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TAME DISTILLATION AND DESINGULARIZATION BY

p-ALTERATIONS

MICHAEL TEMKIN

Abstract. We strengthen Gabber’s l′-alteration theorem by avoiding all pri-
mes invertible on a scheme. In particular, we prove that any scheme X of
finite type over a quasi-excellent threefold can be desingularized by a char(X)-
alteration, i.e. an alteration whose order is only divisible by primes non-
invertible on X. The main new ingredient in the proof is a tame distillation
theorem asserting that, after enlarging, any alteration of X can be split into a
composition of a tame Galois alteration and a char(X)-alteration. The proof
of the distillation theorem is based on the following tameness theorem that we
deduce from a theorem of M. Pank: if a valued field k of residue characteristic
p has no non-trivial p-extensions then any algebraic extension l/k is tame.

1. Introduction

1.1. Background. This paper falls within the area of resolution of singularities
by alterations, so we start with a brief review of known altered desingularization
results.

1.1.1. de Jong’s theorems. In [dJ96, Theorem 4.1] Johan de Jong proved that, re-
gardless of the characteristic of the ground field, an integral variety X can be
desingularized by an alteration b : X ′ → X , i.e. a proper dominant generically fi-
nite morphism between integral schemes. In addition, given a closed subset Z ( X
one can achieve that Z ′ = b−1(Z) is a simple normal crossings (snc) divisor, and
f can be chosen G-Galois in the sense that the alteration X ′/G → X is generi-
cally radicial, where G = AutX(X ′), see [dJ96, Theorem 7.3]. de Jong’s altered
desingularization was the first resolution result that applies in such generality and
it immediately found numerous applications. Also, de Jong proved an altered ver-
sion of semistable reduction for an integral scheme X over an excellent curve S,
see [dJ96, Theorem 8.2]. The latter can be viewed as altered desingularization of
morphisms f : X → S with S a curve.

1.1.2. Gabber’s l′-strengthening. The results of [dJ96] were strengthened a few
times by de Jong and others, see e.g. [dJ97], [Vid04, Section 4] and [IT14b]. The
most recent and powerful advance is Gabber’s l′-altered desingularization: it is
proved in [IT14b, Theorems 2.1 and 2.4] that if l is a prime invertible on X then
one can achieve that the degree [k(X ′) : k(X)] of the alteration b is not divisible by
l both in the altered desingularization and altered semistable reduction theorems.
This extended the field of applications of altered desingularization to cohomology
theories with coefficients where l is not inverted, for example, Z/lZ or Zl.
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2 MICHAEL TEMKIN

1.1.3. l’-altered desingularization of morphisms. When working out Gabber’s proof,
Luc Illusie and the author discovered a more general statement, which can be viewed
as l′-altered desingularization of arbitrary finite type morphisms and contains the
two theorems of Gabber as the particular cases with dim(S) equal to 0 and 1,
see [IT14b, Theorem 3.5]. In addition, in the characteristic zero case the same
method provided an actual desingularization of morphisms [IT14b, Theorem 3.9],
which extended the semistable reduction theorem of Abramovich and Karu [AK00,
Theorem 0.3] from varieties to arbitrary quasi-excellent schemes.

1.2. Main desingularization results. Now, let us describe the advance this pa-
per makes in the theory of altered desingularization.

1.2.1. char(X)-altered desingularization. Given a scheme X , by char(X) we denote
the set of all primes p with p = char(k(x)) for some x ∈ X . Let P be a set of
primes. We say that n ∈ N is a P-number if all its prime divisors lie in P . By a
P-alteration we mean an alteration whose degree is a P-number. The main goal of
this paper is to strengthen the l′-altered desingularization of morphisms of [IT14b,
Theorem 3.5] so that the resolving alteration b : X ′ → X is a char(X)-alteration.
In particular, this unifies almost all previous results, including the characteristic
zero case. The only thing which is lost is a control on the Galois properties of the
alteration, for example, we do not achieve that b is Galois.

1.2.2. Main theorem. Our main altered desingularization result is Theorem 4.3.1.
Its formulation involves some terminology introduced in Section 4. Loosely speak-
ing, the theorem asserts that if f : X → S is a morphism of finite type and any
alteration of S can be desingularized by a char(S)-alteration then both X and f
can be desingularized by a char(X)-alteration.

For any practical application, we should start with a class of schemes S that
satisfy the desingularization property as above. By a recent theorem of Cossart-
Piltant, see [CP14], any qe (i.e. quasi-excellent) threefold admits a desingulariza-
tion, so we can take S to be a qe threefold. This gives rise to two main consequences
of Theorem 4.3.1 that we are going to formulate. The proofs will be given in the
end of Section 4.

Remark 1.2.3. We would like to clarify the current status of desingularization.
There are published proofs for the case of qe surfaces, see e.g. [Lip78], and for
the case of k-varieties of dimension at most 3 under the minor assumption that
the imperfection rank of k is finite (i.e., if p = char(k) > 0 then [k : kp] < ∞),
see [CP09]. In the preprint [CP14], Cossart and Piltant extend their method from
[CP09] to arbitrary qe threefolds, and experts in the desingularization theory think
that the proof is correct. If the reader prefers not to use unpublished results, he
should use the class of qe surfaces and 3-dimensional varieties instead of qe 3-folds.

1.2.4. Absolute desingularization. For generality of formulations we consider non-
integral schemes, so we refer to §4.1.2 for a general definition of alterations in this
context. Note, however, that the general case is not essentially stronger than the
case of integral X and S, in which it suffices to consider alterations as defined
earlier.

Theorem 1.2.5. Let X be a scheme with a nowhere dense closed subset Z and
assume that X admits a morphism of finite type to a qe scheme S with dim(S) ≤ 3.
Then there exists a projective char(X)-alteration b : X ′ → X with a regular source
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such that Z ′ = b−1(Z) is an snc divisor. Moreover, if S = Spec(k), where k is a
perfect field, then the alteration b can be chosen separable.

Remark 1.2.6. (i) This result is based on [CP14]. Until the latter is published,
the reader may wish to only consider the case when either dim(S) ≤ 2 or S is of
dimension 3 over a field k of a finite imperfection rank. In this case, the assertion
is based on published results, see Remark 1.2.3.

(ii) The same remark applies to Theorem 1.2.9 below.

1.2.7. Log smoothness. To formulate our main result on desingularization of mor-
phisms we will need a little bit of log geometry. We will provide references to
general definitions, and make this explicit in the particular case we will use. Log
schemes and log smooth morphisms between them are defined in [Kat89]. Log
regular log schemes are defined in [Kat94], see also [Niz06]. Given a scheme X
with a closed subscheme Z consider the log structure MX = OX ∩ i∗O

×

U , where
i : U = X \ Z →֒ X is the complementary open immersion. In general, it is not
even fine. For example, this is the case of the cuspidal curve X = Spec(k[x2, x3])
with Z given by x = 0: the stalk MX,Z is easily seen to be not finitely generated
since it contains independent elements x2 + ax3 with a ∈ k (see also [IT14a, Re-
mark 3.2.7(iii)]). Nevertheless, in the situation we are going to use it will always be
the case that MX is fs and the fs log scheme (X,MX) is log regular. For example,
this happens when X is regular and Z is snc. For shortness, we will denote the log
scheme (X,MX) by (X,Z).

If Z →֒ X and T →֒ Y are closed immersions then any morphism f : X → Y such
that T ×Y X →֒ Z induces a morphism of log schemes (X,Z) → (Y, T ). Assume
that X and Y are regular and Z and T are snc. Then it follows easily from [Kat89,
Theorem 3.5] that f : (X,Z) → (Y, T ) is log smooth if and only if for any point
x ∈ X with y = f(x) there exist regular parameters t1, . . . ,ts ∈ OY,y defining T at
y and z1, . . . ,zr ∈ OX,x defining Z at x such that:

(1) f∗(ti) =
∏r
j=1 z

lij
j for 1 ≤ i ≤ s,

(2) both the kernel and the torsion part of the cokernel of the induced map
l : Zs → Zr are finite of order invertible in k(y),

(3) for small enough neighborhoods X0 of x and Y0 of y the induced morphism
X0 → Y0 ×Spec(Z[t1,...,ts]) Spec(Z[z1, . . . ,zr]) is smooth.

1.2.8. Desingularization of morphisms. A morphism is maximally dominating if it
takes generic points to generic points.

Theorem 1.2.9. Let f : X → S be a maximally dominating morphism of finite
type, let Z ⊂ X be a nowhere dense closed subset, and assume that X is separated
and S admits a morphism of finite type to a noetherian qe threefold. Then,

(i) There exist char(S)-alterations with regular sources a : S′ → S and b : X ′ →
X, a quasi-projective morphism f ′ : X ′ → S′ compatible with f and snc divisors
W ′ ⊂ S′ and Z ′ ⊂ X ′ such that a and b are projective, Z ′ = b−1(Z) ∪ f ′−1(W ′),
and the morphism (X ′, Z ′) → (S′,W ′) is log smooth.

(ii) If S = Spec(k), where k is a perfect field, then one can achieve in addition
to (i) that a is an isomorphism and the alteration b is separable.

