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Abstract. In this paper we study relative RiemannZariski spaces associated
to a morphism of schemes and generalizing the classical RiemannZariski space

of a field. We prove that similarly to the classical RZ spaces, the relative ones

can be described either as projective limits of schemes in the category of locally
ringed spaces or as certain spaces of valuations. We apply these spaces to prove

the following two new results: a strong version of stable modification theorem
for relative curves; a decomposition theorem which asserts that any separated

morphism between quasi-compact and quasi-separated schemes factors as a

composition of an affine morphism and a proper morphism. In particular, we
obtain a new proof of Nagatas compactification theorem.

1. Introduction

Let K/k be a finitely generated field extension. In the first half of the 20-th
century, Zariski defined a Riemann variety RZK(k) as the projective limit of all
projective k-models of K. Zariski showed that this topological space, which is now
called a Riemann-Zariski (or Zariski-Riemann) space, possesses the following set-
theoretic description: to give a point x ∈ RZK is equivalent to give a valuation
ring Ox with fraction field K and such that k ⊂ Ox. The Riemann-Zariski space
possesses a sheaf of rings O whose stalks are valuation rings of K as above. Zariski
made extensive use of these spaces in his desingularization works.

Let S be a scheme and U be a subset closed under generalizations, for exam-
ple U = Sreg is the regular locus of S, or U = η is a maximal point of S. In
many birational problems one wants to consider only U -modifications S′ → S, i.e.
modifications which do not modify U . Then it is natural to consider the projec-
tive limit S = RZU (S) of all U -modifications of S. It was remarked in [Tem2,
§3.3] that working with such relative Riemann-Zariski spaces one can extend the
P -modification results of [Tem2] to the case of general U and S, and this plan is
realized in §2. In §2.2 we give a preliminary description of the space S, which is
used in §2.3 to prove the first main result of the paper, the stable modification
theorem 2.3.3 generalizing its analog from [Tem2]. Our improvement to the stable
modification theorem [Tem2, 1.5] is in the control on the base change one has to
perform in order to construct a stable modification of a relative curve C → S.
Namely, we prove that in order to find a stable modification of a relative curve
with semi-stable U -fibers it suffices to replace the base S with a U -étale covering.

I want to express my deep gratitude to B. Conrad for pointing out various gaps and mistakes
in an earlier version of the article and to thank R. Huber for a useful discussion. Also I thank
D. Rydh and the referee for pointing out some mistakes in §2.3. A first version of the article was

written during my stay at the Max Planck Institute for Mathematics at Bonn. The final revision
was made when the author was staying at IAS and supported by NFS grant DMS-0635607.
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Although a very rough study of relative RZ spaces suffices for the proof of The-
orem 2.3.3, it seems natural to investigate these spaces deeper. Furthermore, the
definition of relative Riemann-Zariski spaces can be naturally generalized to the
case of an arbitrary morphism f : Y → X, and the case when f is a dominant
point was already applied in [Tem1]. So, it is natural to investigate the relative RZ
spaces associated to a morphism f : Y → X. We will see that under a very mild
assumption that f is a separated morphism between quasi-compact quasi-separated
schemes, one obtains a very specific description of the space RZY (X) which is sim-
ilar to the classical case of RZK(k). Let us say that f is decomposable if it factors
into a composition of an affine morphism Y → Z and a proper morphism Z → X.
Actually, in §2.2 we study RZY (X) in the case of a general decomposable mor-
phism because this case is not essentially easier than the case of an open immersion
Y ↪→ X. We define a set ValY (X) whose points are certain X-valuations of Y ,
and construct a surjection ψ : ValY (X)→ RZY (X). It will require some additional
work to prove in Corollary 3.4.7 that ψ is actually a bijection (and even a homeo-
morphism with respect to natural topologies defined in the paper). Now, a natural
question to ask is if the decomposition assumption is essential. Slightly surprisingly,
the answer is negative because the assumption is actually empty. A second main
result of this paper is decomposition theorem 1.1.3 which states that a morphism
of quasi-compact quasi-separated schemes is decomposable if and only if it is sep-
arated. Thus, the description of relative RZ spaces obtained in the decomposable
case is actually the general one.

We give two proofs of the decomposition theorem in this paper. The first proof
is based on Nagata compactification and Thomason approximation theorems. Ac-
tually, we prove in §1.1 that the decomposition theorem is essentially equivalent to
the union of these two theorems. This accomplishes the first proof. On the other
hand, it turns out that a deeper study of relative RZ spaces leads to an independent
proof of the decomposition theorem as explained in §3.5. In particular, we obtain
new proofs of Nagata’s and Thomason’s theorems. Though there are few known
proofs of Nagata’s theorem, see [Con] and [Lüt], the author expects that the new
proof might be better suited for applying to algebraic spaces and (perhaps) certain
classes of stacks (joint project with I. Tyomkin).

Let us describe briefly the structure of the paper. In §1.1 we prove a slight
generalization of Thomason’s theorem and show that the decomposition theorem
is essentially equivalent to the union of Nagata’s and Thomason’s theorems. In
§2 we start our study of relative RZ spaces and apply them to the strong stable
modification theorem. Then, §3 is devoted to further study of the relative RZ
spaces. In §3.1 we establish an interesting connection between Riemann-Zariski
spaces and adic spaces of R. Huber; in particular, we obtain an intrinsic topology on
ValY (X). However, it turns out that the notion of an open subdomain in the spaces
ValY (X) is much finer than its analog in the adic spaces. It requires some work
to prove in Theorem 3.3.4 that open subdomains of the form ValSpec(B)(Spec(A))
form a basis for the topology of ValY (X). In §3.4 we study Y -blow ups of X, which
are analogs of U -admissible or formal blow ups from Raynaud’s theory, see [BL].
As a corollary, we prove that ψ : ValY (X) → RZY (X) is a homeomorphism in
the decomposable case. Finally, we prove in Theorem 3.5.1 that any open quasi-
compact subset of ValY (X) admits a scheme model of the form ValY (X) with Y
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being X-affine. This result implies the decomposition theorem, and, therefore, leads
to a new proof of Nagata’s theorem.

I want to mention that I was motivated by Raynaud’s theory in my study of
Riemann-Zariski spaces in the decomposable case, and some basic ideas are taken
from [BL]. I give a simple illustration of those ideas in the proof of the generalized
Thomason’s theorem.

When this paper was almost finished I was informed about a recent paper [FK]
by Fujiwara and Kato, which contains a survey on a theory of generalized Riemann-
Zariski spaces they are developing. The survey announces many interesting results,
including Nagata compactification for algebraic spaces. It is clear that there is a
certain overlap between that theory and the present paper which can be rather
large, though it is difficult to make any conclusion on this subject until the actual
proofs are published. The generalized RZ spaces mentioned in [FK] are exactly the
relative RZ spaces of open immersions Y ↪→ X (the same case which is used in the
proof of the stable modification theorem).

Finally, let us discuss the most recent progress that was made during the last
year. Nagata compactification for algebraic spaces was proved independently by
Conrad-Lieblich-Olsson in [CLO] (implementing Gabber’s approach) and D. Rydh
in [Rydh]. In both cases one reduces this to the scheme case rather than proving it
from scratch. It should also be noted in this context that important particular cases
of the latter theorem (when the algebraic spaces are normal or when the target is
a field) were proved much earlier by Raoult, see [R1] and [R2].

1.1. On noetherian approximation and Nagata compactification. For short-
ness, a filtered projective family of schemes with affine transition morphisms will
be called affine filtered family. Also, we abbreviate the words ”quasi-compact and
quasi-separated” by the single ”word” qcqs. In [TT, C.9], Thomason proved a very
useful approximation theorem, which states that any qcqs scheme Y over a ring Λ
is isomorphic to a scheme proj limYα, where {Yα}α is an affine filtered family of
Λ-schemes of finite presentation. Due to the following lemma, this theorem may be
reformulated in a more laconic way as follows: Y is affine over a Λ-scheme Y0 of
finite presentation.

Lemma 1.1.1. A morphism of qcqs schemes f : Y → X is affine if and only
if Y →̃proj limYα, where {Yα}α is a filtered family of X-affine finitely presented
X-schemes.

Proof. If Y →̃proj limYα is as in the lemma then Yα = Spec(Eα) for an OX -algebra
Eα, hence Y = Spec(E) where E = inj lim Eα. Conversely, suppose that f is affine.
By [EGA I, 6.9.16(iii]), f∗(OY )→̃ inj lim Eα, where {Eα} is a filtered family of finitely
presented OX -algebras. Hence Y = proj lim Spec(Eα). �

We generalize Thomason’s theorem below. As a by-product, we obtain a simpli-
fied proof of the original theorem.

Theorem 1.1.2. Let f : Y → X be a (separated) morphism of qcqs schemes.
Then f can be factored into a composition of an affine morphism Y → Z and a
(separated) morphism Z → X of finite presentation.

Proof. Step 1. Preliminary work. First we observe that if f is separated and
Y → Z → X is a factorization as in the theorem, then Y is the projective limit of
schemes Yα which are affine over Z and of finite presentation. By [TT, C.7], already
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some Yα is separated over X, hence replacing Z with Yα, we achieve a factorization
with X-separated Z. This allows us to deal only with the general (not necessarily
separated) case in the sequel.

If Y is affine and f(Y ) is contained in an open affine subscheme X ′ ⊂ X then the
claim is obvious. So, Y admits a finite covering by open qcqs subschemes Y1, . . . , Yn
such that the induced morphisms Yi → X satisfy the conclusion of the theorem. It
suffices to prove that one can decrease the natural number n until it becomes 1, and,
obviously, it suffices to deal only with the case of n = 2. Then the schemes U := Y1
and V := Y2 can be represented as U = proj limUβ and V = proj limVγ , where the
limits are taken over X-affine filtered families of X-schemes of finite presentation.

Step 2. Affine domination. By [EGA, IV3, 8.2.11], for β ≥ β0 and γ ≥ γ0, the
schemes Uβ and Vγ contain open subschemes U ′β and V ′γ , whose preimages in U

and V coincide with W := U ∩ V . By [EGA, IV3, 8.13.1], the morphism W → U ′β0

factors through V ′γ for sufficiently large γ. Replace γ0 by γ. By the same reason, the
morphism W → V ′γ0 factors through some U ′β and the morphism W → U ′β factors

through some V ′γ . Let us denote the corresponding morphisms as fγ,β : V ′γ → U ′β ,
fβ,γ0 and fγ0,β0

. Now comes an obvious but critical argument: fβ,γ0 is separated
because the composition fγ0,β0◦fβ,γ0 : U ′β → U ′β0

is separated (and even affine); fγ,β
is affine because its composition with the separated morphism fβ,γ0 is affine. We
gather the already defined objects in the left diagram below. Note that everything
is defined over X, the horizontal arrows are open immersions, the vertical arrows
are affine morphisms and the indexed schemes are of finite X-presentation.

V

��

W

φ′

��

? _oo � � // U

h

��

V

��

W

φ′

��

? _oo � � // U

φ

��
Vγ V ′γ

��

? _oo Vγ V ′γ

fγ,β

��

? _oo � � // Uγ

��
U ′β
� � // Uβ U ′β

� � // Uβ

Step 3. Affine extension. The main task of this step is to produce the right
diagram from the left one. It follows from the previous stage that V ′γ = Spec(E ′),
where E ′ is a finitely presented OU ′

β
-algebra. The morphism φ′ : W → V ′γ to

a U ′β-affine scheme corresponds to a homomorphism ϕ′ : E ′ → h′∗(OW ), where

h′ : W → U ′β is the projection. Obviously h∗(OU )|U ′
β
→̃h′∗(OW ), where h : U → Uβ

is the projection. Hence we can apply [EGA I, 6.9.10.1], to find a finitely presented
OUβ -algebra E and a homomorphism ϕ : E → h∗(OU ) such that E|U ′

β
→̃E ′ and the

restriction of ϕ to U ′β is ϕ′. Set Uγ = Spec(E), then Uγ → Uβ is an affine morphism

whose restriction over U ′β is fγ,β , and ϕ induces a morphism φ : U → Uγ . Finally,

we glue Uγ and Vγ along V ′γ obtaining a finitely presented X-scheme Z, and notice
that the affine morphisms U → Uγ and V → Vγ glue to an affine morphism Y → Z
over X. �

Our proof is a simple analog of Raynaud’s theory. Thomason used the first two
steps (induction argument in the proof of Theorem C.9 and Lemma C.6). Our
simplification of his proof is due to the third step. The same arguments are used in
Raynaud’s theory, see the end of the proof of [BL, 4.1(d)] and [BL, 2.6(a)]. In our
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paper, they also appear in the proofs of Lemmas 3.4.2(i) and 3.4.4, and Theorem
3.5.1.

