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TORIFICATION OF DIAGONALIZABLE GROUP ACTIONS ON

TOROIDAL SCHEMES

DAN ABRAMOVICH AND MICHAEL TEMKIN

Abstract. We study actions of diagonalizable groups on toroidal schemes
(i.e. logarithmically regular logarithmic schemes). In particular, we show that
for so-called toroidal actions the quotient is again a toroidal scheme. Our
main result constructs for an arbitrary action a canonical torification by an
equivariant blowings up. This extends earlier results of Abramovich-de Jong,
Abramovich-Karu-Matsuki-W lodarczyk, and Gabber in various aspects.
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1. Introduction

1.1. Toroidal actions, quotients and torification. Consider a variety X with
toroidal structure and an action of a group G on X . Torification is a blowing-up
process X ′ → X which guarantees that the quotient map X ′ → X ′ �G is toroidal.
It was introduced in [AdJ97] when G is finite for the purpose of proving resolution
of singularities; and in [AKMW02] when G = Gm for proving factorization of
birational maps.

In this paper we consider G diagonalizable, and prove a general torification result
for arbitrary toroidal schemes (see Section 2.3), not necessarily over a field:

Theorem 1.1.1 (See Theorem 4.6.5). Assume that a diagonalizable group G acts
in a relatively affine manner on a toroidal scheme (X,D). Then there is a G-
equivariant modification F(X,D) : X ′ → X, such that, denoting by D′ be the union
of the preimage of D and the exceptional divisor of F(X,D), we have

(i) The pair (X ′, D′) is toroidal and the natural G-action on (X ′, D′) is toroidal.
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2 D. ABRAMOVICH AND M. TEMKIN

(ii) The morphism F(X,D) is functorial with respect to surjective strongly equi-
variant strict morphisms h : (Y,E) → (X,D) of toroidal schemes in the sense that
F(Y,E) is the base change of F(X,D).

We refer to [AT15, Section 5.3.1] for the notions of relatively affine actions and
strongly equivariant morphisms, and to Section 2.3.16 for the notion of morphisms
between toroidal schemes. A slightly more precise statement of Theorem 4.6.5 in
terms of blowing up is provided in Theorem 5.4.5.

Theorem 1.1.1 builds on a more detailed Theorem 4.5.1 which assumes the action
to be G-simple, see Section 3.1.4. We further optimize that result as follows:

Theorem 1.1.2 (See Theorem 5.4.2). Assume that a toroidal scheme (X,D) is
provided with a relatively affine, G-simple action of a diagonalizable group G = DL.
Assume X contains a strongly equivariant dense open set U on which G acts freely.

There exist ideal sheaves IX and ĨX on X and X̃ = X �G with resulting blowings

up f(X,D) : X ′ → X and f̃(X,D) : X̃ ′ → X̃, such that IX is locally generated by G-
invariants, and, denoting by D′ the union of the preimage of D and the exceptional
divisor of f(X,D), we have

(i) The pair (X ′, D′) is toroidal and the natural G-action on (X ′, D′) is toroidal.

(ii) The morphism of quotients f(X,D) �G : X ′ �G→ X̃ is f̃(X,D).

(iii) The blowings up f(X,D) and f̃(X,D) are functorial with respect to surjective
strongly equivariant strict morphisms h : (Y,E) → (X,D) of toroidal schemes: de-

noting h̃ = h �G, we have h∗(IX) = IY , f
tor
(Y,E) = f tor

(X,D) ×X Y , h̃∗(ĨX) = ĨY , and

f̃(Y,E) = f̃(X,D) ×X̃ Ỹ .

(iv) If V ⊆ X is a strongly equivariant open subset such that the action on
(V,D|V ) is toroidal then IX restricts to the unit ideal on V and V ×X X ′ = V .

Part (i) of Theorem 5.4.2 says that f(X,D) torifies the action of G. It implies
that the quotient (X ′, D′) �G above is toroidal:

Theorem 1.1.3 (See Theorem 3.3.12). Assume that a toroidal scheme (X,U) is
provided with a relatively affine toroidal action of a diagonalizable group G = DL.
Then,

(i) The toroidal quotient (X,U) �G exists.

(ii) The morphism (X,U) → (X,U) �G is toroidal whenever the torsion degree
of L is invertible on X.

(iii) If h : (Z,W ) → (X,U) is a strongly equivariant strict morphism then the
quotient h�G : (Z,W ) �G→ (X,U) �G is a strict morphism of toroidal schemes.

Remark 1.1.4. In case of finite groups, an alternative torification method was
suggested by Gabber, see [IT14, Theorem VIII.1.1]. It is based on resolving quotient
singularities and is quite different from the blowing up method we use here. We
note that we use a single blowing up with a non-reduced center rather than search
for a sequence of blowings up with regular centers. See [Ber14, Buo15] for different
angles on this problem.

Remark 1.1.5. If the torsion degree of L vanishes in OX , the quotient morphism
(X,U) → (X,U) �G is inseparable hence not a toroidal morphism. It is, however,
modeled on the quotient of a toric variety by a subgroup-scheme of the torus. It
might be of interest to study such quotients.
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1.2. Motivation: factorization of birational maps. This paper leads to our
forthcoming work [AT16] on weak factorization of birational maps, generalizing
the main theorems of [AKMW02] and [W lo03] to the appropriate generality of qe
schemes (wherever suitably strong resolution of singularities applies), and further
proving factorization results in other geometric categories of interest.

While [AT16] only requires actions of Gm, we find it both convenient and fruitful
to work with an arbitrary diagonalizable group.

In addition to the main results, the paper [AT16] requires Lemma 5.5.5 on Gm-
actions and Lemma 4.4.5 on compatibility of S-torific ideals.

1.3. Background. This article relies on a number of results from [AT15], in partic-
ular Luna’s Fundamental Lemma for diagonalizable groups. Apart from key results
of [AT15], we use the setup and terminology of that paper. In particular we use the
(classical) notion of diagonalizable groups [SGA70, VIII.1.1], [AT15, 3.2.1], L-local
and L-complete rings [AT15, 4.4.4, 4.5.5], strongly equivariant and inert morphisms
[AT15, 5.3.1, 5.5.3].

1.4. Some tools. One of the main tools of our method is a formal-local description
of toroidal schemes with a toroidal action proved in Theorem 3.2.14, which extends
Kato’s formal-local description of toroidal schemes to the G-equivariant case. We
deduce in Corollary 3.2.18 that the property of an action being toroidal is an open
condition. Note that already for toroidal schemes stability under generizations is a
rather non-trivial property, see [Kat94, Proposition 7.1] and a completed argument
in [GR13, Theorem 9.5.47]. We suggest a short new proof of this result of Kato in
Theorem 2.3.11.

Another tool of our method is to enlarge or decrease the toroidal divisor of a
toroidal scheme. In Theorem 2.3.15 and Propositions 3.5.1 and 3.4.1 we study when
the pair and the action remain or become toroidal under these operations.

1.5. Further directions. It would be interesting, perhaps in future work, to fur-
ther extend the torification procedure to other relatively affine tame actions, i.e.
actions having linearly reductive (or even reductive) stabilizers. Moreover, one may
hope to extend this to tame groupoids and their quotients, that one may call tame
stacks (if the stabilizers are of dimension zero then those are the tame stacks of
[AOV08]).

2. Toroidal schemes

Toroidal schemes generalize the classical toroidal embeddings of varieties. Al-
though one can describe them by formal charts, it is more convenient to use an
equivalent approach, where toroidal schemes are logarithmically regular logarithmic
schemes. For simplicity, we will consider Zariski logarithmic schemes and toroidal
schemes without self intersections. We remark, however, that analogously to [IT14,
Exp. VI, §1] almost everything can be done for general logarithmic schemes at the
cost of replacing points and localizations with geometric points and strict henseliza-
tions. We do not pursue this further here.

2.1. Monoids.



4 D. ABRAMOVICH AND M. TEMKIN

2.1.1. Conventions. We will use the following notation for commutative monoids:
we denote by M = M/M× the sharpening of M , by Mgp the Grothendieck group
of M , and by M+ = M rM× the maximal ideal of M . The rank of a monoid M
is rk(M) = dimQ(Mgp ⊗Z Q).

2.1.2. Toric monoids. A toric monoid is an fs (i.e. fine and saturated) monoid M
without torsion.

Remark 2.1.3. Usually, one also requires toric monoids to be sharp, namely M× =
{0}, but we prefer to modify the terminology in this paper.

2.1.4. Prime ideals. Any subset S ⊆ M generates an ideal (S) = ∪f∈S(f + M).
An ideal (f) = f + M with f ∈ M is called principal. Prime ideals and their
heights are naturally defined, analogously to the case of rings, see [Kat94, §5]. In
toric monoids, prime ideals are of the form p = M r F where F is a face, so
ht(p) = rk(M) − rk(F ). In particular, ht(p) = 1 if and only if F is a facet.

2.1.5. Inner elements. An element v ∈M will be called inner if it lies in the interior
of the polyhedral cone MR := M ·R≥0 ⊂Mgp ⊗ZR. In toric monoids the following
conditions are easily seen to be equivalent: (a) v is inner, (b) v is not contained in
any facet of M , (c) v lies in all nonempty prime ideals of M .

2.1.6. Divisorial prime ideals. Prime ideals of height one are analogous to divisorial
ideals. If p is prime of height 1 then F = M r p is a facet and the image of M
in Mgp/F gp is isomorphic to N. So, to any f ∈ M we can associate a number
νp(f) ∈ N, which is an analogue of the order of f with respect to p.

2.1.7. Splitting faces and facets off. We say that a face N ⊆ M splits off if there
exists a face K such that M = N ⊕K. If M is sharp and toric then K is the face
spanned by all edges not contained in N . In addition, the ideal (N+) = N+ + M
generated by N+ coincides with M rK, hence (N+) is prime and

ht(N+) = rk(M) − rk(K) = rk(N).

Various combinations of these facts provide criteria for splitting off of N .

Lemma 2.1.8. Let M be a sharp toric monoid with a face N . Then the following
conditions are equivalent:

(a) N splits off,
(b) (N+) is prime and ht((N+)) ≥ rk(N),
(c) (N+) is prime and the face K = Mr(N+) satisfies rk(K)+rk(N) ≤ rk(M),

Proof. If (N+) is prime then K = M r (N+) is a face and ht((N+)) = rk(M) −
rk(K). Thus, (b) and (c) are equivalent.

If (a) holds then M = N ⊕K, and hence (N+) = M rK and rk(M) = rk(K) +
rk(N). In particular, (a) implies (c).

Conversely, assume (c) is satisfied and set K = M r (N+). Then any element
m0 ∈ M+ is of the form m1 + n1 with 0 6= n1 ∈ N + K and m1 ∈ M . If m1 6= 0
then m1 = m2 +n2 with 0 6= n2 ∈ N +K, etc. We claim that at some stage ml = 0
and hence M = N + K. Indeed, since M is sharp, for any m ∈ M+ there exists
a number h(m) such that m is the sum of at most h(m) elements of M+. This
shows that the homomorphism N ⊕K → M is surjective, and using the inequality
on ranks we obtain that Ngp ∩Kgp = 0 and hence N ⊕K = M . ♣
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In the case of a facet, there are two more useful criteria.

Lemma 2.1.9. Let M be a sharp toric monoid, p ⊂ M a prime ideal of height 1
and F = M r p its facet. The following conditions are equivalent:

(a) F splits off,
(b) (F+) ⊂M is prime and ht((F+)) ≥ rk(M) − 1.
(c) (F+) ⊂M is prime and there is at most one edge E not contained in F ,
(d) (F+) is the union of all prime ideals of height 1 different from p,
(e) p is principal.

In addition, if these conditions are satisfied then M = F ⊕ Ne, where e is the
generator of p and Ne is the only edge not contained in F .

Proof. Conditions (a) and (b) are the same as 2.1.8(a) and 2.1.8(b), and condition
(c) is equivalent to 2.1.8(c). Indeed, since F is a facet we have rk(M) = rk(F ) + 1;
writing K = Mr(F+), the inequality rk(K) ≤ 1 holds if and only if K consists of at
most one edge 〈e〉. Thus, conditions (a), (b) and (c) are equivalent by Lemma 2.1.8.

We claim that (c) and (d) are equivalent. Note that the union of prime ideals
is prime. This can be seen by looking at their complements: the intersection of
faces is a face. We therefore have that (F+) is prime both in (c) and (d). Let
I be the union of all prime ideals of height one different from p. Then M r I is
the intersection of all facets different from F . A face is the intersection of facets
containing it; applying this to edges, if (c) fails and M r F contains two different
edges then M r I = {0}. So, (F+) ( M+ = I and (d) fails. If (c) holds then F
splits off and a direct check shows that (d) holds.

Assume (e) holds, say p = e + M . For any element x ∈ M we have that
x − νp(x)e ∈ F , hence M = F + Ne and then necessarily M = F ⊕ Ne. In
particular, (a) holds. In addition, it is clear that Ne is the only edge not in F ,
hence (e) implies all the claims in the end of the lemma. Assume (a) holds, say
M = F ⊕ K. Since F is a facet, K is of rank 1, and so K = Ne for an element
e ∈ p. In particular, p = (e). ♣

2.2. Logarithmic schemes.

2.2.1. Conventiones. We refer to [Kat89] for the general definition of logarithmic
schemes. A Zariski logarithmic scheme is defined similarly but using the Zariski
topology: (X,MX , α), where α : MX → (OX , ·) is a logarithmic structure in the
Zariski topology. See also [Kat94]. Unless said otherwise, all logarithmic schemes
are assumed to be fine and Zariski, and we will use the shorter notation (X,MX).

Remark 2.2.2. In fact, one can view Zariski logarithmic schemes as usual log-
arithmic schemes (X,MX) such that ε∗ε∗MX = MX , where ε : Xét → XZar is
the natural morphism. In this case, MX is determined by its restriction onto the
Zariski site.

2.2.3. Ranks. Given a fine logarithmic scheme (X,MX) we will use the notation
r(x) = rk(MX,x) for x ∈ X , and rk(MX) = maxx∈X r(x).

2.2.4. Charts. By a monoidal chart of a fine logarithmic scheme (X,MX) we mean
an open subscheme V →֒ X , a fine monoid M , and a homomorphism φ : M →
(OX(V ), ·) such that MX |V is the logarithmic structure associated with the pre
logarithmic structure induced by φ. To give this data is the same as to give a strict
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morphism f : (V,MX |V ) → (AM ,MAM
), where AM = Spec(Z[M ]) and MAM

is
the logarithmic structure associated with M . Accordingly, we will also call f a
monoidal chart of (X,MX). Recall that any fine logarithmic scheme is coherent
by definition, hence it can be covered by monoidal charts.

2.2.5. Sharp charts. We say that a monoidal chart is sharp or fs, if the defining
monoid M is sharp or fs, respectively.

Lemma 2.2.6. If an fs logarithmic scheme (X,MX) admits an fs monoidal chart
M → OX(V ) then it also admits a sharp monoidal chart M → OX(V ).

Proof. Any fs monoid (non-canonically) splits as M = M⊕M×, see [GR13, Lemma
3.2.10]. The composition M →֒M → OX(V ) is a sharp chart. ♣

2.2.7. The center of a chart. The center of a monoidal chart φ : M → OX(V )
is the closed subscheme C(φ) := V (φ(M+)) of V . If it is non-empty then we
say that the chart is central. It follows from the definitions that the following
conditions are equivalent: (i) x lies in the center of φ, (ii) r(x) = rk(M), (iii) the
induced homomorphism φx : M → OX,x is local, i.e. satisfies φ−1

x (O×
X,x) = M×. In

particular, a chart is central if and only if rk(M) = rk(MX).

Remark 2.2.8. The definition of the center is of global nature and does not make
sense for sheaves because rk(Mx) can jump. For example, the ideal α(M+

X)OX is
not coherent already for the affine plane with its toric logarithmic structure.

Lemma 2.2.9. Assume that a fine logarithmic scheme (X,MX) admits a global
central monoidal chart φ : M → Γ(OX). Then the center C(φ) of the chart depends
only on (X,MX).

Proof. Set-theoretically, C(φ) is the set of points where r(x) is maximal. In partic-
ular, |C(φ)| is independent of the chart, and it remains to check that the scheme
structure is independent of the chart, which is a local question. For any x ∈ C(φ)
the homomorphism φx : M → OX,x is local, hence the homomorphism M → MX,x

is an isomorphism, and we obtain that the ideal φx(M+)OX,x coincides with

αx(M+
X,x)OX,x. In particular, the local scheme

C(φ) ×X Spec(OX,x) = V (φx(M+)OX,x)

is independent of the chart, and hence the same is true globally for C(φ). ♣

2.2.10. Logarithmic stratification. Assume that (X,MX) is a fine logarithmic scheme.
For any point x ∈ X there exists a monoidal chart φ : M → OX(V ) such that x ∈ V
and M = MX,x, in particular, the chart is central. Cover X with central charts
φi : Mi → OX(Vi) so that any point x ∈ X lies in the center of some chart, and
let Ci denote the center of φi and ri = rk(M i). If ri = rj then the restrictions
of Ci and Cj to Vi ∩ Vj coincide by Lemma 2.2.9. It follows that for any n ∈ N,
all Ci with ri = n glue to a locally closed subscheme X(n) →֒ X . Furthermore,
set-theoretically X(n) is the set of all points x ∈ X with r(x) = n, hence we obtain
a stratification of X , that will be called the logarithmic stratification.

Remark 2.2.11. (i) The reduction of the logarithmic stratification was considered
in [IT14, Exp. VI, §1.5] under the name “canonical stratification” or “stratification
by rank of M”.
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(ii) X(0) is the triviality locus of MX , i.e. the open subscheme on which the
logarithmic structure is trivial.

(iii) It follows from the definition that the logarithmic stratification is compatible
with strict morphisms: if (Y,MY ) → (X,MX) is strict then Y (n) = X(n) ×X Y
for any n.

2.2.12. Center of a logarithmic scheme. Given a fine logarithmic scheme (X,MX)
letXi be the connected components of the logarithmic strata ofX , and let C(X,MX)
be the union of those Xi that are closed in X . We call C(X,MX) the center of
(X,MX). Note that given a chart φ : M → OX(V ), we have C(φ) ⊂ C(X,MX)
with equality when X is local and φ is central.

Lemma 2.2.13. Let (X,MX) be an fs logarithmic scheme. Then the sheaf MX =
MX/O

×
X is locally constant along each logarithmic stratum. In particular, it is

locally constant along the center of (X,MX).

Proof. If x is a specialization of y in X then a surjective cospecialization map
h : MX,x → MX,y arises, see [Niz06, Lemma 2.12(1)] and its proof. If x and y lie
in the same logarithmic stratum then the monoids have the same rank and hence
h is an isomorphism. ♣

We emphasize that since MX is a Zariski sheaf, it is constant along connected
components of logarithmic strata.

2.3. Toroidal schemes. We now focus on toroidal schemes, which form the main
case we are interested in.

2.3.1. Logarithmic regularity. An fs logarithmic noetherian scheme (X,MX) is
called logarithmically regular at a point x if the logarithmic stratum X(n) con-
taining x is regular at x and the equality dim(OX,x) = n+ dim(OX(n),x) holds. If
this condition is satisfied at all point of X then we say that (X,MX) is logarith-
mically regular.

Remark 2.3.2. (i) Logarithmic regularity of Zariski logarithmic schemes was in-
troduced by Kato in [Kat94]. To the general (étale) case it was extended by Nizio l
in [Niz06].

(ii) A logarithmically regular scheme X is Cohen-Macaulay and normal by
[Kat94, Theorem 4.1]. Hence X is catenary, and therefore each non-empty stratum
X(n) is of pure codimension n.

We refer to [Kat94, Theorem 11.6] for the proof of the following result.