Also, it is possible to remove the separatedness assumption on X in Theo-
rem 1.2.9 at cost of considering a pseudo-projective f ′, see Theorem 4.3.1.
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1.3. The method and distillation theorems. Our proof of Theorem 4.3.1 is
very close to the proof of its predecessor [IT14b, Theorem 3.5], with Theorem 3.3.6
being the only new ingredient. Theorem 3.3.6 constructs tame distillations of al-
terations, and its proof occupies most of the paper. First, we prove analogous
distillation theorems for extensions of fields, and then use the latter to prove the
distillation theorem for alterations. Let us now describe our method, distillation
theorems, and the structure of the paper.

1.3.1. Distillation. To illustrate the term “distillation”, let us consider the classical
theory of separable and inseparable field extensions. Any algebraic extension l/k
canonically factors as l/ls/k, where l/ls is purely inseparable and ls/k is separable.
By a separable distillation of l/k we mean an opposite factoring l/li/k, in which
the bottom extension is purely inseparable and the top one is separable. It is
non-canonical and may not exist, see e.g. [Bou81, V.145, §7, Exercices 1–3] for
various related examples. In fact, existence of a separable distillation is equivalent
to splitting the tower l/ls/k, i.e. splitting l as ls ⊗k li. The algebraic closure
ka/k possesses a separable distillation ka/k1/p

∞

/k (which is even canonical) and it
follows easily that for any finite extension l/k there exists a larger finite extension
l′/k possessing a separable distillation. Let us call this simple result separable
distillation theorem.

1.3.2. Tame distillation for valued fields. Wild ramification in the theory of valued
fields is an analogue of inseparability in the usual field theory. In particular, both
notions coincide when the valuation is trivial. It turns out that the separable
distillation theorem has an analogue in the theory of valued fields, a tame distillation
theorem, though the latter result is already not so simple. If a valued field k is
henselian, this is essentially a theorem of M. Pank: the tower ka/kt/k splits, where
kt is the tame closure of k. In fact, ka = kt⊗kkw, where kw/k is any maximal purely
wild extension. We recall Pank’s theorem and discuss its various reformulations in
Section 2.4.

It was known to F. Pop (unpublished), but perhaps not to other experts on
valuation theory, that Pank’s theorem extends to non-henselian valued fields. In
order to minimize the use of valuation theory in this paper, we only establish the
splitting theorem when the height of k is one, see Theorem 2.5.5. It is deduced
from Pank’s theorem via a decompletion argument. Using induction on height one
can then extend the generalized Pank’s theorem to valued fields of arbitrary height,
but this is rather technical and will be worked out elsewhere.

For our purposes, it will be enough to establish in Theorem 2.6.6 the following
tameness theorem: if k has no non-trivial p-extensions then any algebraic extension
l/k is tame. In fact, tameness theorem is weaker than the generalized Pank’s
theorem, so the case of height one follows from Theorem 2.5.5, and the general case
will be established by induction on height (which is less technical in this case).

1.3.3. Riemann-Zariski spaces and globalization. Let L/K be an algebraic exten-
sion of fields. Our next aim is to obtain tame distillation simultaneously for a set
S of valuations on L. Naturally, we should assume that S is quasi-compact in
ValL (see Section 3.1) and L/K is finite. By char(S) we denote the set of non-zero
residue characteristics of S and we say that L/K is S-tame if L/K is tame for any
valuation of S. Tame distillation for abstract fields is proved in Theorem 3.2.12;
it implies, in particular, that there exists a finite extension L′/L such that L′/K
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splits into a composition of a char(S)-extension K ′/K and an S′-tame extension
L′/K ′, where S′ is the preimage of S in ValL′ .

Our proof of Theorem 3.2.12 is based on Theorem 2.6.6 and the following facts
about Riemann-Zariski spaces: Val(L) is quasi-compact, the map ψL/K : Val(L) →
Val(K) induced by L/K is open, and the tame locus of ψL/K is open.

1.3.4. Tame distillation of alterations. A further globalization of tame distillation
is done in Theorem 3.3.6 asserting that any alteration b : Y → X can be enlarged
to a Galois alteration Y ′ → X that splits into a composition of a tame Galois
alteration Y ′ → X ′ and a char(X)-alteration X ′ → X . The main point of its proof
is to apply the tame distillation theorem to k(Y )/k(X) with S being the set of all
valuations of k(Y ) with center on X .

1.3.5. Main theorem. Finally, let us briefly explain how tame distillation of alter-
ations is used to obtain char(X)-altered desingularization. The main idea of Gab-
ber’s construction of l′-alterations is as follows: first obtain a G-Galois alteration
X ′ → X by de Jong’s methods, and then fix an l-Sylow subgroup Gl ⊆ G and pass
to X/Gl → X . Finally, the action of Gl is tame, hence if X ′ is regular then the
singularities of X ′/Gl can be resolved by Gabber’s modification theorem [IT14b,
Theorem 1.1]. This scheme is used both in the proof of Gabber’s theorems [IT14b,
2.1 and 2.4], and in the proof of their refinement [IT14b, Theorem 3.5].

If there exists a subgroup H ⊆ G such that H acts tamely on X ′ and any prime
dividing |G/H | is in char(X), then we can obtain a char(X)-altered desingular-
ization in the same manner. By the tame distillation theorem such an H exists
after enlarging the alteration. Fortunately, this does not affect the proof of [IT14b,
Theorem 3.5], which extends almost verbatim once Sylow subgroups are replaced
with the subgroups produced by tame distillation.

1.4. Acknowledgments. I wish to thank F. Pop and F.-V. Kuhlmann for answer-
ing my questions about Pank’s theorem. In particular, Florian Pop informed me
about his unpublished generalization of Pank’s theorem to the non-henselian case.
I am grateful to L. Illusie, V. Varshavsky and I. Tyomkin for useful discussions.
Also I wish to thank G. Pohl and the anonymous referee for pointing out some gaps
and inaccuracies in the first version of the paper.
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2.1.1. P-extensions. First, we introduce a terminology that extends the notions of
l′-extensions and char(X)-extensions from the introduction. Throughout the text,
we will often denote by P a set of primes. Then the set of all primes not contained
in P will be denoted P ′. A typical example of P is the set char(X) of all non-
zero residue characteristics of a scheme X . Also, to any natural number n ≥ 1
we associate the set P(n) = (char(SpecZ[ 1n ]))

′ of its prime divisors. For example,
char(SpecQ) = P(1) = ∅ and char(SpecZ(2)) = P(8) = {2}.

A P-group is a finite group G such that |G| is a P-number, that is, any prime
divisor of |G| lies in P . Analogously, an algebraic field extension L/K is called a
P-extension if [L′ : K] is a P-number for any finite subextension L′/K. Note that
we neither require that L/K is Galois nor that its Galois closure is a P-extension.
For shortness, we will say n-extension, n′-group, etc., instead of P(n)-extension,
P(n)′-group, etc. For example, 1′-extension is an arbitrary algebraic extension.

The class of P-extensions is transitive (i.e. if F/L and L/K are P-extensions
then F/K is so) and closed under taking subextensions and filtered union: these
claims reduce to the case of finite extensions and then follows from the fact that
for a tower of finite extensions F/L/K, the degree [F : K] = [F : L][L : K] is a
P-number if and only if both [F : L] and [L : K] are P-numbers. In particular,
Zorn’s lemma implies that any field K possesses a maximal P-extension L/K and
then L has no non-trivial P-extensions. Any field without non-trivial P-extensions
will be called P-closed. We warn the reader that a finite extension of a P-closed
field does not have to be P-closed.

2.1.2. Split towers. We say that a tower of algebraic field extensions L/K/k is split
if there exists an extension l/k such that L = l ⊗k K. In other words, l is linearly
disjoint from K over k and the composite lK coincides with L.

2.2. Basic ramification theory: the henselian case. Basic ramification theory
for henselian valued fields is classical, so we only recall some definitions and basic
facts without proofs. It is not so easy to find a good reference, but the reader can
consult [GR03, Section 6.2] or a book in preparation [Kuh] by F.-V. Kuhlmann.

2.2.1. Valued fields. We will use multiplicative notation in the theory of valued
fields. In particular, by a valued field we mean a field k provided with a non-
archimedean valuation | | : k → {0}

∐
Γ. The ring of integers and the residue field

will be denoted k◦ and k̃, respectively.

2.2.2. Henselian valued fields. A valued field k is called henselian if the local ring
k◦ is henselian. This happens if and only if the valuation of k extends uniquely to
any finite extension l/k. Throughout Section 2.2, k is a henselian valued field and

p = exp.char(k̃) is the residual characteristic exponent of k.

2.2.3. Unramified extensions. By ku we denote the maximal unramified extension
of k, i.e. (ku)◦ is the strict henselization of k◦. Note that ku/k is a Galois extension
and Gku/k = G(k̃)s/k̃.

2.2.4. Totally ramified extensions. An algebraic extension l/k is called totally ram-

ified if it is linearly disjoint from ku. This happens if and only if l̃/k̃ is purely

inseparable (e.g. k̃ = l̃).
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2.2.5. Tame extensions. Any algebraic extension l/k splits uniquely into a tower
l/m/k such that l/m is totally ramified and m/k is unramified. If l/m is a p′-
extension then l/k is called tame. A tame extension l/k is controlled pretty well by

the separable residue field extension l̃/k̃ and the p′-torsion group G = |l×|/|k×|. In

particular, [l : k] = [l̃ : k̃] · |G|.