Next, we recall Nagata compactification theorem, see [Nag]. A scheme theoretic
proof of the theorem can be found in [Con] or [Lüt]. Recall that a morphism
f : Y → X is called compactifiable if it can be factored as a composition of an open
immersion g : Y → Z and a proper morphism h : Z → X. Nagata proved that a
finite type morphism f : Y → X of qcqs schemes is compactifiable if and only if
it is separated. Actually, Nagata considered noetherian schemes, and the general
case was proved by B. Conrad in [Con].

Assume that f is factored as above. Let I ⊂ OZ be an ideal with support Z \Y
and let Z ′ be the blow up of Z along I. We can choose a finitely generated I because
the morphism Y ↪→ Z is quasi-compact. The open immersion g′ : Y → Z ′ is affine
because Z ′ \ Y is a locally principal divisor. It follows that g is a composition of
an affine morphism g′ of finite type and a proper morphism Z ′ → X. Conversely,
assume that g : Y → Z is affine of finite type and Z → X is proper. Then
Y is quasi-projective over Z, hence there exists an open immersion of finite type
Y ↪→ Y with Z-projective and, therefore, X-proper Y . Thus, Nagata’s theorem
can be reformulated as follows: a finite type morphism is separated if and only if
it can be represented as a composition of an affine morphism of finite type and a
proper morphism. Now, one sees that a weak form of Theorem 1.1.2 (f is separated
and Z → X is of finite type) and Nagata’s theorem are together equivalent to the
following decomposition theorem, which will be also proved in §3.5 by a different
method.

Theorem 1.1.3. A morphism f : Y → X of quasi-compact quasi-separated schemes
is separated if and only if it can be factored as a composition of an affine morphism
Y → Z and a proper morphism Z → X.

2. Preliminary description of relative RZ spaces and applications

Throughout §2, f : Y → X denotes a separated morphism between qcqs schemes.

2.1. Valuations and projective limits. We are going to recall some notions
introduced in [Tem2, §3.3]. Consider a factorization of f into a composition of a
schematically dominant morphism fi : Y → Xi and a proper morphism gi : Xi →
X. We call the pair (fi, gi) a Y -modification of X, and usually it will be denoted
simply as Xi. Given two Y -modifications of X, we say that Xj dominates or refines
Xi, if there exists an X-morphism gji : Xj → Xi compatible with fi, fj , gi and gj .
A standard graph argument shows that if gji exists then it is unique (one uses only
that fj is schematically dominant and Xi is X-separated). The family {Xi}i∈I
of all Y -modifications of X is filtered because any two Y -modifications Xi, Xj are
dominated by the scheme-theoretic image of Y in Xi ×X Xj , and it has an initial
object corresponding to the schematic image of Y in X

A relative Riemann-Zariski space X = RZY (X) is defined as the projective limit
of the underlying topological spaces of Y -modifications of X. Note that if X is
integral and Y is its generic point then one recovers the classical Riemann-Zariski
spaces. A slightly more general case, when Y is a dominant point, was considered
in [Tem1, §1]. Let πi : X → Xi be the projections and η : Y → X be the map
induced by fi’s. We provide X with the sheaf MX = η∗(OY ), which will be called
the sheaf of meromorphic functions, and with the sheaf OX = inj limπ−1i (OXi),
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which will be called the sheaf of regular functions. The natural homomorphisms
αi : π−1i (OXi) →MX induce a homomorphism α : OX →MX, and we will prove
later that η is injective and α is a monomorphism. Actually, we will give in Corollary
3.5.2 a rather precise meaning to a claim that MX is a sheaf of semi-fractions of
the sheaf OX.

Remark 2.1.1. For any filtered projective family of locally ringed spaces {Yj}j∈J
the projective limit Y = proj limj∈J Yi always exists and satisfies |Y| := proj lim |Yj |
and OY = inj limπ−1j OYj where πj : Y → Yj ’s are the projections. Assume now
that Yj ’s are schemes. Then Y is known to be a scheme when the transition mor-
phisms are affine: this situation is studied very extensively in [EGA, IV3, §8] and
the obtained results have a plenty of various very important applications. Although
Y does not have to be a scheme in general, it is a locally ringed space of a rather
special form which deserves a study. Our relative RZ spaces (X,OX) provide a nice
example of such pro-schemes (while MX corresponds to an extra-structure related
to Y ), and we will later obtain a very detailed description of these spaces (e.g. we
will describe the stalks of OX). Another interesting example of a pro-scheme which
is not a scheme but has a very nice realization is as follows: let X be a scheme with
a subset U closed with respect to generalization, then (U,OX |U ) is the projective
limit of all open neighborhoods of U . Note that this locally ringed space does not
have to be a scheme: for example, take U to be the set of all non-closed points on
an algebraic surface X.

The classical absolute RZ spaces viewed either as topological spaces or, more gen-
erally, as locally ringed spaces admit two alternative descriptions: (a) a projective
limit of schemes, (b) a space whose points are valuations. We defined the relative
spaces RZY (X) using projective limits, but they also admit a ”valuative” descrip-
tion as spaces ValY (X). In §2 we only introduce the sets ValY (X) and establish
a certain connection between RZY (X) and ValY (X) which suffices for application
to the stable modification theorem 2.3.3. Throughout this paper by a valuation
on a ring B we mean a commutative ordered group Γ with a multiplicative map
| | : B → Γ ∪ {0} which satisfies the strong triangle inequality and sends 1 to 1.
Recall that if B is a field then R = {x ∈ B| |x| ≤ 1} is a valuation ring of B (i.e.
Frac(R) = B) which defines | | up to an equivalence. In general, a valuation is
defined up to an equivalence by its kernel p, which is a prime ideal, and by the
induced valuation on the residue field Frac(B/p). By slight abuse of language, the
point of Spec(B) given by p will be also called the kernel of | |. Also, we will often
identify equivalent valuations.

Remark 2.1.2. We follow R. Huber by using the notion of a valuation. Since
these valuations may have a non-empty kernel, a reasonable alternative, however,
would be the notion of a semivaluation. Note also that in the literature on abstract
algebra this object is often called Manis valuation.

Now, let ValY (X) be the set of triples y = (y,R, φ), where y ∈ Y is a point, R is
a valuation ring of k(y) (in particular Frac(R) = k(y)) and φ : S = Spec(R) → X
is a morphism compatible with y = Spec(k(y)) → Y and such that the induced
morphism y → S ×X Y is a closed immersion. Let Oy denote the preimage of R
in OY,y (currently, it is just a ring attached to y). We would like to axiomatize
the properties of Oy as follows. By a semi-valuation ring we mean a ring O with
a valuation | | such that any zero divisor of O lies in the kernel m = Ker(| |) and
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for any pair g, h ∈ O with |g| ≤ |h| 6= 0 one has that h|g. Two structures of a
semi-valuation ring on O are equivalent if their valuations are equivalent.

Note that O embeds into A = Om by our assumption on zero divisors, mA = m
because the prime ideal m is (O \m)-divisible, and R = O/m is the valuation ring
of A/m corresponding to the valuation induced by | |. Therefore, O is composed
from the local ring A and the valuation ring R ⊂ A/m in the sense that O is the
preimage of R in A. We say that A is a semi-fraction ring of O. Conversely, any
ring composed from a local ring and a valuation ring is easily seen to be a semi-
valuation ring. Semi-valuation rings play the same role in the theory of relative RZ
spaces as valuation rings do in the theory of usual RZ spaces.

Remark 2.1.3. (i) The structure of a semi-valuation ring on an abstract local ring
O is uniquely defined (up to an equivalence) by its kernel m because O/m is a
valuation ring and hence defines the valuation. Since A = Om we obtain that the
semi-valuation ring structure on O is uniquely defined by its embedding into the
semi-fraction ring A.

(ii) An abstract ring O can admit many semi-valuation ring structures. For
example, if O is a valuation ring then any its localization (i.e. a larger valuation
ring in its field of fractions) can serve as its semi-fraction ring.

Here is a generalization of the classical criterion that an integral domain O is a
valuation ring if and only if for any pair of elements f, g ∈ O either f |g or g|f .

Lemma 2.1.4. Let O ⊂ A be two rings. Then the following conditions are equiv-
alent:

(i) O admits a structure of a semi-valuation ring such that A is O-isomorphic
to the semi-fraction ring of O,

(ii) if f, g ∈ A are co-prime (i.e. fA+ gA = A) then either f ∈ gO or g ∈ fO.

Proof. We should only prove that (ii) implies (i), since the opposite implication is
obvious. We claim that A is a local ring. Indeed, if it is not local then A \ A× is
not an ideal, hence there exist non-invertible f, g with invertible f + g. But by our
assumption either f ∈ gA or g ∈ fA, hence f + g is contained in a proper ideal
equal to either fA or gA, that is an absurd. Let m ⊂ A be the maximal ideal, then
taking f ∈ m and g = 1 and observing that f does not divide 1 in O (and even
in A), we deduce that f ∈ O. Thus, we proved that m ⊂ O, in particular, O is
the preimage of the ring O/m ⊂ A/m under the surjection A → A/m. It remains

to show that O/m is a valuation ring of A/m. For a pair of elements f̃ , g̃ ∈ O/m
choose liftings f, g ∈ O. Since either f |g or g|f in O, it follows that either f̃ |g̃ of

g̃|f̃ . Hence O/m is a valuation ring, and we are done. �

2.2. RZ space of a decomposable morphism. Let y = (y,R, φ) be a point of
ValY (X) and let S = Spec(R). By the valuative criterion of properness, φ factors
uniquely through a morphism φi : Y → Xi for any Y -modification Xi → X. Since
S ×Xi Y is a closed subscheme of S ×X Y by X-separatedness of Xi, we obtain
that φi induces a closed immersion y → S ×Xi Y , and, in particular, (y,R, φi) is
an element of ValY (Xi). It follows that the natural map ValY (Xi)→ ValY (X) is a
bijection. So, RZY (X) and ValY (X) depend on X and Y only up to replacing X
with its Y -modification.

Now we will construct a map of sets ψ : ValY (X) → RZY (X). For any i ∈ I,
let xi ∈ Xi be the center of R on Xi, i.e. the image of the closed point of S under



8 MICHAEL TEMKIN

φi. Then the family of points (xi) defines a point x ∈ X and we obtain a map ψ as
above. For any i, xi is a specialization of fi(y), hence we obtain a homomorphism
OXi,xi → OXi,fi(y) → OY,y → k(y) whose image lies in R because xi is the center
of R on Xi. Therefore, the image of OXi,xi in OY,y lies in Oy, and we obtain a
natural homomorphism OX,x = inj limOXi,xi → Oy.

Proposition 2.2.1. Suppose that f is decomposable. Then any point x ∈ X pos-
sesses a preimage y = λ(x) in ValY (X) such that the homomorphism OX,x → Oy

is an isomorphism. In particular, λ is a section of ψ.

Actually, we will prove in §3 that ψ is a bijection (so λ is its inverse), but the
proposition as it is already covers our applications in §2.

Proof. Factor f into a composition of an affine morphism Y → Z and a proper
morphism Z → X. After replacing X with the scheme-theoretic image of Y in Z,
we can assume that f is affine. Note that then for any Y -modification Xi → X,
the morphism fi : Y → Xi is affine. Let xi be the image of x in Xi. Obviously,
the schemes Ui = Spec(OXi,xi) ×Xi Y are affine. In addition, on the level of sets
each Ui consists of points y ∈ Y such that xi is a specialization of fi(y), the
morphisms Ui → Y are topological embeddings and OY |Ui→̃OUi . Notice that the
schemes Ui = Spec(Bi) form a filtered family, hence U∞ := proj limUi = Spec(B∞),
where B∞ = inj limBi. By [EGA, IV3, §8], U∞ = ∩Ui set-theoretically. Since
fi : Y → Xi is schematically dominant and the latter property is preserved under
(possibly infinite) localizations on the base, the morphism Ui → Spec(OXi,xi) is
schematically dominant too. So, for each i ∈ I we have that OXi,xi ↪→ Bi, and
then an embedding of the direct limits OX,x ↪→ B∞ arises.

