercise. �



VALUED FIELDS 49

2.8.14. The composition principle. Assume that | | is composed from | |v and | |v.
The composition principle states that constructions over the valued field k reduce

to constructions over the valued fields kv and kv, which agree on the field kv = k̃v

provided with the trivial valuation.

2.8.15. Composed valuations and algebraic extensions. Now we will test the com-
position principle on algebraic extensions. Assume that a valuation | | on k is
composed from | |v and | |v, and l/k is an algebraic extension of valued fields. Since
the map Spec(l◦) → Spec(k◦) is a bijection, there is a unique coarsening lv such
that lv/kv is an extension of valued fields, and then an extension of valued fields

l̃v/k̃v arises.

Lemma 2.8.16. Keep the above notation, then there restriction of valuation in-
duces a surjective map ψ : Vl/k � Vlv/kv and the fiber over w ∈ Vlv/kv with the

induced valued field lw = (l̃v, | |w) is canonically bijective to Vlw/kv . In particular,
l/k is henselian if and only if lv/kv and lv/kv are henselian.

Proof. Extending | | to l is equivalent to first extending | |v to l, and then extending

| |v through the induced extension l̃v/kv. Thus, the fibers of ψ are of the form Vlw/kv .
In particular, the fibers are non-empty. �

Corollary 2.8.17. Assume that k is a valued field, whose valuation is composed
from | |v and | |v. Then k is henselian if and only if both kv and kv are henselian.

Proof. This follows from the previous lemma and the fact that by Lemma 2.3.21
any algebraic extension of kv is the reduction of a valued algebraic extension of
kv. �

2.8.18. Invariants and composition. Computing invariants of extensions of valued
fields with composed valuations is subtler.

Theorem 2.8.19. In the situation of §2.8.15

el/k = elv/kv , fl/k = flv/kvflv/kv , dl/k = dlv/kvdlv/kv ,
nl/k

el/k
=
nlv/kv
elv/kv

nlv/kv

elv/kv
.

Proof. The first equality follows from the observation that k̃ = k̃v and l̃ = l̃v. By
Lemma 2.8.13 the groups of values of lv, l and lv form an exact sequence, and the
group of values of kv, k and kv form an exact subsequence. Therefore we obtain an
exact sequence of quotients

1→ |(lv)×|v/|(kv)×|v → |l×|/|k×| → |l×v |v/|k×v |v → 1,

and hence fl/k = flv/kvflv/kv .
The equality for the defects follows from the other ones, so it remains to prove

the last equality. Fix an extension of | | to ka, and let | |v be its appropriate
coarsening. Since el/k = elv/kv we should prove that

nlv/kv

nl/k
=

elv/kv

nlv/kv
. Letting

Σ ⊆ Σv denote the sets of k-embeddings l ↪→ ka compatible with the valuations

of l and lv, respectively, we have that
nlv/kv

nl/k
= |Σv|
|Σ| . Let D ⊆ Dv and D denote

the decomposition subgroups of Aut(ka/k) corresponding to | | and | |v. Then Dv

acts on Σv transitively and Σ is an orbit of D. Since all orbits are conjugated by
elements of D,3

�

3Complete the argument.
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Corollary 2.8.20. In the situation of §2.8.15, l/k is defectless, unramified or tame
if and only if both lv/kv and lv/kv are so, and l/k is strictly unramified if and only
if lv/kv is unramified and lv/kv is strictly unramified.

2.9. The fundamental inequality.

2.9.1. The formulation. First, let us formulate the result and briefly discuss it.

Theorem 2.9.2. Assume that k is a valued field and l/k is a finite extension, and
let l1, . . . ,lm be the valued field structures on l corresponding to the elements of Vl/k.
Then,

(i) 1 ≤ dli/k.
(ii) eli/kfli/k ≤ nli/k.

(iii)
∑m
i=1 eli/kfli/k ≤ [l : k].

The proof will be completed in §2.9.4. Now we only note that (i) and (ii) are
tautologically equivalent, and (iii) follows from them because [l : k] =

∑m
i=1 nli/k.

On the other hand, it is (iii) that is called the fundamental inequality after an
article of Cohen and Zariski, where it appeared for the first time. Note also that
we have already established the case of henselian extensions in Corollary 2.3.5, so
the only problem is “to separate different valuations”.