Proposition 2.3.3. Assume that (X,MX , α) is a logarithmically regular loga-
rithmic scheme. Let U = X(0) denote the triviality locus and j : U →֒ X the
open embedding. Then α : MX → OX is injective, D = X r U is a divisor, and
MX = j∗O

×
U ∩ OX .

2.3.4. Toroidal schemes. Given a scheme X with an open subscheme U , we say
that the pair (X,U) is a toroidal scheme if the logarithmic structure

MX := j∗O
×
U ∩OX →֒ OX

makes X into a logarithmically regular logarithmic scheme. We will identify MX

with a submonoid of OX , so α will not be indicated. Sometimes we will use the
divisor D = X r U instead of U in the notation of toroidal schemes.
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Remark 2.3.5. (i) The correspondences (X,U) 7→ (X, j∗O
×
U∩OX) and (X,MX) 7→

(X,X(0)) establish a bijection between toroidal schemes and logarithmically regular
logarithmic schemes.

(ii) In the case of varieties over an algebraically closed field, toroidal schemes are
the classical toroidal embeddings without self intersections of [KKMSD73]. Fur-
thermore, étale logarithmically regular varieties correspond to general toroidal em-
beddings, possibly with self intersections.

2.3.6. The center. By the center of a toroidal scheme we mean the center of the
associated logarithmic scheme.

Lemma 2.3.7. The center C of a toroidal scheme (X,U) is regular.

Proof. In fact every stratum is regular. This follows by unraveling the definitions.
♣

2.3.8. Formal-local description. Let X = Spec(A) be a local fs logarithmic scheme
with closed point x ∈ X ; write M := MX,x and n := rkM . By Lemma 2.2.6 there
exists a monoidal chart f : X → Y = AM of (X,MX). Clearly, y = f(x) lies in
the center Y (n) = V (M+Z[M ]) of Y and, since X is local, X(n) = X ×Y Y (n) is
the center of X . In particular, (X,MX) is logarithmically regular at x if and only
if X(n) is regular and dimX = dimX(n) + n. To make this explicit, Kato gave
the following formal-local characterization of logarithmic regularity, see [Kat94,
Theorem 3.2].

Recall that if k is a field of characteristic p > 0 then Cohen ring C(k) is a
DVR with maximal ideal (p) and residue field k. If char(k) = 0 then, as in [AT15,
§2.2.10], we set C(k) = k.

Lemma 2.3.9. Let M be a sharp toric monoid, X = Spec(A) a local scheme with
closed point x and f : X → Y = AM a morphism such that X = Spec(A/M+A) is
regular, contains x, and satisfies the equality dimX = dimX +rk(M). Fix a regular
system of parameters t′1, . . . , t

′
r ∈ OX ,x and lifts ti ∈ A. Let Cx = C(k(x)) be a

Cohen ring of k(x) and similarly Cy = C(k(y)) for y = f(x). Then the completion
of R = OY,y → A factors as

CyJMK CxJMKJt1, . . . ,trK

R̂
φ

// B
ψ

// // Â

where φ is formally smooth and Ker(ψ) is generated by a single element θ such that

(1) If char k(x) = 0 then θ = 0.
(2) If char k(x) = p > 0 then θ ≡ p mod (M+, t1, . . . ,tr).

If char k(x) = p > 0, any element θ′ ∈ Ker(ψ) that satisfies Condition (2) is a
generator of Ker(ψ).

We refer to [Kat94, Theorem 3.2] for a proof. Here we recall the main line: fix

a homomorphism Cx → Â inducing an isomorphism of the residue fields. Then the
lifts ti ∈ A of the regular system of parameters t′1, . . . ,t

′
r ∈ OX ,x induce a homo-

morphism B → Â which is observed to be surjective. Its kernel can be described
by dimension considerations.
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2.3.10. Logarithmic regularity is a local property. It is a non-trivial fact that log-
arithmic regularity is preserved under generizations. Kato proved this in [Kat94,
Proposition 7.1], but Gabber noticed that his argument was insufficient and a com-
pleted argument can be found in [GR13, Theorem 9.5.47] or [Ogu16, Theorem
IV.3.6.2]. An equivalent reformulation of this generization result is provided by
the following theorem. For completeness, we provide a new proof, which is a little
computational but shorter and more elementary than the mentioned arguments.

Theorem 2.3.11. Let M be a sharp toric monoid, X = Spec(A) a local scheme
with closed point x and f : X → Y = AM a morphism such that X = Spec(A/M+A)
is regular, contains x, and satisfies the equality dimX = dimX + rk(M). Set
U = f−1(AMgp). Then (X,U) is a toroidal scheme and f gives rise to a global
sharp central monoidal chart.

Proof. Step 1: restatement in terms of strata. We provide X and Y with the
logarithmic structures induced by M . Then f becomes a strict morphism of log
schemes, and hence the log strata are compatible: X(n) = Y (n) ×Y X . Clearly,
U = X(0), so we should prove that each X(n) is regular and dim(OX,x) = n +
dim(OX(n),x) for x ∈ X(n). We can work locally over a point y ∈ Y (n).

Step 2: coordinate rings of strata. Note that M ∩ O×
Y,y is a face F of M . Let

N = M [−F ] denote the localization of M at F . Then rk(N) = n and rk(F ) =
rk(M) − n. Note that y lies in the center of the localization

YF = Spec(Z[M ]F ) = Spec(Z[N ]).

Since rk(N) = n, we have that the center is YF (n) = Y (n) ∩ YF , and hence it
suffices to prove that XF (n) = X ×Y YF (n) is regular and satisfies the equality

dim(OX,x) = n+ dim(OXF (n),x) for x ∈ XF (n).

By definition, YF (n) = Spec(Z[N ]/(N+)). Write I = MrF . Since N+Z[M ]F =
IZ[M ]F and Z[M ]/IZ[M ]) = Z[F ] we have that

YF (n) = Spec(Z[N ]/(N+)) = Spec ((Z[M ]/IZ[M ])F )

= Spec (Z[F ]F ) = SpecZ[F gp].

Also the ideal IZ[M ] is of height n: the ideal I is of height n in M and a maximal
chain of prime ideals of M contained in I gives rise to a maximal chain of prime
ideals contained in IZ[M ].

Step 3: passing to completions. Let Â denote the completion of A = OX,x.

Then the morphism h : X̂ = Spec(Â) → X = Spec(A) is faithfully flat, and so it

suffices to prove that X̂F (n) = X̂ ×Y YF (n) is regular and of pure codimension n.

Set C = C(k(x)). By Lemma 2.3.9, the homomorphism Z[M ] → Â factors through
a regular homomorphism

Z[M ] → B := CJMKJtK,

where t = (t1, . . . , tr) and B → Â is surjective with kernel (θ). In particular, the
morphism

Ẑ := Spec(B) → Y

is regular.
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Recall that YF (n) = Spec(Z[M ]/(I))F ; writing ẐF (n)T := Ẑ ×Y YF (n) we have

ẐF (n) = Spec(D), where

D = (B/IB)F = CJtKJF KF .

The completion homomorphism C[t][F ] → CJtKJF K is regular, hence its localization
φ : C[t][F ]F → D is regular. Since the source C[t][F ]F = C[t][F gp] of φ is regular,

we obtain that the ring D and its spectrum ẐF (n) are regular. Since YF (n) is of

pure codimension n in Y , we also have that ẐF (n) is of pure codimension n in Ẑ.

Step 4: the equation θ. In case (1) of Lemma 2.3.9, X̂ = Ẑ hence the mor-

phism X̂ → Y is regular and we are done, so assume we are in case (2). By

our construction, X̂F (n) is the vanishing locus of θ in ẐF (n), hence we should
prove that θ defines a regular subscheme of codimension 1 in the regular scheme

ẐF (n) = Spec(D).

It now suffices to prove that if z ∈ X̂F (n) ⊂ ẐF (n) and q ⊂ D is the cor-
responding prime ideal then θ /∈ q2. Recall that D is a localization of its sub-
ring D0 = CJtKJF K. Since θ ∈ D0 and D0 is a local ring with maximal ideal
m = (p, F+, t1, . . . ,tr), it suffices to check that θ /∈ m2, or even that its image

θ̄ ∈ D0/(m2 + (F+, t1, . . . ,tr)) = C/p2

is nonzero. But θ̄ = p 6= 0 ∈ C/p2, as needed. ♣

2.3.12. Toroidal divisors and subschemes. By a toroidal subscheme of (X,U) we
mean any subscheme Z of the form V (IOX) where I is an ideal in MX . If, in
addition, Z is a divisor then we call it a toroidal divisor. The following lemma
implies, in particular, that the irreducible components of X r U are the same as
integral toroidal divisors.

Lemma 2.3.13. Assume that (X,U) is a toroidal scheme and X is local with closed
point x. Let MX be the logarithmic structure of (X,U), let M = MX,x and let
q : MX,x →M be the quotient map. Then,

(i) The map I 7→ V (q−1(I)OX) gives rise to a bijection between ideals of M and
toroidal subschemes of (X,U), with inverse bijection given by V (J) 7→ q(Jx∩MX,x).
Moreover, I is prime if and only if V (q−1(I)OX) is integral, and in this case

ht(I) = codim(V (q−1(I)OX)).

(ii) The map p 7→ V (q−1(p)OX) establishes a bijection between prime ideals of
height 1 in M and the irreducible components of D := X r U .

(iii) The map m 7→ V (q−1m) gives rise to an isomorphism of M and the monoid
of effective toroidal Cartier divisors of X.

Proof. Claim (iii) follows from the definition of MX . Note also that q induces a
bijection between the ideals of MX,x and M , so it suffices to consider the ideals of
MX,x in (i) and (ii).

The first claim of (i) is proved in [IT14, Lemma VIII.3.4.3]. Furthermore, if
I ⊂ MX,x is prime then V (IOX) is integral of the asserted codimension by [Kat94,
Corollary 7.3]. Conversely, I = IOX,x ∩ MX,x by the first assertion. Hence if
V (IOX) is integral then IOX,x is prime, implying that I = IOX,x∩MX,x is prime.

Finally, we prove (ii). Let H be the set of prime ideals of M of height 1. By (i),
V (pOX) is an integral divisor for any p ∈ H , and we have only to prove that any
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irreducible component of XrU is of this form. Note that ID := ∩p∈Hp is precisely
the ideal consisting of all inner elements of M (see §2.1.5), hence the support of
V (IDOX) coincides with D. By [Kat94, Prop. 6.4], IDOX,x = ∩p∈HpOX,x and we
obtain that D is the union of the integral divisors V (pOX). ♣

Corollary 2.3.14. Keep the assumptions of Lemma 2.3.13. Then the center C of
(X,U) is the scheme-theoretic intersection of the irreducible components of XrU .

Proof. Note that C = V (q−1(M+)OX) and M+ =
⋃

p∈H p, where H is the

set of prime ideals of M of height one. Thus C = V (
∑

p∈H q
−1(p)OX); by

Lemma 2.3.13(ii), the subschemes V (q−1(p)OX) are precisely the irreducible com-
ponents of X r U , and the corollary follows. ♣

Theorem 2.3.15. Keep the assumptions of Lemma 2.3.13. Let Z be an irreducible
component of D = X r U with corresponding prime ideal p ⊂ M (2.3.13(ii)) and
let D′ = D − Z and F = M r p. Then the following conditions are equivalent:

(i) (X,D′) is a toroidal scheme,

(ii) Z is Cartier,

(iii) the facet F splits off, say, M = F ⊕ Ne.

Proof. Set r = rk(M). Let C = V (q−1(M+)OX) denote the center of (X,U)
and set C′ = V (q−1(F+)OX). Before establishing the equivalences, we note that
since logarithmic regularity is a local property by 2.3.10, it suffices to study the
logarithmic strata through x.

(ii) =⇒ (iii) Recall that the elements of M correspond to toroidal Cartier divisors
by Lemma 2.3.13(iii), and the elements of F correspond to divisors supported on
D′. If Z is Cartier then Z = V (q−1(e)) and any toroidal Cartier divisor is a sum
of nZ and a toroidal Cartier divisor supported on D′, hence M = F ⊕ Ne and we
obtain (iii).

(iii) =⇒ (i) The equality M = F ⊕Ne implies that C = C′ ×X Z. Furthermore,
the codimension of C′ in X is at most rk(F ) = r − 1. On the other hand, C is
regular and of codimension r since (X,U) is toroidal. Therefore, C′ is regular of
codimension precisely rk(F ), and thus (X,D′) is toroidal.

(i) =⇒ (ii) Assume (X,D′) is toroidal. By Corollary 2.3.14, C′ is the scheme-
theoretic intersection of all irreducible components of D′, hence C′ corresponds
to the ideal I =

⋃
q∈H′ q, where H ′ := H r {p} is the set of all prime ideals of

M of height one that differ from p. By our assumption, C′ is regular. So, by
Lemma 2.3.13(i), I is a prime ideal of M . By the equivalence of (d) and (e) in
Lemma 2.1.9, p is principal, say p = (e), and then Z = V (q−1(e)) is Cartier. ♣

2.3.16. Morphisms of toroidal schemes and toroidal morphisms. By a morphism
f : (X ′, U ′) → (X,U) of toroidal schemes we mean any morphism f : X ′ → X with
f(U ′) ⊆ U . Note that f induces a morphism h : (X ′,MX′) → (X,MX) of the
corresponding logarithmic schemes. If h is logarithmically smooth then we say that
f is a toroidal morphism. This generalizes [AK00, Definition 1.2], where complex
varieties were considered.

2.3.17. Toroidal charts. If (X,U) is a toroidal scheme and M → OX(X) gives rise
to a global monoidal chart then we obtain a strict morphism of toroidal schemes
(X,U) → (AM ,AMgp) that will be called a global toroidal chart of (X,U).
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3. Toroidal actions

Next we study actions of diagonalizable groups on toroidal schemes. We will
be especially interested in a special class of actions that generalize toroidal actions
from [AKMW02].

3.1. Actions on logarithmic schemes. We start with the most general observa-
tions that apply to actions on arbitrary logarithmic schemes.

3.1.1. The definition. An action of a group scheme G on a logarithmic scheme
(X,MX) consists of an actionm : G×X → X onX and an isomorphism φ : p−1MX

∼−→
m−1MX , where p : G×X → X is the projection and the pullbacks of φ to G×G×X
satisfy the usual cocycle condition. In fact, one can view G with the trivial log-
arithmic structure as a group object in the category of logarithmic schemes, and
then this data reduces to an action within this category. In the following we use the
notion of strongly equivariant morphism between schemes provided with relatively
affine actions, see [AT15, Sections 5.1, 5.3].

3.1.2. Gradings of monoids. By an L-grading on a monoid M we simply mean a
homomorphism χ : M → L. Such a homomorphism induces an action of the Cartier
dual group DL on the scheme AM , which factors through the action of the group
DMgp .

3.1.3. Equivariant charts. Assume that G = DL acts on the logarithmic scheme
(X,MX). By a (strongly) equivariant monoidal chart we mean a G-equivariant
open subscheme V →֒ X and a (strongly)G-equivariant strict morphism f : (V,MX |V ) →
(AM ,MAM

), where G acts on the target via a grading h : M → L. Equivalently,
an equivariant chart consists of a monoidal chart f and a grading h : M → L such
that the corresponding homomorphism φ : M → OX(V ) is homogeneous, i.e. takes
each h−1(l) to the l-homogeneous component of OX(V ).

One may wonder when an action possesses a (strongly) equivariant chart. This
naturally leads to the definitions of G-simple and toroidal actions below.

3.1.4. G-simple actions. Assume that a group scheme G acts on a logarithmic
scheme (X,MX). We say that the action is G-simple at a point x ∈ X if Gx
acts trivially on MX,x. The action is G-simple if it is G-simple at all points of X .
We will also say that G acts simply when the action is G-simple, and even say that
the action is simple if the group G is understood.

Remark 3.1.5. (i) If G is connected then any action is G-simple. In general, Gx
acts on the finitely generated monoid MX,x through the quotient by its connected
component, i.e. through a finite group.

(ii) Our definition is taken from [IT14, Exp. VI, 3.1(ii)], where it appears without
name. The terminology differs slightly from G-strict actions of [dJ97, 7.1], which is
concerned with regular schemes with simple normal crossings divisors acted on by
a finite group. Since the word “strict” conflicts with logarithmic strict morphisms,
we prefer “G-simple”, in analogy with simple normal crossings divisors.

Lemma 3.1.6. Let G = DL be a diagonalizable group. Then,

(i) Assume that f : (Y,MY ) → (X,MX) is a strict G-equivariant morphism
between fine logarithmic schemes. If the action on (X,MX) is G-simple then the
action on (Y,MY ) is G-simple, and the converse is true whenever f is surjective.
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(ii) Assume that M is a toric monoid and h : M → L is a homomorphism. Then
the induced action on (AM ,MAM

) is G-simple.

(iii) Assume that G acts on an fs logarithmic scheme so that there exists a global
equivariant monoidal chart. Then the action is G-simple.

Proof. To prove (i) it suffices to note that f induces an equivariant isomorphism of
stalks MX,f(y) = MY,y. The group G acts on AM through the torus AMgp , which
is connected; hence the action is G-simple and we obtain (ii). Finally, (iii) follows
from (i) and (ii). ♣

3.1.7. Toroidal actions. For simplicity, we assume in the following definition that
the logarithmic strata X(r) are reduced. In particular, this assumption is satisfied
for toroidal schemes, the case to which we will restrict beginning Section 3.2 below.
Consider the logarithmic stratum Z = X(r(x)) through a point x ∈ X , and let Zx
be its localization at x. We say that the action of G on X is toroidal at x if it is
G-simple and Gx acts trivially on Zx. The action is toroidal if it is toroidal at all
points. This is compatible with the situation when X is toroidal in Section 3.2.12
below and with the terminology of [AdJ97, AKMW02].

Remark 3.1.8. The same notion was introduced by Gabber in [IT14, Exp. VI,
3.1] under the name “very tame action”. This terminology seems not ideal as the
tameness condition [IT14, Exp. VI, 3.1(i)] simply means that the stabilizers are
diagonalizable. We prefer to replace “very tame” with “toroidal”.

Recall (e.g. [Knu71, IV.1.8]) that a G-equivariant morphism f : Y → X is called
fixed-point reflecting if Gy = Gx for any y ∈ Y with x = f(y).

Lemma 3.1.9. Let G = DL be a diagonalizable group.

(i) Assume that G acts simply on an fs logarithmic scheme (X,MX) with reduced
logarithmic fibers. The action is toroidal if and only if the stabilizer groups Gx are
locally constant along each logarithmic stratum X(r).

(ii) Assume that f : (Y,MY ) → (X,MX) is a strict fixed-point reflecting G-
equivariant morphism between fine logarithmic schemes. If the action on (X,MX)
is toroidal then the action on (Y,MY ) is toroidal, and the converse is true whenever
f is surjective.

(iii) Assume that M is a toric monoid and h : M → L is a homomorphism.
Then the induced action of G on (AM ,MAM

) is toroidal.

(iv) Assume that G acts on an fs logarithmic scheme so that there exists a global
strongly equivariant monoidal chart. Then the action is toroidal.

Proof. Part (i) is obvious. Let us prove (ii). Being strict, f preserves the logarithmic
strata: Y (r) = X(r) ×X Y . By our assumption, f also preserves the stabilizers.
Hence (ii) follows from (i) and Lemma 3.1.6(i).

The action in (iii) is G-simple by Lemma 3.1.6(ii), hence we should only check
that the stabilizers are constant along the connected components of the logarithmic
strata of AM . The closed logarithmic stratum of AM is its center V (M+) =
SpecZ[M×], and all orbits in V (M+) have the same stabilizer DL/φ(M×). The

general case reduces to this one because AMrV (M+) is the union of the logarithmic
schemes AM [−m] for m ∈ M+. Finally, (iv) follows from (ii) and (iii) because any
strongly equivariant morphism is fixed-point reflecting. ♣
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3.2. Equivariant charts.