Lemma 2.2.2. Suppose that elements g, h ∈ B∞ do not have common zeros on
U∞. Then either g ∈ hOX,x or h ∈ gOX,x.

Proof. Find i such that g and h are defined and do not have common zeros on
Ui. Note that Ui = ∩f−1(Vj), where Vj runs over affine neighborhoods of xi.
Hence we can choose a neighborhood X ′i = Spec(A) of xi such that g, h ∈ B
and gB + hB = 1, where Y ′ = Spec(B) is the preimage of X ′i in Y . To ease
the notation we will write X and x instead of Xi and xi (we can freely replace
X with Xi because RZY (X) remains unchanged). Now, the pair (g, h) induces a

morphism α′ : Y ′ → P ′ := Proj(A[Tg, Th]), whose scheme-theoretic image X
′

is a

Y ′-modification of X ′. It would suffice to extend the Y ′-modification α′ : X
′ → X ′

to a Y -modification α : X → X. Indeed, either Tg ∈ ThOX′
,x′ or Th ∈ TgOX′

,x′ ,

where x′ ∈ X ′ is the image of x in X. So, existence of α would imply that g|h or
h|g already in the image of OX,x′ in B∞, which is by definition contained in OX,x.

It can be difficult to extend α′ (without applying Nagata compactification), but

fortunately we can replace X
′

with any its Y ′-modification X
′′

and it suffices to

extend X
′′ → X ′ to a Y -modification of X. Choose a, b such that ag + bh = 1.

Then there exists a natural morphism β′ : Y ′ → P ′′ := Proj(A[Tag, Tah, Tbg, Tbh])

which takes Y ′ to the affine chart on which Tag + Tbh is invertible. We define X
′′

to be the scheme-theoretic image of β′. Since β′ factors through Segre embedding

Proj(A[Tg, Th])× Proj(A[Ta, Tb]) ↪→ P ′′, we obtain that X
′′

is a closed subscheme

of the source which is mapped to X
′

by the projection onto the first factor. In
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particular, X
′′

is a Y ′-modification of X
′
. We will show that X

′′ → X ′ extends to
a Y -modification X → X.

Let E ⊂ B be the A-submodule generated by ag, ah, bg, bh and consider the
graded algebra AE := ⊕∞n=0E

n, where En is the n-th power of E in B and E0

is the image of A. Note that 1 ∈ E, and we will denote by 1E the associated
1-graded element of AE . Set P := Proj(AE) and observe that the affine chart
corresponding to 1E is P1 = Spec(∪∞n=0E

n) (where the union is taken inside of B).
Clearly, P is a closed subscheme in P ′′ and the morphism Y → P ′′ factors through

P1. In particular, X
′′

is the schematical image of Y → P , and the latter coincides
with the schematical closure of P1 because the morphism Y → P1 is schematically
dominant by injectivity of the homomorphism ∪∞n=0E

n → B. By [EGA I, 6.9.7], E
can be extended to a finitely generated OX -submodule E ⊂ f∗(OZ), and replacing
E by E + OX we achieve in addition that E contains the image of OX in f∗(OY ).
Let En be the n-th power of E in the sheaf of OX -algebras f∗(OY ) (so, E0 is the
image of OX) and form the graded OX -algebra AE := ⊕∞n=0En. Then exactly
the same computation as was used above shows that the schematical closure of
Spec(∪∞n=0En) in Proj(AE) is a Y -modification of X, which we denote X. Since

X → X obviously extends X
′′ → X ′, we are done. �

The above lemma combined with Lemma 2.1.4 provides OX,x with a semi-
valuation ring structure such that B∞ is its semi-fraction ring. In particular, B∞
is a local ring and so U∞ possesses a unique closed point y. Thus, B∞ = OY,y, its
subring OX,x contains my and R := OX,x/my is a valuation ring of k(y). Define
φ : S = Spec(R)→ X as the composition of the closed immersion S → Spec(OX,x)
with the natural morphism Spec(OX,x) → X. Since OX,x is composed from OY,y
and R, the triple y := (y,R, φ) is a candidate for being λ(x) and it only remains
to check that y → S ×X Y is a closed immersion (and so y is indeed an element of
ValY (X)).

For any i, Ui = Spec(OXi,xi)×Xi Y is a closed subscheme of Spec(OXi,xi)×X Y ,
hence U∞→̃proj limi∈I Ui is a closed subscheme of

Spec(OX,x)×X Y →̃proj lim
i∈I

Spec(OXi,xi)×X Y

Since y is closed in U∞, we obtain that the morphism y → Spec(OX,x) ×X Y is a
closed immersion. Hence the morphism from y to a closed subscheme S ×X Y of
Spec(OX,x)×X Y is a closed immersion too and we are done. �

2.3. Applications. A preliminary description of relative Riemann-Zariski spaces
obtained in the previous section, suffices for some applications. Assume we are
given a qcqs scheme S with a schematically dense quasi-compact subset U (i.e. any
neighborhood of U is schematically dense) which is closed under generalizations. An
S-scheme X is called U -admissible if the preimage of U in X is schematically dense.
By a U -étale covering we mean a separated finite type morphism φ : S′ → S such
that φ is étale over U , S′ is U -admissible, and for any valuation ringR any morphism
Spec(R) → S taking the generic point to U lifts to a morphism Spec(R′) → S′

where R′ is a valuation ring dominating R and such that Frac(R′)/Frac(R) is finite.
(Actually those are finite type h-covers of S which are étale over U .) Note that
in [BLR] one considers a more restrictive class of coverings, namely U -étale maps
S′ → S, which split to a composition of a surjective flat U -étale morphism and
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a U -modification. However, it follows from the flattening theorem [RG, 5.2.2] of
Raynaud-Gruson that the latter class of coverings is cofinal in ours.

In order to make use of Riemann-Zariski spaces we have first to establish some
properties of schemes over semi-valuation rings. So, let O be a semi-valuation ring
with semi-fraction ring A and let m be the maximal ideal of A. Recall that A = Om,
R := O/m is the valuation ring in K := A/m, the scheme S = Spec(O) is covered
by pro-open subscheme U = Spec(A) (i.e. U is the intersection of open subschemes)
and closed subscheme T = Spec(R), and the intersection U ∩ T is a single point
η = Spec(K), which is the generic point of T and the closed point of U . Note that
in some sense S is glued from U and T along η, for example, there is a bi-Cartesian
square

η

��

// U

��
T // S

Next we will study how U -admissible S-schemes (resp. quasi-coherent OS-
modules) can be glued from T -schemes and U -schemes (resp. modules), and we
will call such gluing (U, T )-descent. Given a quasi-coherent OS-module M , which
we identify with an O-module, set MU = M ⊗O A, MT = M ⊗O R = M/mM
and Mη = M ⊗O K. We say that M is U -admissible if the localization homomor-
phism M →MU is injective. Note that any O-module M defines a descent datum
consisting of MU ,MT and an isomorphism φM : MU ⊗AK→̃MT ⊗RK, and a sim-
ilar claim holds for S-schemes. The corresponding categories of descent data are
defined in an obvious way, and, naturally, we have a (U, T )-descent lemma below.
Slightly more generally, we fix a qcqs U -admissible S-scheme S with U = U ×S S,
T = T ×S S and η = η ×S S and we will glue objects defined over U and T along
their restrictions over η. For example, an OS-module M induces a descent data

φM : MU |η→̃MT |η. If we want to stress the choice of S we will call such gluing

(U, T )-descent. For an S-scheme X we will use the notation XU = X ×S U (and

so XU→̃X ×S U), XT = X ×S T and Xη = X ×S η.

Lemma 2.3.1. Keep the above notation.
(i) The natural functor from the category of U -admissible quasi-coherent OS-

modules (resp. OS-algebras)M to the category of descent data (MU ,MT , φM) with
quasi-coherent OU -module (resp. OU -algebra)MU and quasi-coherent η-admissible
OT -module (resp. OT -algebra) MT is an equivalence of categories.

(ii) The (U, T )-descent is effective on U -flat S-projective schemes with fixed rel-
atively ample sheaves. More concretely, assume that we are given a descent datum
((XU ,LU ), (XT ,LT ), (φX , φL)), where fU : XU → U and fT : XT → T are projec-
tive morphisms with relatively ample invertible modules LU and LT , respectively,
fU is flat, XT is η-admissible, φX : XU ×U η→̃XT ×T η and φL is an isomorphism
between the restrictions of LU and LT on the η-fibers which agrees with φX . Then
there exists a projective morphism f : X → S with a relatively ample OX-module
L whose restriction over U and T give rise to the above descent datum.

(iii) A qcqs U -admissible S-scheme X is of finite type if and only if XU and XT

are so. If in addition X ×S U → U is flat and finitely presented then X → S is flat
and finitely presentated.
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Proof. The claim of (i) is local on S, so we can assume that S is affine. ThenOS , OU
or OT -modules can be viewed simply as O, A or R-modules, and this reduces our

problem to the case when S = S. In particular, we will now denote the modules
as M , MT , etc. Next we note that mMU = mM because mA = m, and hence
MT = M/mM embeds into Mη = MU/mMU . So, MT is η-admissible and the
embedding M ↪→ MU identifies M with the preimage of MT under the projection
MU → Mη. In particular, an exact sequence 0 → M → MU ⊕MT → Mη → 0
arises. Conversely, given a descent datum as in (i), we can define an O-module
M = Ker(MU ⊕MT → Mη), and one easily sees that M is actually the preimage
of MT ⊂Mη under the projection MU →MU/mMU→̃Mη and hence MU and MT

are the base changes of this M . We constructed maps from OS-modules to descent
data and vice versa, and one immediately sees that these maps extend to functors.
Then it is obvious from the above that these functors are equivalences of categories
which are inverse one to another.

To prove (ii) we find sufficiently large n so that the n-th tensor powers of
the initial sheaves induce closed immersions XU → P((fU )∗(L⊗nU )) and XT →
P((fT )∗(L⊗nT )) into the associated projective fibers. Moreover, the higher direct

images of L⊗nU vanish for large n and then (fη)∗(L⊗nη )→̃((fU )∗(L⊗nU ))η by the the-
orem on base changes and direct images, see [Har, III.12.9]. By part (i) the sheaves
(fU )∗(L⊗nU ) and (fT )∗(L⊗nT ) glue along (fη)∗(L⊗nη ) to an OS-module M and so

P := P(M) is glued from PU := P((fU )∗(L⊗nU )) and PT := P((fT )∗(L⊗nT )) along
P((fη)∗(L⊗nη )). In particular, the closed subschemesXU ↪→ PU andXT ↪→ PT glue
to a closed subscheme i : X ↪→ P with a relatively very ample sheaf K := i∗(OP(1)).
Note that K is glued from L⊗nU and L⊗nT . Finally, the modules LU and LT glue
to an invertible OX -sheaf L with L⊗n→̃K by (XU , XT )-descent of modules, which
was established in (i). In particular, L is relatively ample.

The first assertion of (iii) is exactly Step 2 from the proof of [Tem2, 2.5.3]. So,
let us assume that X ×S U → U is flat and finitely presented (in addition to the

assumption that X is of finite type over S and U -admissible). The claim is local on
X so we can assume that X = Spec(C) is affine. Note also that XT is η-admissible,
so C/mC embeds into (C/mC)⊗RK and then C/mC is flat and finitely presented
over R by [Tem2, 3.5.1]. We first deal with finite presentation, so fix an epimorphism
φ : O[T ] → C with T = (T1, . . . , Tk) and let us prove that its kernel I is finitely
generated. Localizing at m we obtain an epimorphism φ ⊗O A : A[T ] → B = Cm
with kernel J = Im. Then B is A-flat by our assumption and we claim that this
implies that J ∩ m[T ] = mJ . Indeed, if x is contained in J ∩ m[T ] but not in
mJ then it reduces to a non-zero element x̃ in the kernel of J/mJ → A[T ]/m[T ].