2.9.3. The real valued case. Assume that k is real-valued. Then kh is a subfield
of k̂, and since k̂/k is immediate, we obtain that the extension kh/k is immediate

too, that is, k̃ = k̃h and |k| = |kh|. The same is true for li, so we obtain that
elhi /k = eli/k, flhi /kh = fli/k. Therefore

nli/k = [lhi : k] ≥ elhi /khflhi /kh = eli/kfli/k,

where the first equality holds by Theorem 2.7.13.

2.9.4. The general case. Now, let us prove Theorem 2.9.2 in general. Assume, to the
contrary, that there exists a finite extension of valued fields l/k such that dl/k < 1.
Recall that by Corollary 2.3.17 k is a filtered union of its subfields of finite height,
say k = ∪i∈Iki. By Theorem 2.8.7 there exists i and a finite extension li/ki such
that dli/ki = dl/k < 1. Replacing l/k by li/ki we can assume that the fields are
of finite height. Furthermore, if the height is larger than 1, then k is composed of
valued fields kv and kv of smaller heights. By Theorem 2.8.19, dl/k = dlv/kvdlv/kv ,
hence either dlv/kv < 1 or dlv/kv < 1. By decreasing induction on the height there
exists a finite extension of fields of height at most 1 such that dl/k < 1. Obviously,
this cannot happen for the trivial valuations, and the case of height 1 was ruled out
in the §2.9.3. This completes the proof.

2.9.5. Application to henselization. As an immediate corollary we obtain the fol-
lowing important result about the henselization.

Corollary 2.9.6. Any strictly unramified extension of valued fields is immediate.
In particular, for any valued field k the henselization kh/k is an immediate exten-
sion.

Proof. If nL/k = 1, then by the fundamental inequality any finite subextension l/k
satisfies 1 = nl/k ≥ el/kfl/k. Hence el/k = fl/k = 1, and we obtain that l/k is
immediate. Obviously, this implies that L/k is immediate. �
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Remark 2.9.7. (i) The original proof of the fundamental inequality and the proof
in the Commutative Algebra of Bourbaki also contain an argument which inducts
on the height of valuation. The real valued case is easier because one can either
use completions or at least use that all valuations are completely independent.

(ii) Using a more advanced commutative algebra one can directly prove that
henselizations are immediate extensions. From this one easily obtains an alternative
proof of the fundamental inequality – just repeat the argument for the real valued
case.

2.9.8. Defectless extensions and stable fields. An extension of valued fields l/k is
called defectless if dl/k = 1. A valued field k is called stable or defectless if for any
its finite valued extension is defectless.

Lemma 2.9.9. A valued field k is stable if and only if for any finite extension l/k
the fundamental inequality is an equality.

The lemma is a tautology. A really interesting and subtle question is to pro-
vide non-trivial examples of stable fields. Probably, the most important result of
this type is that stability is preserved by transcendental extensions k(x)/k with
generalized Gauss valuation. This will be proved in Chapter 5.

3. Basic ramification theory

3.1. Ramification filtration.

3.1.1. The absolute case. Let k be a valued field and G = Gk = Galks/k its absolute
Galois group. Fix an extended valuation on ka and let D ⊆ G be the decomposition
group. As we noticed earlier, another choice of the valuation on ka would lead to
replacing D with its conjugate. The inertia subgroup I ⊆ D is the kernel of the

specialization homomorphism G → Aut(k̃a/k̃) = Gk̃. An element σ ∈ D is in I if
and only if it satisfies |σ(a) − a| < 1 for any a ∈ (ka)◦. Finally, the wild inertia
or the logarithmic inertia group W ⊆ I consists of all elements σ ∈ D such that
|σ(a)− a| < |a| for any a ∈ ka. This happens if and only if σ acts trivially on the

graded reduction k̃gr.
The filtration W ⊆ I ⊆ D ⊆ G is called the basic ramification filtration of

G. One can naturally filter the group W further by so-called higher ramification
groups, but this topic will be studied in Chapter 4.