2.2.6. The tame closure. There is a unique maximal tame extension kt/k and the
wild inertia group Wk = Gks/kt is a pro-p-group, which is the only Sylow pro-p-
subgroup of the inertia group Ik = Gks/ku . In particular, kt/ku is Galois, and

Kummer’s theory implies that Gkt/ku = Hom(|(kt)×|/|k×|, µku). Note also that

|(kt)×| is the p′-divisible envelope of |k×|, i.e. it is obtained from |k×| by extracting
all roots of prime-to-p orders.

2.2.7. Purely wild extensions. An algebraic extension l/k is called purely wild if
it is linearly disjoint from kt. The following conditions are equivalent: (1) l/k is

purely wild, (2) l/k is a totally ramified p-extension, (3) l̃/k̃ is purely inseparable
and |l×|/|k×| is a p-group.

2.3. Basic ramification theory: the general case. Now, let us discuss the case
when k is an arbitrary valued field. The results we recall in this section are still
well known, but it is harder to find a single reference to this material and some
terminology is not standardized. In particular, our notions of (strictly) unramified
extensions and henselian extensions are not standard.

2.3.1. Henselization. Given a valued field k, by kh we denote its henselization, i.e.
the valued field whose ring of integers is the henselization of k◦.

Lemma 2.3.2. Assume that k is a valued field, l/k is a finite field extension, and
l1, . . . ,ln is the list of all non-isomorphic valued extensions of k whose underlying
field is l. Then l ⊗k kh =

∏n
i=1 l

h
i .

Proof. Let l◦ = Norl(k
◦) be the integral closure of k◦ in l. By [Bou85, Ch.VI, §8,

n.6, Proposition 6], l◦ is a semilocal ring whose localizations at the maximal ideals
are the rings l◦i . By [Gro67, IV4, Proposition 18.6.8] the ring (l◦)h :=

∏n
i=1(l

◦
i )
h is

canonically isomorphic to l◦⊗k◦ (k◦)h. The lemma follows by tensoring with k. �

2.3.3. Extensions of valuation rings. We will also need the following simple result.

Lemma 2.3.4. Assume that k is a valued field, l/k is a finite field extension, and
A is an integrally closed k◦-subalgebra of l. Then all localizations of A are valuation
rings (i.e. A is a Prüfer ring).

Proof. Decreasing l we can assume that l = Frac(A). Any localization Aq contains
a localization C of Norl(k

◦). It remains to note that C is a valuation ring of l
by [Bou85, Ch.VI, §8, n.6, Proposition 6], and hence any C-subalgebra of l is a
valuation ring. �

2.3.5. Basic ramification tower. Setting ku = (kh)u and kt = (kh)t we obtain a
basic ramification tower ks/kt/ku/kh/k of k. Note that the bottom level kh/k is
typically not normal unless k is henselian. Many definitions and proofs are done
by passing to henselizations.
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Remark 2.3.6. The subgroup D ⊆ Gks/k corresponding to kh is called the decom-
position group of the valuation of ks. Its conjugates correspond to other extensions
of the valuation of k to ks.

2.3.7. Tame and unramified extensions. Let l/k be an algebraic extension of valued
fields. We say that l/k is tame (resp. unramified) if lh/kh is so. In particular, ku

(resp. kt) is, indeed, the maximal unramified (resp. tame) extension of k. Note
that (ku)◦ is the strict henselization (k◦)sh of k◦. Also, we say that l/k is strictly

unramified if it is unramified and k̃ = l̃. In particular, kh/k is the maximal strictly
unramified extension.

Recall that a local k◦-algebra A is called essentially étale (resp. strictly essen-

tially étale) if A is a localization of an étale k◦-algebra (resp. and k̃ is the residue
field of A), see [Gro67, IV4, 18.6.1, 18.6.2].

Lemma 2.3.8. Consider the following conditions on a finite extension l/k of valued
fields:

(a) l/k is unramified (resp. strictly unramified),
(b) l◦/k◦ is essentially étale (resp. strictly essentially étale),
(c) l◦/k◦ is étale (resp. strictly étale).

Then (a)⇐⇒(b)⇐=(c), and all three conditions are equivalent whenever the height
of k is finite.

Proof. It suffices to establish the implications in the non-strict case. Obviously,
(c) =⇒ (b). Assume that l◦/k◦ is essentially étale. Then (k◦)sh = (l◦)sh, and so
ku = lu. Thus, (b) =⇒ (a). In addition, l◦ = Am for an étale k◦-algebra A with
a maximal ideal m. If the height h of k is finite then Spec(k◦) is a finite set, and
hence the set Spec(A) is also finite. It follows that the localization A→ Am can be
achieved by inverting a single element. In particular, l◦/k◦ is étale, and we obtain
that (b) =⇒ (c) whenever h <∞.

It remains to prove that (a) =⇒ (b). If l/k is unramified then l◦ ⊆ (k◦)sh and

hence there exists a finite extension of valued fields l/l such that l
◦
/k◦ is essentially

étale, say, l
◦
= Am for a k◦-étale algebra A with a maximal ideal m. Being k◦-

étale, the ring A is integrally closed. Hence A = A ∩ l is integrally closed too,
and localizations of A are valuation rings by Lemma 2.3.4. Taking into account
that A is a domain, we obtain that A is A-flat. Since A is finitely generated
over k◦, it is finitely generated over A and hence finitely presented over A by
[RG71, Corollaire 3.4.7]. Applying [Gro67, IV4, Lemme 17.7.5(iv)] to Spec(A) →
Spec(A) → Spec(k◦), we obtain that A is finitely presented over k◦, and hence A
is k◦-étale by [Gro67, IV4, Proposition 17.7.7]. It remains to notice that l◦ is the
localization of A along m = m ∩ A. �

2.3.9. Tame fields. A valued field k is called tame if ka = kt. Clearly, this happens
if and only if any algebraic extension l/k is tame. Purely inseparable extensions are
purely wild, hence any tame field is perfect. We also say that k is separably tame
if ks = kt.

2.3.10. Henselian extensions. We say that an algebraic extension of valued fields
l/k is henselian if the valuation of k extends to the valuation of l uniquely. For
example, k is henselian if and only if any algebraic extension l/k is henselian.
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Lemma 2.3.11. An algebraic extension l/k is henselian if and only if l and kh are
linearly disjoint, and in this case l⊗k kh = lh.

Proof. If l/k is finite then this follows by applying Lemma 2.3.2 to l/k. The general
case follows since henselizations are compatible with filtered colimits by [Gro67, IV4,
Proposition 18.6.14(ii)]. �

2.3.12. Totally ramified extensions. As in the henselian case, l/k is called totally
ramified (resp. purely wild) if it is linearly disjoint from ku/k (resp. kt/k). This
happens if and only if l/k is henselian and the extension lh/kh is totally ramified
(resp. purely wild). In particular, l/k is purely wild if and only if it is a totally
ramified p-extension.

2.4. Splitting the basic ramification tower and Pank’s theorem.

2.4.1. Non-canonical maximal extensions. We have defined six basic properties of
extensions of valued fields that form three “disjoint pairs”: strictly unramified
versus henselian, unramified versus totally ramified, and tame versus purely wild.

Lemma 2.4.2. Let R be one of the following properties: (a) strictly unramified,
(b) unramified, (c) tame, (d) henselian, (e) totally ramified, (f) purely wild.

(i) Let m/l/k be a tower of algebraic extensions of valued fields. Then m/k
satisfies R if and only if both m/l and l/k satisfy R.

(ii) A filtered union of R-extensions of k is an R-extension.
(iii) Let S be any set of the properties (a)–(f). Then any valued field k possesses

a maximal S-extension kS/k.

Proof. The first three properties are included for completeness. Claims (i) and (ii)
hold for them because there even exists a unique maximal R-extension kh, ku or kt,
respectively. The last three properties are equivalent to being linearly disjoint from
kh, ku and kt, respectively. This observation and the fact that lh = lkh, lu = lku

and lt = lkt imply the assertions (i) and (ii) for (d), (e) and (f). The assertion (iii)
follows from (i) and (ii) by Zorn’s lemma. �

We will use lower indices to denote non-canonical maximal extensions, as opposed
to kt, ku, etc. For example, kw will denote a maximal purely wild extension of k.

2.4.3. Splitting the tower kt/ku/kh/k. Non-canonical maximal extensions can be
used to split various levels in the basic ramification tower. We start with a simple
case that will not be used in the sequel but illustrates the situation well.

Lemma 2.4.4. Assume that k is a valued field. Let khu/k be a maximal henselian
unramified extension and let krt/k be a maximal tame totally ramified extension.
Then kh ⊗k khu = ku and ku ⊗k krt = kt.

Proof. Both pairs are linearly disjoint by definition hence we should only check that
the extensions ku/khkhu and kt/kukrt are trivial. The first one is an unramified
extension of henselian fields, hence it suffices to compare the residue fields. Both

k̃u and k̃hkhu are separable over k̃. Also, both k̃u and k̃hu are separably closed
because otherwise we could lift their non-trivial separable extension to a non-trivial
henselian unramified extension of ku or khu contradicting their maximality. Thus,

k̃u = (k̃)s = k̃hkhu and hence ku = khkhu.
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The extension kt/kukrt is a tame extension of henselian fields, hence it suffices
to compare the residue fields and the groups of values. The same argument as

above shows that the residue fields coincide with (k̃)s. We remarked earlier that
H = |(kt)×| is the p′-divisible envelope of |k×|. So, it remains to check that the
inclusion |(krt)×| ⊆ H is an equality. Indeed, if the inclusion were strict we would
be able to enlarge krt by adjoining an appropriate root of its element. �

2.4.5. Splitting ka/kt/k. Analogously to Lemma 2.4.4, any maximal purely wild
extension kw/k splits ka/kt/k. However, this is more difficult to prove because
wild extensions are not controlled well enough by the residue fields and groups of
values. For henselian fields, this splitting is a theorem of M. Pank, and we will
deduce that it also holds for arbitrary valued fields of height one. We will not need
the general case and it will be published elsewhere.