However, this kernel is an epimorphic image of TorA1 (B,m) = 0 and hence x̃ = 0.
By finite presentation of A → B we have that J =

∑n
i=1 fiB and multiplying fi’s

by elements of O \ m we can achieve that fi ∈ I and so they generate an ideal
I ′ :=

∑n
i=1 fiC ⊂ I. Since m is (O \ m)-divisible, mJ = mI ′ ⊂ I ′ and hence

I := I ∩m[T ] ⊂ mJ ⊂ I ′. Note that I/I is the kernel of φ⊗O R : R[T ]→ C/mC,
and so is finitely generated over R[T ] (and hence over O[T ]). Choose any finite
set of generators g̃1, . . . , g̃l ∈ I/I, lift each g̃j to gj ∈ I and consider the ideal

I ′′ = (I ′, g1, . . . , gl) in C[T ]. Then I ′′ contains I and I ′′/I contains I/I, and so
I = I ′′ is finitely generated.

Finally, let us show that X is S-flat. We already know that X is of finite
presentation over S, therefore the flattening theorem of Raynaud-Gruson [RG, 5.2.2]
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asserts that X can be flattened by performing a U -modification (and even a U -
admissible blow up) on S and replacing X with its strict transform. However, S
has no non-trivial U -modifications because T (being the spectrum of a valuation
ring) is the only modification of itself. Thus, X has to be S-flat and we conclude
the proof. �

In the first version of the paper, the lemma was formulated in a larger (and
incorrect) generality, as was pointed out by D. Rydh. So, let us discuss briefly true
and false generalizations.

Remark 2.3.2. (i) Lemma 2.3.1(i) implies that descent data of the form XU ×U
η→̃XT ×T η is always effective for U -admissible S-affine schemes. Some examples
show that for general U -admissible schemes the descent of this type is not effective,
though it exists as an algebraic space. More generally, Rydh recently showed in
[Rydh, §6] that general descent of this type can be made in the category of stacks
with quasi-finite diagonal.

(ii) Also, Rydh observed that the flatness assumption in Lemma 2.3.1(iii) is
essential for finite presentation. Without flatness finite presentation can be lost
after gluing even in the case when O is a height two valuation ring composed from
DVR’s A and R and X is a (non-reduced) closed subscheme in S.

We assume again that S is a qcqs scheme with a schematically dense quasi-
compact subset U which is closed under generalizations. We will prove a stable
modification theorem which strengthens its analog from [Tem2], and we refer to the
introduction of loc.cit. for terminology. Our strengthening is in imposing natural
restrictions on the base change required in order to construct a stable modification.
It is reasonable to expect that in some sense one can preserve the locus U of S over
which the given curve is already semi-stable. Since already when U is the generic
point of an integral base scheme S one has to allow its finite étale coverings (i.e.
one has to allow separable alterations rather then modifications), it seems that
one cannot hope for something more restrictive than admitting general U -étale
coverings of the base.

Theorem 2.3.3. Let (C,D) be an S-multipointed curve with semi-stable U -fibers.
Then there exists a U -étale covering S′ → S such that the curve (C,D)×SS′ admits
a stable U -modification.

Proof. Step 1. The theorem holds over a semi-valuation ring O. More concretely,
throughout Step 1 we assume that O is composed from a local ring (A,m) and
a valuation ring R of K = A/m, S = Spec(O) and U = Spec(A). Set also T =
Spec(R) and η = Spec(K). By [Tem2, 1.5], the theorem is known in the case of
a valuation ring, i.e. the case when m = 0. Thus, there exists a finite separable
extension K ′/K with a valuation ring R′ lying over R and such that (C,D)×S T ′
admits a stable modification, where T ′ = Spec(R′). Lift the extension K ′/K to
a finite étale extension of local rings A′/A, and let O′ be the semi-valuation ring
composed from A′ and R′. We will show that the stable modification exists over
O′, but let us explain first how this concludes the Step. Clearly, R′ = ∪Ri where
Ri’s are finitely generated R-subalgebras of R′ such that Frac(Ri) = K ′. Therefore
O′ = ∪Oi where Oi is the preimage of Ri in A′. It remains to note that for any i
we have that Spec(Oi)×S U→̃Spec(A′) is étale over U , and by approximation the
stable modification exists already over some Oi.
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Now we can work over O′ and to simplify the notation we replace O by O′
achieving that already (CT , DT ) := (C,D) ×S T admits a stable modification
(CT , DT ). By [Tem2, 1.1] there is a canonical CT -ample sheaf on CT , namely the
sheaf LT := ω(CT ,DT )/T

. Set also LU := ω(CU ,DU )/U and note that these sheaves

agree over η because the formation of ω’s commutes with base changes (see [Tem2,
§1]). By Lemma 2.3.1(ii) applied with S = C, we can glue (CU ,LU ) and (CT ,LT )
to a U -modification C → C. In addition, C is flat and finitely presented over S by
Lemma 2.3.1(iii). Clearly, the closed subschemes DU ↪→ CU and DT ↪→ CT glue
to a closed subscheme D ↪→ C, and checking the S-fibers we obtain that (C,D) is
a stable U -modification of (C,D).

Step 2. The general case. Since (C,D) is semi-stable over an open subscheme
of S, we can enlarge U to an open schematically dense qcqs subscheme. Note that
by noetherian approximation there exists a scheme S′ of finite type over Z with
a morphism S → S′ such that U and (C,D) are induced from a schematically
dense open subscheme U ′ ↪→ S′ and a multipointed curve (C ′, D′) → S′. Then it
suffices to solve our problem for S′, U ′ and (C ′, D′), so we can assume that S is
of finite type over Z. By [Tem2, 3.3.1], S = RZU (S) is a qcqs topological space.
For any point x = (y,R, φ) ∈ S, set Sx = Spec(OS,x), Ux = Spec(OY,y) and
(Cx, Dx) = (C,D)×S Sx. Since the embedding U ↪→ S is obviously decomposable,
Proposition 2.2.1 implies that OS,x is a semi-valuation ring with the semi-fraction
ring OY,y. By Step 1, there exists a Ux-étale covering S′x → Sx such that the S′x-
multipointed curve (Cx, Dx)×Sx S

′
x→̃(C,D)×S S′x admits a stable U ′x-modification

for U ′x = Ux ×Sx S
′
x. Note also that the morphism S′x → Sx is flat and finitely

presented by Lemma 2.3.1(iii).
Consider the family {Si}i∈I of all U -modifications of S, and let xi be the center

of x on Si. Recall that OS,x = inj limOSi,xi . By approximation, there exists
i = i(x) and a flat finitely presented U -étale morphism hx : S′ → Si such that xi
lies in its image and (C,D) ×S S′i admits a stable U -modification. By flatness of
hx, hx(S′) is open in Si, and hence its preimage in S is an open neighborhood of x.
Note that in the sequel we can replace i by any larger index k simply by replacing
hx by its base change with respect to the U -modification Sk → Si. Since S is
quasi-compact, there exist finitely many points xj , 1 ≤ j ≤ n with associated flat
morphisms hj : S′j → Sij so that S is covered by the preimages of the sets hj(S

′
j).

By the above argument we can enlarge all indexes so that i := i1 = · · · = in. The
open subschemes hj(S

′
j) ↪→ Si with 1 ≤ j ≤ n cover Si because their preimages

cover S, and so S′ := tnj=1S
′
j is a flat cover of Si. In particular, S′ is a U -étale

covering of S over which (C,D) possesses a stable U -modification. �

A scheme version of the reduced fiber theorem of Bosch-Lütkebohmert-Raynaud
[BLR, 2.1’], can be proved absolutely similarly.

Theorem 2.3.4. Let X → S be a schematically dominant finitely presented mor-
phism whose U -fibers are geometrically reduced. Then there exists a U -étale cover-
ing S′ → S and a finite U -modification X ′ → X ×S S′ such that X ′ is flat, finitely
presented and has reduced geometric fibers over S′.

Proof. If S is the spectrum of a valuation ring and U is its generic point then the
theorem follows from [Tem2, 3.5.5] (actually it was the content of Steps 2–4 of the
loc.cit.). Acting as in Step 1 of the previous proof, we deduce the case when S
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is the spectrum of a semi-valuation ring and U is the corresponding local scheme.
Then it remains to repeat the argument of Step 2. �

3. Relative RZ spaces and the decomposition theorem

Throughout §3, f : Y → X is a morphism of schemes and X = ValY (X).
Later we will also introduce a topological space Spa(Y,X) and then we will use the
notation X = Spa(Y,X). Sometimes we will consider another morphism of schemes

f ′ : Y ′ → X ′ and then X′ = ValY ′(X ′), X
′

= Spa(Y ′, X ′).

3.1. Connection to adic spaces. Let A be a ring and B be an A-algebra. R.
Huber considers in [Hub1] the set Spv(B) of all equivalence classes of valuations
on B and provides it with the weakest topology in which the sets of the form
{| | ∈ Spv(B)| |a| ≤ |b| 6= 0} are open for any a, b ∈ B. Huber proves in [Hub1, 2.2]
that the resulting topological space is quasi-compact. Furthermore, he considers
the quasi-compact subspace Spa(B,A) ⊂ Spv(B) consisting of the valuations of B
with |A| ≤ 1: see the definition on p. 467 in loc.cit., where one treats A and B as
topological rings with discrete topology (note also that Huber actually considers the
case when A is an integrally closed subring of B, but this does not really restrict
the generality because replacing A by the integral closure of its image in B has
no impact on the topological space Spa(B,A)). Actually, the topological space
Spa(B,A) has a much finer structure of an adic space but we will not use it.

Let us generalize the above paragraph to schemes. Note that a valuation on a
ring A is defined by its kernel x ∈ Spec(A) and the induced valuation on k(x). So,
by a valuation on a scheme Y we mean a pair y = (y,R), where y ∈ Y is a point
called the kernel of y and R is a valuation ring of k(y). One can define y by giving
a valuation | |y : OY,y → Γy whose kernel is my. By Oy we denote the subring of
OY,y given by the condition | |y ≤ 1; it is the preimage of R in OY,y. Remark that
Oy is a semi-valuation ring with the semi-fraction ring OY,y. Often it is convenient
to describe a valuation locally by choosing an affine neighborhood Spec(A) of y and
giving a valuation A→ OY,y → Γy on A.

Furthermore, if f : Y → X is a morphism of schemes then by an X-valuation on
Y me mean a valuation y = (y,R) provided with a morphism φ : S = Spec(R)→ X
which is compatible with the natural morphism η = Spec(k(y)) → X. Recall that
in the valuative criteria of properness/separatedness one considers commutative
diagrams of the form

η

��

i // Y

f

��
S

φ // X

(1)

where S = Spec(R) is the spectrum of a valuation ring and η = Spec(K) is its
generic point, and studies liftings of S to Y . It is easy to see (and will be proved in
Lemma 3.2.1) that it suffices to consider only the case when k(y)→̃K for y = i(η)
in the valuative criteria. In the latter particular case, diagrams of type (1) are
exactly the diagrams which correspond to X-valuations of Y . Note also that an
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X-valuation y = (y,R, φ) gives rise to the following finer diagram

η //

��

Spec(OY,y) //

��

Y

��
S // Spec(Oy) // X

(2)

Indeed, the center x ∈ X of R is a specialization the image of y and the induced
homomorphism OX,x → OY,y → k(y) coincides with OX,x → R → Frac(R)→̃k(y).
Hence these homomorphisms factor through Oy (actually, we have just shown that
the left square is co-Cartesian).

Let Spa(Y,X) denote the set of all isomorphism classes of X-valuations on Y .
We claim that Spa(Y,X) depends functorially on f . Indeed, given a morphism
f ′ : Y ′ → X ′ and a morphism g : f ′ → f consisting of a compatible pair of
morphisms gY : Y ′ → Y and gX : X ′ → X, there is a natural map Spa(g) :
Spa(Y ′, X ′) → Spa(Y,X) which to a point (y′, R′, φ′) associates a point (y,R, φ),
where y = gY (y′), R = R′ ∩ k(y) and φ is defined as follows. The morphism
gX ◦ φ′ : Spec(R′) → X factors through Spec(OX,x), where x is the image of the
closed point of the source, hence we obtain a homomorphism α : OX,x → R′. Since
the morphism Spec(k(y′))→ X factors uniquely through Spec(k(y)), the image of α
is contained in R. So, gX◦φ′ factors uniquely through a morphism φ : Spec(R)→ X
and the map Spa(g) is constructed.