3.1.2. Galois extensions. More generally, for any Galois extension of valued fields
l/k one can define a filtration on Gl/k = Gall/k precisely in the same way: the
decomposition group Dl/k is the stabilizer of the valuation of l, the inertia group Il/k

consists of elements that also act trivially on the residue field l̃, and the logarithmic
inertia Wl/k consists of elements satisfying |σ(a) − a| < |a| for any a ∈ l. In the
sequel, we will show that the basic filtration on Gl/k is induced from the basic
filtration on Gk.

3.2. Strictly unramified extensions. For an algebraic extension of valued fields
l/k set lh = l ∩ kh. Clearly, lh/k is the maximal strictly unramified subextension
of l/k. However, in general l/lh does not have to be of a complimentary class.

Exercise 3.2.1. Give an example of a finite extension l/k such that l/lh is not
henselian. (Hint: the smallest such example has invariants [l : k] = 3 and nl/k = 2,
in particular, lh = k in this case.)
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Lemma 3.2.2. If l/k is a Galois extensions of valued fields, then the homomor-
phism Galk � Gall/k induces a surjective homomorphism of decomposition groups
Dk � Dl/k, and lh is the fixed field of Dl/k in l.

Proof. Clearly, Dk is taken to Dl/k. Furthermore, since the valued algebraic closure
is unique up to isomorphism, any valued k-automorphism σ of l extends to a valued
k-automorphism of la = ka. This implies that the restriction is surjective, and the
claim about lh = l ∩ kh then follows from a general Galois theory. �

3.3. Unramified extensions.

3.3.1. The key result. The key result about unramified extensions of henselian fields
is that any separable extension of residue fields admits a minimal lift, which is
automatically unique.

Theorem 3.3.2. Assume that k is a henselian valued field, and l/k̃ is a separable
algebraic extensions. Then there exists a unique unramified extension l/k such that

l̃ = l as extensions of k̃, and for any valued extension F/k the reduction induces a

bijection Homk(l, F ) = Homk̃(l̃, F̃ ).

Proof. Since l is a filtered union of its subfields li finite over k̃, it suffices to lift
each li to an unramified extension li/k and prove the theorem for li. Then the
tower of embeddings li ↪→ lj lifts uniquely to a tower of embeddings li ↪→ lj and
the field l = ∪ili is as required. Therefore, it suffices to prove the theorem for a

finite extension l/k̃.

Since l/k̃ is finite separable, it is generated by a root α of an irreducible monic

polynomial f ∈ k̃[t] of degree d = [l : k̃]. Lift f to a monic polynomial f ∈ k◦[t]
and let l/k be the extension generated by a root α of f . By the construction, l ⊆ l̃
and [l : k] ≤ deg(f) = d. Therefore, by the fundamental inequality we obtain that

l̃ = l and l/k is an unramified extension of degree d.

Note that Homk(l, F ) and Homk̃(l̃, F̃ ) can be identified with the sets of roots of

f in F and of f̃ = f in F̃ , respectively, and the reduction map φ : Homk(l, F ) →
Homk̃(l̃, F̃ ) corresponds to taking reduction of a root. Since f̃ has d distinct roots

in k̃a, all d roots of f in ka have distinct reductions. This implies that φ is injective
and the splitting radius rk,α equals 1. To prove that φ is surjective we should

show that any root α ∈ F̃ of f̃ lifts to a root α ∈ F of f . In other words, we
should prove that the lift α ∈ F a lies in F . But any a ∈ F ◦ with ã = α satisfies
|a− α| < 1 = rk,α, and hence α ∈ F by Krasner’s lemma, see Theorem 2.6.4. �

Now, let us deduce various corollaries from the theorem.

Corollary 3.3.3. If k is henselian and l/k is unramified, then l is the minimal val-

ued extension of k whose residue field contains l̃, reduction induces an isomorphism

Aut(l/k) = Aut(l̃/k̃), and l/k is Galois if and only if l/k̃ is.

Proof. The minimality is clear: any embedding l̃ ↪→ F̃ lifts to an embedding l ↪→ F
by Theorem 3.3.2. Applying the claim to F = l, we obtain isomorphism of the
automorphism groups. The last claim easily reduces to the case of a finite l/k, and
then follows from the fact that l/k is Galois if and only if |Aut(l/k)| = [l : k]. �
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3.3.4. Strict henselization. Another immediate corollary of Theorem 3.3.2 is that
for any henselian k there exists a maximal unramified extension ku, namely the

unramified extension whose residue field is k̃s. In addition, the extension ku/k is
Galois with Galku/k = Galk̃s . Furthermore, for any valued field k we set ku = (kh)u

and call it the strict henselization of k. A valued field is called strictly henselian
if ku = k. As we will immediately prove, this happens if and only if k has no
non-trivial unramified extensions.