3.2.1. Local actions. Assume that G acts in a relatively affine manner on X . Recall
that an action of a diagonalizable group G = DL on X is called local if there exists
a single closed orbit, see [AT15, 5.1.9]. This happens if and only if X = Spec(A)
for an L-local ring A, i.e. an L-graded ring with a single maximal homogeneous
ideal m, see [AT15, 4.4]. A local action is strictly local if the closed orbit is a point;
this happens if and only if A/m is a field, see [AT15, 4.5]. Note, however, that A
does not have to be a local ring in the usual sense since there might be maximal
but non-homogeneous ideals.

3.2.2. Special orbits and G-localization. Recall that any fiber q−1(y) of the quotient
morphism q : X → Y = X �G contains a single closed orbit O = Oy called special
and XO = X ×Y SpecOY,y is called the equivariant localization or G-localization
at O (see [AT15, §5.1]). In particular, X is covered by its equivariant localizations
XO. On the level of sets XO consists of all orbits whose closure contains O. In the
sequel, we will denote by GO the stabilizer of O and we will denote by either LO
or Ly the group of characters of GO.

Lemma 3.2.3. Let (X,U) be a toroidal scheme with center C, and assume that
G = DL acts locally on X with closed orbit O so that U is G-equivariant. Then the
G-equivariant maps π0(O) → π0(C) → π0(X) are surjective. In particular, G acts
transitively on the set of connected components of C and X, and if O is connected
(e.g. the action is strictly local) then C and X are integral.

Proof. Recall that the connected components of X and C are integral since C is
regular by Lemma 2.3.7 and X is normal by [Kat94, Theorem 4.1]. It suffices to
show that the maps π0(O) → π0(C) and π0(O) → π0(X) are surjective. Assume to
the contrary that V is a connected component of C or X which is disjoint from O.
Then the union V of all G-translates of V is disjoint from O. On the other hand,
V is a closed G-equivariant subscheme and hence contains O, a contradiction. ♣

In case of such local action of G on X , the quotient group is G/GO = DKO
with

KO = Ker(L → LO). If X = SpecA and O = SpecA′ then A′ has no non-trivial
G-homogeneous ideals. In particular for every n ∈ KO the homogeneous submodule
A′
n contains a unit. On the other hand, elements having weight in L rKO vanish

on O hence they are not units in A. This implies the following lemma:

Lemma 3.2.4. The submodule An contains a unit if and only if n ∈ Ker(L→ LO).

3.2.5. G-simple actions on toroidal schemes. We introduced G-simple actions on
logarithmic schemes in Section 3.1.4. Here we study G-simple actions on toroidal
schemes.

Lemma 3.2.6. Assume that a diagonalizable group G acts on a toroidal scheme
(X,U) in a relatively affine manner. Let x ∈ X be a point with stabilizer Gx = DLx

and Xx,Gx
= Spec(A) the Gx-localization at x. Then the action is G-simple at x if

and only if any integral toroidal Weil divisor of Xx,Gx
is Gx-equivariant.

Proof. We can replace X , U , and G with Xx,Gx
, U ×XXx,Gx

, and Gx, respectively,
so that the action on X = Spec(A) is strictly local. We will now use Lemma 2.3.13,
but this should be done carefully since the scheme X does not have to be a local
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scheme. By 2.3.13(iii), the action is G-simple if and only if all effective toroidal
Cartier divisors are equivariant. This implies the inverse implication. Conversely,
assume that a toroidal integral divisor E is not equivariant. The union of all
G-translates of E is closed and equivariant, therefore it contains x, hence x ∈
E. Applying Lemma 2.3.13(ii) we obtain that G acts non-trivially on the set of
prime ideals of MX,x, hence it acts non-trivially on MX,x and the action is not
G-simple. ♣

3.2.7. The graded monoid MO of a special orbit O. If G acts simply on (X,U) then
to any special orbit O one can associate a canonical LO-graded toric monoid MO:

Lemma 3.2.8. Assume that a toroidal scheme (X,U) is provided with a relatively
affine action of G = DL, and let O be a special orbit with stabilizer GO = DLO

and G-localization XO = Spec(A).

(i) The action induces a canonical isomorphism between all the stalks MX,x with

x ∈ O. In other words, the monoid MO := MX,x is independent of the choice of
x ∈ O.

(ii) Any element m ∈ MO admits a lifting f ∈ MX(XO) ⊂ A which is l-
homogeneous for some l ∈ L. Moreover, the image of l in LO is uniquely determined
by m and the resulting map χO : MO → LO is a homomorphism.

Proof. Replacing X by XO we can assume that the action is local. By Lemma 3.2.3
any connected component O′ of the orbit lies in a connected component C′ of the
center. By Lemma 2.2.13 the stalks MX,x are naturally identified for x ∈ C′,
hence the same is true for x ∈ O′. Since G acts transitively on π0(O), we also
obtain isomorphisms between the stalks of MX for different components of O, and
these isomorphisms are unique because the action is simple. This proves (i).

By Lemma 2.3.13(iii), locally at a point x ∈ O we can lift m to a toroidal Cartier
divisor Ex ⊂ Spec(OX,x). The Zariski closure of Ex is a Weil divisor E ⊆ X r U
which is Cartier at x. Since the action is simple, there are finitely many disjoint
G-translates of E and their union E is G-equivariant. By [AT15, Proposition 1.6.5]
we obtain that E = V (f) for a homogeneous element f ∈ Al. Let us check that the
image of l in LO depends only on m. If h ∈ An is another lifting then V (f) and V (h)
coincide at x and hence fOX,x = hOX,x. Thus, the embedding of gradedA-modules
fA →֒ fA + hA becomes an isomorphism after tensoring with k(x), and hence
fA = fA+ hA by the graded Nakayama’s lemma [AT15, Proposition 1.6.4(ii)]. In
the same manner, hA = fA + hA and we obtain that f = uh for a homogeneous
unit u ∈ A×. Since A is L-local we may apply Lemma 3.2.4, hence the degree of u
lies in Ker(L→ LO). Thus, the map χO : MX,x → LO is well defined, and then it
is obviously a homomorphism. ♣

3.2.9. A local characterization of G-simple actions. We proved in Lemma 3.1.6(iii)
that any action admitting a toroidal chart is G-simple. Here is a result in the
opposite direction.

Proposition 3.2.10. Assume that a toroidal scheme (X,U) is provided with a local
G-simple action of a diagonalizable group G = DL. Then,

(i) There exists a sharp central equivariant toroidal chart (X,U) → (AMO
,AM

gp

O
),

where O is the closed orbit.
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(ii) Let Ktor
O denote the torsion group of KO = Ker(L → LO). If N = |Ktor

O | is
invertible on X then there exists a central equivariant toroidal chart

(X,U) ×DKtor
O

−→ (AMO⊕KO
,AM

gp

O⊕KO
) × SpecZ[1/N ]

which is fixed-point reflecting along the preimage of O. In particular, the chart is
étale-local on X, and if KO is torsion free (e.g. if the action is strictly local or if
L is torsion free) then the chart is global on X.

Remark 3.2.11. Without the torsion assumption in part (ii), the same proof as
given below shows that charts as in Proposition 3.2.10(ii) exist without inverting
N . In addition, they are only flat-local on X . Such charts may be useful but they
are not toroidal in our sense since Spec(Z[MO⊕KO]) is not toroidal over the primes
that divide the torsion order of KO.

Proof. (i) By Lemma 3.2.8 we have a grading χO : MO → LO. Since M
gp

is a
lattice, χO factors through a finer grading χ : MO → L and we fix any such χ.
Recall that any Al with l ∈ KO contains a unit by Lemma 3.2.4. By Lemma 3.2.8
any t ∈ MO admits a homogeneous lifting h(t) ∈ Al and multiplying it by a unit
from Aχ(t)−l we can achieve that h(t) ∈ Aχ(t), thereby obtaining a homogeneous

map h : MO → A. Since h(t) is unique up to a unit of degree zero, for any a, b ∈MO

there exists a unit u(a, b) ∈ A×
0 such that h(a)h(b) = h(a+ b)u(a, b). Our next goal

is to replace h by a homogeneous homomorphism.

Let Q be the set of all homogeneous elements of A that are not zero divisors.
Clearly, Q is an integral monoid, i.e. Q ⊆ Qgp. We claim that for all t ∈ MO we
have h(t) ∈ Q. Indeed, by [Kat94, Th. 4.1] the scheme X is normal, so it suffices to
show that h(t) does not vanish on any connected component X ′ of X . This follows
from Lemma 2.2.13, since the component X ′ intersects O, as the action is assumed
local.

Note that M
gp

O = Zr possesses a basis t1, . . . ,tr ∈ MO. Let φ : M
gp

O → Qgp be
the homomorphism with φ(ti) = h(ti), then for any t ∈MO the element φ(t) can be
obtained from h(t) by multiplying it with units of the form u(a, b)±1. In particular,
φ(t) ∈ Q ⊂ A is another homogeneous lifting of t, and the map φ : MO → A is a
homomorphism.

We claim that φ is a homogeneous monoidal chart. By construction, the log-
arithmic structure induced by φ embeds into MX , hence it suffices to show that
the homomorphism φy : MO → MX,y is onto for any y ∈ X . Furthermore, by
Lemma 2.2.13, we can replace y with a generic point of its logarithmic stratum. By
Lemma 3.2.3 y specializes to a point x ∈ O and it remains to use the fact that the
cospecialization map MO = MX,x → MX,y is surjective. We proved that φ is a
sharp chart, and φ is central because its center contains O.

(ii) Set A′ = A ⊗ Z[Ktor
O ]) so that X × DKtor

O
= Spec(A′). Choose a splitting

KO = Λ⊕Ktor
O . By Lemma 3.2.4 any Al with l ∈ KO contains a unit, hence we can

find a homomorphism ψΛ : Λ → A′× such that ψ(l) ∈ A′
l. Combining ψΛ with the

composed map Ktor
O →֒ Z[Ktor

O ] → A′× we obtain a homogeneous homomorphism

ψ : KO → A′×. In particular, a homogeneous monoidal chart (φ, ψ) : MO ⊕KO →
A′ arises and it induces an equivariant toroidal chart of (X,D)×DKtor

O
. The chart

is central because AMO
is a central toroidal chart of both X and AMO⊕KO

, and

the chart is fixed-point reflecting along the preimage of O′ because all relevant
stabilizers are easily seen to be equal to DLO

. ♣
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3.2.12. Toroidal actions on toroidal schemes. We defined toroidal actions of diag-
onalizable groups on a wide class of logarithmic schemes in Section 3.1.7. In the
particular case when the group acts on a toroidal scheme, one obtains a general-
ization of the definition of toroidal action of [AKMW02]. A basic example of a
toroidal action is provided by Lemma 3.1.9(iii).

3.2.13. Formal-local description of toroidal actions. The following result will be our
main tool for studying toroidal schemes with toroidal actions; it extends Lemma 2.3.9
to the equivariant case.

Theorem 3.2.14. Assume that a diagonalizable group G = DL acts strictly locally
on a toroidal scheme (X,U) so that the action is toroidal at the G-invariant closed
point x.1 Assume that f : (X,U) → (AM ,AMgp) is a sharp central equivariant

chart and write y = f(x). Let X = Spec(A), let Â be the completion of A at mx,
let Cx and Cy be the Cohen rings of k(x) and k(y), and let R = Cy[M ]. Then,

(i) The factorization

CyJMK CxJMKJt1, . . . ,trK

R̂
φ

// B
ψ

// // Â

in Lemma 2.3.9 can be chosen so that the homomorphisms φ and ψ are homogeneous
in the sense of [AT15, Section 4.5.5] and the elements θ and t1, . . . ,tr are of degree
zero.

(ii) For any factorization as in (i) write M0 for the the trivially graded part of
M . Then we have a description of the invariant subring

Â0 = B0/(θ) = CxJM0KJt1, . . . ,trK/(θ),

and dim(Â0) = rk(M0) + r.

(iii) The chart f is strongly equivariant.

(iv) The quotient (X0, U0)=(X�G,U�G) is a toroidal scheme and the morphism
of quotients f �G : (X0, U0) → (AM0

,AMgp

0
) is its toroidal chart.

Proof. (i) By the equivariance, the completion α̂ : R̂ → Â of α : R → A is homo-

geneous: Â =
∏
l∈L Âl, R̂ =

∏
l∈L R̂l, and α̂ respects these formal gradings, see

[AT15, Proposition 1.6.8]. The action is toroidal at x, hence G acts trivially on
Spec(OX,x), where X = C(X,MX) = Spec(A/M+A) is the center of X . Thus,
the regular parameters t′1, . . . ,t

′
r ∈ OX,x appearing in Lemma 2.3.9 are of degree

zero and lifting them to homogeneous elements of A we obtain a homogeneous fac-

torization R̂ → CxJMKJt1, . . . ,trK → Â with ti of degree zero. It remains to show
that θ can be chosen of degree zero. When char k(x) = 0 we have Ker(ψ) = 0 and
the result is trivial, so assume that char k(x) = p > 0. First, choose any θ as in
Lemma 2.3.9 and let θl be the homogeneous components of θ. For any 0 6= l ∈ L

we have that Bl ⊂M+B, hence θ0 ≡ θ ≡ p mod (M+, t1, . . . ,tr). Since α : B → Â
is homogeneous, θ0 is an element of Ker(ψ) and hence θ0 is also a generator by
Lemma 2.3.9. Thus, Ker(ψ) = (θ0) is as asserted.

(ii) Since B0 = CxJM0KJt1, . . . trK, the formula for Â0 follows from (i). Also

dim(B0) = dim(CxJM0KJt1, . . . trK) = rk(M0) + r + dim(Cx).

1For example, this is automatically the case when the center of X coincides with x.
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Note that dim(Cx) = 0 = ht ((θ)) if char k(x) = 0 and dim(Cx) = 1 = ht ((θ))

otherwise. In either case dim(Â0) = rk(M0) + r as required.

(iii) We should check that α is strongly homogeneous and by [AT15, Lemma
4.6.2] it suffices to check that the completion α̂ is strongly homogeneous, i.e.

Â0⊗̂R̂0
R̂ = Â. But this holds since Â = R̂⊗̂Cx

CyJt1, . . . ,trK/(θ) by (i) and Â0 =

R̂0⊗̂Cx
CyJt1, . . . ,trK/(θ) by (ii).

(iv) Set f0 = f � G, (Y, V ) = (AM ,AMgp) and (Y0, V0) = (AM0
,AMgp

0
). We

verify that f0 : X0 → Y0 satisfies the requirements of Theorem 2.3.11, giving the
statement. By part (iii), we have the following Cartesian square

X
f

//

α

��

Y

β

��

X0
f0

// Y0.

Note that U = f−1(V ), β(V ) = V0, and α(U) = U0, hence U0 = f−1
0 (V0).

Step 1: β induces an isomorphism of centers Y → Y0. Indeed, both are
isomorphic to Spec(Z) since M and M0 are sharp.

Step 2: α induces an isomorphism of centers X = Y×Y X and X0 = Y0×Y0
X0,

and so X0 is regular. Indeed X → X0 is a base change of Y ∼−→ Y0.

Step 3: Computation of dimensions. Write x0 = α(x) and recall that r =
dimXx = dim(X0)x0

. Since OX0,x0
= A0, we obtain from (ii) that

dim(OX0,x0
) = dim(Â0) = rk(M0) + r = rk(M0) + dim(OX0,x0

),

and hence Theorem 2.3.11 applies to f0. ♣

3.2.15. Existence of strongly equivariant charts. Recall that if G acts on (X,U)
so that there exists a strongly equivariant chart then the action is toroidal, see
Lemma 3.1.9(iv). In particular, Theorem 3.2.14 applies to such an action. More-
over, Theorem 3.2.14 implies that, strictly locally, existence of such charts charac-
terizes toroidal actions:

Corollary 3.2.16. Assume that a diagonalizable group G = DL acts locally on a
toroidal scheme (X,U) so that the action is toroidal along the closed orbit O. Then

(i) The action on the whole (X,U) is toroidal.

(ii) Any central equivariant toroidal chart (X,U) → (AM ,AMgp) which is fixed-
point reflecting along O is strongly equivariant.

(iii) If the torsion Ktor
O of KO = Ker(L→ LO) is invertible on X then (X,U)×

DKtor
O

possesses a central strongly equivariant chart. In particular, (X,U) possesses

such a chart whenever KO is torsion free (e.g. the action is strictly local or L is
torsion free).

Proof. (i) Since Gx ⊆ GO for any x ∈ X , it suffices to prove that the action of GO
is toroidal. Note that X is covered by the GO-localizations Xx at points x ∈ O.
The action of GO on Xx is strictly local hence (Xx, Ux) possesses a sharp central
equivariant chart h by Proposition 3.2.10. Then h is strongly equivariant by The-
orem 3.2.14(iii), and the action of GO on (Xx, Ux) is toroidal by Lemma 3.1.9(iv).

(ii) Since the chart is central, GO is the stabilizer of the center of (Y, V ) =
(AM ,AMgp). Therefore, the actions of G/GO on X �GO and Y �GO have trivial
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stabilizers and hence are free by [AT15, Lemma 5.4.4]. By [AT15, Corollary 5.4.8]
the morphism X � GO → Y � GO is strongly G/GO-equivariant, so it suffices to
prove that the morphism X → Y is strongly GO-equivariant.

Since the chart is central, we have an isomorphism of LO-graded modules MO =
M and a toric GO-equivariant morphism Y → Y = AMO

arises. Clearly, the

induced morphism (X,U) → (Y ,AM
gp

O
) is an equivariant sharp central toroidal

chart. As we already observed, for each x ∈ O the induced chart of the GO-
localization (Xx, Ux) is strongly equivariant by Theorem 3.2.14(iii). Therefore, the
morphism X → Y is strongly GO-equivariant. In the same way, Y → Y is strongly
GO-equivariant and hence X → Y is so.

Finally, (iii) follows from (ii) and Proposition 3.2.10. ♣

3.2.17. Openness of toroidal actions. As another corollary we obtain that the set
of points of (X,U) where G acts toroidally is open.

Corollary 3.2.18. Assume that a diagonalizable group G acts on a toroidal scheme
(X,U). Then the set of points where the action is toroidal (resp. simple) is open.

Proof. We have the stratifications of X by inertia strata X(H) and logarithmic
strata X(r). Let T be the set of points x ∈ X where the action is toroidal, then
x ∈ T if and only if the irreducible component of the logarithmic stratum through
x is contained in X(Gx). Thus T is constructible, and it suffices to prove that T is
closed under generization.

Assume that x is a generization of y. If the action is simple at y then Gy,

and hence also its subgroup Gx, act trivially on MX,y. The cospecialization ho-

momorphism φ : MX,y → MX,x is equivariant. Since φ is surjective by [Niz06,

Lemma 2.12(1)] we obtain that Gx acts trivially on MX,x, i.e. the action at x is
trivial.

Assume now that the action is toroidal at y. Since Gx ⊆ Gy, the action of G
is toroidal at x or y if and only if the action of the subgroup Gy is toroidal at
x or y. In particular, we can replace G by Gy and assume that y is G-invariant.
Furthermore, we can now replace X by the G-localization at y and assume that the
action is strictly local and y is the closed G-invariant point. Then the action on
(X,U) is toroidal by Corollary 3.2.16. ♣

3.3. Toroidal quotients. In this section we define quotients of toroidal schemes
and prove that they always exist for relatively affine toroidal actions. This is the
main property of toroidal actions used in applications.