If gY is an immersion and gX is separated then Spa(g) is injective. Indeed,

if a point y = (y,R, φ) ∈ X := Spa(Y,X) has a non-empty preimage in X
′

:=
Spa(Y ′, X ′), then y ∈ Y ′ and any preimage of y is given by a lifting of φ :
Spec(R) → X to X ′, which is unique by the valuative criterion of separatedness.

Furthermore, we say that X
′

is an affine subset of X if Y ′ and X ′ are affine, gY is an
open immersion and gX is of finite type. We provide X with the weakest topology
in which all affine subsets are open. Note that if we are given another morphism
between morphisms h : (Y1 → X1) → (Y → X) with the corresponding map
Spa(h) : X1 → X, then Y ′1 := Y ′ ×Y Y1 is a subscheme in Y1 and X ′1 := X ′ ×X X1

is separated over X1, hence X
′
1 := Spa(Y ′1 , X

′
1) embeds into X1.

Lemma 3.1.1. Let Spa(g) : X
′ → X and Spa(h) : X1 → X be as above and assume

that gY is an immersion and gX is separated.

(i) X
′
1 is the preimage of X

′
under Spa(h).

(ii) If X and Y are separated, X
′

is an affine subset of X and both X1 and Y1 are

affine, then X
′
1 is an affine subset of X1. In particular, if X and Y are separated

then the intersection of affine subsets in X is an affine subset.
(iii) Affine subsets form a basis of the topology on X, and if X and Y are qcqs

then any intersection of two affine subsets is a finite union of affine subsets.

(iv) If gY is an open immersion and gX is of finite type then X
′

is open in X;
(v) The maps Spa(h) are continuous.

Proof. The first claim is proved by a straightforward check. If Y and X are sepa-
rated then Y ′ ×Y Y1 and X ′ ×X X1 are affine, hence (i) implies (ii). Furthermore,
in general (i) implies that the intersection of affine subsets in X is of the form
Spa(Y ,X). Since an affine subset in Spa(Y ,X) is also an affine subset in X, to
prove (iii) it suffices to show that any space Spa(Y ,X) (resp. with qcqs X and Y )
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is covered by (resp. finitely many) affine subsets. Find open affine (resp. finite)
coverings X = ∪Xi and Y = ∪Y j such that each Y j is mapped to some Xi(j), and

note that Spec(Y ,X) is the union of affine subsets Spa(Y j , Xi(j)). This proves (iii),
and the same argument proves (iv). Finally, (v) follows from the fact the preimage
of each affine subset is open due to (i) and (iv). �

We claim that in the affine case the above topology agrees with the topology
defined by Huber.

Lemma 3.1.2. If X = Spec(A) and Y = Spec(B) are affine then the canonical
bijection φ : Spa(Y,X)→ Spa(B,A) is a homeomorphism.

Proof. It follows from the definitions of the topologies that the map is continuous,

so we have only to establish openness. Let X
′

= Spa(Spec(C),Spec(A′)) be an
affine subset in X, where Spec(C) is an open subscheme of Spec(B) and A′ is a

finitely generated A-algebra. It suffices to prove that φ(X
′
) is a neighborhood of

each point z it contains. Replacing A′ with its image in C we can assume that it
is an A-subalgebra of C generated by h1, . . . , hn ∈ C. Note that if {Ui} is an open

covering of Spec(C) then the sets Spa(Ui,Spec(A′)) cover X
′
. Therefore, shrinking

Spec(C) we can assume that C = Bb for an element b ∈ B. Then hi = bi/b
m with

bi ∈ B and m ∈ N, and φ(X
′
) consists of all valuations of B with |bi| ≤ |bm| 6= 0

for any i. Thus, φ(X
′
) is open in Spa(B,A), and we are done. �

Since Huber’s spaces Spa(B,A) are qcqs, we obtain the following corollary.

Corollary 3.1.3. If X and Y are qcqs schemes then the space Spa(Y,X) is qcqs.

Let B be a ring provided with a valuation | | : B → Γ∪{0}, and let y ∈ Spec(B)
be its kernel. We say that a convex subgroup Γ′ ⊆ Γ bounds B, if for any element
b ∈ B, there exists an element h ∈ Γ′ with |b| ≤ h. For any such subgroup we
can define a valuation | |′ : B → Γ′ by the rule |x|′ = |x| if |x| ∈ Γ′ and |x|′ = 0
otherwise. Obviously, the kernel y′ of | |′ isa specialization of y. Recall that | |′ is
called a primary specialization of | |, see [Hub1, 2.3]. Here are simple properties of
primary specializations.

Remark 3.1.4. (i) Primary specialization is a transitive operation and the set P
of primary specializations of | | is ordered.

(ii) The set P possesses a minimal element corresponding to the intersection of
all subgroups bounding B; it is called the minimal primary specialization.

(iii) A valuation on B is called minimal if it has no non-trivial primary specializa-
tions. For a valuation given by a point y ∈ Spec(B) and a valuation ring R ⊂ k(y)
the following conditions are equivalent: (a) (y,R) is minimal; (b) k(y) is generated
by R and the image of B; (c) the morphism Spec(k(y))→ Spec(R)× Spec(B) is a
closed immersion.

(iv) Let | | : B → Γ ∪ {0} be a valuation with kernel y, Γ′ ⊆ Γ be a convex
subgroup, and R ⊆ R′ be the valuation ring of k(y) corresponding to the induced
valuations k(y) → Γ and k(y) → Γ → Γ/Γ′. Then the following conditions are
equivalent: (a) there exists a primary specialization | |′ corresponding to Γ′; (b)
the image of B in k(y) is contained in R′; (c) the morphism y → Spec(B) extends
to a morphism Spec(R′)→ Spec(B). Moreover, if the conditions are satisfied then
the kernel y′ of | |′ is the center of R′ on Spec(B). The equivalences (a)⇔(b) and
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(b)⇔(c) are obvious. As for the additional claim, we note that the center of R′

corresponds to the kernel of the homomorphism B → R′ → R′/mR′ , and the latter
consists of the elements b ∈ B with |b| /∈ Γ′, i.e. coincides with the kernel of | |′.

Let, more generally, y = (y,R) be a valuation on a scheme Y . By a primary
specialization of y we mean a valuation y = (y,R) such that y is a specialization of
y and the valuation | |y on OY,y is a primary specialization of the valuation induced
from y via the homomorphism OY,y → OY,y. Equivalently, if Spec(A) is an affine

neighborhood of y (and hence of y) then the valuation induced by (y,R) on A is a
primary specialization of the valuation induced by (y,R).

Lemma 3.1.5. Let (y,R) be a valuation on a separated scheme Y .
(i) The set of primary valuations of (y,R) is totally ordered by specialization;
(ii) If Y is also quasi-compact then (y,R) admits a minimal primary specializa-

tion.

Proof. We claim that (i) follows from Remark 3.1.4(iv). Indeed, for anyR′ withR ⊆
R′ ⊆ k(y) there exists at most one possibility to extend y to a morphism Spec(R′)→
Y . So, if we have two primary specializations (y1, R1) and (y2, R2) corresponding
to valuation rings R ⊆ R′, R′′ ⊆ k(y), then without loss of generality we have
that R′ ⊆ R′′ and the unique morphism Spec(R′′) → Y is obtained by localizing
the morphism Spec(R′) → Y . Thus, y1 is a specialization of y2, and everything
reduces to affine theory of primary specializations on OY,y1 , see Remark 3.1.4(i).
To prove (ii) we note that (y,R) admits a minimal primary specialization because
if {(yi, Ri)}i∈I denotes the set of all primary specializations then the set of kernels
{yi}i∈I is totally ordered with respect to specialization. By quasi-compactness
there exists a point y ∈ Y which is a specialization all yi’s. So, the claim reduces
to the affine theory on OY,y, see Remark 3.1.4(ii). �

Finally, taking a morphism f : Y → X into account, by a primary specialization
of an X-valuation y = (y,R, φ) we mean an X-valuation y = (y,R, φ) such that
(y,R) is a primary specialization of (y,R) and the image of φ in X is contained in
the image of φ in X. Primary specialization is a particular case of a specialization
relation in Spa(Y,X). An X-valuation (y,R, φ) (resp. a valuation (y,R)) on Y is
called minimal if it has no non-trivial primary specializations.

Lemma 3.1.6. Let (y,R, φ) be an X-valuation on Y . Then any primary special-
ization (y,R) of the valuation (y,R) admits at most one extension to a primary
specialization (y,R, φ) of (y,R, φ), and the extension exists if and only if f(y) be-
longs to the image of φ. The latter is automatically the case when X is separated.

Proof. Obviously, the assertion on f(y) is necessary for an extension to exist. Fur-
thermore, by Remark 3.1.4(iv) there exists a valuation ring R′ with R ⊆ R′ ⊆ k(y)
such that y extends to a morphism Spec(R′) → Y with y being the image of the
closed point. If X is separated then the induced map Spec(R′)→ X must coincide
with the corresponding localization of φ : Spec(R) → X, hence we obtain the last
assertion of the lemma. The remaining claims are local at the center x ∈ X of
R (i.e. the image of the closed point of φ). So, we can replace X and Y with a
neighborhood of x and its preimage achieving that the schemes become separated.
The uniqueness is now clear. To establish existence we should check that the image
of the homomorphism OX,x → OY,y → k(y) is in R. The latter follows from the

following two facts: (a) by existence of φ the image of OX,x in k(y) is in R, (b) R
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is induced from R in the sense that an element f ∈ OY,y satisfies f(y) ∈ R if and
only if f(y) ∈ R. �

The lemma shows that we can actually ignore φ when X is separated. In par-
ticular, minimality of (y,R, φ) is then equivalent to that of (y,R).

Corollary 3.1.7. Let f : Y → X be a separated morphism of qcqs schemes and
y = (y,R, φ) be an X-valuation on Y . Then

i) the set of primary specializations of y is totally ordered and contains a minimal
element,

(ii) y is minimal if and only if the morphism h : Spec(k(y)) → Y ×X Spec(R)
is a closed immersion.

Proof. The claim is local at the center of x ∈ X of R (with respect to φ), hence we
can assume that X and, hence, Y are separated. Then primary specializations of
y can be identified with primary specializations of the valuation (y,R), hence (i)
follows from Lemma 3.1.5. To prove (ii) we note that as soon as X is separated, h
is a closed immersion if and only if the morphism Spec(k(y)) → Y × Spec(R) is a
closed immersion. Hence the claim follows from Remark 3.1.4(iii). �

Until the end of §3, we assume that f : Y → X is a separated morphism of qcqs
schemes, unless the contrary is said explicitly. We define the subset X = ValY (X) ⊂
X as the set of all minimal valuations and note that in view of Lemma 3.1.7 this
agrees with the case studied in 2.2. We do not introduce ValY (X) when f is not
separated: although the formal definition makes sense, it is not clear if the obtained
object is interesting. Note also that in affine situation such subsets were considered
by Huber, see [Hub1, 2.6 and 2.7]. We provide X with the induced topology. The
following lemma follows easily from the valuative criterion of properness and Lemma
3.1.1.

Lemma 3.1.8. (i) If X ′ is a Y -modification of X then there are natural homeo-
morphisms Spa(Y,X ′)→̃Spa(Y,X) and ValY (X ′)→̃ValY (X).

(ii) If X ′ is an open subscheme of X then its preimage in ValY (X) (resp.
Spa(Y,X)) is canonically homeomorphic to ValY ′(X ′) (resp. Spa(Y ′, X ′)), where
Y ′ = X ′ ×X Y .

Remark 3.1.9. (i) If f ′ : Y ′ → X ′ and f : Y → X are separated morphisms of
qcqs schemes, and g : f ′ → f is a morphism such that gY is an open immersion and
gX is separated and of finite type, then Spa(Y ′, X ′) maps homeomorphically onto
an open subspace of X. However, it may (and usually does) happen that the image
of ValY ′(X ′) in X is not contained in X. The problem originates from the fact that
a minimal valuation on Y ′ may admit non-trivial primary specializations on Y .

(ii) There exists a natural contraction πX : X→ X which maps any valuation to
its minimal primary specialization, but it is a difficult fact that πX is continuous.