Corollary 3.3.5. If k is a valued field, then ku is the maximal unramified extension
of k and the extension ku/kh is Galois with Galku/kh = Galk̃.

Proof. The second claim is clear since kh/k is immediate, and hence k̃ is the residue
field of kh. The extensions kh/k and ku/kh are unramified, hence ku/k is unram-
ified. Finally, if l/k is unramified, then lh/k is unramified and hence lh/kh is
unramified. The latter implies that lh ⊆ ku. �

3.3.6. Filtration on extensions. The filtration ka/ku/k induces filtration on all al-
gebraic extensions l/k. Namely, setting lu = l ∩ ku we obtain a tower l/lu/k.

Corollary 3.3.7. If l/k is an algebraic extension of henselian valued fields, then lu
is the only intermediate field such that l/lu is totally ramified and lu/k is unramified.

Proof. It immediately follows from Theorem 3.3.2 that lu is the unramified exten-

sion of k whose residue field is the separable closure of k̃ in l̃. Therefore, l/lu induces
a purely inseparable extension of residue fields, that is, l/lu is totally ramified. �

3.3.8. Filtration on Galois groups. To accomplish the picture, let us look at the
Galois side.

Corollary 3.3.9. Assume that l/k if a Galois extension of henselian valued fields.

Then lu/k is Galois, l̃/k̃ is normal, and Gall/lu is the inertia subgroup Il/k of
Gall/k. In particular, Il/k is normal and Gall/k/Il/k = Autl̃/k̃.

Proof. Any k-automorphism of ka takes l to itself, hence it also takes its maximal
unramified subextension lu to itself. Thus, lu/k is normal and hence Galois. In

addition, l̃u/k̃ is Galois with Galois group Gallu/k, and l̃/l̃u is purely inseparable by

previous corollaries. In particular, l̃/k̃ is normal. Finally, Gallu/k = Gall/k/Gall/lu
is mapped isomorphically onto Autl̃/k̃ by Corollary 3.3.3, and hence Gall/lu is pre-

cisely the inertia subgroup. �

3.4. Tame extensions. The study of tame extensions is similar, and could even
be joined with the study of unramified extensions at cost of considering graded
reduction. We will try to stress this similarity in our exposition.

3.4.1. Existence of roots. This time Krasner’s lemma will be used through the fol-
lowing result.

Lemma 3.4.2. Assume that k is a strictly henselian field, a ∈ k an element, and

d a natural number invertible in k̃. Then k contains a root a1/d if and only if
|a|1/d ∈ |k×|.

Proof. Clearly, the condition is necessary. Conversely, assume that |a| = |bd| for
b ∈ k. It suffices to prove that c = ab−d is a d-th power in k, that is, the polynomial

f(t) = td − c has a root in k. Since |c| = 1 and k̃ is separably closed, the reduction
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td − c̃ has d distinct roots in k̃. So, by Hensel’s lemma f(t) even splits completely
in k[t]. �

3.4.3. The key result. This time the key result concerns liftings of “separable” ex-
tensions of the group of values.

Theorem 3.4.4. Assume that k is a strictly henselian valued field, p = exp.char(k̃),

and H ⊆
√
|k×| is a subgroup such that H/|k×| has no p-torsion. Then there exists

a unique tame extension l/k such that |l×| = H. In addition, l/k is Galois with
Gall/k = Hom(H/|k×|, k×), and an algebraic extension F/k contains l if and only

if |H| ⊆ |l×|.