3.3.1. The definition. Assume that a toroidal scheme (X,U) is provided with a
relatively affine action of G = DL. Set Y = X � G and let V be the image of U
in Y . If V is open and (Y, V ) is a toroidal scheme then we say that (Y, V ) is the
quotient of (X,U) by G and denote it (X,U)�G. It satisfies the universal property
analogous to categorical quotients: any G-equivariant morphism of toroidal schemes
(X,U) → (Z,W ) with the trivial action on the target factors uniquely through
(Y, V ).

3.3.2. Taut and loose quotients. Recall that the equivariant open subscheme U →֒
X is called strongly equivariant if it is the preimage of V and in this case V = U�G,
see [AT15, §5.1.4]. We say that the toroidal quotient (Y, V ) = (X,U) � G is taut
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if U is strongly equivariant. More generally, the quotient will be called loose if
V = U �G.

Remark 3.3.3. Let f : X → Y be the quotient morphism and consider the toroidal
divisors D = XrU and E = Y rV . The quotient is taut if and only if the inclusion
f−1(E) ⊆ D is an equality, and this happens if and only if D has no horizontal
components, i.e. f(D) contains no generic points of Y . One can show that for
taut quotients the induced logarithmic morphism (X,MX) → (Y,MY ) satisfies
the universal property of quotients in the category of logarithmic schemes. This
last observation will not be used, so we omit its verification.

3.3.4. The toric case. We will describe when the quotient is loose or taut in terms
of the action itself. We start with a toric case, so let us introduce a relevant
combinatorial notion for a grading φ : M → L. We say that φ is taut if its kernel
M0 contains an inner element v ∈ M (§2.1.2), and we say that φ is loose if the
inclusion Mgp

0 ⊆ K is an equality, where K is the kernel of φgp : Mgp → L. The
following lemma is very simple so we skip the proof.

Lemma 3.3.5. Let M be a toric monoid, L a lattice and φ : M → L a grading.

(i) φ is taut if and only if Im(φ) = Im(φgp).

(ii) φ is loose if and only if rk(M0) + rk(Im(φ)) = rk(M).

Now, let us relate these combinatorial definitions to the geometry.

Lemma 3.3.6. Assume that G = DL acts on (X,U) = (AM ,AMgp) via a grading
φ : M → L. Then,

(i) The following conditions are equivalent: (a) the quotient is taut, (b) φ is
taut, (c) U ⊂ Xs(0), the Geometric Invariant Theory stable locus with respect to
the trivial linearization 0 ∈ L.

(ii) The following conditions are equivalent: (d) the quotient is loose, (e) φ is
loose, (f) dimX�G = dimX−dimG/GX , where GX is the subgroup acting trivially
on X.

Remark 3.3.7. At least when φgp is surjective these properties can be character-
ized in a manner similar to toric geometry, in terms of the dual monoid σ = M∨

and the dual map (φgp)∨ : L∨ →֒ N = (Mgp)∨ as follows:

(i’) The quotient is taut if and only if L∨ ∩ σ = {0}.

(ii’) The quotient is loose if and only if L∨ ∩ σ ⊂ σ is a whole face of σ.

We will not use this language in the sequel, but the reader may find it helpful
and more intuitive.

Proof. Let Y = X �G and let V be the image of U in Y .

(d)⇐⇒(e) By definition, Y = AM0
and U �G = AK . Thus the quotient is loose

if and only if Mgp
0 = K, i.e. φ is loose.

(e)⇐⇒(f) Note that G/GX = DL′ where L′ = Im(φgp). Since dimY = rk(M0)
and dimX = rk(M), the equivalence follows from Lemma 3.3.5(ii).

(a)⇐⇒(b) The quotient is taut if and only if D = X r U is the preimage of
Y r V . This happens if and only if there exists a Cartier divisor D′ on X such
that: (1) D′ is a toroidal divisor induced from Y , and (2) |D′| = |D|. Note that a
Cartier divisor on X satisfies (1) if and only if it is of the form V (v) for v ∈ M0,
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and such divisor satisfies (2) if and only if v is inner. Thus, (1) and (2) are satisfied
if and only if φ is taut.

(b)⇐⇒(c) An inner element m ∈M0 is an invariant function vanishing on XrU ,
implying U ⊂ Xs(0). Conversely, if U ⊂ Xs(0) then there is a homogeneous
invariant element separating it from any other torus orbit. The product of finitely
many of these corresponds to an inner element in M0.

♣

3.3.8. Taut and loose actions. Lemma 3.3.6 motivates the following definition that
applies to arbitrary toroidal actions. We will later see that it is compatible with
the notion of taut and loose quotients. The same definition could be spelled out
for an arbitrary simple action but we did not find the resulting notion meaningful,
see Remark 3.4.4 below.

Assume that G = DL acts toroidally on a toroidal scheme (X,U). For any point
x ∈ X let Lx be the quotient of L such that Gx = DLx

. By Lemma 3.2.8, the
action induces a homomorphism φx : MX,x → Lx. We say that the action is taut
at x if Ker(φx) contains an inner element. We say that the action is loose at x if
(Ker(φx))gp = Ker(φgpx ). The action is taut or loose if it is so at all points of X .

Example 3.3.9. (i) If the action of G on a toroidal scheme (X,U) is toroidal at a
point x ∈ X and Gx is finite then the action is taut at x.

(ii) In particular, if G = Gm = DZ then the action can fail to be taut only at
G-invariant points. Assume that Gx = G. Then the action is taut if and only if
the image of φx : MX,x → Z is unbounded on both sides. The action is loose but

not taut if and only if Ker(φx) contains a facet of MX,x.

Lemma 3.3.10. Assume that f : (X ′, D′) → (X,D) is a strict G-equivariant mor-
phism of toroidal schemes.

(i) If the action on (X,D) is taut then the action on (X ′, D′) is taut.

(ii) Assume, in addition, that f is fixed point reflecting. If the action on (X,D)
is loose then the action on (X ′, D′) is loose. Conversely, if the action on (X ′, D′)
is taut (resp. loose) and f is surjective then the action on (X,D) is taut (resp.
loose).

Proof. If x′ ∈ X ′, x = f(x′), Gx′ = DL′ and Gx = DL then L′ is a quotient of
L. If the kernel of M → L contains an inner element then the same holds for the
composition M → L′. This implies (i). The assertion of (ii) holds since L = L′

whenever f is fixed point reflecting. ♣

3.3.11. Existence and properties of toroidal quotients. Here is our main result about
toroidal quotients.

Theorem 3.3.12. Assume that a toroidal scheme (X,U) is provided with a rel-
atively affine toroidal action of a diagonalizable group G = DL, and x ∈ X is
contained in the special orbit over a point x0 ∈ X0 = X �G. Then,

(i) The toroidal quotient (X,U) � G exists, MX0,x0
= (MX,x)0, the 0-graded

component with respect to the Lx-grading of MX0,x0
, and the quotient is taut or

loose if and only if the action is taut or loose, respectively.

(ii) The morphism π : (X,U) → (X,U) � G is toroidal whenever the torsion
degree N of L is invertible on X.
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(iii) If h : (Z,W ) → (X,U) is a strongly equivariant strict morphism of toroidal
schemes then the quotient h�G : (Z,W ) �G→ (X,U) �G is a strict morphism of
toroidal schemes.

(iv) If I ⊂ OX is a toroidal ideal then the ideal Ĩ = π∗(I) ∩ OX0
is toroidal and

the corresponding ideals J ⊂ MX,x and J̃ ⊂ MX0,x0
(see Lemma 2.3.13(i)) are

related by J̃ = J0.

Proof. All claims are local on X0, hence we can assume that the action is local
and x0 is the closed point of X0. For brevity of notation set M = MX,x. We
start with part (ii). It suffices to prove the claim étale-locally, hence by use of
Corollary 3.2.16 we can assume that there exists a strongly equivariant toroidal
chart (X,U) → (AM ,AMgp) over Z[1/N ]. Note that M may be non-toric, but its
torsion is killed by N . The morphism

(AM ,AMgp ) → (AM ,AMgp) �G = (AM0
,A(M0)gp)

is easily seen to be toroidal, hence π is toroidal too.

The remaining proof deals with parts (i), (iii) and (iv). By [AT15, Corol-
lary 5.4.5] the quotient can be obtained in two stages: first divide by the action
of Gx, which is strictly local at x, then divide by the free action of G/Gx. This
reduces the proof to two separate cases: (a) the action is strictly local, (b) the
action is free.

Case (a). In this case x is the closed G-invariant point. By Corollary 3.2.16 there
exists a strongly equivariant toroidal chart f : (X,U) → (Y, V ) = (AM ,AMgp), so
we obtain a Cartesian square

X
f

//

α

��

Y

β

��

X0
f0

// Y0

where Y0 = Y �G = AM0
and M0 is the trivially L-graded part of M . Now let us

check the claims (i), (iii), (iv).

(i) Set U0 = U � G and V0 = AMgp

0
, then (X0, U0) is a toroidal scheme and

f0 : (X0, U0) → (Y0, V0) is a toroidal chart by Theorem 3.2.14(iv). Furthermore,
f is strict hence Lemma 3.3.10(ii) implies that the action is taut or loose at x if
and only if the action on (Y, V ) is taut or loose, respectively. By Lemma 3.3.6 this
happens if and only if the quotient (Y0, V0) = (Y, V )�G is taut or loose, and since α
is the base change of β, the latter is equivalent to the quotient (X0, U0) = (X,U)�G
being taut or loose, respectively.

(iii) The action on (Z,W ) is toroidal by Lemma 3.1.9(ii), and f ◦ h is a strongly
equivariant toroidal chart. Write h0 = h�G and (Z0,W0) = (Z,W ) �G. As in the
proof of (i), it follows from Theorem 3.2.14(iv) that (Z0,W0) is a toroidal scheme
and the morphism f0 ◦ h0 : (Z0,W0) → (Y0, V0) is a toroidal chart, and hence h0 is
strict.

(iv) This can be checked on the formal completions at x and x0. By parts (i)

and (ii) of Theorem 3.2.14 we have representations ÔX,x = CxJM, t1, . . . ,trK/(θ)

and ÔX0,x0
= CxJM0, t1, . . . ,trK/(θ), and then it is clear that JÔX,x ∩ ÔX0,x0

=

J0ÔX0,x0
.
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Case (b). In this case the action is flat-split free by [AT15, Lemma 5.4.4], i.e.
there exists a flat surjective morphism T → X0 such that T ×X0

X is T -isomorphic
to T ×G. Hence q : X → X0 is flat by flat descent and one can even take T = X
obtaining the Cartesian square of flat surjective morphisms

X ×G
m

//

p

��

X

q

��

X
q

// X0.

where p : X×G→ X is the projection and m : X×G→ X is the action morphism.

Let U0 ⊆ X0 denote the image of U . Since U is G-equivariant, it is the preimage
of U0 by flat descent. In particular, once we prove that (X0, U0) is toroidal, the
quotient is automatically taut. Let MX and MX0

be the logarithmic structures
associated with U and U0, respectively. We claim that the morphism g : (X,MX) →
(X0,MX0

) is strict. Indeed, we should prove that any toroidal Cartier divisor on
X is the pullback of a Cartier divisor on X0, which is automatically toroidal since
U = q−1(U0). The logarithmic structure MX is G-equivariant by our assumption
and hence any toroidal divisor D →֒ X is G-equivariant, i.e. m−1(D) = p−1(D)
scheme-theoretically. Therefore, D is the pullback of a closed subscheme D0 →֒ X0.
Since D →֒ X is a regular closed immersion, the same is true for D0 →֒ X0 by flat
descent, and this means that D0 is a Cartier divisor.

Now, let us deduce the theorem. (i) (X0, U0) is toroidal because logarithmic
regularity descends with respect to the flat strict morphism g by [GR13, Propo-
sition 7.5.46(i)]. In addition, the grading of M is trivial because Lx = 0 and
MX0,x0

= M = M0 since g is strict.

(iii) The action on (Z,W ) also has trivial stabilizers and hence is flat-split free.
If (Z0,W0) = (Z,W ) �G then by the same argument (Z,W ) → (Z0,W0) is strict,
and since the composition g ◦ h : (Z,W ) → (X0, U0) is strict, h0 is strict too.

(iv) The same argument as in the above paragraph shows that I = Ĩ ′OX for a

toroidal ideal Ĩ ′ and then Ĩ = π∗(Ĩ ′OX)∩OX̃ = Ĩ ′. So, I is the pullback of Ĩ under

the strict morphism g and we obtain that J̃ = J = J0. ♣

3.4. Making actions toroidal by increasing the toroidal structure. Our
next goal is to show that G-locally any G-simple action on a toroidal scheme can
be made toroidal simply by increasing the toroidal divisor - this increased divisor
will later be used as a tool to show our main results, namely that after a suitable
blowing up, adding only the exceptional divisor suffices.

In the sequel, if Z is a closed subscheme of X = Spec(A) given by an ideal I ⊂ A
then we call the A/I-module NZ →֒X = I/I2 the conormal module to Z in X .

Proposition 3.4.1. Assume that a diagonalizable group G = DL acts simply and
locally on a toroidal scheme (X,U) with center C. Let i : O = Spec(K) →֒ C be the
embedding of the closed orbit, GO = DLO

the stabilizer, M = MO the corresponding
monoid with grading χ : M → LO (Lemma 3.2.8). Then

(i) There exists a natural homogeneous morphism of L-graded K-modules φO :
NO →֒C → i∗ΩC , and the module Im(φO) is a free K-module of a finite rank d.

(ii) There exists an equivariant open subset U ′ ⊆ U such that (X,U ′) is a toroidal
scheme whose center C′ is of codimension d in C.
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(iii) If M′
X is the logarithmic structure associated with (X,U ′) then up to an

isomorphism the monoid M ′ = M
′
O and the induced grading χ′ : M ′ → LO depend

only on (X,U) and G. Moreover, M ′ = M ⊕Nd, and if e1, . . . ,ed is the basis of Nd

then {χ′(e1), . . . ,χ′(ed)} is precisely the multiset of characters of the action of GO
on Im(φO).

(iv) The action on (X,U ′) is always toroidal, and the action on (X,U) is toroidal
if and only if χ′(ei) = 0 for any 1 ≤ i ≤ d.

Proof. (i) We have that X = Spec(A) for an L-local ring (A,m) and C = Spec(A)
for an L-local ring (A,m), which is a quotient of (A,m). The exact sequence of
homologies of the transitivity triangle i∗LC → LO → LO/C of cotangent complexes
ends with

H1(LO) → NO →֒C
φO
−→i∗ΩC → ΩO → 0.

Since the morphism O → C is G-equivariant, these K-modules are L-graded. In
addition, the action on O is trivial, hence the grading on H1(LO) is trivial. Note
that K = A/m = A/m is an L-graded field ([AT15, §4.4.3]), hence any L-graded
K-module is free. The rank of Im(φO) is finite since NO →֒C is finitely generated.

(ii) Choose an L-homogeneous K-basis t1, . . . ,td of Im(φO), lift it through m։

m ։ NO →֒C ։ Im(φO) to homogeneous elements ti ∈ m, and consider the G-
equivariant divisors Di = V (ti). Since G acts transitively on O, for any point
x ∈ O the images of t1, . . . ,td in mx/m

2
x remain linearly independent. Therefore

t1, . . . ,td form a subfamily of a family of regular parameters at any point of O. In
particular, if Z = Spec(A/(t1, . . . ,td)) then C′ = C ×X Z is regular along O. Since
G acts locally on C′ this implies that C′ is regular of codimension d in C, and
therefore U ′ = U r (∪di=1Di) defines a toroidal scheme (X,U ′) with center C′.

(iii) It follows from Theorem 2.3.15 that M ′ = M ⊕Nd. By Lemma 3.2.8(ii), the
basis elements ei ∈ Nd can be lifted to homogeneous elements ti ∈ A. Then C′ is
the intersection of C with d equivariant divisors Di := V (ti), and hence D1, . . . ,Dd

have simple normal crossings along O. It follows that the images ti ∈ i∗ΩC are
linearly independent, and by the dimension counting they form a homogeneous
basis of Im(φO). Hence, the characters of ei are as claimed.

(iv) Let ti be as in (iii). In the first claim we should check that GO acts trivially
on C′, i.e. the induced LO-grading of A′ := A/(t1, . . . ,td) is trivial. The maximal
L-homogeneous ideal of A′ is m′ = mA′. Clearly, the LO-grading on K = A′/m′

is trivial. Since A′ is noetherian and hence embeds into the m′-adic completion, it

suffices to show that the LO-grading of m′/m′2 = NO →֒C′ is trivial. Since NO →֒C′

is the quotient of NO →֒C by the span of the images of t1, . . . ,td, it follows from the
commutative square

NO →֒C
φO

//

��

i∗ΩC

��

NO →֒C′

φ′
O

// i′∗ΩC′

that Im(φ′O) = 0. Hence the map H1(LO) → NO →֒C′ is surjective and we obtain
that the grading of NO →֒C′ is trivial.

If the action on (X,U) is toroidal then GO acts trivially on C, hence the LO-
grading on NO →֒C is trivial, and one necessarily has that χ′(ei) = 0. Conversely,
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assume that all χ′(ei) vanish. Then ti ∈ A0 and since A′ = A/(t1, . . . ,td)A is
trivially LO-graded, the same is true for A. Thus, GO acts trivially on C. ♣

Remark 3.4.2. (i) Let us say that an action of G on a toroidal scheme (X,D) is
pretoroidal if for any point x ∈ X there exists a larger divisor D′ ⊃ D such that
(X,D′) is still toroidal, D′ is equivariant and the action on (X,D′) is toroidal at
x. In fact, Proposition 3.4.1 proves that a pretoroidal action is nothing else but a
G-simple action. Pretoroidal actions were introduced in [AdJ97] for finite groups,
and are related to the locally toric actions of Gm in [AKMW02], where one did not
have a given toroidal structure (X,D). Note that the definition is local and for a
G-simple action it may happen that there is no larger global equivariant toroidal
structure such that the action is toroidal everywhere.

(ii) Proposition 3.4.1 and Theorem 3.3.12 imply that for any toroidal scheme
(X,D) with a G-simple action of G the singularities of X�G are locally isomorphic
to the singularities of toroidal schemes; such schemes were called locally toric in
[AKMW02]. However, there is no canonical way to find such an isomorphism; e.g.
the cone C = Spec(k[x, y, z]/(xy − z2)) with the empty divisor is not a toroidal
scheme, and there are many different ways to choose a divisor that makes it into
a toroidal scheme. This makes locally toric schemes difficult to work with. For
example, one can locally resolve their singularities in a combinatorial way, but
W lodarczyk [W lo03, Theorem 8.3.2] had to develop a theory of stratified toroidal
varieties to resolve them canonically, and hence globally.

3.4.3. Potentially taut actions. Assume that M and M ′ = M ⊕ Nd are L-graded
monoids and the grading on Nd is trivial. Then the grading on M is taut or loose
if and only if the grading on M ′ is taut or loose, respectively. Assume that G
acts simply and strictly locally on (X,U). It follows from Proposition 3.4.1 that
there exists U ′ ⊆ U such that the action on (X,U ′) is toroidal and the monoid
M ′ = MX,x is uniquely defined up to a trivially graded direct summand of the
form Nl. We say that the action on (X,U) is potentially taut or loose if the action
on (X,U ′) is taut or loose, respectively. As we showed, this is independent of the
choice of U ′.

In general, we define a G-action to be potentially taut or loose at x ∈ X if
it is simple at x and the action of Gx on the Gx-equivariant localization at x is
potentially taut or loose, respectively.

Remark 3.4.4. There is no relation between the action on (X,U) being potentially
taut or loose and the grading of M = MX,x being taut or loose, respectively. The
latter information seems to be not so relevant to the properties of the action.

3.5. Decreasing the toroidal structure. We will also need to know when a
given toroidal structure can be decreased without loosing good properties of the
action. In the following result we use divisors rather than open sets in the notation
of toroidal schemes.

