Compliments in Linear Algebra 80146

by Amit Novick

First compiled: 12/12/2016

• (Continuing from previous lesson's Set game challenge)

$$\{0,1,2\}^4 = \mathbb{F}_3^4 \simeq deck \ (81 \text{ cards})$$

$$v \in \mathbb{F}_3^4$$
, $v = (a, b, c, d)$

 $\forall Set\ (v_1, v_2, v_3)$ satisfies $\Sigma v_i = 0$, we have to check that $(\Sigma a_i = 0, \Sigma b_i = 0, ...)$ in each coordinate such that

there is a Set:

case (a): $a_1 = a_2 = a_3$, and then $\Sigma_i a_i = 3a_i = 0$

<u>case</u> (b): $\{a_1, a_2, a_3\} = \{0, 1, 2\} \ 0 + 1 + 2 = 0 \in \mathbb{F}_3$.

In addition $\Sigma_{v \in \mathbb{F}_3^4} v = 0$, $S_{x,y,z} = \{(0, x, y, z), (1, x, y, z), (2, x, y, z)\}$ (is a Set) for $x, y, z \in \mathbb{F}_3$.

 $\sqcup_{x,y,z} S_{x,y,z} = \mathbb{F}_3^4 \Rightarrow \varSigma_{v \in \mathbb{F}_3^4} v = \varSigma_{x,y,z} (\varSigma_{v \in S_{x,y,z}} v) \text{ with the innermost equal } 0.$

Exercise: A set $S \subset \mathbb{F}_3^4$ is a Set $\iff S$ is a line (maybe not passing through 0)

dimL = 1, $L \subset V$ when the *line* is a translation (*) of a subspace L of dimension 1.

Essentially, that is $v_0 + L$ such that $v_0 \in \mathbb{F}_3^4$, $L \subset \mathbb{F}_3^4$ is a *subspace* of dimension 1.

(*): Each point of the line is moved by the same amount in a given direction

Question: Is L unique? is v_0 unique?

Theorem: B is a base \iff B is maximal linearly – independent set \iff B is a minimal generating set

Note: A set B may be infinite!

(a) In the <u>case</u> where V is a $finitely-generated\ vector-space$: we start with some \overline{finite} generating set B, and

remove members from this set until it is minimal.

This method does not work if B is infinite.

- (b) In the general case: it is preferable to expand linearly-independent sets in order to build B.
- Definition: A partial order on a set X is a subspace $P \subset X^2$ such that $(x,y) \in P$ may

be written $x \leq y$ such that:

- 1) Reflexive: $\forall x \in X (x \leq x)$
- 2) Transitive: $\forall x, y, z \in X (x \leq y, y \leq z) \Rightarrow x \leq z$
- 3) Anti-Symmetric: if $x \leq y, y \leq x$ then x = y

Example: $P = \{(x, x) | x \in X\}$, not every x, y are comparable.

• Definition: A total order is a partial order such that every pair (x, y) is comparable:

 $x \le y \text{ or } y \le x.$

Example: (\mathbb{R}, \leq) is a total order

X be some set and 2^X be defined as $2^X = \{All - subsetes - in - X\}$ (note: a.k.a Power - Set(X))

Relation of containment (\subset) is partial order.

 $Y \subset X$ is a subset, then $c \in X$ is an upper bound on Y if $\forall y \in Y (y \leq c)$

• Zorn's Lemma:

If $x \neq \emptyset$ is set with partial order \leq such that $\forall Y \subset X$ the order \leq on Y is full order,

then there is an $upper\ bound\ C_Y\in X$, thus X has at least one $maximal\ member.$

• Axiom of choice:

If $\{X_i\}_{i\in I}$ is a nonempty set of nonempty sets , then $\emptyset\neq \sqcap_{i\in I}X_i$, $\{(x_i)_{i\in I}|x_i\in X_i\}$

• Theorem: $\forall V(V \text{ is a } vector - space \text{ over some } field \mathbb{F}) \text{ there is a } base.$

Proof: $X = \{linearly - independent \ sets \ B_i \subset V\}.$

In order to utilise Zorn we check that $\forall Y \subset X(Y \text{ has a } total-order)$ there is an $upper-bound\ C_Y$

such that $C_Y = \bigcup_{B_i \in Y} B_i$.

Proposition: C_Y is a linearly-independent set.

Suppose there is a linear-combination $\Sigma_{i=1}^n a_i V_i (v_i \in C_Y, a_i \in \mathbb{F})$

Then $\forall v_i$ there is a set $B_{j(i)} \in Y$ such that $v_i \in B_{j(i)}$.

We have $n \in \mathbb{N}$ linearly – independent sets:

 $B_{j(1)}...B_{j(n)}$ is a finite set with total – order \Rightarrow there is a maximal B_l such that

 $\forall i(v_i\in B_{j(i)}\subset B_l)$ and since it is a linearly-independent set $\Rightarrow a_1=...=a_n=0$, means that

 C_Y is linearly-independent (every linear-combination of 0 is trivial) $C_Y \in X$ is an $upper\ bound$ of $Y \Rightarrow X$ has $maximal\ member$.