2.4.6. Reformulations. Let V be a class of valued fields closed with respect to al-
gebraic extensions. For example, the class of henselian valued fields or the class of
valued field of a given height. We claim that conditions (0)–(4) below are equivalent,
where kw denotes a maximal purely wild extension of k.

(0) A splitting of ka/kt/k: if k ∈ V then kt ⊗k kw = ka for some choice of kw.
(1) Splittings of ka/kt/k: if k ∈ V then kt ⊗k kw = ka for any choice of kw.
(2) Tame distillation: if k ∈ V then kw is tame.
(3) Tame fields: a valued field k ∈ V is tame if and only k = kw.
(4) Splitting of the Galois group: for k ∈ V the homomorphism Gks/k → Gkt/k

admits a section, i.e. Gks/k is a semidirect product of the wild inertia group
W = Gks/kt and the tame Galois group Gkt/k.

Indeed, (1) obviously implies (0), and we have the following simple implications.
(0) =⇒ (4) Let l = k1/p

∞

be the perfection of k. The isomorphism Gla/l = Gks/k
respects the inertia subgroups, hence (4) follows by applying (0) to l.

(4) =⇒ (3) If kw = k then k is perfect, i.e. ka = ks. In addition, the fixed field
of the image of a section Gkt/k → Gks/k is purely wild over k. Hence ks = kt.

(3) =⇒ (2) Note that (kw)w = kw and apply (3) to kw.
(2) =⇒ (1). We should check that the extension ka coincides with its subfield

l = ktkw. Since kt ⊆ l, the extension ka/l is purely wild. Since kw is tame the
extension ka/l is tame. So, ka = l.

Remark 2.4.7. Using (4) one can show in the same fashion that these conditions
are also equivalent to the following separable analogues, where ksw/k is a maximal
separable purely wild extension:

(1) If k ∈ V then kt ⊗k ksw = ks.
(2) If k ∈ V then ksw is separably tame.
(3) A valued field k ∈ V is separably tame if and only if k = ksw.

2.4.8. Pank’s theorem. The following theorem was proved by M. Pank.

Theorem 2.4.9. Let kw be a maximal purely wild extension of a henselian valued
field k. Then kt ⊗k kw = ka.

At least two proofs are available in the literature. The proof of [KPR86, Theo-
rem 2.1] establishes condition (4) by a group-theoretic argument that uses Galois
theory and group cohomology: one uses a pro-finite version of Schur-Zassenhaus
theorem and the fact that p-Sylow subgroups of Gk̃ are pro-p-free.
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Another proof was suggested by Ershov, see [Ers07, Theorem 2], and it estab-
lishes reformulation (3) by a direct valuation-theoretic argument. Similarly to our

study of an extension krt, it is easy to see that k̃w is the perfection of k̃ and |(kw)×|
is the p-divisible envelope of |k×|. This is seen already by considering p-th roots
of elements. Thus the whole point of the proof is to control extensions l/k with a
non-trivial defect dl/k = [l : k]/(el/kfl/k). In fact, Ershov proves that if l/k is tame
and l has a non-trivial immediate algebraic extension l′ (i.e. el′/l = fl′/l = 1) then
k has a non-trivial immediate algebraic extension too.

2.5. Splitting theorem for valued fields of height one.

2.5.1. Decompletion. If k is of height one then k is dense in kh because k̂ is henselian
and hence contains kh (e.g., see [End72, Theorem 17.18]). This allows to split
separable extensions of kh.

Lemma 2.5.2. If k is a valued field of height one then any tower L/kh/k with a
separable L/kh splits. In other words, there exists a henselian extension l/k such
that L = lh = l ⊗k kh.

Proof. Assume first that L/kh is finite. Since L/kh is separable, L = kh[t]/(f(t))
for a monic polynomial f(t) by the primitive element theorem. By Krasner’s lemma
(e.g., see [End72, Lemma 16.8]), L = kh[t]/(g(t)) for any monic polynomial g(t) of
the same degree whose root is close enough to a root of f(t). Since roots of monic
polynomials depend on the coefficients continuously (e.g., see [Bri06, Theorem 2]),
we can achieve that g(t) ∈ k[t] and then l = k[t]/(g(t)) is as required.

Now, let us establish the general case. Note that given a totally ordered family
{li}i∈I of valued extensions of k provided with a compatible family of embeddings
of valued fields lhi →֒ L, we also obtain an embedding (∪i∈I li)h →֒ L. By Zorn’s
lemma, there exists a maximal totally ordered family of henselian extensions li/k
provided with compatible embeddings lhi →֒ L, and we denote its maximal element
∪i∈I li by l. We claim that the inclusion lh →֒ L is an equality, and so l is as required.
Indeed, if lh ( L then there exists a finite subextension L′/lh and by the case of
finite extensions, L′/lh/l can be split by an extension l′/l. Then L′ = (l′)h, and
we obtain that the family {li} can be enlarged by adjoining l′. The contradiction
concludes the proof. �

Corollary 2.5.3. Assume that l/k is an algebraic extension of valued fields and k
is of height one. Then l/k is a maximal separable purely wild extension if and only
if l/k is henselian and lh/kh is a maximal separable purely wild extension.

Proof. Let R abbreviate “non-trivial separable purely wild”. We should prove that
l possesses an R-extension l′ if and only if lh possesses an R-extension L′. By
Lemma 2.5.2, any separable algebraic extension L′/lh is of the form l′lh for a
henselian extension l′/l. It remains to note that l′lh/lh is an R-extension if and
only if l′/l is an R-extension. �

2.5.4. Splitting. Now, we can extend Pank’s theorem to arbitrary valued fields of
height one.

Theorem 2.5.5. Assume that k is a valued field of height 1 and let kw/k be a
maximal purely wild extension. Then kt ⊗k kw = ka.
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Proof. Assume, first that k is perfect. Set K = kh, then Kw = kw ⊗k K is a
maximal purely wild extension of K by Corollary 2.5.3. Hence Kt ⊗K Kw = Ka

by Pank’s theorem 2.4.9, and using that Ka = ka and Kt = kt we obtain that
kt ⊗k kw = kt ⊗K Kw = ka.

In the general case, let l = k1/p
∞

be the perfection of k. Then lt = kt ⊗k l and
hence kt ⊗k lw = lt ⊗l lw = la. This gives a splitting of ka/kt/k and it remains to
use the equivalence of (0) and (1) in §2.4.6. �

Corollary 2.5.6. Any p-closed valued field of height one is tame.

Proof. Any extension kw/k is a p-extension. So, if k is p-closed then kw = k. If k
is also of height one then we deduce that kt = ka by Theorem 2.5.5. �

2.6. Tameness of p-closed valued fields. Our next aim is to extend Corol-
lary 2.5.6 to arbitrary valued fields. The basic tools are to approximate valued
fields by valued fields of finite height and to represent valuations of finite height as
compositions of valuations of height one.

2.6.1. Composed valued fields. If k is a valued field and R̃ is a valuation ring of k̃

then the preimage of R̃ under the map k◦ → k̃ is a valuation ring R of k and one

says that the valuation of (k,R) is composed of the valuations of (k, k◦) and (k̃, R̃).
Conversely, if k is a valued field then for any prime ideal n ⊂ k◦ we have that k◦ is
composed of the valuation rings k◦n and k◦/n.

If k is of height d <∞ then for any 0 ≤ i ≤ d there exists a unique localization
of k◦ of height i that will be denoted k◦i . Let ki = (k, k◦i ) denote the corresponding

valued field and let k̃i denote the residue field of ki with the valued field structure
induced from k. In particular, the valuation of k is composed of those of ki and k̃i.

2.6.2. Tame extensions and composition. For simplicity we only consider valued

fields k of finite height. Assume that k is of height d and set pi = exp.char(k̃i)

and p = exp.char(k̃). In particular, p = pd. If X is a scheme and x ∈ X is a
generization of y ∈ X then exp.char(k(x)) divides exp.char(k(y)). Since Spec(k◦)

is a chain (ordered by generization) of d + 1 points with residue fields k̃i, there
exists n with 0 ≤ n ≤ d such that pi = 1 for i < n and pi = p for i ≥ n.

Lemma 2.6.3. Let l/k be an algebraic extension of valued fields of height d < ∞

and 0 ≤ i ≤ d. Set p = exp.char(k̃) and pi = exp.char(k̃i). Then,

(i) l/k is unramified if and only if both li/ki and l̃i/k̃i are unramified.

(ii) l/k is tame if and only if both li/ki and l̃i/k̃i are tame and |l×i |/|k
×

i | contains
no non-trivial p-torsion. The condition on |l×i |/|k

×

i | can be omitted when pi = p.

Proof. If {lα/k}α is the family of finite subextensions of l/k then li = ∪α(lα)i and

l̃i = ∪α (̃lα)i. Hence it suffices to prove the lemma for the extensions lα/k, and we
can assume in the sequel that l/k is finite.