(iii) Using πX we can extend Val to a functor by composing Spa(g) with the

contraction πX as Val(g) : X′ ↪→ X
′ → X→ X. However, we do not know that it is

continuous until continuity of πX is established.

Actually, the above problems are closely related, and we will solve them only in
the end of §3.3. Recall that if X and Y are qcqs then so are Spa(Y,X) and RZY (X)
(by Corollary 3.1.3 and [Tem2, 3.3.1]). Here is a partial (so far) result for ValY (X).
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Proposition 3.1.10. Assume that f : Y → X is a separated morphism of qcqs
schemes. Then the spaces ValY (X) is quasi-compact and the map ψ : ValY (X) →
RZY (X) is continuous.

Proof. Let {Xi}i∈I be an open covering of X. Find open sets Xi ⊂ X such that
Xi = Xi ∩ X. Since any point of X has a specialization in X by Corollary 3.1.7,
{Xi}i∈I is a covering of X. By quasi-compactness of X, we can find a subcovering
{Xi}i∈J with a finite J , and then {Xi}i∈J is a finite covering of X. Thus, X is
quasi-compact.

We claim that for any Y -modification X ′ → X, the map φ : X → X ′ is
continuous. Indeed, if U ⊂ X ′ is open then its preimage in X is the open sub-

space X
′→̃Spa(Y ×X′ U,U). Therefore, the preimage of U in X is the open set

X
′ ∩ X, as required. Continuity of the maps φ (for each X ′) implies that the map

ψ : X→ RZY (X) is continuous. �

3.2. Valuative criteria. In the sequel, we will need to strengthen the classical
valuative criteria of separatedness and properness, [EGA, II, 7.2.3 and 7.3.8]. Our
aim is to show that it suffices to consider valuative diagrams of specific types. We
say that a morphism is compatible with a commutative diagram, if the diagram
remains commutative after adjoining this morphism. Throughout §3.2 f is not
assumed to be separated.

Lemma 3.2.1. Keep the notation of diagram (1) and set K ′ = k(i(η)) and R′ =
R ∩K. Then diagram (1) completes uniquely to a commutative diagram

Spec(K)

��

// Spec(K ′)

��

// Y

��
Spec(R) // Spec(R′) // X

and any morphism h : Spec(R)→ Y compatible with the above diagram is induced
from a morphism h′ : Spec(R′) → Y compatible with the diagram. In addition, h
determines h′ uniquely.

Proof. The morphism Spec(K) → Y obviously factors through Spec(K ′). The
morphism Spec(R) → X factors through Spec(OX,x), where x is the image of the
closed point of Spec(R). The image of OX,x in R ⊂ K is contained in K ′, hence
the morphism Spec(R) → X factors through Spec(R′). By the same reasoning,
a morphism h : Spec(R) → Y compatible with the diagram factors through h′ :
Spec(R′)→ Y , and they both are determined uniquely by the image of the closed
point in Y . �

Lemma 3.2.2. Keep the notation of diagram (1) and assume that R ⊆ R′ ⊆ K is
such that the morphism Spec(R′)→ X admits a lifting g : Spec(R′)→ Y compatible
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with the diagram. Let K̃ be the residue field of R′ and R̃ be the image of R in K̃.

Spec(K)

��

// Y

f

��

Spec(K̃) //

��

Spec(R′)

g

;;

��
Spec(R̃) // Spec(R) // X

Then any morphism h̃ : Spec(R̃)→ Y compatible with the above diagram is induced

from a morphism h : Spec(R) → Y compatible with the diagram and h̃ determines
h uniquely.

Proof. Consider a morphism h̃ : Spec(R̃) → Y compatible with the diagram. It
suffices to show that it factors through Spec(R), since the uniqueness is again trivial.

Let y be the image of the closed point of Spec(R̃), so h̃ induces a homomorphism

OY,y → R̃. Since y is a specialization of the image y′ of the closed point of Spec(R′),
we have also a homomorphism OY,y → OY,y′ → R′. Then the compatibility implies

that the image of OY,y in K̃ = R′/mR′ lies in R̃. Therefore, the image of OY,y
in R′ lies in R which is the preimage of R̃ under R′ → K̃, and we obtain that

the homomorphism OY,y → R̃ factors through R. It gives the desired morphism
h : Spec(R)→ Y . �

Note that Lemma 3.2.1 implies that it suffices to consider only the case when
k(i(η))→̃K in the valuative criteria (i.e. it suffices to take valuative diagrams
corresponding to the elements of Spa(Y,X)), and then Lemma 3.2.2 and Remark
3.1.4(iv) imply that it even suffices to consider only the valuative diagrams corre-
sponding to the elements of ValY (X). It is also well known that in the valuative
criteria one can restrict to the case when the image of η lies in a given dense sub-
set which is closed under generalization (e.g. the generic point of an irreducible
scheme), and such strengthening is the main issue of the following proposition.

Proposition 3.2.3. Assume that h : Z → Y and f : Y → X are morphisms of
qcqs schemes and consider the natural map ψ : Spa(Z, Y )→ Spa(Z,X).

(i) f is separated if and only if ψ is injective.
(ii) Assume that f is of finite type. Then f is proper if and only if ψ is bijective.
(iii) If f and h are separated then ψ induces a map ψ : ValZ(Y ) → ValZ(X),

and ψ is bijective if and only if ψ is bijective.

Proof. First we prove (iii). If z = (z,R, φY ) is a point in ValZ(Y ) then the mor-
phism z → Spec(R) ×Y Z is a closed immersion. But the target is a closed sub-
scheme in Spec(R) ×X Z by separatedness of f , and hence ψ(z) is also a minimal
valuation. Thus, ψ induces a map ψ between the subsets Val. Next we relate the
fibers of ψ and ψ. Consider any point z ∈ Spa(Z,X) and let z0 ∈ ValZ(X) be its

minimal primary specialization. Then Lemma 3.2.2 implies that the sets ψ
−1

(z)
and ψ−1(z0) are naturally bijective, and this proves (iii).

We will deal with (i) and (ii) simultaneously. The direct implications follow from
the standard valuative criteria. We will prove the opposite implications (which are
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refined valuative criteria) by getting a contradiction. So, suppose that f is not
separated in (i), or of finite type, separated and not proper in (ii) (if f is not
separated in (ii) then ψ cannot be bijective by (i)). By the standard valuative
criterion and Lemma 3.2.1, there exists an element y = (y,Ry, φy) ∈ Spa(Y,X)
such that the number of liftings of the morphism φy : Spec(Ry) → X to Y is at
least two in (i) or zero in (ii). Let x denote the center of Ry on X.

By [EGA I, 6.6.5], there exists a point z ∈ Z for which h(z) is a generalization of
y, and so a homomorphismOY,y → OZ,z → k(z) arises. LetR′ be any valuation ring
of k(z) which dominates the image of OY,y. It gives rise to an element (z,R′, φ′) ∈
Spa(Z, Y ) centered on y. Choose a valuation ring R̃ of the residue field K̃ of R′

such that R̃ dominates the valuation ring Ry of k(y) ⊂ K̃, and define a valuation

ring R of k(z) as the composition of R′ and R̃. The compatible homomorphisms

OX,x → OY,y → R′ and OX,x → Ry → R̃ induce a homomorphism OX,x → R, and
we obtain the following commutative diagrams.

Spec(k(z))

��

// Z

��
Spec(K̃) //

��

Spec(R′)
φ′

//

��

Y

��

Spec(K̃) //

��

Spec(k(y)) //

��

Y

��
Spec(R̃) // Spec(R)

φx // X Spec(R̃) // Spec(Ry) // X

Lemma 3.2.1 implies that there is a one-to-one correspondence between mor-

phisms Spec(Ry) → Y and Spec(R̃) → Y compatible with the right diagram, and
by Lemma 3.2.2, the latter morphisms are in one-to-one correspondence with the
morphisms φ : Spec(R) → Y compatible with the left diagram. So, there are at
least two such φ’s in (i) and there is no such φ in (ii). Note that z = (z,R, φx)
is an element in Spa(Z,X), and any morphism φ as above gives a preimage of z
in Spa(Z, Y ). We obtain that in the case (i), z has at least two preimages and
so ψ is not injective. The same argument would prove (ii) if we also know that,
conversely, any preimage of z in Spa(Z, Y ) comes from φ as above. In other words,

we want to show that any lift of φx to φ̃ : Spec(R) → Y is compatible with the

whole left diagram, and this actually reduces to compatibility of φ̃ with φ′. Note
that Y → X is separated by the already established case (i), and the valuative
criterion of separatedness implies that the morphism φ′ is uniquely determined by

the morphisms Spec(k(z))→ Y and Spec(R′)→ X. So, compatibility of φ̃ with φ′

is automatic. �

3.3. Affinoid domains. Let f ′ : Y ′ → X ′ be another separated morphism of qcqs
schemes and g : f ′ → f be a morphism. Recall that we defined in §3.1 a continuous

map Spa(g) : X
′ → X which was shown to be injective if gY is an immersion and

gX is separated. However, our definition of a map Val(g) : X′ → X was rather
cumbersome because even if Spa(g) is injective, it does not have to respect the
subspaces Val in the spaces Spa. The following proposition gives a criterion when
Spa(g) does respect Val’s.
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Proposition 3.3.1. Suppose that gY is an open immersion and gX is separated.
Then Spa(g)(X′) ⊂ X if and only if the locally closed immersion (gY , f

′) : Y ′ →
Y×XX ′ is a closed immersion, in which case one actually has that X′ = Spa(g)−1(X).

Proof. Suppose that h := (gY , f
′) is a closed immersion. Let y′ = (y′, R′, φ) ∈ X

′

be a point with η′ = Spec(k(y′)) and S′ = Spec(R′), and let y = (y,R, φ) be its
image in X. By Lemma 3.1.7(ii), y′ is minimal if and only if the natural morphism
η′ → Y ′×X′ S′ is a closed immersion. By closedness of h, the latter happens if and
only if the composition morphism η′ → Y ′ ×X′ S′ → (Y ×X X ′)×X′ S′→̃Y ×X S′

is a closed immersion. The latter happens if and only if y is minimal because
k(y)→̃k(y′) and hence R = R′ ∩ k(y) = R′. Thus, under our assumption on h,
minimality of y′ is equivalent to minimality of its image. This establishes the
inverse implication in the proposition, and the complement.

It remains to show that if h is not a closed immersion then Spa(g) does not
respect the subsets Val. Note that h is a locally closed immersion because gY is an
open immersion, and assume that h is not a closed immersion. Set Z = Y ×XX ′ and
find a Z-valuation y′ = (y′, R′, φ′) of Y ′ such that the morphism φ′ : Spec(R′)→ Z
cannot be lifted to a morphism Spec(R′) → Y ′. Replacing y′ by its minimal
primary specialization, we achieve that y′ is minimal and R′ ( k(y′). Clearly
y′ defines an X ′-valuation y = (y′, R′, φ) on Y ′ with φ = prX′ ◦ φ′, and y is
minimal because any its non-trivial primary specialization corresponds to a lifting
Spec(R′′)→ Y ′ for some R′ ⊆ R′′  k(y) and such a lifting would induce a lifting
Spec(R′′) → Z corresponding to a non-trivial primary specialization of y′. Thus,
y ∈ X′, but Spa(g)(y) is not a minimal X-valuation on Y because the morphism
Spec(R′)→ X lifts to the morphism prY ◦ φ : Spec(R′)→ Y . �

Let us assume that gY is an open immersion and gX is separated and of finite
type. We saw that if h is a closed immersion then X′ is naturally identified with
a quasi-compact open subset of X via Spa(g), and we say in this case that X′ is
an open subdomain of X. If, in addition, X ′ and Y ′ can be chosen to be affine
then we say that X′ is an affinoid subdomain of X. Note also that the situation
described in the proposition appears in Deligne’s proof of Nagata compactification
theorem under the name of quasi-domination. (Recall that by a quasi-domination
of Y over X ′ one means an open subscheme Y ′ ⊂ Y and a morphism Y ′ → X ′

such that the morphism Y ′ → Y ×X X ′ is a closed immersion, see [Con, §2].) The
notion of quasi-domination plays a central role in Deligne’s proof. We list simple
properties of open and affinoid subdomains in the following lemma and stress that
it will be much more difficult to prove that open subdomains are preserved under
taking finite unions (in a sense, this is a typical situation in algebraic geometry
that preimages, intersections, projective limits, etc., are much easier for study than
pushouts, images, direct limits, etc.).