Proposition 3.5.1. Let (X,D) be a toroidal scheme provided with a toroidal action
of a diagonalizable group G = DL. Assume that the action on X is local with closed
orbit O, and let M = MO be the module defined in Lemma 3.2.8(i).

(i) If Z is an irreducible component of D and D′ = D − Z, then the following
conditions are equivalent: (a) (X,D′) is a toroidal scheme and the action of G on



26 D. ABRAMOVICH AND M. TEMKIN

(X,D′) is toroidal, (b) Z is Cartier and the corresponding element e ∈ M is of
degree zero with respect to the grading χ : M → LO induced by the action.

(ii) Let E be obtained from D by removing all irreducible Cartier subdivisors
Z ⊆ D such that the corresponding character in LO is trivial. Then E ⊆ D is the
minimal subdivisor such that the action on (X,E) is toroidal.

Proof. It suffices to prove (i) as (ii) follows by induction. Assume that (a) holds.
Then Z is Cartier at x by Theorem 2.3.15 and χ(e) = 0 by Proposition 3.4.1(iii).
Conversely, assume that (b) holds. Then (X,D′) is a toroidal scheme by Theo-
rem 2.3.15 and it remains to use Proposition 3.4.1(iii) again. ♣

3.6. Combinatorial charts. Our next aim is to extend the theory of equivariant
toroidal charts to arbitrary simple actions at the cost of considering charts AP with
a smaller toroidal divisor and a non-toroidal action. Moreover, we will see that the
charts depend only on the following combinatorial data: graded monoids and non-
trivial characters through which G acts on the cotangent spaces of logarithmic
strata.

3.6.1. The models. Assume given the following data: a finitely generated abelian
group L, an L-graded toric monoid M , and a function σ : Lr{0} → N with a finite
support. Consider the monoid Nσ = ⊕l∈Lr{0}N

σ(l), where each Nσ(l) is graded by
l. Then P = M ⊕ Nσ is an L-graded toric monoid and the toric scheme X = AP

acquires an action of G = DL. The action is not toroidal whenever σ 6= 0.

3.6.2. Signature. Assume that G = DL acts on a finite-dimensional vector space
V , i.e. V is provided with an L-grading V = ⊕l∈LVl. We record this representation
combinatorially as follows.

By the signature σ′
V of V we mean the multiset of characters through which G

acts. Equivalently, one can view the signature as a function σ′
V : L→ N that sends

l to dim(Vl). Clearly the data of σ′
V is equivalent to the data of the representation

V .

The multiset of all non-trivial characters will be called the reduced signature
and denoted σV : L r {0} → N. One may think of the reduced signature as the
equivalence class of the representation V , where V ∼ V ′ if they differ by trivial
characters.

Any homomorphism φ : L→ L̃ induces a new grading on V and σ′
V,L̃

= φ(σ′
V,L).

In addition, σV,L̃ is obtained from φ(σV,L) by removing zeros, so we say that σV,L̃
is the reduced image of σV,L and write σV,L̃ = φ(σV,L)red.

If G acts on a noetherian scheme X then by the signature σ′
x of the action at

a point x ∈ X we mean the signature of the cotangent space Vx = mx/m
2
x acted

on by the stabilizer Gx. Note that Gx = DLx
for a quotient Lx of L and σ′

x is
an N-valued function on Lx. The reduced signature σx : Lx r {0} → N is defined
similarly.

3.6.3. Functoriality of signature. The reduced signature is compatible with strongly
equivariant morphisms:

Lemma 3.6.4. Let G = DL be a diagonalizable group, f : Y → X a strongly
G-equivariant morphism, y ∈ Y a point and x = f(y). Then Ly = Lx and σy = σx.
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Proof. Since f is strongly equivariant, Gy = Gx. Applying the functor · ⊗L k(y)
to the transitivity triangle LY/X [−1] → LX → LY → LY/X one obtains the exact
triangle

LY/X ⊗L k(y)[−1] → LX ⊗L k(y) → LY ⊗L k(y) → LY/X ⊗L k(y).

The associated exact sequence of homologies ends with

H1(LY/X ⊗L k(y)) → (mx/m
2
x) ⊗k(x) k(y) → my/m

2
y → H0(LY/X ⊗L k(y)),

where x = f(y). Since f is strongly equivariant, the vector spaces Hi(LY/X⊗Lk(y))
with i = 0, 1 are trivially graded by [AT15, Theorem 1.3.1(i)]. Therefore, the
multiplicities of a nontrivial character l ∈ Lx = Ly of Gy = Gx in the action on
my/m

2
y and in the action on mx/m

2
x coincide. The claim follows. ♣

3.6.5. The signature is locally constant on fixed loci. Recall that the action of G on
a regular scheme X induces inertia stratification of X by regular subschemes X(H)
along which the stabilizer is constant, see [AT15, §5.1.14].

Lemma 3.6.6. Assume that G = DL acts on a regular scheme X. Then for any
subgroup H ⊆ G the reduced signature of the action of G is locally constant along
the stratum X(H).

Proof. Fix a subgroup H = DL′ of G, for some quotient L′ of L. We should
prove that if x ∈ X(H) and y is the generic point of the component of X(H)
containing x then σx = σy. The question is local at x and only depends on the
action of H , so shrinking X we can assume that X = Spec(A) for a strictly lo-
cal L′-graded ring. By [AT15, Lemma 4.4.15], mx is generated by d = dim(X)
homogeneous elements t1, . . . ,td. We can assume that ti is trivially graded if and
only if 1 ≤ i ≤ s, and then σx is the multiset of gradings of ts+1, . . . ,td. Recall
that X(H) is regular by [AT15, Proposition 5.1.16], and clearly H acts trivially
on the cotangent space of X(H) at x. Since X(H) ⊆ V (ts+1, . . . ,td) and the im-
ages of t1, . . . ,ts span the maximal trivially graded subspace of mx/m

2
x, we actually

have that V (ts+1, . . . ,td) = X(H). Hence the maximal ideal of y is generated by
ts+1, . . . ,td, and the images of ts+1, . . . ,td form a basis of the cotangent space at y.
In particular, σy = σx. ♣

Corollary 3.6.7. Assume that G = DL acts on a regular scheme X. Let x, y ∈ X
be two points such that the closure of the orbit of y contains x and let φ : Lx → Ly
be the map associated to Gy →֒ Gx. Then σy = φ(σx)red.

Proof. Consider the action of H = Gy on X . Then Hy = Hx = DLy
and we denote

by σHx and σHy the corresponding characteristic subsets of Ly. Clearly, σHy = σy
and σHx = φ(σx)red. It remains to note that σHx = σHy by Lemma 3.6.6. ♣

3.6.8. Local combinatorial data. Assume now that G = DL acts simply and in a
relatively affine manner on a toroidal scheme (X,U). To any point x ∈ X one
can associate the following combinatorial datum: the stabilizer Gx = DLx

, the
Lx-graded monoid Mx = MX,x, and the reduced signature σx : Lx r {0} → N of
the action of Gx on the logarithmic stratum through x. The following result shows
that these data depend only on the orbit O = Ox of x, so we will also use the
notation σO, in addition to GO, LO and MO introduced earlier.
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Proposition 3.6.9. Assume that a diagonalizable group G = DL acts on a toroidal
scheme X.

(i) The triple (Mx, Lx, σx) is locally constant along the logarithmic-inertia strata
X(H) ∩X(r). In particular, the triples are locally constant along orbits of G and
there are finitely many isomorphism classes of the triples (Mx, Lx, σx).

(ii) The combinatorial data are compatible with strict strongly equivariant mor-
phism of toroidal schemes: if f : Y → X is such a morphism, y ∈ Y and x = f(y)
then (Mx, Lx, σx) = (My, Ly, σy).

Proof. (i) The monoid Mx is locally constant along the logarithmic strata X(r) by
Lemma 2.2.13 and the reduced signature is locally constant along the inertia strata
X(H) by Lemma 3.6.6. Since X is noetherian the finiteness claim follows.

(ii) By the definition of strictness, Mx = My. Since σx is determined by Mx

and the reduced signature of the action of G on the whole X , and the same claim
holds for y, the assertion of (ii) follows from Lemma 3.6.4. ♣

3.6.10. Construction of charts. Now we will construct local charts for simple G-
actions. We assume that the action is simple for simplicity of the exposition - the
assumption can be removed at the cost of working with charts AP on which G acts
through a grading on P and a (non-trivial) action on the graded monoid P .

Theorem 3.6.11. Assume that a toroidal scheme (X,D) is provided with a local
G-simple action of a diagonalizable group G = DL and the torsion Ktor

O of KO =

Ker(L → LO) is of order N invertible on X. Set P = MO ⊕KO ⊕ NσO , where O
is the orbit. Then there exists a strongly equivariant strict morphism

(X,D) ×DKtor
O

→ (AP , E),

where E = AP rAM
gp

O⊕KO⊕NσO
and the charts are over Z[1/N ].

Proof. By Proposition 3.4.1 there exists a G-equivariant divisor D′ containing D
and such that (X,D′) is a toroidal scheme, the action ofG on (X,D′) is toroidal, and

the G-graded monoids M
′
O = M(X,D′),O and MO are related by M

′
O = MO⊕Nσ

′
V ,

where V is the image of the map φO : NO →֒C → i∗ΩC and C is the center of (X,U).
In addition, the components D1, . . . ,Dd of D′ not contained in D correspond to the
generators e1, . . . ,ed of Nσ

′
V . As in the proof of Proposition 3.4.1, Di = V (ti),

where ti is homogeneous of weight χ′(ei). Without restriction of generality, there
exists n such that 1 ≤ n ≤ d and χ′(ei) = 0 precisely when i > n.

By Proposition 3.5.1, ifD′′ is obtained by decreasingD′ by removingDn+1, . . . ,Dd,
then both (X,D′′) and the action stay toroidal. After such decreasing we have that

M
′′
O = MO⊕NσV . We claim that σV = σO and hence M

′′
O = P . Indeed, the center

C′′ of (C,D) is the intersection of C with D1, . . . ,Dn. Since G acts trivially on C′′,
we have that σO = {χ′(e1), . . . ,χ′(en)} = σV .

By Proposition 3.2.10, there exists an equivariant central toroidal chart

f : (X,D′′) ×DKtor
O

→ (AP ,AP rAP gp)

which is fixed-point reflecting along the preimage of O, and this chart is strongly
equivariant by Corollary 3.2.16(ii). Finally, E is obtained from AP rAP gp by omit-
ting the components corresponding to the generators of NσO , hence D ×DKtor

O
=

f−1(E) and f : (X,D) ×DKtor
O

→ (AP , E) is a required combinatorial chart. ♣
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Corollary 3.6.12. Assume that a toroidal scheme (X,D) is provided with a G-
simple action of a diagonalizable group G = DL. Let x, y ∈ X be points such that
x lies in the closure of the orbit of y and let φ : Lx → Ly be the associated map.
Then σy = φ(σx)red.

Proof. Replacing G by Gx and X by the equivariant localization at x we can
assume that the action is strictly local with closed orbit x. Set M = Mx and
P = M ⊕ Nσx , then by Theorem 3.6.11 there exists a strongly equivariant mor-
phism f : (X,D) → (AP , E) with E = AP r AMgp⊕Nσx . Since σx = σf(x) and
σy = σf(y) by Proposition 3.6.9(ii), it suffices to prove the assertion for the target
of f . Thus, we should prove that for any point z of the toroidal scheme (AP , E)
the reduced image of σx under ψ : Lx → Lz is σz .

Set N = Mz and let K = Ker(Mgp → Ngp). Then the logarithmic stratum
of z is isomorphic to S = AK⊕Nσx . The action of Gx on S corresponds to the
composite homomorphism K ⊕ Nσx → Mgp → Lx. Note that Mgp → Lx → Lz
factors through Ngp, hence the image of K under Lx → Lz vanishes. Thus, the map
S → ANσx is stronglyGz-equivariant and in view of Lemma 3.6.4 it suffices to prove
the analogous claim for ANσx . In the latter case, the action is strictly local and the
closed orbit O (the origin) satisfies σO = σx. It remains to use Corollary 3.6.7. ♣

4. Torification

Although a G-simple action on a toroidal scheme (X,U) can be locally “im-
proved” to a toroidal action by increasing the toroidal divisor, this procedure is nei-
ther global nor canonical. Some drawbacks of this were discussed in Remark 3.4.2.
The goal of this section is to establish a better way, called torification, to make
actions toroidal. Torification, introduced in [AdJ97] and developed in [AKMW02],
will be achieved by a functorial blowing up of X and will only increase the toroidal
divisor by adding the exceptional divisor. So, the exceptional divisor plays a role
analogous to its role in desingularization theory – providing new parameters in a
canonical way. The näıve procedure of adding divisors is still used to verify, by local
computations, that the exceptional divisors provide the necessary parameters.

We will mostly follow the methods of [AKMW02, §3], the main modification
being the use of strongly equivariant charts instead of strongly étale charts.

4.1. Making an action G-simple. The restriction on an action to be G-simple
is very mild; one can always transform an action into a G-simple action using a
barycentric subdivision, a simple combinatorial construction recalled below.

4.1.1. Kato Fans. To any toroidal scheme (X,U) Kato associates in [Kat94, Sec-
tion 10.1] a combinatorial structure we call a Kato fan F = F (X,U), to distinguish
it from the fans of toric geometry. It is defined as follows: points of F are the max-
imal points of the logarithmic stratification of (X,MX) and the structure sheaf
of monoids MF is the pullback of MX . Since connected components of the log-
arithmic strata of (X,MX) are irreducible, one obtains a natural retraction map
c : X → F , that can be viewed as a “combinatorial chart” of (X,U). The polyhe-
dral cone complex with integral structure used in [KKMSD73] for toroidal varieties
can be recovered as F (R≥0), see [Uli13]. Any subdivision F ′ → F can be pulled
back to X : Kato defines a “base change” modification f : X ′ = X×F F ′ → X such
that (X ′, f−1(U)) is a toroidal scheme with Kato fan F ′. In particular, a sequence
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of subdivisions Fn → · · · → F1 → F0 = F induces a sequence of toroidal modifica-
tions (Xn, Un) → · · · → (X,U). Moreover, if the subdivisions are given by order
functions (see [AW97, Section 1]) then the modifications are toroidal blowings up.

4.1.2. Barycentric subdivision. For any Kato fan F its barycentric subdivision is
defined as a composition of subdivisions B(F ) = Fn → · · · → F0 = F , where
F1 → F performs simultaneous subdivisions of all cones of maximal dimension at
their barycenters, F2 → F1 subdivides the preimages of the original cones of the
next dimension at their barycenters, and so on.

For any toroidal scheme (X,U) the barycentric subdivision B(F ) → F of its Kato
fan induces via a “base change” a sequence of toroidal blowings up (X ′, U ′) :=
(Xn, Un) → · · · → (X,U) and we say that (X ′, U ′) → (X,U) is the barycentric
modification.

Remark 4.1.3. (i) In fact, one can even realize (X ′, U ′) → (X,U) as a single
toroidal blowing up along a toroidal ideal J , see [Niz06, Theorem 5.6] for details.

(ii) The barycentric subdivision provides a standard procedure to subdivide any
Kato fan to a simplicial one. There also is a much more delicate canonical desin-
gularization procedure that subdivides F into a non-singular one, i.e. a Kato fan
whose cones are of the form Nn. The latter can be used for a canonical desingular-
ization of toroidal schemes, see [KKMSD73], [IT14, Theorem 3.4.9].

Proposition 4.1.4 ([AW97, Proposition 2.3]). Assume that a diagonalizable group
G acts on a toroidal scheme (X,U). Then the barycentric modification (X ′, U ′) →
(X,U) is G-equivariant and the action on (X ′, U ′) is G-simple.

Proof. An action of a group G on (X,U) induces by functoriality an action of G
on F . Since the set of barycenters of cones of a given dimension is stable under
G, the action lifts to B(F ) and by pullback the action on (X,U) lifts to (X ′, U ′).
An irreducible component of D′ = X ′ r U ′ is old if it is the strict transform of a
component of D = X r U , otherwise it is said to be new. All new components
of D′ are equivariant and all old components are disjoint. Thus the criteria of
Lemma 3.2.6 apply and the action on (X ′, U ′) is G-simple. ♣

4.2. Torific ideals.

4.2.1. The definition. Assume that a diagonalizable groupG = DL acts on an affine
scheme X = Spec(A). For any element l ∈ L let IAl denote the ideal AlA generated
by all l-homogeneous elements. The formation of such ideals is compatible with
localization by elements of A0 hence the definition globalizes to any scheme X with
a relatively affine G-action. We call the corresponding ideal the l-torific ideal and
denote it IXl ⊆ OX . For any finite multiset S in L we define the S-torific ideal
IXS =

∏
l∈S I

X
l .

Remark 4.2.2. The construction of torific ideals is local on X � G but not on
X . One can easily give examples where IXS is not compatible with restriction to
equivariant open subschemes which are not strongly equivariant.

4.2.3. Functoriality. Compatibility of torific ideals with restriction to strongly equi-
variant open subschemes is a particular case of the following result.

Lemma 4.2.4. Torific ideals are compatible with strongly G-equivariant morphisms
f : Y → X in the sense that IYS = IXS OY for any finite multiset S in L.
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Proof. The claim is local on the quotients, hence we can assume that the quotients
are affine, and so X = Spec(A) and Y = Spec(B) are affine. The morphism f
is strongly equivariant precisely when A ⊗A0

B0 → B is an isomorphism. Then
IBl = IAl B for any l ∈ L, and hence IBS = IAS B. ♣

4.2.5. Localization. Next we study compatibility of torific ideals andG-localizations.

Lemma 4.2.6. Assume that a scheme X is provided with a relatively affine action
of G = DL. Let O ⊂ X be a special orbit with stabilizer GO = DLO

, let S be a
multiset in L, and let SO be the image of S under the homomorphism φ : L։ LO.

Then the restriction of the torific ideals IX,GS onto the equivariant localization XO

coincides with IXO ,GO

SO
.

Proof. The localization morphism XO →֒ X is strongly equivariant by definition,

see [AT15, Section 5.1.11]. Hence IX,GS |XO
= IXO,G

S and it suffices to prove the
result when X = XO. In this case write X = Spec(A) for an L-local ring A. By
Lemma 3.2.4, An contains a unit whenever n ∈ Ker(φ). Thus, IAl = IAl+n for any

l ∈ L, n ∈ Ker(φ), and hence IA,LS = IA,LO

SO
. ♣

4.2.7. Coherent families of characters. Assume that G = DL acts on X . By LX
we denote the multiset

∐
x∈X�G Lx of characters of stabilizers of special orbits of

X . A multiset of characters S in LX will be called coherent if for any x ∈ X � G
the multiset Sx of the elements of S lying in Lx is finite, 0 is not in Sx, and for any
y ∈ X �G with a specialization x ∈ X �G the multiset Sy is the reduced image of
Sx under the map Lx ։ Ly.

Any finite multiset S in L r {0} defines a coherent family of characters SX in
LX . We call SX a constant coherent family. For simplicity we will often write S
instead of SX . A coherent family is called locally constant if there exists a strongly
equivariant open covering X = ∪iXi such that each SXi

is constant.

4.2.8. General torific ideals. Let S be a locally constant coherent multiset of charac-
ters in LX . It follows from Lemma 4.2.6 that there exists a coherent ideal IXS ⊆ OX

such that for any point x ∈ X � G with the corresponding special orbit O the re-

striction of IXS onto the equivariant localization XO coincides with IXO

Sx
. We call

IXS the torific ideal associated with S. An ideal is a torific ideal if it is the torific
ideal associated to some locally constant coherent multiset of characters S.

Remark 4.2.9. (i) In the definition of coherent multisets we insisted that 0 is not
in Sx. This does not affect the ideal IXS since O0 = OX .