The opposite implication in (i) is precisely [Tem10, Proposition 2.2.2]. Con-
versely, assume that l/k is unramified, and so l◦/k◦ is essentially étale by Lemma 2.3.8.
Since l◦ →֒ l◦i and k◦ →֒ k◦i are localizations, l◦i /k

◦
i is essentially étale, and hence

li/ki is unramified. Let n = Ker(k◦ → (k̃i)
◦) and m = Ker(l◦ → (l̃i)

◦). Since
Spec(l◦) → Spec(k◦) is a bijection, m is the radical of nl◦. Since l◦/nl◦ is essen-

tially étale over (k̃i)
◦, it is reduced and we obtain that m = nl◦. Thus, (l̃i)

◦ = l◦/m

is essentially étale over (k̃i)
◦, and hence l̃i/k̃i is unramified.
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Let us prove (ii). Since [l : k] < ∞, the condition on |l×i |/|k
×

i | means that
(p, eli/ki) = 1. Note that this is automatically so when li/ki is tame and pi = p. It
remains to prove the “if and only if” claim. Our first goal is to replace l and k by
L = lu and K = ku. Note that l/k is tame if and only if L/K is tame. In addition,

the extensions Ki/ki, Li/li, K̃i/k̃i and L̃i/l̃i are unramified by (i), hence Li/Ki is

tame if and only if li/ki is tame, and L̃i/K̃i is tame if and only if l̃i/k̃i is tame.

Thus, it suffices to prove that L/K is tame if and only if both Li/Ki and L̃i/K̃i

are tame and (p, eli/ki) = 1. Note also that (K̃i)
u = K̃i. Indeed, if there exists

a non-trivial unramified extension of K̃i then we can lift it to a valued extension
F/K, and it then follows from (i) that F/K is unramified, which contradicts that
K = Ku.

Since K = Ku, any tame extension is obtained by adjoining roots a1/n with

(p, n) = 1. Hence if L/K is tame then both Li/Ki and L̃i/K̃i are tame and
(p, eLi/Ki

) = 1.
Conversely, assume that L/K is not tame, in particular, [L : K] is divisible by

p and p > 1. If Li/Ki is not tame we are done, otherwise [L : K] = [Li : Ki] =
eLi/Ki

fLi/Ki
is divisible by p. If p|eLi/Ki

we are done, otherwise p|fLi/Ki
. In the

latter case, p = char(K̃i) divides [L̃i : K̃i]. Since K̃i = (K̃i)
u, as was observed

above, this implies that L̃i/K̃i is not tame. �

Corollary 2.6.4. Let k be a valued field of height d < ∞ and let 0 ≤ i ≤ d. Set

p = exp.char(k̃) and pi = exp.char(k̃i). Then k is tame if and only if ki and k̃i are
tame and |k×i | is p-divisible. The condition on p-divisibility can be omitted when
pi = p.

Proof. Note that (ka)i = (ki)
a and its residue field is (k̃i)

a. So, we can denote

these fields kai and k̃ai without any ambiguity. By Lemma 2.6.3(ii), ka/k is tame if

and only if both kai /ki and k̃
a
i /k̃i are tame and |k×i | is p-divisible. In addition, if ki

is tame then |k×i | is pi-divisible, so the divisibility condition can be omitted when
p = pi. The corollary follows. �

2.6.5. The tameness theorem. Now, we can study p-closed valued fields of an arbi-
trary height.

Theorem 2.6.6. Let k be a valued field of residual characteristic exponent p. If k
is p-closed then it is tame.

Proof. Assume first that k is of height d < ∞. Since k is p-closed, it is perfect. In
particular, if d = 0 then k is tame. The case d = 1 is covered by Corollary 2.5.6(ii),
so assume that d > 1 and the theorem is proved for any height smaller than d.

Choose a natural i with 0 < i < d. Then ki is obviously p-closed and k̃i is p-closed

as otherwise we could lift a p-extension of k̃i to a p-extension of k. Thus, ki and k̃i
are tame by the induction assumption. In addition, |k×i | is p-divisible as otherwise

k would have a non-trivial extension k(a1/p) of degree p. Therefore k is tame by
Corollary 2.6.4.

Now, let us prove the general case. Let l/k be a finite extension. Find a subfield
k′ ⊆ k such that k′ is of finite transcendence degree over the prime subfield of k
and there exists an extension l′/k′ such that l = l′⊗k′ k. The first condition implies
that k′ is of finite height. Replacing k′ by its algebraic closure in k we can also
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achieve that k′ is p-closed. Then k′ is tame by the case we proved first, and hence
l′/k′ is tame. Therefore l/k is tame and we are done. �

3. Tame distillation theorems

3.1. Riemann-Zariski spaces. We will use the Riemann-Zariski spaces of pointed
schemes introduced in [Tem10, Section 3.2], so let us briefly recall definitions and
basic properties. All constructions and results of [Tem10, Section 3.2] deal with
dominant points Spec(K) → X but apply to non-dominant ones as well, so we will
work in this greater generality.

3.1.1. Limits. In what follows, a pointed scheme is a morphism ε : Spec(K) → X
with K a field and X a quasi-compact and quasi-separated scheme. Often we will
simply write X , skipping the point in the notation. A morphism of pointed schemes
is a compatible pair of morphisms j : Spec(K ′) → Spec(K) and f : X ′ → X . A
morphism is called a modification if j is an isomorphism and f is proper (but not
necessarily surjective). The Riemann-Zariski space of a pointed scheme is defined
as RZK(X) = limiXi where the limit is taken in the category of locally ringed
spaces over the family of all modifications Xi → X . It is easy to see that the latter
family is filtered. In addition, dominantly pointed schemes are cofinal among all
modifications, hence our definition is equivalent to the definition at [Tem10, page
621].

Note that |RZK(X)| = limi |Xi| as topological spaces and colimiπ
−1
i OXi

=
OX, where πi : X = RZK(X) → Xi are the projections. In particular, OX,x =
colimiOXi,πi(x) for any point x. A subset U ⊆ X is called constructible if it is of the

form π−1
i (Ui) for a constructible Ui ⊆ Xi, and constructible subsets form a base of

the constructible topology on X.

3.1.2. The valuative interpretation. Let ValK(X) denote the set of isomorphism
classes of morphisms x : Spec(O) → X , where O is a valuation ring of K and x

extends the point Spec(K) → X . This is the obvious extension of the definition at
[Tem10, page 622] to arbitrary pointed schemes.

Lemma 3.1.3. Let Spec(K) → X be a pointed scheme and X = RZK(X), then
(i) X is compact in the constructible topology and quasi-compact in the usual

(Zariski) topology.
(ii) Each stalk OX,x is a valuation ring and the correspondence x 7→ OX,x induces

a bijection RZK(X)
∼
−→ValK(X).

Proof. Each scheme Xi is compact with respect to the constructible topology, hence
their limit, which is X with the constructible topology, is compact too. The Zariski
topology of X is weaker, hence we obtain (i).

For a detailed proof of (ii) we refer to [Tem10, Corollaries 3.2.4 and 3.2.5]. The
main idea is that for any f, g ∈ OX,x one of them divides another one, as can be
seen by blowing up the ideal (f, g) in some OXi,πi(x). Hence OX,x is a valuation

ring and the bijectivity of the induced map RZK(X)
∼
−→ValK(X) follows from the

valuative criterion of properness. �

We use the bijection RZK(X)
∼
−→ValK(X) to provide the target with the Zariski

and constructible topologies.
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Remark 3.1.4. For the sake of completeness we note that the topologies of X =
RZK(X) and the sheaf OX can be defined on ValK(X) in purely valuation-theoretic
terms, see e.g. [Tem13, Section 2.4, p.78].

3.1.5. Functoriality. The constructions of ValK(X) and RZK(X) are functorial.
Indeed, assume that j : ηL → ηX , f : Y → X is a morphism of pointed schemes
ηL → Y and ηK → X . It induces a map ValL(Y ) → ValK(X) by restriction of
valuations from L to K. Namely, for an element T = Spec(O) → Y of ValL(Y )
consider the composition T → Y → X . Since the generic point of T factors through
ηK , the morphism T → X factors through the spectrum T ′ of the valuation ring
O ∩K. This gives an element T ′ → X of ValK(X).

Let us say that a modification Xi → X of ηK → X is tight if ηK → Xi is
schematically dominant. Tight modifications are cofinal; for example Xi is domi-
nated by the schematic image of ηK in Xi. In particular, RZK(X) is the limit of
all tight modifications of X , and we use this in the following paragraph.

For any modification Xi → X of ηK → X there exists a tight modification Yj →
Y of ηL → Y such that the composition Yj → Y → X factors through Yj → Xi.
This factorization is unique since ηL → Yj is schematically dominant and Xi → X
is separated (even proper). Therefore different maps Yj → Xi are compatible and
we obtain a map of the limits RZL(Y ) → RZK(X). Using the valuative criterion of
properness it is easy to see that the two maps we have constructed are compatible
with respect to the bijections RZL(Y ) = ValL(Y ) and RZK(X) = ValK(X).

Lemma 3.1.6. Assume given a morphism of pointed schemes ηL → Y and ηK →
X such that the morphism Y → X is of finite type. Then the induced map
ψ : ValL(Y ) → ValK(X) is open and continuous both in Zariski and constructible
topologies. In particular, it takes constructible sets to constructible sets.

Proof. We will use the identifications ValL(Y ) = RZL(Y ) and ValK(X) = RZK(X).
Let {ηL → Yj} and {ηK → Xi} denote the families of tight modifications of ηL → Y
and ηK → X , respectively. In particular, Xi and Yj are integral schemes. By
λj : RZL(Y ) → Yj and πi : RZK(X) → Xi we denote the projections.

