Complements in Linear Algebra 80146

by: Amit Novick

written: 27/11/2016

- Examples for groups:
 - (1) Group of permutations $(S_n = Aut(\{1, ..., n\}))$, not commutative (n = 3)
 - (2) Let $(\mathbb{F}, +, \circ)$, then this is a group,

also: $(\mathbb{F} \setminus \{0\}, \circ, 1)$ is a group

(3) Let G_1, G_2 be groups, then $G_1 \times G_2$ is also a group when \circ be defined as:

$$(g_1, g_2) \circ (h_1 \circ h_2) = (g_1 h_1, g_2 h_2)$$

$$1_{G_1 \times G_2} = (1_{G_1}, 1_{G_2})$$

For example, $G^2 = G \times G$, and in general, for every set S , there exists a structure of a group on

$$Func(S,G) = G^S = \{g_i | i \in S, g_i \in G\}$$

• If $f, h \in G^S \Rightarrow (f \cdot h)$ is defined by $(f \cdot h)(s) = f(s) \cdot h(s)$

Cyclics groups (created by a single element)

example: $1 \in \mathbb{Z}$ is a creator since $\{-(1+...+1), 1+1+...+1\}$ (every element in \mathbb{Z})

$$\forall 0 < n \in \mathbb{N}$$
, consider $\mathbb{Z}_n = \{0, 1, ...n - 1\}$

Exercise: The method described above can be used to describe all $\ensuremath{\mathit{cyclic}}$ groups.

hint: if
$$0 \neq 1 + 1 + \dots + 1 \Rightarrow G = \mathbb{Z}$$

If
$$0 = 1 + 1 + ... + 1$$
 (n times) $\Rightarrow G = \mathbb{Z}_n$.

Example: The perfect polygon of n sides has 2n symmetries .

n rotations and n mirrorings

We denote this group D_n .

$$2n - - > D_n \supset \mathbb{Z}_n < - - n$$

The group of n rotations, $0 \le k \le n-1$, $\frac{360 \cdot k}{n}$

• Definition: A homomorphism between groups G, H is a map $f: G \to H$ which satisfies the group structure.

$$f(1_G) = 1_H$$

$$f(g_1 \cdot g_2)_G = f(g_1)_H \cdot f(g_2)$$

(0) $0 \hookrightarrow G$ (addition notation)

 $G \to 0$

(1) $\mathbb{Z} \to \mathbb{Z}_n$, $x \mapsto x(modn)$

 $x + y \mapsto x + y(modn) < --$ depends on x(modn), y(modn)

$$(-1)$$
 $(0...n-1) \hookrightarrow \mathbb{Z}$

$$\mathbb{Z}_n \hookrightarrow \mathbb{Z}$$

Not a homomorphism if n > 1 since $n \in \mathbb{Z}$, e.g. = n - 1 + 1

 $0 \in \mathbb{Z}_n$

Example: $D_n \supset \mathbb{Z}_n$ (explains orientation e.g. in physics: orientation of right hand rule, x, y, z axis orientations)

$$\varphi: D_n \to \mathbb{Z}_2 = \{\pm 1\}$$

$$\varphi(g) = \begin{cases} 1 & g-satisfies-orientation \\ -1 & otherwise \end{cases}$$

Note: The orientation structure for n=3 from last lecture, $D_3=S_3\to\mathbb{Z}_2$

At the end of the course we define $S_n \to \mathbb{Z}_2 \ \forall n$.

Exercise: build the homomorphism as described above.

- Definition: A subgroup $H \subset G$ is a subset such that:
 - 1) $1_G \in H$
 - 2) $\forall x, y \in H(x_G \cdot y \in H)$
 - 3) $\forall x \in H(x^{-1} \in H)$ (and x^{-1} exists!)

Proposition: H is a group

Example: $\mathbb{Z}_n \subset D_n$.

• Definition: If $\varphi: G \to H$ is a homomorphism, then $ker\varphi$ (the kernel of φ) is:

$$ker\varphi = \{g \in G | \varphi(g) = 1\} = \varphi^{-1}(1_H)$$

Proposition: $ker\varphi$ is a subgroup. (immediate test)

Examples:

$$1)\varphi: \mathbb{Z} \to \mathbb{Z}_n, ker\varphi = n\mathbb{Z} = \{n \cdot x | x \in \mathbb{Z}\}$$

2)
$$\psi: D_n \to \mathbb{Z}_2, ker\psi = \mathbb{Z}_n$$