Proof. Assume first that H is generated over |k×| by a single element r and let d
be the smallest positive number such that rd ∈ |k×|, say rd = |a| for a ∈ k. By
our assumption (d, p) = 1. The extension l = k(a1/d) satisfies [l : k] ≤ d ≤ el/k,
hence the inequalities are equalities and we obtain that l/k is a tame extension
with |l×| = H. Since k is strictly henselian and the polynomial td − 1 is separable

over k̃, all roots of unity of degree d lie in k. Then the usual theory of cyclic
extensions implies that l/k is Galois and Gall/k is as claimed. Finally, since F is

strictly henselian too, Lemma 3.4.2 implies that l ⊆ F if and only if H ⊆ |F×|.
Next, we assume that H/|k×| is finite. In this case the quotient is of the form∏n
i=1 Z/diZ, and by the above case each factor corresponds to an extension li =

k(a
1/di
i ). The composite l of l1, . . . ,ln is an extension of k of degree bounded by

d =
∏
i di. Since H ⊆ |l×|, we obtain that l/k is tame of degree d. In particular,

[li : k] = di and Gl/k =
∏l
i=1Gli/k. Now, all assertions about l/k follow from the

assertions about li/k.
Finally, if H is arbitrary, then it is a filtered union of subgroups Hj finitely

generated over |k×|. We have proved that each Hj corresponds to a unique tame
extensions lj/k, and taking l = ∪j lj one obtains a tame extension satisfying all
assertions of the theorem. �

3.4.5. Tame closure. For any valued field k let |k×|Z(p) denote the group obtained

from |k×| by extracting all roots of elements of order prime to p = exp.char(k̃) and
let kt be the tame extension of ku such that |(kt)×| = |k×|Z(p) . We call kt the tame
closure of k, and say that k is tamely closed if kt = k. As we will immediately
prove, this happens if and only if k has no non-trivial tame extensions.

Corollary 3.4.6. If k is a valued field, then kt is the maximal tame extension
of k and the extension kt/ku is Galois with Galkt/ku being the dual group of

|k×|Z(p)/|k×|.

Proof. The second claim follows from Theorem 3.4.4 because ku/k is unramified and
hence |(ku)×| = |k×|. The extensions ku/k and kt/ku are tame, hence kt/k is tame.
Finally, if l/k is tame, then lu/k is tame and hence lu/ku is tame. Since |(lu)×|/|k×|
has no p-torsion, |(lu)×| ⊆ |k×|Z(p) , and hence lu ⊆ kt by Theorem 3.4.4. �

3.4.7. Filtration on extensions. The filtration ka/kt/k induces filtration on all al-
gebraic extensions l/k by setting lt = l ∩ kt.

Corollary 3.4.8. If l/k is an algebraic extension of henselian valued fields, then
lt is the only intermediate field such that l/lt is purely wild and lu/k is tame.
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Proof. It immediately follows from Theorem 3.4.4 that lt is the tame extension of

k such that l̃t is the separable closure of k̃ in l̃ and |l×t | is the maximal subgroup
of |l×| whose quotient by |k×| has no p-torsion. Therefore, l/lt induces a purely
inseparable extension of residue fields and any element of |l×|/|l×t | is killed by a
power of p. In other words, l/lt is purely wild. �

3.4.9. Filtration on Galois groups. Finally, let us look again at the Galois side.

Theorem 3.4.10. Assume that l/k if a Galois extension of henselian valued fields.
Then lt/k is Galois and Gall/lt is the wild inertia subgroup Wl/k of Gall/k.

Proof. Any k-automorphism of ka takes l to itself, hence it also takes its maximal
tame subextension lt to itself. So, lt/k is Galois, and it remains to show that
Gall/lt = Wl/k.

Let us show that any σ ∈ Gall/lt lies in Wl/k, that is, |σ(α) − α| < |α| for any
α ∈ l. For a sequel use, we fix any extension of σ to an element of Aut(ka/lt)
and denote it also by σ. Since l/lt is purely wild, both e = el/lt and f = fl/lt are

powers of p. Choose b ∈ lt such that |αe| = |b|, and let β = αe/b. Since l̃/l̃t is

purely inseparable of degree f , we have that β̃f ∈ l̃t and hence |βf − c| < 1 for an
element c ∈ lt. We obtain that |αef − a| < |αef | for a = bfc ∈ lt, and since ef is a
p-th power, this implies that |α−a1/ef | < |α| and hence also |σ(α)−σ(a1/ef )| < |α|.
Note that σ takes a1/ef to ξa1/ef , where ξef = 1. Therefore, |ξ − 1| < 1 and we
have that |σ(a1/ef )− a1/ef | < |a1/ef | = |α|. Summarizing we obtain

|σ(α)− α| ≤ max
(∣∣∣σ(α)− σ(a1/ef )