We can work with bases of topologies, so assume that V ⊆ RZL(Y ) and U ⊆
RZK(X) are open quasi-compact (resp. constructible) sets. Then choosing i and
j large enough we can assume that V and U are the preimages of open (resp.
constructible) sets Vj ⊆ Yj and Ui ⊆ Xi. Enlarging j we can also achieve that the
composed morphism ηL → ηK → Xi factors as ηL → Yj → Xi for some morphism
f : Yj → Xi. This gives a commutative square

RZL(Y )
λj

//

ψ

��

Yj

f

��

RZK(X)
πi

// Xi

Since f−1(Ui) is open (resp. constructible), the set ψ−1(U) = λ−1
j (f−1(Ui)) is

open (resp. constructible) too. To prove that ψ is open we will first reduce to the
case when K = k(Xi) and f is flat.

Let {Kl} be the family of finitely generated subextensions of K/k(Xi). For any
i′ ≥ i the morphism ηK → Xi′ factors through Spec(Kl) with a large enough l.
Hence RZK(X) = liml RZKl

(X), and it suffices to prove that the maps RZL(Y ) →
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RZKl
(X) are open. Thus, replacingK byKl we can assume thatK/k(Xi) is finitely

generated. Then it is easy to see that ηK → Xi possesses a modification ηK → Xi′

such that k(Xi′) = K. So, enlarging i and j we can assume that k(Xi) = K.
Furthermore, by the flattening theorem of Raynaud-Gruson, there exists a blow

up X ′ → Xi such that the strict transform Y ′ of Yj is flat and of finite presentation
over X ′. (One cannot use [RG71, Théorème 5.7.9] directly since f does not have to
be of finite presentation, but [Sta, tag 081R] extends the claim to the case we need.
Note that we use here that f is flat and of finite presentation over a non-empty
open subscheme of Xi by [Sta, tag 052A].) Replacing Xi and Yj by X ′ and Y ′, we
can assume that f is flat and of finite presentation. Then f is open in Zariski and
constructible topologies, and hence f(Vj) is open (resp. constructible).

The flatness of f implies that for any valuation ring O ∈ RZK centered on a
point x ∈ Xi and a preimage y ∈ f−1(x), there exists a valuation ring O′ of L
extending O and centered on y. Indeed, O ⊗OXi,x

OYj ,y is a domain with field of

fractions k(Yj), hence we can take any valuation ring O′ centered on a preimage
of y in Spec(O) ×Xi

Spec(OYj ,y). Thus, the map RZL(Y ) → RZK(X) ×Xi
Yj is

surjective, and this implies that ψ(V ) = π−1
i (f(Vj)). Hence ψ(V ) is open (resp.

constructible). �

3.1.7. Absolute Riemann-Zariski spaces. Note that ValK = ValK(Spec(Z)) is the
set of all valuation rings ofK and for any pointed scheme ηK → X we have a natural
projection p : ValK(X) → ValK which is injective if and only if X is separated.
We denote the image of p by ValK(X)′; it is the set of all valuations of K with
a center on X . Being the image of a compact space, ValK(X)′ is compact in the
constructible topology, and hence quasi-compact in the Zariski topology.

For any extension of fields L/K we denote by ψL/K : ValL → ValK the induced
map. By Lemma 3.1.6, it is continuous and open.

3.2. Tame distillation for fields.

3.2.1. Tame locus. If L/K is an algebraic extension of fields it makes sense to study
its tameness with respect to various valuations of L. So, we introduce the following
terminology. The extension L/K is x-tame for x ∈ ValL if L/K is tame with respect
to the valuations of L and K corresponding to x and ψL/K(x), respectively. The set

ValtL/K of all points x ∈ ValL such that L/K is x-tame will be called the tame locus

of L/K. The complement ValwL/K = ValL \ ValtL/K will be called the wild locus of

L/K.

3.2.2. Absolute tameness. If ValtL/K = ValL then we say that L/K is absolutely

tame. A field K is absolutely tame if so is the extension Ka/K. For example, it
follows from Theorem 2.6.6 that any p-closed fieldK of characteristic p is absolutely
tame.

3.2.3. S-tameness. Let S ⊆ ValL be a subset. We say that L/K is S-tame if
S ⊆ ValtL/K . The main case when we will use this is when S = ValL(X)′ for a

pointed scheme Spec(L) → X . In this case, we will simply say that L/K is X-
tame. Note that if (ηL → X) → (ηL → Y ) is a modification of pointed schemes
then X-tameness of L/K is equivalent to Y -tameness.
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3.2.4. P-tameness. For any subset S ⊆ ValL we define its characteristic char(S) to
be the set of non-zero residue characteristics of the elements of S. Given a set of
primes P , we say that an algebraic extension L/K is P-tame if char(ValwL/K)∩P =

∅. In fact, P-tameness is equivalent to Spec(ZP′)-tameness, where ZP′ is obtained
from Z by inverting the primes of P ′. In the same way, we say that K is P-tame if
the extension Ka/K is so. Again, Theorem 2.6.6 immediately implies the following
result that generalizes our earlier observation on p-closed fields:

Lemma 3.2.5. Any P-closed field K is P-tame.

Remark 3.2.6. If K is P-closed it may freely happen that an algebraic (and even
finite) extension L of K is not P-closed. Nevertheless, L is P-tame because K is
P-tame and subextensions of tame extensions are tame.

3.2.7. Unramified locus. Replacing “tame” with “unramified” in Sections 3.2.1–
3.2.3 one obtains definitions of S-unramified extensions and unramified loci. The
latter will be denoted ValuL/K .

Lemma 3.2.8. (i) If L/l/k is a tower of algebraic extensions then

ValtL/k = ValtL/l ∩ ψ
−1
L/l(Val

t
l/k) and ValuL/k = ValuL/l ∩ ψ

−1
L/l(Val

u
l/k).

(ii) If L/k is an algebraic extension with subextensions l/k and K/k such that
L = Kl then

ψ−1
L/l(Val

t
l/k) ⊆ ValtL/K and ψ−1

L/l(Val
u
l/k) ⊆ ValuL/K .

Proof. The first claim follows from the fact that an extension of valued fields L/k is
tame (resp. unramified) if and only if both L/l and l/k are tame (resp. unramified).
The second claim follows from the fact that if l/k is tame (resp. unramified) then
lK/K is tame (resp. unramified). �

3.2.9. Openness of the loci. We have the following openness result for finite exten-
sions:

Lemma 3.2.10. For any finite extension L/K both the tame locus and the unram-
ified locus are open subsets of ValL.

Proof. We consider the unramified locus ValuL/K ⊆ ValL first. Choose a point

y ∈ ValuL/K , set x = ψL/K(y), and consider the corresponding valuation rings Oy

and Ox of L and K, respectively. By our assumption, Oy/Ox is essentially étale,
hence by Chevalley’s theorem [Gro67, IV4, Theorem 18.4.6(ii)], Oy is a localization
of a ring Ox[t]/(f(t)) such that f(t) is monic and if a ∈ Oy denotes the image
of t then f ′(a) ∈ O×

y . Let V be the set of valuation rings O of L such that the

coefficients of f lie in O ∩ K, a ∈ O and f ′(a) ∈ O×. Clearly, V is an open
neighborhood of y and we claim that V ⊆ ValuL/K . In other words, if y′ ∈ V and

x′ = ψL/K(y′) then Oy′/Ox′ is essentially étale.

To prove the claim note that f(t) ∈ Ox′ [t] and A = Ox′ [t, f
′(t)−1]/(f(t)) is

essentially étale overOx′ by Chevalley’s theorem. We claim that the homomorphism
A → L taking t to a is injective. Indeed, it suffices to prove that f(t) generates
the kernel of the homomorphism Ox′ [t] → L taking t to a. The latter follows
from the facts that Ox′ is integrally closed and f(t) is the minimal polynomial of
a over K. Note that A →֒ L factors through Oy′ by the very definition of V ,
and hence Ox′ → Oy′ factors through a local homomorphism φ : Am → Oy′ , where
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m = A ∩my′ . Being Ox′-étale, A is integrally closed, and hence Am is a valuation
ring by Lemma 2.3.4. Since Oy′ is a local Am-algebra with the same fraction field,
φ is an isomorphism, and we obtain that Oy′/Ox′ is essentially étale.

Assume, now, that y lies in the tame locus ValtL/K . Provide L and K with the

valuations corresponding to y and x = ψL/K(y), respectively. Since the extension

Lu/Ku is tame, it is generated by elements x
1/ni

i with ni ∈ K̃×, and hence there ex-

ist finite unramified extensions L′/L andK ′/K such that L′ = K ′(x
1/n1

1 , . . . ,x
1/nr
r ).