Lemma 3.3.2. Open subdomains are transitive and are preserved by finite inter-
sections. Moreover, the intersection of open subdomains ValYi(Xi) with i ∈ {1, 2}
is the open subdomain ValY1∩Y2

(X1 ×X X2). In particular, if X is separated and
Xi’s are affinoid then X12 is affinoid.

Proof. This follows from the analogous Lemma 3.1.1 concerning the spaces Spa. �

The following remark will not be used in the sequel.
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Remark 3.3.3. (i) Our definition of RZ spaces is a straightforward generalization
of the classical one. It is also possible to define RZ spaces directly as follows: an
affinoid space is a topological space X = ValB(A) provided with two sheaves of
rings OX ⊂ MX (which can be defined in a natural way), and general spaces are
pasted from affinoid ones along affinoid subdomains.

(ii) The following example illustrates a difference between adic and Riemann-
Zariski spaces. Let k be a field, A = B = A′ = k[T ], B′ = k[T, T−1] and

X,X′,X,X
′

are as above. Then X
′

is a rational subdomain in X in the sense of
[Hub2]. From other side, X′ is not an affinoid domain in X. Note that actually
(X′,OX′)→̃(X,OX)→̃X := Spec(A), but the sheavesMX andMX′ are not isomor-
phic at the point x ∈ X with T = 0. This can happen because the local (and even
a valuation) ring OX,x can be provided with two different structures of a semi-
valuation ring by choosing semi-fraction rings MX′,x = k(T ) or MX,x = OX,x.
(See also Remark 2.1.3(ii).)

Theorem 3.3.4. The affinoid subdomains of X form a basis of its topology.

Proof. It follows from Lemma 3.3.2 that we should prove that for any affine subset
X0 = Spa(B0, A0) in X and a point y = (y,R, φ) ∈ X ∩ X0 there exists an affinoid
subdomain ValY (X) containing y and contained in X0. Moreover, we can assume
that X = Spec(A) is affine because X is covered by open subdomains of the form
ValY ′(X ′), where X ′ = Spec(A) is an open subscheme of X and Y ′ = X ′×X Y . In
order to construct ValY (X) as required we will extend diagram (2) to the following

one, where Y = Spec(B) and X = Spec(A) will be finally defined in the end of
the proof. Recall that Oy is a semi-valuation ring with semi-fraction ring OY,y and
such that Oy/my = R.

Spec(k(y)) //

��

Spec(OY,y) //

��

Y //

��

Y

��
Spec(R) // Spec(Oy) // X // X

Since Spec(R) ×X Y is closed in Spec(R) × Y by separatedness of X, Lemma
3.1.7(ii) implies that the morphism h : Spec(k(y)) → Spec(R) × Y is a closed
immersion. To explain the strategy of the proof we remark that the morphism
Spec(OY,y) → Spec(Oy) × Y is a closed immersion (actually it can be proved by
the same argument as we use below), and our strategy will be to approximate Oy

and OY,y by A-rings A and B so that A is finitely generated over A, Y = Spec(B)

is a neighborhood of y and Y → X × Y is a closed immersion.
It will be more convenient to work with affine schemes and Y is the only non-

affine scheme in our consideration, so let us cover Y with open affine subschemes
Yi = Spec(Bi), Zj = Spec(Cj), where 1 ≤ i ≤ n, 1 ≤ j ≤ m, y ∈ Yi and y /∈ Zj .
Since Spec(B0) contains y by our assumptions, we also set Y0 = Spec(B0). For
each i, h factors through a closed immersion Spec(k(y))→ Spec(R)×Yi, hence the
images ofR andBi generate k(y). Now, we will find a neighborhood Y = Spec(B) of
y which is contained in all Yi’s and satisfies the following condition: for each i, B is
a localization of the form (Bi)fi and, the most important, we have that fi(y) /∈ mR.
Let us (until the end of this paragraph only) call R-localization for localization of an
affine neighborhood Spec(C) of y at an element f such that f(y) /∈ mR. Obviously,
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R-localizations are transitive and we claim that the family of R-localizations of
each Yi form a basis of neighborhoods of y. Indeed, for any element f ∈ Bi with
f(y) 6= 0 we can find g ∈ Bi with f(y)g(y) /∈ mR (we use that Bi(y) generates
k(y) over R, so it contains elements of arbitrary large valuation). Thus, (Bi)fg
is an R-localization of Bi where f is inverted and we obtain that the maximal
(infinite) R-localization of Bi is actually OY,y. Now, set Spec(B) = ∩ni=1Yi and

find R-localizations Y ′i = Spec((Bi)gi) contained in Spec(B), and let Y = Spec(B)

be an R-localization of Spec(B) contained in all Y ′i . Then Y is an R-localization
of each Y ′i , hence an R-localization of each Yi too. So, B = (Bi)fi is as required.

Let A be the preimage of R under the character B → k(y) corresponding to
y. Clearly A contains each element f−1i , hence the ring B(y) = Bi(y)[f−1i (y)] is

generated by A(y) and Bi(y). So, we obtain epimorphisms A ⊗ Bi → k(y), and
then the homomorphisms hi : A ⊗ Bi → B are also surjective because A contains
the kernel py of B → k(y). In particular, each morphism Y → X × Yi is a closed

immersion. We claim that actually, α : Y → X × Y is a closed immersion, and to
prove this we should check in addition that the morphisms αj : Y ×Y Zj → X ×Zj
with 1 ≤ j ≤ m are closed immersion. By separatedness of Y the source is affine,
hence Y ×Y Zj = Spec(Cj) where Cj is generated by the images of cj : Cj → Cj
and bj : B → Cj . Since our claim about α would follow if we prove that the

homomorphisms h′j : A⊗Cj → Cj are surjective, it remains only to prove that for

each j the image of h′j contains the image of bj . Since y ∈ Y and y /∈ Zj we have

that bj(py)Cj = Cj , and hence the equality Cj = bj(B)cj(Cj) can be strengthened

as Cj = bj(py)cj(Cj), i.e. Cj is actually generated by bj(py) and cj(Cj). Since

py ⊂ A by the definition of A, we obtain that h′j is onto, as claimed.

Now, the morphism Y → X is almost as required: Y is open in Y and α is a closed
immersion. In addition, since y ⊂ X0, the image of A0 under the homomorphism
A0 → B0 → B → B(y) is contained in R, and hence the image of A0 in B is actually
contained in A. So, it only remains to decrease the A-subalgebra A ⊂ B so that
X = Spec(A) becomes of finite type over X but all good properties are preserved:
α is still a closed immersion, and A contains the image of A0 in B. As we saw,
α being a closed immersion is equivalent to surjectivity of the homomorphisms
hi : A ⊗ Bi → B and h′j : A ⊗ Cj → Cj . Since the homomorphisms Bi → B and

Cj → Cj are of finite type, all we need for surjectivity of hi’s and h′j ’s is a finite

subset S ⊂ A. So, replacing A with its A0-subalgebra generated by S we obtain X
as required. Obviously, ValY (X) is an affinoid domain containing y, and ValY (X)

is contained in X0 because Y is an open subscheme in Y0 and the morphism Y → X0

(obtained as Y → Y0 → X0) factors through X. �

Corollary 3.3.5. The space X is qcqs.

Proof. Any open subdomain is quasi-compact by Proposition 3.1.10, and their in-
tersection is quasi-compact by Lemma 3.3.2. Since open subdomains generate the
topology of X by Theorem 3.3.4 we obtain the corollary. �

Recall that we defined in Remark 3.1.9 the contraction πX : X→ X and used it
to define the maps Val(g) : X′ → X for g : f ′ → f .

Corollary 3.3.6. The contraction πX is continuous. In particular, the maps Val(g)
are continuous.
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Proof. Since open subdomains X′ = ValY ′(X ′) form a basis of the topology of
X by Theorem 3.3.4, it suffices to prove that the preimage of X′ in Spa(Y,X) is
open. Since the minimality condition in Spa(Y,X) and Spa(Y ′, X ′) agree, π−1(X′)
coincides with the open affine subset Spa(Y ′, X ′). �

3.4. Y -blow ups of X. In this section we assume that f is affine. Then we will
show that there exists a large family of projective Y -modifications of X having good
functorial properties. Using these morphisms we will be able to describe the set
ValY (X) very concretely. Since the results of §3.4 are inspired in part by Raynaud’s
theory of formal models, we will sometimes indicate similarity between our results
and Raynaud’s theory by referencing to [BL].

Definition 3.4.1. A Y -modification gi : Xi → X is called a Y -blow up of X if there
exists a gi-ample OXi-module L provided with a homomorphism ε : OXi → L such
that f∗i (ε) : OY →̃f∗i (L). We call ε a Y -trivialization of L; actually it is a section
of L that is invertible on the image of Y .

It will be more convenient to say X-ample instead of gi-ample in the sequel.

Lemma 3.4.2. The Y -blow ups satisfy the following properties.
(i) Suppose that Xj → Xi and Xi → X are Y -modifications such that Xj is a

Y -blow up of X. Then Xj is a Y -blow up of Xi.
(ii) The family of Y -blow ups of X is filtered.
(iii) The composition of Y -blow ups gij : Xj → Xi and gi : Xi → X is a Y -blow

up.

Proof. The first statement is obvious because any X-ample OXj -module L is Xi-
ample, and the notion of Y -trivialization of L depends only on the morphism fj :
Y → Xj .

(ii) Let Xi, Xj be two Y -blow ups of X. Find X-ample sheaves Li,Lj with
Y -trivializations εi, εj . Then the X-proper scheme Xij = Xi ×X Xj possesses an
X-ample sheaf L = p∗i (L1)⊗ p∗j (L2), where pi, pj are the projections. The natural
isomorphism OXij→̃OXij ⊗ OXij followed by f∗i (εi) ⊗ f∗j (εj) : OXij ⊗ OXij → L
provides a Y -trivialization of L. Consider the scheme-theoretic image X ′ of Y in
Xij , and let L′ and ε′ be the pull backs of L and ε. Then (X ′,L′, ε′) is a Y -blow
up of X which dominates Xi and Xj .

(iii) Choose an X-ample OXi-sheaf Li and an Xi-ample OXj -sheaf Lj with Y -

trivializations εi and εj . By [EGA, II, 4.6.13(ii)], the sheaf Lj⊗g∗ij(L
⊗n
i ) is X-ample

for sufficiently large n. It remains to notice that the composition of OXj→̃OXj ⊗
O⊗nXj with εj ⊗ g∗ij(ε

⊗n
i ) is a Y -trivialization. �

We will need an explicit description of Y -blow ups. Let E ⊂ f∗(OY ) be a finitely
generated OX -submodule containing the image of OX , and let En ⊂ f∗(OY ) denote
the OX -modules which are powers of E with respect to the natural multiplication
on f∗(OY ) (so E0 is the image of OX). We claim that XE := Proj(⊕∞n=0En) is a
Y -modification of X. Clearly, XE is X-projective and there is a natural morphism
gE : Y = Spec(f∗(OY ))→ Spec(∪∞n=0En) where the union is taken inside f∗(OY ).
The target of gE is the X-affine chart of XE defined by non-vanishing of the section
s ∈ Γ(E) which comes from the unit section of OX , in particular, a map Y →
XE naturally arises. In addition, the very ample sheaf OXE (1) on XE has a Y -
trivialization OXE → OXE (1) induced by s. So, among all properties of Y -blow
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ups it remains to check that gE is schematically dominant. The latter can be
checked locally over X, so assume that X = Spec(A), Y = Spec(B) and E ⊂ B
is an A-module containing 1. Then XE = Proj(⊕∞n=0E

n) is glued from affine
charts (XE)b given by non-vanishing of elements b ∈ E, so it suffices to show that
the morphism α : Y ×XE (XE)b → (XE)b is schematically dominant. Note that
the source is the localization of Y at b, and so it is isomorphic to Spec(Bb), and
the target is Spec(C) where C is the zeroth graded component of (⊕∞n=0E

n)b. But
C = inj limn b

−n(En/In), where In is the submodule of elements killed by a power of
b, and the kernel of the homomorphism En ↪→ B → Bb is In. Hence b−n(En/In) ↪→
Bb and therefore C ↪→ B. In particular, α is schematically dominant.