∣∣∣ , ∣∣∣σ(a1/ef )− a1/ef
∣∣∣ , ∣∣∣a1/ef − α

∣∣∣) < |α|.
Conversely, we should show that if σ ∈ Gall/k does not lie in Gall/lt , then there

exists α ∈ l such that |σ(α) − α| = |α|. Assume to the contrary that such α does
not exist. Since the image of σ in Gallt/l is non-trivial it suffices to prove the
latter claim for tame extensions. So, we can assume for simplicity that l/k is tame.
Furthermore, replacing σ with its power we can assume that its order d is a prime
number. Replacing k with lσ we can further assume that [l : k] is of Galois of prime

degree d. If l/k is unramified, then σ acts non-trivially on l̃ yielding a contradiction.
In the remaining possible case, l/k is tame and so d 6= p. Find α ∈ l such that
|α| /∈ |k×|. Then the same argument as was used few times shows that there exists
a ∈ k such that |αd − a| < |a|. It follows that |α − a1/d| < |α| in lu. Since l/k
is totally ramified, Gallu/ku = Gall/k. Any primitive d-th root of unity ξ satisfies

|ξ − 1| = 1, hence |σ(a1/d) − a1/d| = |a1/d| and it follows that |σ(α) − α| = |α|, a
contradiction. �

3.5. Wild inertia.

3.5.1. The key result. Finally, let us study the bottom layer of the basic ramification
filtration.

Theorem 3.5.2. If k is a tamely closed field and p = exp.char(k̃), then ka/k is a
p-extension. In particular, if k is of residual characteristic zero, then it is tamely
closed if and only if it is algebraically closed.

Proof. If ka/k is not a p-extension, then ks/k is not a p-extension and using an
l-Sylow subgroup we can find a tower of extensions F/E/k such that F/E is Galois
of a prime degree l 6= p. Note that E is tamely closed, in particular, it contains a
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primitive l-th root of unity ξ, and by Galois theory F = E(α), where a = αl ∈ E.
Since E is tamely closed, |E| is l-divisible and using Lemma 2.6.6 we obtain that a
is an l-th power in E. This implies that E = F , a contradiction. �

Here is an immediate corollary.

Corollary 3.5.3. For any valued field k with p = exp.char(k̃), the wild inertia

group Wk is a pro-p-group. In particular, if char(k̃) = 1, then Wk = 1.

Remark 3.5.4. This is the only information about Wk which is easy to obtain,
and a finer description is often difficult. On the other hand, this implies that finite
purely wild Galois extensions are solvable, the fact which allows to reduce various
problems to the case of wild extensions of degree p.

Corollary 3.5.5. If k is tamely closed, then any finite extension l/k splits into a
tower of extensions of degree p and if l/k is of degree p then it is normal.

Proof. It suffices to prove this separately for the purely inseparable extension l/ls
and the separable extension ls/k. The first is obvious, and the second follows from
the basic theory of p-groups: if G is a p-group and H is a subgroup, then there
exists a chain H = H0 ⊂ H1 ⊂ . . . ⊂ Hn = G such that Hi is of index p in Hi+1,
and if H is of index p in G, then it is normal. �

Corollary 3.5.6. If l/k is a finite extension of valued fields, then there exists a
composite l′ = k′l such that k′/k is a finite tame extension, in particular, l′/k′ is
tame, and the extension l′/k′ splits into a tower l = l0 ⊂ l1 ⊂ . . . ⊂ ln = l of n
purely wild extensions of degree p.

3.5.7. Applications to defect. As another corollary we can finally bound the defect.

Corollary 3.5.8. For any finite extension of valued fields l/k, the defect dl/k is a

power of p = exp.char(k̃).

Proof. Note that dl/k = dlh/kh , hence we can assume that k is henselian. The
extension lt/k is defectless, hence dl/k = dl/lt . In particular, replacing k by lt we
can also assume that l/k is purely wild. But in this case e = el/k and f = fl/k
are powers of p for obvious reasons, and [l : k] is a power of p by Theorem 3.5.2.
Since ef ≤ [l : k] by the fundamental inequality, it follows that dl/k = [l : k]/ef is
a natural power of p. �

Remark 3.5.9. Unfortunately this qualitative result does not tell anything about
the structure of extensions with defect. In a sense, it is just a “result of luck” –
all involved numbers turned out to be powers of p for wildly ramified extensions,
and then already the fundamental inequality implies that the defect is natural, and
even a power of p.

