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Solutions of practical questions of the training exam.

Part b.
1. If L/K is a finite separable extension, then there are finitely many interme-

diate fields between K and L.
Yes. By the primitive element theorems, L/K is simple, and hence has finitely

many intermediate fields.

2. If L,F are finite extensions of a field K, then [LF : F ] divides [L : K].
No. The standard bad example works here: K = Q, L = Q(21/3), F =

Q(ξ321/3). Then [LF : K] = 6, [L : K] = [F : K] = 3 and [LF : F ] = [LF : L] = 2.

3. If p, q are prime numbers and K is the splitting field of xq − p over Q, then
[K : Q] = p(q − 1).

No. This is the compositum of Q(ξq)/Q, whose degree is q− 1, and Q(p1/q)/Q,
whose degree is q, since xq − p is irreducible by Eisenstein. So, [K : Q] = q(q− 1).

4. One can construct the right polygon with 51 edges using compass and straight-
edge.

Yes, 51 is the product of two distinct Fermat’s primes, 3 and 17.

5. If x, y ∈ C are such that tr.deg.(Q(x)/Q) = tr.deg.(Q(y)/Q) = 1, then
tr.deg.(Q(x, y)/Q) = 2.

No. Take x = y transcendental over Q, then tr.deg.(Q(x, y)/Q) = 1. (If you do
not like x = y, the choice of x = y + 1 or x = y2 − y3 also will do the job.)

Part c (16 points each problem, total 48 points). Solve three from
the following four problems. Explain your solution; any result proved in
class can be used, once you state it clearly.

1. Show that the polynomial f(x) = x5 − 4x + 2 can not be solved in radicals
over Q.

The Galois group is S5, by the same solution as studied on recitation. Namely,
Gf has an element of order 5 by Cauchy’s theorem, and since f has three real
roots and two complex, the complex conjugation acts as a transposition. Any two
such elements generate S5. Since S5 is not solvable, the equation is not solvable by
radicals by Galois theorem.

2. Prove that if K is of characteristic p > 2 and K(a)/K is an inseparable
extension, then the extension K(a2)/K is inseparable too.

Clearly a 6= 0, and hence f(x) = x2−a2 has two distinct roots ±a (as char(K) 6=
2). In particular, f(x) is separable, and hence the extension K(a)/K(a2) is sep-
arable. If K(a2)/K is separable, then by the transitivity of separable extensions
applied to the tower K(a)/K(a2)/K, the extension K(a)/K would be separable.
A contradiction.

3. Let ξ = ξ7 be the primitive root of unity of order 7. Assume one is given
the complex plane C with marked points 0 and 1. Show that the point ξ + ξ6
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cannot be constructed by compass and straightedge, and the point ξ + ξ2 + ξ4 can
be constructed by compass and straightedge.

If K = Q(ξ) then by the theorem about cyclotomic extensions of Q, G =
GK/Q = (Z/7Z)× is a cyclic group of order 6 acting by i(ξ) = ξi for 1 ≤ i ≤ 6.
Subgroups of order 2 and 3 in G are H2 = {±1} and H3 = {1, 2, 4}. The field
K3 = KH3 is quadratic over Q because [K3 : Q] = 6/|H3| = 6/3 = 2. Therefore,
any its element can be constructed by compass and straightedge, and it remains to
note that ξ + ξ2 + ξ4 = TrK/K3

(ξ) ∈ K3.

It remains to show that a = ξ + ξ6 = ξ + ξ−1 is not constructible. Since
ξ2 − aξ + 1 = 0 and ξ is of degree 6 over Q, we definitely have that a /∈ Q. On the
other hand, a = TrK/K2

(ξ) where K2 = KH2 , and [K2 : Q] = 6/|H2| = 3. So, K2

contains no intermediate fields and we obtain that a generates K2 and hence is of
degree 3 over Q. Therefore, a cannot be embedded in a Galois extension of Q of
degree 2n, and hence is not constructible by compass and straightedge.

4. For a prime number p 6= 3 let Kp denote the splitting field of x9 − 1 over Fp.
Find the list of all possible Galois groups GKp/Fp

, and specify one concrete p for
each group in your list.

The splitting field isKp = Fp(ξ9), hence by the theorem on cyclotomic extensions
G ⊆ (Z/9Z)× = Z/6Z. So, G = Z/nZ is cyclic of order n = 1, 2, 3, 6. Now, the
order n of G is precisely the minimal number such that Fpn contains ξ9, that is
n is minimal such that 9|(pn − 1). A simple search shows that n = 6 for p = 2
(since 22 − 1 and 23 − 1 are not divisible by 9), n = 3 for p = 7 (since ξ3 ∈ F7, the
extension is of degree 3), n = 2 for p = 17 (since 9|(p+ 1), we have 9|(p2− 1)), and
n = 1 for p = 37 (since 9|(p− 1)).

Part d (10 points). Bonus problem.

1. a) (5 points) How many groups G with 81 elements exist so that the following
is true: there exists a field K and an irreducible polynomial f(x) ∈ K[x] of degree
10 such that G is the Galois group Gf of the splitting filed of f over K.

The answer is 0. If L is the splitting field of f and a is a root, then [K(a) : K]
divides [L : K]. Since f is irreducible, [K(a) : K] = 10 and we obtain that 10
divides [L : K]. So, |Gf | = [L : K] 6= 81.

An alternative solution in venue of (b) would be to say that G should be a Sylow
subgroup of S10. Such a subgroup is unique up to conjugation, and also S9 contains
a Sylow subgroup with 81 elements. So, a conjugate of G is contained in S9 ⊂ S10

and hence does not act transitively on the set of 10 roots. So, it cannot be a Galois
group of an irreducible f of degree 10.

b) (5 points) How many groups G with 81 elements exist so that the following
is true: there exists a field K and an irreducible polynomial f(x) ∈ K[x] of degree
9 such that G is the Galois group Gf of the splitting filed of f over K.

The answer is 1. By a theorem on Galois groups, any such G can be embedded
into S9 so that it acts transitively on the 9 elements. The maximal power of 3
dividing |S9| = 9! is 3 ∗ 3 ∗ 9 = 81. Hence G must be a Sylow 3-subgroup, which
is unique up to a conjugation, hence also up to an isomorphism. Thus, there is at
most one such group G – the 3-Sylow subgroup of S9. Next, note that this G ⊂ S9

acts transitively because it contains an element of order 9 – any such element lies
in a Sylow 3-subgroup, and any element of order 9 is a cycle of length 9 in S9.
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Finally, such a G can indeed be realized as Gf . Indeed, take any L with S9 ⊆
Aut(L). For example, L = Q(x1, . . . , x9) with S9 acting by permuting the xi. Then
G ⊂ S9 acts on x1, . . . , x9 transitively, hence f(t) = (t−x1) . . . (t−x9) is irreducible
in LG[t], and by Artin’s theorem G = [L : LG] is the Galois group of f(t) over LG.


