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Q-UNIVERSAL DESINGULARIZATION

EDWARD BIERSTONE, PIERRE D. MILMAN, AND MICHAEL TEMKIN

Abstract. We prove that the algorithm for desingularization of algebraic
varieties in characteristic zero of the first two authors is functorial with respect
to regular morphisms. For this purpose, we show that, in characteristic zero, a
regular morphism with connected affine source can be factored into a smooth
morphism, a ground-field extension and a generic-fibre embedding. Every
variety of characteristic zero admits a regular morphism to a Q-variety. The
desingularization algorithm is therefore Q-universal or absolute in the sense
that it is induced from its restriction to varieties over Q. As a consequence, for
example, the algorithm extends functorially to localizations and Henselizations
of varieties.
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1. Introduction

Our main result is the following.

Theorem 1.1. Every algebraic variety in characteristic zero admits (strong) reso-
lution of singularities that is functorial with respect to regular morphisms.

More precisely, we show that the desingularization algorithm of [BM2, BM4] is
functorial with respect to regular morphisms. (See Theorem and Addendum 6.1
below for a precise statement of Theorem 1.1. “Strong” means in particular that
the desingularization is by blowings-up along smooth subvarieties.) The assertion
of Theorem 1.1 is called Q-universal resolution of singularities by Hironaka [Hi]
because any algebraic variety X in characteristic zero admits a regular morphism
to a variety Y defined over the rational numbers Q (see Theorem 3.1 below), so

1991 Mathematics Subject Classification. Primary 14E15, 32S45; Secondary 32S15, 32S20.
Key words and phrases. resolution of singularities, functorial, canonical, marked ideal.
The first two authors’ research was supported in part by NSERC grants OGP0009070 and

OGP0008949.

1

http://lanl.arxiv.org/abs/0905.3580v1


2 EDWARD BIERSTONE, PIERRE D. MILMAN, AND MICHAEL TEMKIN

that resolution of singularities of X is induced by that of Y . In [Hi], Hironaka
writes that Q-universal desingularization will be proved in a subsequent paper, but
a proof has not appeared before as far as we know (see Remark 5.5).

An (algebraic) variety means a scheme X which admits a morphism of finite
type X → Spec k, where k is a field. (It will be convenient to extend this definition
to schemes that are disjoint unions of such; see Remarks 4.7(2).) If a morphism
X → Spec k is fixed, we will say that X is a variety with ground field k, or a
k-variety.

A morphism of schemes f : X → Y is regular if f is flat and all fibres of f are
geometrically regular ; equivalently, if f is flat and, for every morphism T → Y of
finite type, all fibres of X×Y T → T are regular [Ma, §§28, 33]. If f is of finite type,
then f is regular if and only if it is smooth [Ha, Thm. 10.2]. Thus regularity is a
generalization of smoothness to morphisms that are not necessarily of finite type.

Theorem 1.2. A regular morphism f : X → Y , where X is a connected affine
variety and Y is a variety over a field k of characteristic zero, can be factored as

(1.1) X ∼= Zη ×Specm Spec l
fl

−→ Zη
fm

−−→ Z
fk

−→ Y,

where fk is a smooth morphism of k-varieties, fl is a ground-field extension and
fm : Zη → Z is a generic-fibre embedding.

A generic-fibre embedding fm : Zη → Z means there is a dominant k-morphism
Z → T to an integral k-variety T , and fm : Zη → Z is the canonical morphism
from the generic fibre Zη = Z ×T η (where η = Specm is the generic point of T .
See Sections 2 and 4.)

For example, Spec Q(x)[y] → Spec Q[x, y] is a generic-fibre embedding; it is a
regular morphism that is not a composite of smooth morphisms and ground-field
extensions.

Functoriality with respect to smooth morphisms and ground field extensions
in the strong desingularization algorithm for varieties [BM2] is proved in [BM4].
([W] and [K] provide versions of weak desingularization of varieties that are also
functorial with respect to smooth morphisms and ground field extensions.) In
Section 6, we deduce Theorem 1.1 from the previous results, using Theorem 1.2
and functoriality with respect to generic-fibre embeddings (see §4.3 and Proposition
6.3).

Note, however, that all previous results on functoriality seem to make a tacit as-
sumption that the smooth morphisms have constant relative dimension. We impose
no such restriction in Theorem 1.1, so we also have to show that the desingular-
ization algorithms of [BM2, BM4] are functorial with respect to arbitrary smooth
morphisms. We are grateful to Ofer Gabber for raising this issue; see §6.3.

Functorial desingularization involves important local–global issues. For example,
even if a variety has several connected components (so that resolutions of singulari-
ties of different components are independent), functoriality depends on the order in
which the components are blown up. Such issues intervene throughout the article
(see §4.3 and Remarks 5.1, 6.2).