(ii) By the very definition, I is a torific ideal if and only if there exist a strongly

equivariant covering X = ∪iXi and multisets Si in L such that I|Xi
= ISi

Xi
. The

advantage of our definition in terms of multisets S in LX is its canonicity.

(iii) In [AKMW02] one only considers torific ideals associated with constant
sets of characters, and uses large enough sets S for torification. We will achieve
torification by a functorial blowing up, and for this one has to use minimal multisets
of characters. This requires to consider non-constant families and extend the notion
of torific ideals accordingly.

(iv) Our definition does not exclude the possibility that a torific ideal vanish on
an irreducible component of X . We will need to avoid this possibility in order to
assure that the blowing up is a birational transformation.
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4.2.10. Extended functoriality. Any strongly equivariant morphism f : Y → X takes
special orbits to special orbits and respects stabilizers. In particular, if f �G takes
y ∈ Y �G to x ∈ X �G then Lx = Ly. For a multiset S in LX we define the pull-
back f∗(S) in LY by f∗(S) =

∐
y∈Y �G Sf(y). Clearly, if S is locally constant and

coherent then so is f∗(S). Thus Lemma 4.2.4 implies the following generalization.

Lemma 4.2.11. Torific ideals are compatible with strongly G-equivariant mor-
phisms f : Y → X in the sense that IYf∗(S) = IXS OY for any locally constant coherent

multiset S in LX .

4.2.12. Signature. Assume now that G acts on a toroidal scheme X . For any x ∈ X
we defined in §3.6.8 the signature σx as a multiset in Lxr {0}. Recall that σx only
depends on the orbit Ox of x. Indeed, Ox lies in the logarithmic stratum through
x, hence this follows from Proposition 3.6.9. The signature σX =

∐
x∈X�G σx of

X is the multiset of all characters through which G acts on the logarithmic strata
locally at the special orbits. Also, we call a multiset S in LX balanced if each Sx
is finite and satisfies

∑
l∈Sx

l = 0. By σ0
X we denote the natural balanced multiset

containing σX obtained by adding to each non-balanced σx the element −
∑
l∈Sx

l.

Lemma 4.2.13. Assume that G = DL acts in a relatively affine manner on toroidal
schemes X and Y , then

(i) The multisets of characters σX and σ0
X are coherent and locally constant.

(ii) If f : Y → X is a strict strongly equivariant morphism then f∗(σX) = σY
and f∗(σ0

X) = σ0
Y .

Proof. Claim (ii) follows from Proposition 3.6.9(ii). It suffices to prove claim (i)
for σX since the case of σ0

X follows. The claim can be checked locally at a closed
orbit O. Recall that by Lemma 3.6.6 there exists a multiset σO in LO such that
σx = σO for any x ∈ O. Passing to a strongly equivariant neighborhood of O we
can achieve that X = Spec(A) is affine and the stabilizers of points x ∈ X are
subgroups of GO. Furthermore, by a further shrinking we can remove from X all
connected components of the inertia strata X(H) (for H ⊆ GO) whose closure does
not intersect O. Then, by Corollary 3.6.12, we necessarily have that σX is the
constant coherent multiset associated with σO. ♣

4.3. Torific blowings up. Next, we will study normalized blowings up of torific
ideals, but we should discuss equivariant normalization first.

4.3.1. G-normalization. In general, an action of G = DL on X does not have to
extend to the reduction or normalization of X , as can be seen in examples with
G = µp acting on varieties over Fp. However, one can define natural equivariant
versions of normalization or reduction. We discuss both constructions, but only the
case of normalization will be used later.

We start with the affine case, so assume that A is an L-graded ring. By the
L-reduction RedL(A) (resp. degree-0 reduction Red0(A)) we mean the quotient
of A by the ideal generated by all homogeneous nilpotents (resp. nilpotents of
degree 0); note that it does not have to be a reduced algebra. If A is an L-domain,
i.e. it contains no homogeneous zero-divisors, then A embeds into the L-graded
fraction field FracL(A) obtained by inverting all homogeneous elements (again
note that an L-graded field is not necessarily a field, [AT15, 4.4.3]). We define
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the L-normalization NorL(A) (resp. degree-0 normalization Nor0(A)) to be the
subalgebra of FracL(A) generated by all elements of the form a

b , where a, b are
homogeneous elements of A (resp. elements of A0) and a

b is integral over A (resp.
A0).

Remark 4.3.2. (i) The degree-0 normalization is the base change of the nor-
malization of A0, i.e. Nor0(A) = A ⊗A0

Nor(A0). In general, NorL(A) is a
partial normalization of A that dominates Nor0(A), i.e. we have a sequence
A → Nor0(A) → NorL(A) → Nor(A). Similar facts hold for L-graded reduc-
tions.

(ii) It is easy to see that the four constructions we discussed are compatible with
localization at a degree-0 multiplicative set T ⊆ A0. For example, NorL(AT ) =
(NorL(A))T , etc.

In general, given a scheme X provided with a relatively affine action of G = DL

we define its G-normalization, G-reduction, 0-normalization and 0-reduction as fol-
lows. Choose a strongly equivariant affine covering Xi = Spec(Ai) and glue the G-
equivariant X-scheme NorG(X) (resp. Nor0(X), resp. RedG(X), resp. Red0(X))
from the G-equivariant X-schemes Spec(NorL(Ai)) (resp. Spec(Nor0(Ai)), resp.
Spec(RedL(Ai)), resp. Spec(Red0(Ai))). Note that the gluing is possible due to
Remark 4.3.2(ii).

4.3.3. Torific blowings up. AssumeX is reduced and S is a locally constant coherent
multiset of characters in LX . The S-torific ideal IXS is, by definition, G-equivariant.
Therefore, the action of G naturally lifts to the blowing up BlIX

S
(X) → X and by

the S-torific blowing up bX,S : XS → X we mean the G-normalized blowing up
NorGBlIX

S
(X) → X along IXS . If needed, we will also indicate G by writing bX,S,G.

Sometimes we will also need the degree-0 torific blowing up Nor0BlIX
S

(X) → X

that will be denoted b0X,S : X0
S → X .

Remark 4.3.4. (i) In our applications to toroidal schemes, torific blowings up
will have normal sources, i.e. they will coincide with the corresponding normalized
blowings up, see Corollary 4.4.7(i).

(ii) In general, the normalization X ′ → X of a noetherian scheme X does not
have to be of finite type, and X ′ can even be non-noetherian. However, we will
show in Section 5 that torific blowings up of toroidal schemes are of finite type.

(iii) Note that a product of ideals is invertible if and only if all factors are
invertible, and hence BlIn1

1 ...Inm
m

(X) = BlI1...Im(X) for any choice of n1, . . . ,nm >

0. It follows that the X-scheme XS depends only on the support |S| ⊂ LX of S.
However, without considering multiplicities, sets of characters S ⊂ LX have worse
functoriality properties, for example, an analog of Lemma 4.2.6 fails. This is the
reason we choose to work with multisets.

4.3.5. Charts of torific blowings up. Note that bX,S can be covered by charts of
the form Y ′ → X ′ where X ′ = Spec(A) is an open affine strongly G-equivariant
subscheme of X and Y ′ is a chart of the G-normalized blowing up along IAS , where S
is a constant coherent family. In particular, IAS is generated by elements t1, . . . ,tn ∈
Ad where d =

∑
l∈S l, hence it suffices to consider charts Y ′ = Spec(B) with

B = Spec(NorL(A[ t1ti , . . . ,
tn
ti

])). Charts of the degree-0 torific blowings up are
described similarly.
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4.3.6. Preservation of relatively affine actions and torific ideals. In the following
Lemma we say that a multiset S in L is balanced if

∑
l∈S l = 0.

Lemma 4.3.7. Assume that G = DL is given a relatively affine action on a reduced
scheme X and S is a locally constant coherent multiset in LX , and consider the
corresponding torific blowing up bX,S : Y → X and the degree-0 torific blowing up
b0X,S : Y 0 → X. Then,

(i) The induced action of G on Y and Y 0 is relatively affine.

(ii) For any finite multiset T in L the equality IY
0

T = IXT OY 0 holds.

(iii) If S is balanced then the morphism of quotients Y � G → X � G is the
normalized blowing up of X0 = X � G along π∗(ISX) ∩ OX0

, where π : X → X0 is
the quotient morphism and the intersection is taken inside of π∗(OX).

Proof. All questions are local on X0, so we can replace X with an open affine
strongly G-equivariant subscheme Spec(A) such that S is constant on Spec(A).
Then Y is covered byG-equivariant charts Yi = Spec(Bi) forBi = NorL(A[ t1ti , . . . ,

tn
ti

]).

The intersection Yij = Yi ∩ Yj is the localization of Yi along
tj
ti

. Since the latter is
of degree 0, the open embedding Yij →֒ Yi is strongly G-equivariant and we obtain
that the action on Y is relatively affine. A similar argument works for Y 0 and its
affine covering Y 0

i = Spec(B0
i ), where B0

i = Nor0(A[ t1ti , . . . ,
tn
ti

]). This proves (i).

Since each C = B0
i is generated over A by elements of degree 0, we have that

AlC0 = Cl and therefore ICT = IAT C, proving (ii).

To prove (iii) we note that X0 = Spec(A0) and t1, . . . ,.tn ∈ A0 by our assumption
on S. Furthermore, π∗(ISX)∩OX0

corresponds to the ideal J =
∑n

i=1 tiA0 and hence
NorBlJ (X0) is covered by the charts Zi = Spec(Nor(A0[ t1ti , . . . ,

tn
ti

])). It remains

to note that Yi �G = Zi since Nor(A0[ t1ti , . . . ,
tn
ti

]) is the degree-0 part of Bi. ♣

4.3.8. Composition of torific blowings up. Torific blowings up are compatible with
compositions in the following weak sense.

Lemma 4.3.9. Given a relatively affine action of G = DL on a reduced scheme
X and finite multisets R,S, T of characters of L with supports |R| = |S| ∪ |T |, the
R-torific blowing up bX,R factors into the composition of the degree-0 torific blowing
up b0X,S : Y → X and the torific blowing up bY,T : XR → Y .

Proof. Set Z = X0
R for simplicity of notation. It suffices to prove that b0X,R =

b0X,S ◦ b0Y,T , since composing both sides of this equality with the G-normalization

NorG(Z) → Z we will obtain the asserted equality bX,R = b0X,S ◦ bY,T .

By Lemma 4.3.7(ii), IZR is the inverse image of IXR . So, IZR is invertible, and hence
all ideals IZl with l ∈ R are invertible. In particular, IZS is invertible. Note that
a degree-0 normalized blowing up along I is the universal G-equivariant morphism
such that the inverse image of I is invertible and the quotient of the source by
the action of G is normal. Therefore bX,R factors through Y and Z → Y is the
degree-0 normalized blowing up along the inverse image of IXR . The latter coincides
with IYR by Lemma 4.3.7, and so Z = Y 0

R. The same argument as above shows
that IYl is invertible for any l ∈ S. In particular, the factors IYl in the formula
IYR = IYT ·

∏
l∈SrT I

Y
l are invertible, and so Y 0

T = Y 0
R = Z, as required. ♣
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4.4. Torific blowings up of toroidal schemes. In the sequel we denote toroidal
schemes using divisors, i.e., instead of (X,U) we will write (X,D), where D =
X r U .

4.4.1. Blowings up of toroidal schemes. Let (X,D) be a toroidal scheme and Z ⊆ X
a closed subscheme. Consider the normalized blowing up f : X ′ → X along Z and
set D′ = f−1(D ∪ Z). In other words, D′ is the union of the preimage of D
and the exceptional divisor f−1(Z). The pair (X ′, D′) will be called normalized
blowing up of (X,D) along Z. For concreteness, we will also use the notation
f : (X ′, D′) → (X,D), which formally means that f : X ′ → X is a morphism such
that f−1(D) ⊆ D′. Furthermore, if (X ′, D′) is a toroidal scheme and the morphism
f : (X ′, D′) → (X,D) is toroidal then we say that the normalized blowing up f is
permissible.

4.4.2. Toroidal blowings up. The normalized blowing up f : (X ′, D′) → (X,D)
along Z is called a toroidal blowing up if Z is a toroidal subscheme, see Section
2.3.12.

Lemma 4.4.3. Assume that (X,D) is a toroidal scheme, I ⊂ MX is an ideal, and
f : (X ′, D′) → (X,D) is the toroidal blowing up along Z = V (IOX). Then,

(i) f permissible.

(ii) If g : (Y,E) → (X,D) is a morphism of toroidal schemes and (Y ′, E′) →
(Y,E) is the toroidal blowing up along Z ×X Y then (Y ′, E′) = (X ′, D′) ×(X,D)

(Y,E), where the product is taken in the category of fine logarithmic schemes. In
addition, if g is strict then Y ′ = X ′ ×X Y .

Proof. Let (X̃,MX̃) be the logarithmic blowing up of (X,MX) along I in the
sense of [Niz06, Section 4]. By [Niz06, Theorem 4.7] and [Kat94, Proposition 10.3],

(X̃,MX̃) is logarithmically regular. Since X̃ = X ′ by [Niz06, Lemma 4.3] and it is

easy to see that the preimage of XrD in X̃ is the triviality locus of MX̃ , it follows

that (X ′, D′) is the toroidal scheme corresponding to (X̃,MX̃). In addition, any
logarithmic blowing up is the pullback of a logarithmic blowing up of charts, hence
it is logarithmically smooth. Thus, f is toroidal and we obtain (i).

We observed above that logarithmic blowings up of toroidal schemes correspond
to toroidal blowings up, hence the first assertion of (ii) follows from [Niz06, Corol-
lary 4.8]. To prove the second claim of (ii) consider the product (Z,MZ) =
(X ′,MX′) ×(X,MX) (Y,MY ) in the category of all logarithmic schemes. Since
Z = X ′ ×X Y by [Kat89, 1.6], it suffices to show that if g is strict then (Z,MZ) is
fine and hence this is also the product in the category of fine schemes. By [Kat89,
1.6], MZ is the logarithmic structure associated with the pushout of the pullbacks
of MX′ and MY over the pullback of MX . Since MY is the pullback of MX , we
also have that MZ is the pullback of MX′ , and hence MZ is fine. ♣

4.4.4. Torific blowings up: toroidal action. If G acts on (X,D) and X ′ → X is a
torific blowing up in the sense of Section 4.3.3, then we say that the normalized
blowing up f : (X ′, D′) → (X,D) is a torific blowing up of the toroidal scheme
(X,D). Obviously, the morphism f is G-equivariant. One can easily construct
examples of torific blowings up which are not toroidal blowings up, for example,
with D = ∅. On the other hand, if the action is toroidal then one can tightly control
torific blowings up by toroidal methods:
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Lemma 4.4.5. Assume that G = DL acts in a relatively affine and toroidal fashion
on a toroidal scheme (X,D) and let bX,S : (X ′, D′) → (X,D) be the torific blowing
up along a torific ideal IXS . Then,

(i) The ideal IXS and the blowing up bX,S are toroidal.

(ii) The action on (X ′, D′) is toroidal. Furthermore, if the action on (X,D) is
taut or loose, then the same holds for the action on (X ′, D′).

(iii) If g : (Y,E) → (X,D) is a strongly equivariant strict morphism of toroidal
schemes then the torific blowing up bY,g∗(S) : Y ′ → Y is the base change of bX,S : X ′ →
X.

Proof. Step 1: toric schemes. Assume first that X = AM with the toric divisor
D, S is constant, and G acts via χ : M → L, and let us check (i) and (ii). The
ideal IXS is generated by elements m1, . . . ,mn ∈M , so bX,S is toric, hence toroidal.
Furthermore, X ′ is glued from blowing up charts X ′

i of the form AM ′
i

where M ′
i

is the saturation of Mi = M [m1 − mi, . . . ,mn − mi] and G acts through the ho-
momorphism M ′

i → L extending χ. Indeed, AM ′
i

is normal and hence it is both
the normalization and G-normalization of AMi

, which is the chart of the blowing
up along IXS . By Lemma 3.1.9(iii) the action is toroidal. If the action on (X,D)
is taut then Ker(χ) contains an inner element v ∈ M . Since v is also inner in the
larger monoids M ′

i , the action on (X ′, D′) is taut. The claim about looseness is
also simple, so we omit the justification.

Step 2: the general case. It suffices to prove the claims locally over a point x ∈ X ,
hence we can replace G, X and S with Gx, the Gx-equivariant localization of X
at x, and Sx, respectively, reducing to the case where the action on X is strictly
local and S is constant. By Corollary 3.2.16, the toroidal scheme (X,D) admits
a strongly equivariant chart h : (X,D) → (X0, D0) with X0 = AM and D0 =
AM rAMgp . The statement has been proven in Step 1 above for the target, hence
(i) and (ii) follow from the fact that all ingredients are compatible with strongly
equivariant strict morphisms (Y,E) → (X,D): Lemma 4.2.11 says that IYS =
IXS OY , Lemma 4.4.3(ii) shows that bY,S is the base change of bX,S , Lemma 3.1.9(ii)
shows that the action on (Y ′, E′) is toroidal, and compatibility of tautness and
looseness follows from Lemma 3.3.10. In particular, this argument shows that bX,S
is the base change of bX0,S , and the same is true for bY,S since the induced morphism
(Y,E) → (X0, D0) is a strongly equivariant chart. This implies (iii). ♣

4.4.6. Torific blowings up: simple action. In case of simple actions we still have the
following result.

Corollary 4.4.7. Assume that G = DL acts in a relatively affine and G-simple
fashion on toroidal schemes (X,D) and (Y,E) and f : (Y,E) → (X,D) is a strongly
equivariant strict morphism. Then for any locally constant coherent multiset S in
LX

(i) the torific blowing up bX,S is the normalized blowing up along IXS , and

(ii) the torific blowings up are compatible: bY,f∗(S) is the base change of bX,S.

Proof. It suffices to check (ii) at a point y ∈ Y , hence we can replace G with Gy
and Y and X with their Gy-equivariant localizations at y and f(y), respectively.

By Proposition 3.4.1 there exists a larger divisor D ⊇ D such that the action on
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(X,D) is toroidal. Set E = D ×X Y , then (Y,E) → (X,D) is a strict morphism
and hence bY,S is the base change of bX,S by Lemma 4.4.5(iii).

In the same manner, to check (i) we can pass to a Gx-equivariant localization
Xx, and then after increasing the toroidal structure the action becomes toroidal.
Then bX,S becomes a toroidal blowing up by Lemma 4.4.5(i), in particular, it is a
normalized blowing up. ♣

4.5. The torifying property. The main property of torific blowings up is that
they torify simple actions on toroidal schemes. This is the content of the following
theorem, whose proof occupies the whole Section 4.5.

Theorem 4.5.1. Assume that a toroidal scheme (X,D) is provided with a G-
simple relatively affine action of a diagonalizable group G = DL and S is a locally
constant coherent multiset of characters in L(X,D) containing the support of σ(X,D).
Then the torific blowing up bX,S : (X ′, D′) → (X,D) is permissible and G acts on
(X ′, D′) toroidally. Moreover, if the action on (X,D) is potentially taut or loose
then the action on (X ′, D′) is taut or loose, respectively.

Note that it may happen that IXS = 0. In this case the assertion of the theorem
holds true but becomes vacuous.

4.5.2. Proof of Theorem 4.5.1: the plan. The proof will be in three steps. First, we
establish the model case of toric varieties over Z (Section 4.5.3). Then, we deduce
the case when the action is strictly local (Section 4.5.5). Finally we deduce the
general case in Section 4.5.6.

4.5.3. The model case. Let G = DL. As in Section 3.6, consider the following
situation that models G-simple actions: M is an L-graded toric monoid, P =
M⊕Nσ where σ : Lr{0} → N is a function with finite support, X = AP , D = APr

AMgp⊕Nσ and D = AP rAP gp . We denote the grading of P by χ : P → L. Both
(X,D) and (X,D) are G-equivariant toroidal schemes, and we have a G-equivariant
chart h : (X,D) → (AM ,AMgp). The actions on (X,D) and (AM ,AMgp) are
toroidal by Proposition 3.1.9(iii).