3.6. Wild extensions of degree p. In this section we will study wild extensions
of henselian valued fields of degree p.

3.6.1. The defectless case. This case is very easy, but we will formulate results in
a way that suggests how to proceed in the case with defect. For completeness, we
also consider tame extensions when the same argument applies.
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Lemma 3.6.2. Assume that l/k is a defectless extension of henselian valued fields
of prime degree q. Then,

(i) For any x ∈ l \ k the infimum rk(x) = infc∈k |x− c| is achieved for some c0
and x− c0 is k-orthogonal.

(ii) If x ∈ l is k-orthogonal, then 1, x, . . . ,xp−1 is a k-orthogonal basis.

(iii) If x ∈ l is k-orthogonal and q = char(k̃), then there exists a ∈ k such that
|xp − a| < |a| and |a| ≤ |cp − a| for any c ∈ k.

Proof. By Lemma 2.3.3 l/k possesses an orthogonal basisB = {b0 = 1, b1, . . . ,bq−1},
where either B̃ is the basis of l̃/k̃ or |B| maps bijectively onto |l×|/|k×|. If
x =

∑
cibi with ci ∈ k, then c = c0 is as required in (i). A similar argument

works in (ii), so we skip the details. We leave (iii) as an exercise. �

3.6.3. Immediate case: the strategy of almost orthogonalization. When l/k has de-
fect the strategy is still to take any α ∈ l \ k and translate it by an appropriate
c ∈ k. This time we cannot achieve that α − c becomes k-orthogonal, but we can
make it “orthogonal enough”. In particular, we will see in the end that the whole
basis 1, (α − c), . . . ,(α − c)p−1 may become arbitrary close to being k-orthogonal.
The main point will be to study how the minimal polynomial of α− c varies when
|α− c| approaches rk(α) := infc∈k |α− c|

3.6.4. Stabilization of the minimal polynomial. For a polynomial f(t) =
∑d
i=0 cit

i

over a field k and a natural l we define the n-th divided derivation f [n](t) =∑d
i=n

(
i
n

)
cit

i−n. If n! is invertible in k, then this is the rescaled derivation f (n)(t)/n!,

and the same formal expression provides a good intuition about f [n] in general. In
particular, all natural formulas one would expect hold true. We say that α and its
minimal polynomial are stable over k if any root β of a non-zero divided derivation
f [i] of f satisfies |β| > |α|. The following result clarifies the terminology.

Lemma 3.6.5. If k is a henselian field and α ∈ ka is stable over k, then for any
c ∈ k with |c| ≤ |α|, the element α + c is stable over k and the absolute values of
the coefficients of the minimal polynomials of α and α+ c are equal.

Proof. If f(t) is the minimal polynomial of α, then f(t + c) =
∑
f [i](c)ti. Since

each non-zero f (i)(c) has no roots β with |β| ≤ |α|, it follows easily that |f (i)(c)| =
|f (i)(0)| whenever |c| ≤ |α|. The claim follows. �

Now, we establish stabilization in the immediate case.

Lemma 3.6.6. Assume that l/k is an immediate extension of henselian valued

fields of degree p = char(k̃) and α ∈ l /∈ k is an element. Then there exists c0 ∈ k
such that α− c0 and its minimal polynomial fc0(t) are stable over k. Furthermore,
in this case, α− c and fc are stable for any c ∈ k with |α− c0| ≤ |α− c|.

Proof. Since l/k is immediate, r = inf |α − c| is not achieved. Note that f [p] = 1
has no roots, hence if β ∈ ka is a root of a non-zero f [i], then [k(β) : k] ≤ i < p
and hence k(β)/k is a defectless extension. In particular, infc∈k |β − c| is achieved
and hence |α − β| > r. It follows that there exists c0, such that any root β of a
non-zero derivation f (i) satisfies |α−β| > |α− c0|. Since taking divided derivations
is compatible with translation of the coordinate, it follows that α−c0 is stable, and
then α− c is stable for any c ∈ k with |c− c0| ≤ |α− c|, which happens if and only
if |α− c0| ≤ |α− c|. �
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3.6.7. Inequalities on the coefficients. Next, let us study basic properties of stable
polynomials.

