by Amit Novick

First compiled: 08/01/2017

Examples of Dual Spaces

• Let V be some vector - space.

Suppose $B = (e_1, ..., e_n)$ is some basis of V (not necessarily the standard basis)

As such, $\forall v \in V$ there is a unique representation $v = \sum_{i=0}^{n} x^{i} e_{i}$.

Then, B defines an isomorphism $[B: V \to \mathbb{F}_{col}^n: V \to \mathbb{F}_{c$

$$\forall v \in V \colon [v]_B = \begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{bmatrix} \in \mathbb{F}_{col}^n.$$

Essentially, $f^i(v) = x^i$, and as such, $f^i: V \to \mathbb{F}$ is a linear transformation, specifically, $f^i \in V^*$, i.e. f^i is a functional.

Indeed, every basis B of V defines functionals $f^1, ..., f^n \in V^*$.

• Lemma: Suppose $B = (e_1, ..., e_n) \subset V$ is a basis.

If $\forall i: 1 \leq i \leq n$, $f^i: V \to \mathbb{F}$ is a $linear\ transformation$ such that $f^i(v) = x^i,$

then $(f^1, ..., f^n) \subset V^*$ is a basis.

Proof: Let $u \in V^*$. We want to show that there is a *unique* representation for u as a linear combination of $(f^1, ..., f^n)$.

- <u>proposition</u>: $u = \sum_{i=1}^{n} u(e_i) f^i$

proof: Let $v \in V$. Since B is a basis of V, then there is a unique representation $v = \sum_{i=1}^{n} x^{i} e_{i}$.

Note that $u(v) = \sum_{i=1}^{n} x^{i} u(e_{i})$ In fact, $v = \sum_{i=1}^{n} u(e_{i}) f^{i} = \sum_{i=1}^{n} x^{i} u(e_{i})$ ($f^{i}(v) = x^{i}$ per f's definition)

Thus, $Span(f^1, ..., f^n) = V^*$.

- proposition: $(f^1,...,f^n)$ is linearly independent. proof: (negative proof) Suppose $\exists a_1,a_2,...,a_n \in \mathbb{F}$ such that $\sum_{i=1}^n a_i f^i = 0$, and $\exists a_{i_0} \neq 0$. Then, $0 = 0(e_{i_0}) = \sum_{i=1}^n a_i f^i(e_{i_0}) = a_{i_0} \neq 0$, in contradiction.

With the last proposition, we completed our proof. ■

• Notes: (i) The basis $(f^1,...,f^n)\subset V^*$ is called dual in relation to the basis $(e_1,...,e_n)\subset V$, and satisfies:

$$f_i(e_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

In fact, every functional in $f^1, ..., f^n$ is dependent upon the choice of the respective vector in the basis $(e_1, ..., e_n)$.

(ii) Exercise: Suppose $(e_1, ..., e_n) \subset V$ is a basis, and suppose $(f^1, ..., f^n) \subset V *$ is its dual basis,

Let $v \in V$, and let $u \in V^*$, suppose $v = \sum_{i=1}^n e^i e_j$, and $u = \sum_{i=1}^n a_i f^i$.

Then
$$u(v) = \sum_{i=1}^{n} a_i b_i = (a_1, ..., a_n) \cdot \begin{bmatrix} b^1 \\ \cdot \\ \cdot \\ b^n \end{bmatrix}$$

(iii) Corollary: dimV = dimV * = dimV * *

Reminder on $Linear\ Transformations$ and Matrices

• Theorem:

Let V, U each be vector - spaces on some $field \mathbb{F}$.

Suppose $B = (u_1, ..., u_n) \subset U$ is some basis,

And suppose $C = (v_1, ..., v_m) \subset V$ is some set of vectors.

Define $T: U \to V$ such that $T_{u_i} = \sum_{j=1}^m a_i^j v_j$

If
$$\forall u \in U$$
, $[T_u]_C = \begin{bmatrix} y^1 \\ \cdot \\ \cdot \\ \cdot \\ y^m \end{bmatrix}$, $[u]_B = \begin{bmatrix} x^1 \\ \cdot \\ \cdot \\ \cdot \\ x^n \end{bmatrix}$

Then, $y^j = \sum_{i=1}^n a_i^j x^i$

Examples:

Suppose
$$\begin{cases} y^1 = a_1^1 x^1 + a_2^1 x^2 + a_3^1 x^3 \in U_3 \\ y^2 = a_1^2 x^1 + a_2^2 x^2 + a_3^2 x^3 \in U_3 \end{cases}$$

Define $T: U_3 \to V_2$ such that:

$$T(u_1) = a_1^1 v_1 + a_1^2 v_2$$

$$T(u_2) = a_2^1 v_1 + a_2^2 v_2$$

$$T(u_3) = a_3^1 v_1 + a_3^2 v_2$$

$$\rightarrow A = \begin{bmatrix} a_1^1 & a_2^1 & a_3^1 \\ a_1^2 & a_2^2 & a_3^2 \end{bmatrix}, \text{ and } A^t = \begin{bmatrix} a_1^1 & a_1^2 \\ a_2^1 & a_2^2 \\ a_3^1 & a_3^2 \end{bmatrix}.$$

• Definition: Suppose $T: U \to V$ is a linear transformation,

The transformation $T^*: V^* \to U^*$ such that $\forall \varphi \in V^*: T^*(\varphi)(u) = \varphi(T(u)),$

is a $linear\ transformation,$ and may also be called T's $dual\ linear\ transformation.$

An illustration:

• Theorem: Let U,V be two vector-spaces each over some field $\mathbb{F}.$

Suppose $B \subset U$ is a basis,

and suppose $C \subset V$ is also a basis.

Suppose $T: U \to V$ is a linear transformation, such that $A = [T]_C^B$.

If B^*, C^* are the dual bases of bases B, C respectively,

Then,
$$[T^*]_{B^*}^{C^*} = A^t$$

and, suppose dimU = n, dimV = m then:

 $T: U \to V$ in matrix form is in Mat(m, n)

 $T*: V^* \to U^*$ in matrix form is in Mat(n, m).