1. RANK OF A MATRIX

Definition 1.1. Let A = (aij)1<i<m,i<j<n be an m x n matrix. An m’ x n/
submatrix B is obtained by choosing m’ rows and n’ columns and removing all
entries outside of these rows and columns. Formally speaking, one fixes numbers
1 <id <ig < <y <mand 1 < j; < jo < -+ < jpr < n and defines
B = (bpg)1<p<m’/,1<q<n’ BY bpg = a;,j,- We say that B is the submatrix whose
rOwWS are 41,1z, ..., 4, and columns are ji, jo, ..., jn’-

Definition 1.2. Given an m X n matrix A one defines the following numbers:

(i) The rank of A is the maximal number r = rk(A) such that A possesses an
invertible r x r submatrix.

(ii) The row rank of A is the maximal number r = rkyow(A) such that A possesses
r linearly independent rows (in the space of rows F™).

(iii) The column rank rk.o(A) is defined similarly to rkyoy(A) but using columns
instead of rows.

Lemma 1.3. Let A be a matriz, then
(i) tk(A) = rk(A?),
(11) tkrow (A) = tkeor (AY).

Proof. Observe that the rows of A are the columns of A* and vice versa, so we
obtain (ii). In addition, this observation implies that if B is a submatrix of A given

by rows 41, ..., iy, and columns ji, ..., j,, then Bt is the submatrix of A given by
TOWS j1,...,Jjn and columns ii,...,%, . Since B is invertible if and only if B! is
invertible, we obtain that rk(A) = rk(AY). O
Lemma 1.4. If vy = (11, ,&1n),- -, Up = (Tp1, ..., Trn) are T linearly indepen-
dent vectors in F™ and n > r, then there exists 1 < j < n such that the vectors
W1 = (T115 -y Tlgse oo Tan)y ooy Wy = (Typ1y ooy Tpjy oo, Tpp) are linearly indepen-
dent in F™~1.

Proof. Since the vectors are linearly independent, V' = Span(vy,...,v,) is of di-

mension 7. In particular, V' # F", and there exists a standard basis vector ; not
contained in V. Consider the linear map (in fact, a projection) p: F"* — Fn~1
given by p((z1,...,2,)) = (21,...,&j,...,2,). Its kernel consists of all vectors
with 2 = 0 for any k # j, so Ker(p) = Span(e;). Let ¢: V. — F"~! be the re-
striction of p onto V, i.e., ¢: V — F" ! is the linear map given by ¢(v) = p(v)
for v € V. Since ¢; ¢ V, we have that Ker(¢q) = Ker(p) NV = Span(e;) NV = 0.
Thus, ¢ is an embedding and dim(Im(q)) = r. But Im(q) is generated by r vec-

tors ¢(vi) = (Zi1,...,Tijs- .-, Tin) With 1 < @ < 7, so these vectors are linearly
independent and we are done. O

Theorem 1.5. For any matriz A all three ranks coincide: rk(A) = rkyow(A) =
I‘kcol(A).

Proof. We start with the equation rk(A) = rkyow(A). Assume that B is an r x r

matrix given by rows i1, ..., 4, and columns ji, ..., j.. If Bisinvertible then its rows

are linearly independent (by our theory of invertible matrices). It follows that the

rows i1, 4s,...,4, of A are also linearly independent, hence rkyow(A) > r = rk(A).
Conversely, assume that 7 = rkow(A) and choose r linearly independent rows

of A, say v1 = (@i 1,---,0i1n)s--+,Ur = (@i, 1,---,0;.n). The rows live in the n-

dimensional row space, so r < n. If r < n then by the above lemma there exists
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1 < 7 < n such that the rows remain linearly independent after removing the j-th
column. So, we can remove columns one by one obtaining a chain of submatrixes
rxmn,rx(n—1),...,rxr such that each submatrix has linearly independent rows.
The last submatrix is a square matrix, so linear independence of its rows implies
invertibility (by the theory of invertible matrices). We found an r x r invertible
submatrix, so rk(A4) > r = rkyew(A).

The two inequalities imply that rk(A4) = rkyow(A4) for any matrix A. In par-
ticular, tk(A?) = rkyow(A?) and by the first lemma we obtain that rkeo(A4) =
tkrow (A?) = rk(AY) = 1k(A), completing the proof. O