Lemma 4.5.4. Keeping the above notation, let S be a finite multiset in L con-
taining the support of σ. Consider the S-torific blowing up bX,S : X ′ → X and let
D′ ⊂ X ′ be the union of the preimage of D and the exceptional divisor. Then the
action of G on (X ′, D′) is toroidal. In addition, if the action on (X,D) is taut or
loose then the same is true for (X ′, D′).

The following special model case is established in [AKMW02, Proposition 3.2.5(2)]:
L = Z and X = AP,K , where K is a field of characteristic zero. However, the ar-
guments are combinatorial and apply to our more general situation verbatim. For
the sake of completeness we briefly outline the proof.

Proof. We can assume that IXS 6= 0 as otherwise X ′ is empty and there is nothing
to prove. Let zm denote the image of m ∈ P in Z[P ] and ti = zei , where e1, . . . ,er
are the generators of Nσ. Note that D is obtained from D by removing r divisors

Di := V (ti). Hence D′ is obtained from the preimage D
′

of D by removing the

strict transforms D′
1, . . . ,D

′
r of D1, . . . ,Dr. The action on (X ′, D

′
) is toroidal by

Lemma 4.4.5(ii), and by Proposition 3.5.1(ii) it suffices to prove that it remains
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toroidal if we remove from D
′

a single component D′
i. Thus, replacing D and D′ by

D −Di and D
′
−D′

i we can assume in the sequel that r = 1 and hence also i = 1.

Set e = e1 and l = χ(e), and split P as Q ⊕ Ne (i.e. e is the generator of the
second summand). First we consider the particular case when S = {l}. We can

choose generators ze, zq1 , . . . ,zqn of I
Z[P ]
l such that qj ∈ Q. The strict transform of

Di is non-empty on the charts APj
where Pj is the saturation of

Nj = P [e− qj , q1 − qj , . . . ,qn − qj ].

Clearly,

Nj = Q[q1 − qj , . . . ,qn − qj ] ⊕ N(e− qj)

and the generator of the second summand is of degree zero. Hence after removing

from D
′

the strict transform D′
1 = V (e− qj) the action remains toroidal by Propo-

sition 3.5.1(i). In addition, if Ker(χ) contains an inner vector of P then the same
vector is inner in Pj and lies in the kernel of χj : Pj → L, and if P ∩ Ker(χ) spans
Ker(χgp) then the same is true for Ker(χj) ⊇ Ker(χ). It follows that tautness and
looseness are preserved in this case.

We further claim that bX,{l} = b0X,{l}. Indeed, this follows from the fact that

Pj is the direct sum of the saturation of Q[q1 − qj , . . . ,qn − qj ] and N(e− qj), and
hence Pj is obtained from Nj by saturating its degree-0 part.

Now let us consider the case of an arbitrary S. Lemma 4.3.9 applies to the sum
S = S′ + {l} and we obtain that bX,S is the composition of the torific blowings up

bX,{l} : X ′′ → X and bX′′,S′ : X ′ → X ′′. Let D′′ ⊂ X ′′ be the union of b−1
X,{l}(D)

and the exceptional divisor of bX,{l}. By the above case, (X ′′, D′′) is a toroidal
scheme acted on toroidally by G. Since D′ is the union of the preimage of D′′ and
the exceptional divisor, Lemma 4.4.5 tells us that bX′′,S′ : (X ′, D′) → (X ′′, D′′) is
a toroidal blowing up and the action on the source is toroidal. The same lemma
also says that tautness and looseness are preserved by bX′′,S′ . ♣

4.5.5. The strictly local case. Back to the proof of Theorem 4.5.1. Assume that the
action on X is strictly local, and let x be the closed G-invariant point. Recall that
the family S is constant, so we can identify it with a multiset Sx in L. By Theo-
rem 3.6.11 there exists a strongly equivariant chart f : (X,D) → (X0, D0), where
P = Mx ⊕ Nσx , X0 = AP and D0 = AP r AM

gp

x ⊕Nσx . Applying Corollary 4.4.7

to f we obtain that the torific blowings up bX,S and bX0,S : (X ′
0, D

′
0) → (X0, D0)

are compatible, thus giving rise to an equivariant chart (X ′, D′) → (X ′
0, D

′
0). Since

S contains the support of σx, Lemma 4.5.4 applies to bX0,S and we obtain that
the action on (X ′

0, D
′
0) is toroidal. Thus, the action on (X ′, D′) is toroidal by

Lemma 3.1.9(ii).

Finally, if the action on (X,D) is potentially taut (resp. potentially loose) then
the same is true for (X0, D0), and hence the action on (X0, D0) is taut (resp.
loose), where D0 = AP rAP gp . Then the action on (X ′

0, D
′
0) is taut (resp. loose)

by Lemma 4.5.4, and using Lemma 3.3.10 we obtain that the action on (X ′, D′) is
taut (resp. loose).

4.5.6. The general case. Now, let us prove Theorem 4.5.1 in general. By Lemma 4.2.6
torific blowings up are compatible with the equivariant localization XO →֒ X at a
closed orbit O. Since X is covered by such localizations, we can replace X with
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XO. Moreover, we can replace G with GO. Indeed, compatibility of torific blow-
ings up is guaranteed by the same Lemma 4.2.6 and G acts on (X ′, D′) toroidally
if and only if GO acts toroidally, since the stabilizer of any point of X and X ′ is
contained in GO. Thus, we reduce to the situation when the closure of any orbit
contains a G-invariant point, and the same localization argument implies that it
now suffices to prove the theorem for equivariant localizations of X at G-invariant
points. The latter localizations are strictly local, and the theorem was proved for
them in Section 4.5.5. This completes the proof of Theorem 4.5.1. ♣

4.6. Main torification theorems. Our main torification results are obtained by
applying Theorem 4.5.1 to the locally constant coherent multisets σX and σ0

X (see
Lemma 4.2.13(i)). To simplify notation, set IXσ = IXσX

and IXσ0 = IX
σ0
X

.

4.6.1. Full actions. First, let X be a toroidal scheme provided with a relatively
affine G-action, where G = DL. If U ⊂ X �G is affine we write

XU = U ×X�G X = Spec
⊕

l∈L

AUl .

We say that the action of G on X is full if for every nonempty affine U ⊂ X � G
and every l ∈ L we have AUl 6= 0. Note that if there is a strongly equivariant dense
open set XU where the action is free, then the action is full.

4.6.2. Balanced torification. We start with torification by use of the balanced mul-
tiset σ0

X .

Theorem 4.6.3. Assume that a toroidal scheme (X,D) is provided with a relatively
affine, G-simple action of a diagonalizable group G = DL. Consider the torific
blowing up F 0

(X,D) : X ′ → X along IXσ0 , and let D′ be the union of the preimage of

D and the exceptional divisor of F 0
(X,D). Then,

(i) The pair (X ′, D′) is toroidal and the natural G-action on (X ′, D′) is toroidal.

(ii) The morphism of quotients X ′ �G→ X0 = X �G is the normalized blowing
up along π∗(IXσ0 ) ∩ OX0

, where π : X → X0 is the quotient morphism.

(iii) The torific blowing up F 0
(X,D) is functorial with respect to strongly equi-

variant strict morphisms (Y,E) → (X,D) of toroidal schemes in the sense that
F 0
(Y,E) : Y ′ → Y is the base change F 0

(X,D) ×X Y of F 0
(X,D).

(iv) If moreover the action of G is full, then F 0
(X,D) : X ′ → X is birational.

Proof. Part (i) follows from Theorem 4.5.1 and (ii) follows from Lemma 4.3.7(iii).
Recall that σ0

Y = h∗(σ0
X) by Lemma 4.2.13(ii), hence part (iii) follows from Corol-

lary 4.4.7. Finally, if the action is full the ideal IXσ0
is nowhere 0, and since X is

toroidal, hence normal, the resulting blowing up is birational, giving part (iv). ♣

4.6.4. Torification of arbitrary actions. Alternatively, one can use the unbalanced
multiset σX for torification. Then there is no good description of the quotients, but
the advantage is that the blowing up is birational without requiring a full action.
Moreover, we can combine this blowing up with barycentric subdivisions obtaining
a torification in general.
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Theorem 4.6.5. Assume that a diagonalizable group G acts in a relatively affine
manner on a toroidal scheme (X,D). Let F(X,D) : X ′ → X be the composition of

the barycentric modification (Y,E) → (X,D) and the torific blowing up along IYσ
and let D′ be the union of the preimage of D and the exceptional divisor of F(X,D).
Then,

(i) The morphism X ′ → X is birational.

(ii) The pair (X ′, D′) is toroidal and the natural G-action on (X ′, D′) is toroidal.

(iii) The morphism F(X,D) is functorial with respect to strongly equivariant strict
morphisms h : (Y,E) → (X,D) of toroidal schemes in the sense that F(Y,E) is the
base change of F(X,D).

Proof. In (i) one should only check that IXσ is non-zero at generic points of X .
Torific ideals and the multisets σ are compatible with equivariant localizations (see
Lemmas 4.2.6 and 4.2.13(i)), hence we can assume that the action is strictly local
with G-invariant point x and σ = σx is in L. Then each l ∈ σ appears as a character
through which G acts on mx/m

2
x and hence IXl 6= 0. Therefore, IXσ 6= 0 and since

X is normal the torific blowing up X ′ → X is birational.

Part (ii) follows from Theorem 4.5.1.

By Lemma 4.2.13(ii) the formation of σX is functorial. By Corollary 4.4.7
the corresponding normalized blowing up is functorial. By Proposition 4.1.4 the
barycentric blowings up are equivariant, Also barycentric subdivisons are compat-
ible with strict morphisms. Hence Part (iii) follows.

♣

4.7. Some cases with trivial torification. In this section we will describe two
cases when the torification is trivial. This will be used in [AT16].

4.7.1. Free actions. As one might expect, free actions (see [AT15, Section 5.4]) on
regular schemes do not require a torification.

Lemma 4.7.2. Assume that (X, ∅) is a toroidal scheme (i.e. X is a regular scheme)
and a diagonalizable group G = DL acts freely on X. Then ISX = 1 for any finite
multiset S in L, and hence F(X,∅) = IdX .

Proof. The action is simple so the torification is described by Theorem 4.6.3. The
question is local over X/G, hence we can assume that X is affine. Moreover, by
[AT15, Lemma 5.4.4] we can assume that there exists a strongly equivariant flat
covering Y → X such that the action on Y is split free. Since the S-torific ideals
are compatible with strongly equivariant morphisms by Lemma 4.2.11, it suffices
to check the claim for Y = Spec(A) with a split free action. But then A = ⊕LAn,
hence each An contains a unit and therefore ISY = 1. ♣

4.7.3. Deformation to the normal cone. Here is a more interesting example. As-
sume that X is a regular scheme and Z →֒ X is a regular closed subscheme. Set
B0 = X ×A1 and let Z0 = Z ×{0} be the preimage of Z in the zero section of B0.
We provide B0 with the action of Gm via the standard action on A1. Since B0 and
Z0 are regular the blowing up B = BlZ0

(B0) is regular too, and we can view it as
a toroidal scheme with empty divisor. By E = Z0×B0

B we denote the exceptional
divisor. Furthermore, Z0 is Gm-equivariant hence the action lifts to B.
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Lemma 4.7.4. Keep the above notation. Then the action of Gm on B is relatively
affine, B � Gm = BlZ(X), and the torification F (X, ∅) is the blowing up of the
exceptional divisor E, in particular, F(X,∅) is an isomorphism.

Proof. Again, the action is simple since the toroidal divisor is empty. The claim is
local on X hence we can assume that X = Spec(A) for a regular local ring A with
local parameters t1, . . . ,tn and Z is given by the vanishing of I = (t1, . . . ,tm). Then
B0 = Spec(A[x]) and B = ProjA(⊕dJd), where J = I[x], and we provide B with
the grading such that I is of weight zero and x is of weight 1. Then, the charts

Bi = Spec

(
A

[
t1
ti
, . . . ,

tm
ti
, tm+1, . . . ,tn, x

])

for 1 ≤ i ≤ m ofB are strongly equivariant and hence we have a strongly equivariant
isomorphism B = BlZ(X) × A1, where Gm acts through the standard action on
A1. Thus, the quotient is BlZ(X), the multiset σB is constant and coincides with
{1}, and the torific ideal ISX is given by (x). ♣

5. Torification by blowings up

Our last goal in the paper is to show that normalized blowings up in the tori-
fication theorem can be replaced by non-normalized ones. In particular, they are
always of finite type without any additional assumption on the schemes beyond
the noetherian hypothesis. Many ideas of these section, especially those related to
normalization and saturation thresholds, were developed in the joint work [IT14] of
the second author with Luc Illusie in an attempt to remove the quasi-excellence as-
sumption in Gabber’s torification theorem [IT14, Theorem 1.1]. Gabber’s original
argument applied to all noetherian schemes, but working with qe schemes simplified
some points and the plan was to remove the qe assumption in the end via uniform
normalization of relevant ideals. In the end, this was not fully worked out due to
publication deadline, and we are grateful to Luc Illusie for allowing us to include
some of that material in our current work.

5.1. Toric case. Our first aim is to show that a toric blowing up (i.e. the normal-
ized blowing up of a toric ideal) can always be realized as the ordinary blowing up
of an appropriate toric ideal. The basic idea is to saturate the ideal I instead of
saturating the blowing up along I. This, indeed, works once one replaces I with an
appropriate power In – an operation that does not affect the blowing up morphism.

5.1.1. Charts of toric blowings up. Let P be a toric monoid and (X,U) = (AP ,AP gp)
the corresponding toric Z-scheme. There is a natural bijection between ideals I ⊆ P
and toroidal ideals I ⊆ OX , it is given by I = Z[I] and I = I ∩ P . If I is gener-
ated by elements a1, . . . ,an then the blowing up Y = BlI(X) is covered by charts
Yi = APi

for 1 ≤ i ≤ n, where Pi = P [I − ai] is the submonoid of P gp generated

by P and a1 − ai, . . . ,an − ai. The toric blowing up Ỹ = Y nor along I is covered

by the normalizations Ỹi = Y nor
i , and we claim that Ỹi = SpecZ[P sat

i ]. Indeed,
the normalization of Z[Pi] contains P sat

i . The ring Z[P sat
i ] is normal since P sat

i is a
toric monoid, and so the inclusion Z[P sat

i ] ⊆ Z[Pi]
nor is an equality.
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5.1.2. Saturation of ideals. We will also consider saturation of ideals in a monoid
P . By definition, Isat consists of elements a ∈ P such that na ∈ nI for some n > 0.

Lemma 5.1.3. Let P be a toric monoid with an ideal I. Then for any n ≥ n(P, I),
the toric blowing up of AP along Z[I] coincides with the usual blowing up of X along
the toric ideal Z[(nI)sat].

Proof. First, we claim that for any a ∈ I, the equality P [I−a]sat = P [(nI)sat−na]
holds for n ≫ 0. The monoid P [I − a]sat is fine, hence we can fix x ∈ P [I − a]sat

and it suffices to prove that x ∈ P [(nI)sat −na] for n≫ 0. Since mx ∈ P [I − a] for
some m > 0, we have that mx = b− ka for k > 0 and b ∈ kI. Take any n such that
nm ≥ k. Then mx = c−mna with c = b+(mn−k)a ∈ mnI. Since P is saturated,
x+ na = 1

mc ∈ P and therefore 1
mc ∈ (nI)sat. So, x = 1

mc− na ∈ P [(nI)sat − na]
as claimed.

Fix generators a1, . . . ,al of I and let Pi = P [I − ai]
sat. Then the toric blowing

up X ′ → X along Z[I] is covered by the charts X ′
i = APi

. By the above paragraph,
for a large enough n we have that Pi = P [(nI)sat − nai] for 1 ≤ i ≤ l. Then X ′

i

are also charts of the blowing up X ′′ → X along Z[(nI)sat]. So, X ′ embeds into
X ′′ as an open subscheme, and since both are projective birational over X , they
coincide. ♣

5.1.4. Saturation thresholds of monoidal ideals. By the saturation threshold nsat(P, I)
of the pair (P, I) we mean the minimal number n(P, I) that satisfies the assertion
of Lemma 5.1.3.

5.2. The toroidal case. Next, let us extend the above theory to toroidal blowings
up of toroidal schemes.

5.2.1. Saturation of toroidal ideals. Assume that (X,U) is a toroidal scheme with
a global monoidal chart α : P → OX . Then any toroidal ideal I ⊂ OX is of the
form α(I)OX for an ideal I of P . In fact, this representation is unique by [IT14,
Lemma 3.4.3]. By the saturation of I we mean the ideal Isat := α(Isat)OX . It is
easy to see that this construction is independent of the choice of a chart and hence
globalizes to toroidal ideals I on arbitrary toroidal schemes (X,U). Also, for any
x ∈ X we will use the notation Mx = MX,x and denote by Ix the image of α−1

x (Ix)

under the map MX,x →Mx.

5.2.2. Saturation thresholds of toroidal ideals. We define the saturation threshold
of a toroidal ideal I to be the minimal number nsat(X,U, I) such that for any
n ≥ nsat(X,U, I) the toroidal blowing up along I coincides with the blowing up
along (In)sat.

Theorem 5.2.3. Assume that (X,U) is a toroidal scheme with a toroidal ideal I.
Then the saturation threshold nsat(X,U, I) is finite and

nsat(X,U, I) = max
x∈X

nsat(Mx, Ix).

Proof. The finiteness of the righthandside is clear since both Mx and Ix are locally
constant along the logarithmic strata of (X,U). Also, it suffices to prove the asser-
tion of the theorem for elements of a finite open covering of X , hence we can assume
that (X,U) possesses a global monoidal chart α : P → OX such that the associated
toroidal chart h : X → AP is central and sharp. In particular, I = α(I)OX for an
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ideal I ⊆ P and hence I is the pullback of the toric ideal Z[I] on the associated
toroidal chart. Moreover, since the chart is central and sharp, P = Mx for a point
x ∈ X and then clearly I = Ix.

To deduce the theorem from Lemma 5.1.3 it now suffices to check that all
constructions are compatible with the charts. First, it is shown in the proof of
[Niz06, Proposition 4.3] that α(nI)OX = In (one can also deduce this from [IT14,
Lemma 3.4.3]) and hence α((nI)sat)OX = (In)sat. Second, both toroidal blowings
up and (non-normalized) blowings up along toroidal ideals are compatible with
charts by [IT14, Lemma 3.4.6]: the toroidal blowing up of X along I is the pull-
back of the toroidal blowing up of AP along Z[I], and similarly for blowings up
along (In)sat and Z[(nI)sat]. ♣

5.3. Normalization threshold.

5.3.1. Normalization of ideals. Let A be a reduced ring with an ideal I. The nor-
malization Inor of I consists of all elements a ∈ A that satisfy a monic equation

tn +
∑n−1
i=0 fn−it

i with fi ∈ Ii. This construction is compatible with localizations
and hence generalizes to ideals I ⊆ OX on a scheme X .

Lemma 5.3.2. Let X be a scheme with an ideal I ⊆ OX . Then Bl(In)nor(X)
refines BlI(X) and the modification Bl(In)nor(X) → BlI(X) is finite. In particular,
the normalized blowings up along I and (In)nor are equal for any integral n > 0.

Proof. It is well known that BlI(X) = BlIn(X). Indeed, a product of two ideals is
invertible if and only if each of the ideals is invertible, hence this follows from the
universal property of blowings up. So, we can assume that n = 1 in the sequel.