Let y′ ∈ ValL′ and x′ ∈ ValK′ be the corresponding points. The tame locus ValtL′/K′

contains all valuations with residue characteristic prime to n1, . . . ,nr, hence it is a
neighborhood of y′. By the first part of the theorem, ValuK′/K is a neighborhood

of x′. Since ValtL′/K′ ∩ ψ−1
L′/K′(Val

u
K′/K) ⊆ ValtL′/K by Lemma 3.2.8(i), ValtL′/K is

a neighborhood of y′. In addition, ψL′/L(Val
t
L′/K) ⊆ ValtL/K by Lemma 3.2.8(i),

and using that ψL′/L is an open map by Lemma 3.1.6, we obtain that ValtL/K is a
neighborhood of y. �

3.2.11. Distillation of finite extensions. Recall that the wild locus ValwL/K was de-
fined in §3.2.1. More generally, for any subset S ⊆ ValL we will use the notation
SwL/K = S ∩ ValwL/K , and the set char(SwL/K) will be called the wild primes set of

S with respect to K. For example, if char(K) = p > 0 then char(ValwL/K) ⊆ {p},
and if L/K is finite then char(ValwL/K) is contained in the set of all primes not

exceeding [L : K].

Theorem 3.2.12. Assume that L/K is a finite field extension, S is a subset of
ValL, which is compact in the constructible topology, and P = char(SwL/K) is the

wild primes set of S. Then there exists a finite extension L′/L and a field tower
L′/K ′/K such that K ′/K is a P-extension and L′/K ′ is an S′-tame extension,
where S′ = ψ−1

L′/L(S). Moreover, if K/K is an arbitrary P-maximal extension then

one can achieve that K ′ ⊆ K and L′ = LK ′.

Proof. Fix a maximal P-extension K/K, choose a composite extension L = LK,
and set S = ψ−1

L/L
(S). The map ψL/L is compact in the constructible topology,

hence S is compact in the constructible topology and quasi-compact in the Zariski
topology.

In the sequel, all fields are subfields of L and the composite extensions are taken
inside of L. We claim that the extension L/K is S-tame. Indeed, ψ−1

L/L
(ValtL/K) ⊆

Valt
L/K

by Lemma 3.2.8(ii), hence S
w

L/K ⊆ ψ−1(SwL/K) and char(S
w

L/K) ⊆ P . How-

ever, K is P-closed and hence L/K is P-tame by Lemma 3.2.5. This proves that

char(S
w

L/K) ∩ P = ∅ and we obtain that S
w

L/K = ∅.

Given a point x ∈ S provide L and its subfields with the corresponding valuation.
Since L = LK is tame overK, there exists a finite subextensionKx/K ofK/K such

that Lx = LKx is tame overKx. The tame locus ValtLx/Kx
is open by Lemma 3.2.10,

hence its preimage in ValL is an open neighborhood of x. By the quasi-compactness

of S there exist finitely many points x1, . . . ,xn such that S ⊆ ∪ni=1ψ
−1

L/Li

(ValtLi/Ki
),

where we set Li = Lxi and Ki = Kxi . Let K ′ be the composite of K1, . . . ,Kn and

set L′ = LK ′ and S′ = ψ−1
L′/L(S). By Lemma 3.2.8(ii), ψ−1

L′/Li
(ValtLi/Ki

) ⊆ ValtL′/K′
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and hence S ⊆ ψ−1

L/L′
(ValtL′/K′). Therefore S′ = ψL/L′(S) lies in ValtL′/K′ , that is,

L′/K ′ is S′-tame. �

3.3. Tame distillation for alterations.

3.3.1. Galois alterations. Following de Jong we say that an alteration f : Y → X
is Galois if Y G → X is generically radicial, where G = AutX(Y ). This hap-
pens if and only if k(Y )/k(X) factors into a composition of a purely insepara-
ble extension K/k(X) and a Galois extension k(Y )/K such that the inclusion
AutX(Y ) →֒ Gk(Y )/K is an equality. If, in addition, f is generically étale then
we call it a separable Galois alteration.

3.3.2. Tame actions. Assume that a finite group G acts on a scheme X . For any
point x ∈ X let Gx denote the stabilizer of x, i.e. the group of elements g ∈ G that
preserve x and act trivially on k(x). Recall that the action is tame if for each x the
order of Gx is invertible in k(x).

3.3.3. Tame Galois alterations. In the sequel, by a Galois covering we mean a
finite separable Galois alteration. A separable Galois alteration (resp. a Galois
covering) f : Y → X is called tame if the action of AutX(Y ) on Y is tame. In the
following lemma, given an integral scheme X and a finite field extension K/k(X),
by NorK(X) we denote the normalization of X in K, that is, if X is covered by
open subschemes Spec(Ai) then NorK(X) is glued from the spectra of the integral
closures of Ai in K.

Lemma 3.3.4. Assume that X is a noetherian universally Japanese integral scheme
and L/k(X) is an X-tame Galois field extension. Then there exists a modification
X ′ → X such that Y ′ = NorL(X

′) → X ′ is a tame Galois covering.

Proof. Set G = GL/k(X). Let {Xi} be the family of all modifications of X and set
Yi = NorL(Xi). Note that each Yi → Xi is a G-Galois covering and let Ti be the
set of points of Yi at which the action of G is not tame. If Xj → X factors through
Xi then the induced morphism Yj → Yi is G-equivariant, and hence Tj is contained
in the preimage of Ti.

We claim that Ti is closed. Since Yi can be covered by separated (even affine)
G-equivariant open subschemes, the preimages of the elements of an open affine
covering of Xi, it suffices to consider the case when Yi is separated. For a subgroup
H ⊆ G let Y Hi denote the subscheme of points fixed by H . It is the intersection of
all graphs of translations h : Yi → Yi with h ∈ H , hence a closed subscheme of Yi.
For a prime p let Yi(p) be the fiber of Yi over (p) ∈ Spec(Z). Then Ti is the union
of closed subschemes Y Hi ∩ Yi(p), where H ⊆ G is a subgroup and p is a prime
dividing |H |. There are finitely many such pairs (H, p), hence Ti is closed.

We will show by a contradiction that there exists Y ′ = Yj such that Tj = ∅, as
required. So, assume that no such Yj exists. If Y = NorL(X) then the preimage of
each Tj is a non-empty closed subset of RZL(Y ), and by the quasi-compactness of
the latter there exists a point y ∈ RZL(Y ) such that for each j the center yj ∈ Yj of y
lies in Tj . Since G is finite, the groups Gj = Gyj stabilize and we set G′ = limj Gyj .
By our assumption, p = char(k(yj)) divides the order of G′.

The group G′ acts on Oy = colimjOyj . The extension L/k(X) is X-tame, in
particular, it is y-tame. Thus, the action of G′ on Spec(Oy) is tame and hence
the order of Gy is invertible in the residue field k(y) of Oy, where Gy denotes the
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subgroup of G′ that acts trivially on k(y). But k(y) = colimjk(yj), and hence
Gy = G′ has order divisible by p. The contradiction shows that already the action
on some Yj is tame. �

3.3.5. The distillation theorem. For an alteration f : Y → X let PwY/X denote the

wild primes set of Valk(Y )(X)′ with respect to k(X). In particular, PwY/X lies in

char(X) and its elements are bounded by the degree of f .

Theorem 3.3.6. Assume that X is a noetherian universally Japanese integral
scheme and Y → X is an alteration, and set P = PwY/X . Then there exists an

alteration Y ′ → Y such that the composed alteration Y ′ → X factors into a com-
position of a tame Galois covering Y ′ → X ′ and a P-alteration X ′ → X.

Proof. Set K = k(X) and L = k(Y ). It is classical that for a fine enough mod-
ification X1 → X one has that Y1 = NorL(X1) is a modification of Y . For ex-
ample, by the flattening theorem [RG71, Théorème 5.7.9], there exists a blow up
X1 → X such that the strict transform Y st → X1 of Y → X is flat. Thus, Y st is
a modification of Y which is a flat alteration of X1, hence Y

st → X1 is finite and
Y1 := NorL(X1) = Nor(Y st) is a modification of Y . So, replacing X and Y with
their modifications X1 and Y1 we can assume that Y = NorL(X).

By Theorem 3.2.12 there exists a finite extension L′/L and a field tower L′/K ′/K
such that L′/K ′ is X-tame and K ′/K is a P-extension. Let L′′ be the Galois
closure of L′/K ′. By Lemma 3.3.7 below, L′′/K ′ is X-tame hence replacing L′

by L′′ we can also achieve that L′/K ′ is Galois. Since L′/K ′ is NorK′(X)-tame,
Lemma 3.3.4 implies that there exists a modification X ′ → NorK′(X) such that
Y ′ = NorL′(X ′) → X ′ is a tame Galois covering. It remains to note that Y ′ → X
factors through Y = NorL(X) and hence Y ′ → X ′ → X satisfy all assertions of the
theorem. �

It remains to pay off our debt.

Lemma 3.3.7. Let L/K be a finite separable field extension with Galois closure
L′/K. Let T ⊆ ValK be a subset and set S = ψ−1

L/K(T ) and S′ = ψ−1
L′/K(T ). Then

L/K is S-tame if and only if L′/K is S′-tame.

Proof. The direct implication is obvious, so let us prove the inverse one. Let
L1, . . . ,Ln denote the subfields of L′ that are K-isomorphic to L. Provide L′ with
a valuation of S′. The induced valuation on K lies in T , hence the induced valu-
ations on Li lie in S′ with respect to any choice of a K-isomorphism Li = L. In
particular, each extension Li/K is tame and since L is the composite of L1, . . . ,Ln,
the extension L/K is tame too. �

4. char(X)-altered desingularization

4.1. Terminology.

4.1.1. Maximal domination. Assume that S is a noetherian scheme and let η1, . . . ,ηn
be the generic points of the irreducible components of S. We call ηS =

∐
i ηi =

Spec(
∏
i k(ηi)) the scheme of generic points of S. A morphism of noetherian

schemes X → S is called maximally dominating if it takes ηX to ηS . This happens
if and only if the generic fiber X ×S ηS is dense in X .
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4.1.2. Alterations. A morphism X → S is called an alteration if it is proper, sur-
jective, maximally dominating, and generically finite. For example, if S is qe and
X is the normalization of the reduction of S then X → S is an alteration in our
sense.