Lemma 3.4.3. Any Y -blow up of X is isomorphic to some XE as a Y -blow up of
X.

Proof. Let gi : Xi → X be a Y -blow up. Find an X-ample OXi-module L with
a Y -trivialization ε : OXi → L. Then there is a closed immersion of X-schemes
h : Xi → P := Proj(⊕∞n=0(gi)∗L⊗n) and the morphism h ◦ fi : Y → Xi → P
factors through the chart of P given by non-vanishing of the section s ∈ Γ((gi)∗L)
corresponding to ε. The latter chart is of the form Spec(A) where A is the ze-
roth graded component of the localization (⊕∞n=0(gi)∗L⊗n)s. Composing the OX -
homomorphism (gi)∗L → A that takes u to s−1u with the OX -homomorphism
A → f∗(OY ) corresponding to fi we obtain a homomorphism (gi)∗L → f∗(OY )
that takes s to the unit section. Now we can define E to be the image of (gi)∗L in
f∗(OY ), and we claim that actually Xi→̃XE as a Y -modification of X. Indeed, the
obvious epimorphism ⊕∞n=0(gi)∗L⊗n → ⊕∞n=0En corresponds to a closed immersion
XE → P which agrees with the morphisms Y → XE and Y → P . Since, the first
morphism is schematically dominant, XE is the schematic image of Y in P , hence
it must coincide with Xi as the closed subscheme of P . �

Corollary 3.4.4. Assume that X ′ is an open subscheme of X and Y ′ = f−1(X ′).
Then any Y ′-blow up X ′i → X ′ extends to a Y -blow up Xi → X.

Proof. Let f ′ : Y ′ → X ′ be the restriction of f , so f ′∗(OY ′) is the restriction of
f∗(OY ) on X ′. By the lemma, a Y ′-blow up of X ′ is determined by a finitely gener-
ated OX′-submodule E ′ ⊂ f ′∗(OY ′) containing the image of OX′ . By [EGA I, 6.9.7],
one can extend E ′ to a finitely generated OX -submodule E ⊂ f∗(OY ). Replacing E
by E +OX , if necessary, we can achieve that E contains the image of OX . Now, E
defines a required extension of the blow up. �

Remark 3.4.5. (i) Lemma 3.4.3 indicates that the notion of Y -blow up is in some
sense a generalization of the notion of U -admissible blow up, where i : U ↪→ X is
a schematically dense open subscheme, to the case of an arbitrary affine morphism
Y → X. Indeed, there is much similarity, but the notions are not equivalent in
general: both U -admissible blow ups and U -blow ups are of the form Proj(⊕∞n=0En),
but in the first case E is an OX -submodule of OX which is trivial over U , and in the
second one E is an OX -submodule of i∗(OU ) that contains OX (so, it is trivial over
U as well). The important case when these notions agree was pointed out by the
referee: it follows from [EGA, II, 3.1.8(iii)] that U -admissible blow ups and U -blow
ups agree when X \ U is the zero set of an invertible sheaf of ideals.

(ii) Basic facts concerning compositions, extensions, etc., (see the above lemmas)
hold for both families of U -modifications, but a slight advantage of U -blow ups is
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that the proofs seem to be easier. For example, compare with [Con, 1.2] where one
proves that U -admissible blow ups are preserved by compositions.

The following lemma is an analog of [BL, 4.4].

Lemma 3.4.6. Given a quasi-compact open subset U ⊂ X = ValY (X), there exists
a Y -modification X ′ → X and an open subscheme U ⊂ X ′ such that U is the
preimage of U in X.

Proof. If X1, . . . , Xn form a finite open affine covering of X and Yi = f−1(Xi)
then Xi = ValYi(Xi) form an open covering of X by Lemma 3.1.8. It suffices to
separately solve our problem for each Xi with Ui := U∩Xi because any Yi-blow up of
Xi extends to a Y -blow up of X, and Y -blow ups of X form a filtered family. Thus,
we can assume that X = Spec(A), and then Y = Spec(B). We can furthermore
assume that U = X ∩ Spa(Bb, A[a1/b, . . . , an/b]) with ai, b ∈ B because as we saw
in the proof of Lemma 3.1.2, the sets Spa(Bb, A[a1/b, . . . , an/b]) form a basis of
the topology of Spa(B,A). Now, the morphism Y → Proj(A[T1, Ta1 , . . . , Tan , Tb])
defined by (1, a1, . . . , an, b) determines a required Y -blow up X ′ → X with U given
by the condition Tb 6= 0. �

Corollary 3.4.7. The map ψ : ValY (X)→ RZY (X) is a homeomorphism.

Proof. Recall that ψ is surjective and continuous by Propositions 2.2.1 and 3.1.10,
respectively. From other side, the lemma implies that ψ is injective and open.
Indeed, any open quasi-compact U ⊂ X is the full preimage of some U ⊂ X ′ for a
Y -modification X ′ → X, hence ψ(U), which is the full preimage of U in RZY (X),
is open. In addition, since any pair of different points of X is distinguished by
some open quasi-compact set U ⊂ X, their images in an appropriate X ′ do not
coincide. �

We use the corollary to identify X with RZY (X) when f is decomposable. In
particular, this provides X with a sheaf OX of regular functions which was earlier
defined on RZY (X), and for any point x ∈ X, thanks to Proposition 2.2.1, the
semi-valuation ring Ox obtains a new interpretation as the stalk of OX at x. As
another corollary of Lemma 3.4.6 we obtain the following version of Chow lemma.

Corollary 3.4.8. Any Y -modification X → X is dominated by a Y -blow up of X.

Proof. Let U1, . . . , Un be an affine covering of X, and let Yi and Ui denote the
preimages of U i in Y and X, respectively. By Lemma 3.4.6, we can find a Y -blow
up X ′ → X and a covering {U ′i} of X ′, whose preimage in X coincides with {Ui}.
Note that the scheme-theoretic image X ′′ of Y in X ×X X ′ is a Y -modification of
both X ′ and X. So, it suffices to show that X ′′ is a Y -blow up of X.

Since the preimages of U i and U ′i in X coincide, their preimages in X ′′ coincide
too, and we will denote them as U ′′i ↪→ X ′′. Consider the induced Y -modification
h : X ′′ → X ′ with restrictions hi : U ′′i → U ′i . For any 1 ≤ i ≤ n, the proper
morphism hi is affine because the morphism U i → X is affine and U ′′i is closed in
U ′i ×X U i. Thus, hi is finite, and therefore h is finite. We claim that finiteness of h
implies that it is a Y -blow up (this claim is an analog of [BL, 4.5]). Indeed, OX′′

is very ample relatively to h because h is affine, and the identity homomorphism
gives its Y -trivialization. Thus, X ′′ is a Y -blow up of X by Lemma 3.4.2(iii). �
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3.5. Decomposable morphisms. In this section we will complete a basic descrip-
tion of the relative Riemann-Zariski space X associated with a separated morphism
f : Y → X between qcqs schemes by proving that the finite union of open domains
is an open domain, and any open domain in X is of the form ValY (X) where the

morphism Y → X is affine and schematically dominant. The first claim actually
means that any quasi-compact open subset is an open domain, i.e. admits a model
by a morphism of schemes, and the second claim states that this model can be
chosen to be affine. In particular, applying the second claim to X itself we obtain
a bijection ValY (X)→̃ValY (X) with Y = Y and affine morphism Y → X. But

then X is proper over X by the valuative criterion 3.2.3, and hence X admits
a Y -modification X such that the morphism Y → X is affine. Thus, the mor-
phism f : Y → X is decomposable and this gives a new proof of Theorem 1.1.3.
In particular, one obtains new proofs of Nagata compactification and Thomason
approximation theorems.

Theorem 3.5.1. Let f : Y → X be a separated morphism between qcqs schemes
and X = ValY (X). Then

(i) open domains in X are closed under finite unions,
(ii) any open domain X′ is of the form ValY (X), where the morphism Y → X

is affine and schematically dominant.

Proof. Note that any affinoid domain satisfies the assertion of (ii) (since schematical
dominance is achieved by simply replacing X with the schematic image of Y ),
and by Theorem 3.3.4 and Corollary 3.3.5, X′ admits a finite affinoid covering.
Therefore, both (i) and (ii) would follow if we prove the following claim: the union
of two domains satisfying the assertion of (ii) is an open domain that satisfies the
assertion of (ii). So, we assume that X′ = X1 ∪ X2 where Xi = ValYi(Xi) with
i ∈ {1, 2} are open subdomains with affine morphisms Yi → Xi.

Set X12 = X1 ∩ X2 and Y12 = Y1 ∩ Y2. In the sequel, we will act as in Step 3 of
the proof of Theorem 1.1.2, and the main difference is that we will use Yi-blow ups
instead of affine morphisms. For reader’s convenience, we provide a commutative
diagram containing the main objects which were and will be introduced.

Y1

��

Y12

��

? _oo � � // Y2

��
X1

��

X12

��

? _oo � � // X2

��
Z1

��

Z12

}} !!

? _oo � � // Z2

��
X1 X ′1?

_oo X ′2
� � // X2

Since Yi’s are Xi-affine, Lemma 3.4.6 implies that we can replace Xi’s by their
Yi-blow ups such that each Xi contains an open subscheme X ′i, whose preimage in
Xi coincides with X12. Then the preimage of X ′i in Y is, obviously, Y12. It can
be impossible to glue Xi’s along X ′i’s, but by Lemma 3.1.8(ii), we at least know
that ValY12

(X ′i)→̃X12 for i = 1, 2. Let T be the scheme-theoretic image of Y12 in
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X ′1×X X ′2; it is obviously separated over X ′i’s. Moreover, ValY12(T )→̃ValY12(X ′1)∩
ValY12(X ′2) = X12 by Lemma 3.3.2, and, therefore, T is a Y12-modification of X ′i’s
by the valuative criterion 3.2.3.

By Corollary 3.4.8, we can find a Y12-blow up T ′ → X ′1, which dominates T .
It still can happen that T ′ is not a Y12-blow up of X ′2, but it is dominated by
a Y12-blow up Z12 → X ′2. Then Z12 → T ′ is a Y12-blow up by Lemma 3.4.2(i),
and hence Z12 → X ′1 is a Y12-blow up by Lemma 3.4.2(iii). By Lemma 3.4.4, we
can extend the Y12-blow ups Z12 → X ′i to Yi-blow ups Zi → Xi. Then, the finite
type X-schemes Zi can be glued along the subschemes X-isomorphic to Z12 to a
single X-scheme X of finite type, and the schematically dominant affine morphisms
Yi → Zi glue to a single schematically dominant affine morphism Y → X. Note that
ValYi(Zi) = Xi is the preimage of Zi in ValY (X), in particular, the latter is covered

by its open subdomains Xi, i ∈ {1, 2}. Now, it remains to show that ValY (X) is

an open subdomain in X, since this would immediately imply that ValY (X) is a

required model of X. The morphism α : Y → X×X Y is glued from the morphisms
αi : Yi → Zi ×X Y because Yi is the preimage of Zi in Y , but αi’s are closed
immersions by the construction. So, α is a closed immersion as well, and we are
done. �

Corollary 3.5.2. The map η : Y → X := RZY (X) is injective, each point
x ∈ RZY (X) possesses a unique minimal generalization y in η(Y ), MX,x→̃OY,y,
and the stalk MX,x is the semi-fraction ring of the semi-valuation ring OX,x. In
particular, OX is a subsheaf of MX.

Proof. By Theorem 3.5.1 and Corollary 3.4.7, we can identify X with ValY (X). So,
a point x can be interpreted as an X-valuation (y,R, φ) on Y . Then it is clear
that the map η sends y ∈ Y to a trivial valuation (y, k(y), f |y) (with the obvious
morphism f |y : Spec(k(y)) → X), and for an arbitrary x = (y,R, φ) its minimal
generalization in η(Y ) is (y, k(y), f |y). Uniqueness of minimal generalization implies
that the stalk ofMX = η∗(OY ) at x is simply OY,y, so it remains to recall that the
latter is the semi-fraction field of the semi-valuation ring Ox defined in §2.1, which
coincides with the stalk OX,x by Proposition 2.2.1. �
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