The claim is local on X , hence we can assume that X = Spec(A) and I,J = Inor

are given by ideals I, J = Inor ⊆ A. Note that for any a ∈ I the ring extension
A[a−1J ]/A[a−1I] is integral and hence finite. So, for any chart Spec(A[a−1I]) of
BlI(X), we have a finite morphism Spec(A[a−1J ]) → Spec(A[a−1I]) whose source
is a chart of BlJ (X). Therefore, Y = ∪a∈I Spec(A[a−1J ]) is an open subscheme of
BlJ (X) which is finite over BlI(X). It follows that Y = BlJ (X) and we obtain a
finite morphism h : BlJ (X) → BlI(X), thus proving the lemma. ♣

5.3.3. Normalization threshold. Let I be an ideal on X . We define the normal-
ization threshold of I as the minimal number nnor(X, I) such that BlI(X)nor ∼−→
Bl(In)nor(X) for any n ≥ nnor(X, I). We write nnor(X, I) = ∞ if no such number
exists. For example, this is the case when BlI(X)nor is not of finite type over X .

5.3.4. Normalization of toroidal ideals. Our next goal is to show that for toroidal
ideals normalization and saturation thresholds coincide. This is based on the fact
that normalization of toroidal ideals is already achieved by saturation:

Lemma 5.3.5. Assume that P is a toric monoid and I ⊂ P is an ideal. Then
Z[Isat] = (Z[I])nor.

Proof. First, assume that I is saturated and let us show that J = Z[I] is a normal
ideal of A = Z[P ]. Consider the Rees algebra A′ = ⊕∞

n=0J
n; it can be realized as

the subalgebra A[Jt] in A[t]. Clearly, if J is not normal then A′ is not normal, hence
it suffices to check that A′ is normal. Note that A′ = Z[P ′], where P ′ = ⊕∞

n=0nI is
the submonoid of P ⊕N consisting of the elements of the form (an, n) with an ∈ nI.
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Also, it is clear that P ′ is saturated if and only if P and I are saturated, which is
our case. Thus, P ′ is a toric monoid and hence A′ = Z[P ′] is normal, as claimed.

Let now I be an arbitrary ideal of P . By the above case, Z[Isat] is normal. Since,
clearly Z[I] ⊆ Z[Isat] ⊆ Z[I]nor, the right inclusion is necessarily an equality. ♣

Corollary 5.3.6. Let (X,U) be a toroidal scheme with a toroidal ideal I. Then
Isat = Inor and nnor(X, I) = nsat(X,U, I), in particular, nnor(X, I) is finite.

Proof. We prove that Isat = Inor first. This claim is local, so we can assume
that X = Spec(A) and work with the ideal I ⊆ A corresponding to I. We can
also assume that (X,U) admits a sharp central toroidal chart f : X → SpecZ[M ]
corresponding to a homomorphism α : M → A and I = α(J)A for an ideal J ⊆M .
We should prove that the inclusion Isat = α(J sat)A ⊆ Inor is an equality, and it
suffices to show that if J is saturated then I is normal. As in the above lemma,
it suffices to show that the Rees algebra A′ = ⊕∞

n=0I
n is normal. We will do this

by showing that the logarithmic structure on X ′ = Spec(A′) given by the natural
homomorphism α′ : M ′ → A′ extending α makes X ′ a toroidal scheme, i.e. the
morphism f ′ : X ′ → SpecZ[M ′] is a toroidal chart.

Let d = rk(M). Since M ′ = ⊕∞
n=0nJ is saturated and rk(M ′) = d+ 1, it suffices

to show that the center C′ ofX ′ is regular and satisfies dimOX′,x = d+1+dimOC′,x

for any x ∈ C′. First, we claim that f ′ is the base change of f . Indeed, A
and Z[M/nJ ] are Tor-independent over Z[M ] by [Kat94, Theorem 6.1(ii)], and it
follows easily that A ⊗Z[M ] Z[nJ ] = In and hence A ⊗Z[M ] Z[M ′] = A′ (e.g., see
the proof of [Niz06, Proposition 4.3]). Since, C′ and C are the preimages of the
origins of SpecZ[M ′] and SpecZ[M ], respectively, C′ ∼−→ C. So, C is regular and
dimOX,x = d+ dimOC,x, and it remains to show that dimOX′,x = dimOX,x + 1.
Since V (I) contains no generic points of X , the latter follows from the standard
theory of Rees algebras.

Note that BlI(X)nor = BlI(X)sat, and by the first claim we have that (In)sat =
(In)nor for any n. So, by the definitions of the thresholds, nnor(X, I) = nsat(X,U, I).

♣

5.3.7. Normalization threshold of torific ideals. Now, we will study thresholds for
torific ideals. The main tool is to reduce everything to the case of toroidal ideals
by enlarging the toroidal structure.

Theorem 5.3.8. Assume that toroidal schemes X and Y are provided with simple
and relatively affine actions of G = DL, and f : Y → X is a strict strongly equi-

variant morphism. Consider the projections πX : X → X̃ = X � G and πY : Y →

Ỹ = Y � G and the quotient morphism f̃ = f � G : Ỹ → X̃. Let S be a locally

finite coherent multiset in LX and set I = IXS , Ĩ = (πX)∗I ∩ OX̃ , J = IYf∗(S) and

J̃ = (πY )∗J ∩ OỸ . Then

(i) nnor(X, I) and nnor(X̃, Ĩ) are finite. In particular, the torific blowing up bX,S
is a projective morphism.

(ii) nnor(Y, J) ≤ nnor(X, I) and nnor(Ỹ , J̃) ≤ nnor(X̃, Ĩ), and the equalities hold
whenever f is surjective.

(iii) f∗((In)nor) = (Jn)nor and Bl(Jn)nor(Y ) = Bl(In)nor(X)×X Y for any n > 0.

(iv) f̃∗((Ĩn)nor) = (J̃n)nor and Bl(J̃n)nor(Ỹ ) = Bl(Ĩn)nor(X̃)×X̃ Ỹ for any n > 0.
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Proof. Step 1. The theorem holds when the action on X is local. All assertions do
not involve the toroidal structure, so we will enlarge it on X and Y compatibly. On
X we can enlarge the toroidal structure using Proposition 3.4.1, thus making the
action on X toroidal. At the same time, if D′ is the new toroidal divisor then we
also enlarge the toroidal structure of Y to E′ = f−1(D′) so that f remains a strict
morphism. As we showed in the proof of Theorem 3.6.11, we can choose D′ so that

M
′
O = MO ⊕ NσO . By Lemma 3.1.9, the action on (Y,E′) is toroidal too. So, by

Theorem 3.3.12 the quotients X̃ and Ỹ acquire a structure of toroidal schemes, f̃

becomes a strict morphism of toroidal schemes, and M X̃,x̃ = (M
′
O)0.

Since the actions with respect to the new structures are toroidal, the torific ideal
I is toroidal, and the invariant part Ĩ of I is toroidal by Theorem 3.3.12(iv). Thus,

(In)nor = (In)sat and (Ĩn)nor = (Ĩn)sat by Corollary 5.3.6. Recall that f∗(I) = J

by Lemma 4.2.11, hence J and also J̃ are toroidal and (Jn)nor = (Jn)sat, (J̃n)nor =

(J̃n)sat. Saturation is compatible with strict morphisms by its very definition (see

Section 5.2.1). By Corollary 5.3.6, f∗((In)nor) = (Jn)nor and f̃∗((Ĩn)nor) = (J̃n)nor.
The second assertions in (iii) and (iv) follow from Lemma 4.4.3: blowings up of
toroidal ideals are compatible with strict morphism. By Corollary 5.3.6, we can
replace normalization thresholds with saturation thresholds in parts (i) and (ii),
and then the assertion follows from Theorem 5.2.3: in the notation of Section 5.1.4,

if O is the closed orbit and x̃ its image in X̃ then nnor(X, I) = nsat(M
′
O, IO) and

nnor(X̃, Ĩ) = nsat(M X̃,x̃, Ĩx̃).

Step 2. The general case. Recall that X is covered by its G-localizations XO at
special orbits O and torific ideals are compatible with such localizations (e.g. by
Lemma 4.2.11). Since the theorem was proved in step 1 for the toroidal schemes
XO acted on by G, we obtain that parts (ii), (iii) and (iv) hold for X . Concerning
(i), we obtain equalities

nnor(X, I) = max
O

nsat(MO ⊕ NσO , IO), nnor(X̃, Ĩ) = max
x̃∈X̃

nsat(M x̃, Ĩx̃),

where the first maximum is over all special orbits (in fact, it suffices to consider

closed orbits of X and closed points of X̃).

To prove that the maxima are finite we note that by Proposition 3.6.9(i) and
the local finiteness of S, there are finitely many different triples (LO, SO,MO ⊕
NσO). So, it suffices to show that such a triple determines nsat(MO⊕NσO , IO) and

nsat(M x̃, Ĩx̃). To check the latter set P = MO ⊕ NσO . Then it is easy to see that

IO =
∑
l∈SO

(Pl + P ), and so Ĩx̃ = (IO)0 by Theorem 3.3.12(iv). ♣

5.4. Application to torification. As an application, we can achieve torification
by usual blowings up rather than normalized blowings up. In particular, it is always
of finite type. Moreover, we will show that one can choose the ideal functorially,
though this time only functorially with respect to surjective morphisms.

5.4.1. Balanced torification. If G acts on a toroidal schemeX we define the torifying
blowing up fX : X ′ → X to be the blowing up along the ideal IX = (In)nor, where

I = IXσ0 and n = nnor(X, I). Similarly, set Ĩ = (πX)∗I ∩ OX̃ and ñ = nnor(X̃, Ĩ),

where πX : X → X̃ = X � G is the projection, and define the quotient torifying

blowing up f̃X : X̃ ′ → X̃ to be the blowing up along ĨX = (Ĩ ñ)nor. Here we use
that n and ñ are finite by Theorem 5.3.8.
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Theorem 5.4.2. Assume that a toroidal scheme (X,D) is provided with a relatively
affine, G-simple action of a diagonalizable group G = DL. Consider the torifying
blowing up f(X,D) : X ′ → X and let D′ be the union of the preimage of D and the
exceptional divisor of f(X,D). Then,

(i) The pair (X ′, D′) is toroidal and the natural G-action on (X ′, D′) is toroidal.

(ii) The quotient torifying blowing up f̃(X,D) is the quotient X
′�G→ X̃ = X�G

of f(X,D).

(iii) The blowings up f(X,D) and f̃(X,D) are functorial with respect to surjec-
tive strongly equivariant strict morphisms h : (Y,E) → (X,D) of toroidal schemes:

h∗(IX) = IY , f(Y,E) = f(X,D) ×X Y , h̃∗(ĨX) = ĨY , and f̃(Y,E) = f̃(X,D) ×X̃ Ỹ ,

where h̃ = h �G.

(iv) If the action of G on (X,D) is full, then f(X,D) and f̃(X,D) are birational.

(v) If V ⊆ X is a strongly equivariant open subset such that the action on
(V,D|V ) is toroidal then IX restricts to the unit ideal on V and V ×X X ′ = V .

Proof. As a morphism, f(X,D) is the torific blowing up F 0
(X,D) from Theorem 4.6.3,

hence (i) follows from Theorem 4.6.3(i). In the same fashion, (ii) and (iv) follow
from the analogous parts of Theorem 4.6.3. Recall that h∗(IXσ0 ) = IYσ0 by Lem-

mas 4.2.13(ii) and 4.2.11, hence compatibility of IX and f̃(X,D) with h follows from
Theorem 5.3.8. Finally, using the functoriality of (iii) we can replace V with X in
(v) so that the action on X is toroidal. Then the actions on the logarithmic strata
have locally constant stabilizers and hence σ0

X = ∅. In particular, IXσ0 = OX and
we obtain that IX = OX . ♣

Remark 5.4.3. Unlike Theorem 4.6.3(ii), it is not true in general that ĨX =
(πX)∗IX ∩ OX̃ . Thus we functorially realize both the toryfiying morphism f(X,D)

and its quotient f̃(X,D) as blowings up of ideals, but the relation between these
ideals is not so tight anymore.

5.4.4. General torification. In the same way one can upgrade the general torifica-
tion from Theorem 4.6.5 to torification by blowings up, and we leave the details to
the interested reader.

Theorem 5.4.5. The torification sequence F(X,D) from Theorem 4.6.5 can be nat-
urally realized as a sequence of blowings up along ideals Ii ⊆ OXi

. In particular,
the torification morphism is projective. Moreover, the choice of Ii can be made
functorial with respect to surjective strongly equivariant strict toroidal morphisms.

5.5. Gm-action. In [AT16] we will also need a few results on compatibility of
torification with the subschemes X± →֒ X in the case of Gm-actions. Recall that
if X is provided with a relatively affine action of G = Gm then we defined in
[AT15, Section 5.1.17] the open subschemes X+ and X− of X , on which the action
of G is still relatively affine ([AT15, Lemma 5.1.18]). If X underlies a toroidal G-
equivariant scheme (X,D) then D+ = X+∩D and D− = X−∩D define equivariant
toroidal subschemes of (X,D). We will write X = (X,D) and X± = (X±, D±) for
brevity of notation.

5.5.1. Compatibility with toroidal quotients.
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Proposition 5.5.2. Assume that G = Gm acts toroidally and relatively affine on
a toroidal scheme X. Then the morphisms X± �G→ X �G are toroidal.

Proof. By symmetry it suffices to consider X+. The claim is local on X � G,
hence we can assume that the action on X is local. If the stabilizer of the closed
orbit O is µn then X = X+ and the claim becomes obvious. So we can assume
that the stabilizer is Gm and O = {x}, i.e. the action is strictly local. Then by
Corollary 3.2.16 we can find a strongly equivariant chart φ : X → Y = AM , where
the action on Y is via a grading M → Z.

Let us prove that the morphism f : Y+ � G → Y � G is toroidal. Clearly,
Y � G = AM0

. By [AT15, Lemma 5.1.18] Y+ is covered by open strongly equi-
variant subschemes (AM )m = AM [−m], where m ∈ M is negatively graded, and
hence Y+ � G is covered by affine open subschemes AM [−m]0 . We claim that
(M [−m]0)

gp/(M0)
gp are torsion free and hence f is toroidal. Indeed, this group

is a subgroup of Mgp/(M0)gp hence it suffices to show that the latter is torsion
free. It remains to note that M0 is saturated in Mgp, hence the lattice (M0)gp is
saturated in Mgp, and the quotient Mgp/(M0)

gp is torsion free.

Now, the assertion of the proposition would follow once we prove that the bottom
square in the following commutative diagram is cartesian

X+
�

�

//

��

φ+

**❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

X

��

φ

**❚
❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

X+ �G //

φ+�G
**❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

X �G

φ�G
❚

❚

❚

❚

❚

❚

❚

❚

❚

**❚
❚

❚

❚

❚

❚

❚

❚

❚

Y+
�

�

//

��

Y

��

Y+ �G
f

// Y �G.

By the strong equivariance, φ is the base change of φ �G. Since φ+ is the base
change of φ by [AT15, Lemma 5.3.8], it is also a base change of φ � G, and then
the bottom square is cartesian by Lemma 5.5.3 below. ♣

Lemma 5.5.3. Assume that X,Y,X ′, Y ′ are acted on by a diagonalizable group G
so that the actions on X and Y are relatively affine and the actions on X ′ and Y ′

are trivial. If a G-equivariant morphism f : X → Y is a base change of a morphism
f ′ : X ′ → Y ′, then also f �G is a base change of f ′.

Proof. Since the quotients are categorical, the morphisms X → X ′ and Y → Y ′

factor through X�G and Y �G, respectively. The problem is local on X ′ and Y ′, so
we can assume that X ′ = SpecA′ and Y ′ = SpecB′. In particular, the morphism
f is affine. In addition, the problem is local on Y �G, so we can assume that it is
affine and then Y = SpecB, Y �G = SpecB0, X = SpecA and X �G = SpecA0.
By our assumption, A = B ⊗B′ A′. Since the gradings on A′ and B′ are trivial,
this implies that A0 = B0 ⊗B′ A′, as required. ♣

5.5.4. Compatibility of balanced torification. Assume now that a toroidal scheme
X is provided with a relatively affine action of G = Gm and consider the torifying

blowing up fX : Y = BlI(X) → X and the quotient torifying blowing up f̃X : Ỹ =

BlĨ(X̃) → X̃ from §5.4.1. Let also X̃± = X± �G, Ỹ± = Y± �G and Ĩ± = ĨO
Ỹ±

.
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Lemma 5.5.5. Keeping the above notation, Ỹ± = BlĨ±(Ỹ ).

We will prove a more general result that deals with arbitrary torific ideals. So, let
S be a balanced locally constant coherent multiset in LX , J = ISX , Y = NorBlJ (X)

and J± = JOX±
. Consider the quotients X̃ = X �G, Ỹ = Y �G, X̃± = X± �G,

Ỹ± = Y± � G, and let J̃ ⊂ OX̃ be the Gm-invariant part of J and J̃± = J̃O
X̃±

.

Recall that Ỹ = NorBlJ̃ (X̃) by Lemma 4.3.7(iii). Finally, let n = nnor(X, J),

I = (Jn)nor, I± = IOX±
and ñ = nnor(X̃, J̃), Ĩ = (J̃ ñ)nor, Ĩ± = ĨO

X̃±
.

Proposition 5.5.6. Keeping the above notation the following isomorphisms hold:

(i) Y± = Y ×X X± and Ỹ± = Ỹ ×X̃ Ỹ±.

(ii) Y± = NorBlJ±
(X±) and Ỹ± = NorBlJ̃±

(X̃±).

(iii) Y± = BlI±(X±) and Ỹ± = BlĨ±(X̃±).

Proof. Let us work with X+ for concreteness. As in the proof of Proposition 5.5.2,
it suffices to consider the case when the action is local. Moreover, we can assume
that the action is strictly local, since otherwise X+ = X and the assertions are
vacuous. In particular, we can assume that X = SpecA for A = ⊕n∈ZAn and
S is a balanced multiset in Z. Moreover, since all claims are independent of the
toroidal structure of X , we can enlarge it by Proposition 3.4.1 making the action
toroidal. Once the action onX is toroidal, the actions on X±, Y and Y± are toroidal
too, and the quotients are toroidal schemes by Theorem 3.3.12(i). Furthermore,
the ideal J is toroidal by Lemma 4.4.5(i), hence all other ideals are toroidal and
all normalizations are, in fact, saturations. In particular, the normalizations of
ideals and the (normalized) blowings up from (ii) and (iii) are compatible with
base changes, and hence (ii) and (iii) follow from (i).

To prove (i) we use Corollary 3.2.16 to pick up a strongly equivariant chart
X → Z = AM with a Z-graded toric monoid M . Since X± = X ×Z Z± by [AT15,
Lemma 5.3.8], it suffices to prove (i) for Z instead of X , so we can assume that
X = AM . By definition, X+ has an open strongly equivariant covering by sub-
schemes Xf = AM [−f ] with negatively graded f ∈ M . Since S is balanced, J is
generated by elements t1, . . . ,tl ∈ M0 and hence Y is covered by the charts Yi =
AM [t1−ti,...,tl−ti]sat and X+×X Y is covered by charts Yf,i = AM [t1−ti,...,tl−ti]sat[−f ].
Similarly, BlJ+

(X+) is covered by the charts AM [−f ][t1−ti,...,tl−ti]sat . The localiza-
tion of a saturated monoid is saturated, hence

M [t1 − ti, . . . ,tl − ti]
sat[−m] = M [−m][t1 − ti, . . . ,tl − ti]

sat,

and we obtain that Y+ = Y ×X X+. Since ti ∈M0, one checks in the same manner

that Ỹ+ = Ỹ×X̃ Ỹ+ since both schemes are covered by the charts AM0[−m,t1−ti,...,tl−ti]sat .
♣
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