Remark 4.1.3. We consider alterations of general schemes for the sake of formu-
lating resolution results in maximal generality. However, the core case is when a
morphism X → S we want to resolve is between integral schemes, and the general
case reduces to this easily.

4.1.4. Universal P-resolvability. Let X be a noetherian scheme and let P be a set
of primes. Assume that for any alteration Y → X and a nowhere dense closed
subset Z ⊂ Y there exists a P-alteration f : Y ′ → Y such that Y ′ is regular and
Z ′ = f−1(Z) is an snc divisor. Then we say that X is universally P-resolvable. If,
in addition, f can be chosen separable then we say that X is universally separably
P-resolvable.

4.2. Resolution of relative curves. In [IT14b, 3.1.6] a finite type morphism
Y → X was called pseudo-projective if it is a composition of a local isomorphism
Y → X and a projective morphism X → X . This is a technical notion needed
to deal with non-separated morphisms, while for separated morphisms pseudo-
projectivity is equivalent to quasi-projectivity. The reader that is only interested
in the separated case can assume in the sequel that f : Y → X is separated and
replace “pseudo-projective” with “quasi-projective”.

Theorem 4.2.1. Let S be a noetherian qe scheme with scheme of generic points η,
let f : X → S be a maximally dominating morphism of finite type, and let Z ⊂ X
be a nowhere dense closed subset. Assume that S is universally P-resolvable (resp.
universally separably P-resolvable) for a set of primes P such that char(X) ⊆ P,
and assume that Xη = X ×S η is a smooth curve over η and Zη = Z ×S η is
étale over η. Then there exist a projective P-alteration (resp. a separable projective
P-alteration) a : S′ → S, a projective modification b : X ′ → (X ×S S′)pr, where
(X ×S S′)pr is the proper transform of X,

X ′ b
//

f ′

**❱❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱ (X ×S S
′)pr

�

�

// X ×S S
′

��

// X

f

��

S′ a
// S

and divisors W ′ ⊂ S′ and Z ′ ⊂ X ′ such that S′ and X ′ are regular, W ′ and Z ′

are snc, the morphism f ′ : X ′ → S′ is pseudo-projective, (X ′, Z ′) → (S′,W ′) is log
smooth, and Z ′ = c−1(Z) ∪ f ′−1(W ′), where c denotes the alteration X ′ → X.

Proof. The particular case of the theorem when P = {l}′ is [IT14b, Theorem 3.4],
and our proof is very close to the proof of [IT14b, Theorem 3.4]. In fact, all argu-
ments apply verbatim to our case once one replaces l′-alterations with P-alterations,
with the only exception being in step 4. So we only repeat the main line of the
proof in [IT14b, Theorem 3.4] and present the modified step 4 with all details.

Step 0. As in the beginning of the proof of [IT14b, Theorem 3.4], we split Z into
the union of the horizontal part Zh, which is the closure of Zη, and the remaining
part Zv, called vertical. Also, as in that proof one notes that if S1 → S is a
(resp. separable) projective P-alteration and b1 : X1 → (X ×S S1)

pr is a projective
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modification, then it suffices to prove the theorem for f1 : X1 → S1 and the preimage
Z1 ⊂ X1 of Z. Thus, in such situation we can replace f by f1. In particular, we
can replace S by the reduction of its normalization. Furthermore, we can work
separately over each connected component of S. Thus, we can assume that S is
integral, similarly to [IT14b, Theorem 3.4].

Steps 1–2 of [IT14b, Theorem 3.4] extend verbatim to our situation, and reduce
the general case to the following one: f is flat quasi-projective and Zh → S is flat.
Then step 3 produces a diagram

X

f
##❋

❋

❋

❋

❋

❋

❋

❋

❋

❋

// X ×S S

��

// X

f

��

S
a

// S

where S is normal, a is a separable alteration, X → X ×S S is a projective mod-
ification and (X,Zh) is a semistable multipointed S-curve, where Zh ⊂ X is the
horizontal part of the preimage Z of Z.

Step 4. We can assume that a is a tame G-Galois covering. First, we note that
semistability is preserved by base changes, hence we can enlarge a in the sense that

we can replace it by any separable alteration S
′
→ S that factors through S. By

Theorem 3.3.6, enlarging a we can achieve that it factors into a composition of a
tame Galois covering S → S′ and a P-alteration a : S′ → S. By step 0 we can
replace S and X by S′ and X ′ = X ×S S′ and then a is as required.

The rest is almost the same as in [IT14b, Theorem 3.4]. By step 5, the action
of G = AutS(S) canonically lifts from X ×S S to X . By step 6, the action on X is

inertia specializing. The latter very mild condition means that if y ∈ X specializes
x ∈ X then Gx ⊆ Gy, and it is automatically satisfied whenever X is covered
by G-equivariant separated open subschemes, see [IT14b, 3.1.2–3.1.4]. Step 7 of
loc.cit. is redundant as a is finite by step 4. As in step 8, we choose a closed subset
W ( S such that a is étale over S \W , f(Zv) ⊂ W := a−1(W ), and f : X → S
is smooth over S \W . As in step 9, we apply our assumption on resolvability of
S to reduce to the case when S is regular and W is snc. Then, as in step 10,
(S,W ) → (S,W ) is a Kummer étale morphism of log regular log schemes, and
hence the composition (X,T ) → (S,W ) → (S,W ) is log regular. The group G acts
tamely on (X,T ) and trivially on (S,W ), hence Gabber’s modification theorem
[IT14b, Theorem 3.1.5] applies and produces a modification (X ′, T ′) of (X,T )/G
such that (X ′, T ′) → (X,S) is log smooth. It remains to replace (X ′, T ′) by a log

scheme obtained by applying the monoidal desingularization functor F̃ log of [IT14a,
3.4.9]. �

4.3. The main theorem. Now we are in a position to prove the main desingular-
ization result of the paper.

Theorem 4.3.1. Let f : X → S be a maximally dominating morphism of finite
type between noetherian qe schemes, let Z ⊂ X be a nowhere dense closed subset,
and assume that S is universally P-resolvable for a set of primes P such that
char(S) ⊆ P. Then,

(i) X is universally P-resolvable.
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(ii) There exist projective P-alterations a : S′ → S and b : X ′ → X with regular
sources, a pseudo-projective morphism f ′ : X ′ → S′ compatible with f

X ′

f ′

��

b
// X

f

��

S′ a
// S

and snc divisors W ′ ⊂ S′ and Z ′ ⊂ X ′ such that Z ′ = b−1(Z) ∪ f ′−1(W ′) and the
morphism (X ′, Z ′) → (S′,W ′) is log smooth.

(iii) If S = Spec(k), where k is a perfect field, then one can achieve in addition
to (ii) that a is an isomorphism and the alteration b is separable. In particular, X
is universally separably P-resolvable in this case.

Proof. The theorem generalizes [IT14b, Theorem 3.5] from the case when P = {l}′.
The proof in our case copies the proof of [IT14b, Theorem 3.5] with the only
difference that l′ is replaced by P and the reference to [IT14b, Theorem 3.4] in step
6 of the proof is replaced by the reference to Theorem 4.2.1. These modifications
are absolutely straightforward, so we illustrate them with a single example: in step
4 one should consider an infinite P-extension k/k of a finite field k instead of an
l′-extension. This is always possible since P contains char(k) and hence is not
empty. �

4.3.2. Absolute char(X)-altered desingularization. In order to practically use The-
orem 4.3.1 one should start with a class of resolvable schemes. Currently, the best
known result for schemes S with a non-empty char(S) is desingularization of qe
threefolds due to Cossart and Piltant, see [CP14]. So, assume that X admits a
morphism of finite type f : X → S such that S is qe and of dimension at most 3.
We can assume that f is dominant, and then the set char(S)\ char(X) is finite. So,
replacing S by its open subscheme containing the image of X we can assume that
char(X) = char(S). Since, S is universally resolvable by [CP14], Theorem 4.3.1(i)
implies that X is universally char(X)-resolvable. This proves the first claim of
Theorem 1.2.5, while the second claim follows from Theorem 4.3.1(iii).

4.3.3. Desingularization of morphisms. Once we know that any scheme S of finite
type over a qe threefold is universally char(S)-resolvable, Theorem 4.3.1(ii) implies
Theorem 1.2.9 from the Introduction.

Remark 4.3.4. One can slightly strengthen the assertion of Theorem 1.2.9 by
requiring that X ′ is a char(X)-alteration of a subscheme of X ×S S′ (rather than a
char(S)-alteration). We only outline the main idea, ignoring divisors for simplicity.
Factor X through an open subscheme S0 ⊆ S such that char(X) = char(S0) and
apply Theorem 1.2.9 to resolve X → S0 by X ′′ → S′′

0 . This only involves char(X)-
alterations. Then use the assumption on S to find a char(S)-alteration S′

0 → S0 that
factors through S′′

0 and embeds into an alteration S′ → S such that S′ is regular.
Finally, replaceX ′ withX ′′×S′′

0
S′
0 and apply the monoidal desingularization functor

F̃ log of [IT14a, 3.4.9].
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