Lemma 3.6.8. Let l/k be as above and assume that α ∈ l/ \ k and its minimal

polynomial f(t) = tp +
∑p−1
i=0 cit

i are stable. Then |cjαj−i| ≤ |ci| whenever 0 ≤ i ≤
j ≤ p− 1.

Proof. Any root β of f [i](t) =
∑
j≥i cj

(
j
i

)
tj−i satisfies |β| > |α| and |

(
j
i

)
| = 1. The

claim follows easily. �

Corollary 3.6.9. Keep assumptions of Lemma 3.6.8. Then the minimal polyno-
mial fα(t) = tp +

∑p−1
i=0 cit

i and r = rk(α) satisfy the inequalities |c1| ≤ rp−1 and
|ci| < rp−i for 2 ≤ i ≤ p− 1.

Proof. Translating α by elements of k we can make |α| arbitrarily close to r, while
the stability of fα and the values |ci| are preserved. By Lemma 3.6.8 |ciαi| < |c0| =
|αp| for 1 ≤ i ≤ p− 1, hence the limit argument proves that |ci| ≤ rp−i. Moreover,
for i > 1 we have that |ciαi−1| ≤ |c1| ≤ rp−1, and since |α| > r, this implies that
|ci| < rp−i. �

3.6.10. Applications to immediate extensions. Finally, we can describe the main
outcome of almost orthogonalization.

Theorem 3.6.11. Assume that l/k is an immediate extension of henselian valued

fields of degree p = char(k̃), then
(i) Any element of α0 ∈ l \ k possesses a translation α ∈ α0 + k with minimal

polynomial fα = tp +
∑p−1
i=0 cit

i such that |pα| < r := rk(α), |ci| < rp/|α|i for
2 ≤ i ≤ p− 1, and either (a) |c1| = rp−1, or (b) |c1| < rp/|α|.

(ii) Set g(t) = tp + c0 in case (b) and g(t) = tp + c1t + c0 in case (a), and let
β ∈ ka be a root of g. Then |α− β| ≤ r, |g(α)| ≤ rp = infa∈k |g(a)|, and the latter
infimum is not achieved.

Proof. By Lemma 3.6.6 translating α one can make it stable over k, and then the
conditions of Corollary 3.6.9 are satisfies. Then decreasing |α| by an additional
translation, we keep the absolute values of |ci| and can make |α| as close to r
as needed. Clearly, this suffices to fulfil all conditions of (i). Furthermore, since

f(α) = 0, we obtain that g(α) = −
∑p−1
i=i0

cit
i, where i0 is 1 in (b) and 2 in (a), and

hence |g(α)| < max(|ciα|i) = rp.
Loosely speaking, the other claims in (ii) follows from the additivity of tp+c1t up

to negligible terms. It is easy to see that |β| = |c0|1/p = |α|, and hence |(α− β)p −
(αp − βp)| ≤ |pαp| < rp. Therefore, if |g(α)| > rp, then |g(α)| = |g(α) − g(β)| =
|(α − β)p + c(α − β)|, where c = c1 in case (a) and c = 0 otherwise. In either
case, |α − β| ≤ r as otherwise we would have |g(α)| = |α − β|p > rp. The same
computation with a ∈ k instead of β establishes the last claim. �

3.6.12. Rings of integers. We say that an extension is monogenic if l◦ is generated
over k◦ by a single element, say l◦ = k◦[x]. Usually this is too restrictive, and we
say that l/k is almost monogenic if there exists x such that l◦ is a union of subrings
of the form k◦[ax+ b] with a, b ∈ k. In this case, we call x an almost generator of
l◦ over k◦. Note that the union is automatically filtered and |a| is bounded from
above by the inverse of rk(x).
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Lemma 3.6.13. Any defectless extension l/k of henselian valued fields of prime
degree q is almost monogeneous. Furthermore, l/k is monogeneous if and only if
either fl/k = q or k◦◦ is a principal ideal.

Proof. In the first case, l◦ = k◦[α], where α ∈ l◦ is such that α̃ is a primitive

element of l̃/k̃. In the second case, l̃ = k̃[π], where (π) = l◦◦. �

4. Higher ramification

5. Transcendental extensions
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