The algorithm for strong resolution of singularities of [BM2, BM4] is based on a
desingularization algorithm for a marked ideal (as presented in [BM4]). The proofs
of the theorems involve a notion of equivalence of marked ideals. (The meanings of
these notions are recalled in §5 below; for details we refer to [BM4].)
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Theorem 1.3. The algorithm for resolution of singularities of marked ideals in
characteristic zero (of [BM4]) is functorial with respect to equivalence classes (of
marked ideals of a given dimension; see §5.1) and with respect to regular morphisms.

In Section 5, we obtain Theorem 1.3 from previous functoriality results (with
respect to smooth morphisms and ground field extensions) again using Theorem
1.2, §4.3 and functoriality with respect to generic-fibre embeddings (Propostion
5.3). If Zη → Z is a generic-fibre embedding in characteristic zero, where Z is
smooth, then equivalent marked ideals on Z pull back to equivalent marked ideals
on Zη (see Lemma 5.2).

An algorithm for principalization of an ideal that is functorial with respect to
regular morphisms also follows from Theorem 1.3.

For Proposition 5.3, we follow the proof in [BM4] step-by-step. The only point
that is not immediate involves passage from a marked ideal to a (local) coefficient
ideal (Step I in [BM4]). Suppose that ψ : Zη → Z is a generic-fibre embedding
as above, where Zη, Z are smooth. Let Iη denote the pullback ψ∗(I) to Zη of a
marked ideal I on Z. It follows from Lemma 5.1 that the coefficient ideal of I pulls
back to a marked ideal which is equivalent to Iη (see Lemma 5.6).

Remark 1.4. To explain the significance of the latter, let us recall that the local
coefficient ideal for I is defined using ideals of derivatives of I. If I ⊂ OX is a
coherent ideal on a regular varietyX , then the derivative ideal D(I) is generated by
all first derivatives of local sections of I. If X is an m-variety, this means that D(I)
is the image of the natural morphism DerX × I → OX , where DerX denotes the
sheaf of m-derivations Derm(OX ,OX); i.e., m-linear homomorphisms OX → OX
that satisfy Leibniz’s rule (hence vanish on m).

A coefficient ideal of a marked ideal on Z involves k-derivations, while on Zη a
coefficient ideal involvesm-derivations. Derivative ideals defined using k-derivations
(or Q-derivations) may be much larger than those defined over m because they
involve derivatives along “constants” (elements of m that are transcendental over
k or Q). Q-universal resolution of singularities means that the derivative ideals
defined using Q-derivations nevertheless do not result in smaller centres of blowing
up, so we can run the desingularization algorithm for a variety defined over a field
or characteristic zero, in general, using derivatives defined over Q.

In Section 7, we present an alternative (though less explicit) approach to univer-
sal desingularization algorithms based on approximation methods of [EGA IV, §8]
that we use in our proof of the factorization theorem 1.2. We can start with any
desingularization algorithm for varieties over Q that is functorial with respect to
smooth morphisms, and extend it to a class of schemes over Q that includes all va-
rieties of characteristic zero as well as their localizations and Henselizations along
closed subvarieties. The resulting desingularization algorithm is again functorial
with respect to regular morphisms.

2. The generic fibre

Let π : Z → T denote a dominant morphism of k-varieties, where k is a field
and T is integral. Let η denote the generic point of T ; i.e., η = Specm, where m is
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the function field K(T ) of T . There is a fibred-product diagram

Z ×T η
ψ

−−−−→ Z
y

yπ

η −−−−→ T

in which all morphisms are dominant. The generic fibre Zη of π denotes the m-
variety Z ×T η.

Suppose that Z and T are affine. Then m is the field of fractions k(T ) of the
coordinate ring k[T ]; by definition, k(T ) is the localization k[T ]S, where S = S(T )
is the multiplicative subset k[T ]\{0} of k[T ]. The morphism π induces an injection
k[T ] →֒ k[Z], so that the coordinate ring of Zη,

m[Zη] = k(T )⊗k[T ] k[Z] ∼= k[Z]S .

Remark 2.1. We recall that if A is a ring and S is a multiplicative subset of A,
then an ideal of AS is prime if and only if it of the form p ·AS , where p is a prime
ideal of A disjoint from S.

If a ∈ Z, we write mZ,a for the maximal ideal of OZ,a and κ(a) for the residue
field OZ,a/mZ,a. Let b be a point of Zη and let a = ψ(b) ∈ Z. (a is not necessarily
closed, even if b is closed.) Let ψ∗

b : OZ,a → OZη ,b denote the homomorphism of
local rings induced by ψ.

If T is affine as above, then OZη ,b can be identified with the localization (OZ,a)S ,
where S = S(T ); thus mZ,a ∩ S = ∅, by Remark 2.1, so that OZη ,b

∼= (OZ,a)S =
OZ,a. Therefore, (1) κ(a) = κ(b); (2) OZη ,b is regular if and only if OZ,a is regular;
(3) if f ∈ OZ,a, then the order ord f = ordψ∗

b (f).
Suppose that W is an integral subvariety of Z. It follows from Remark 2.1 that

π|W : W → T is dominant if and only if there is a point b ∈ Zη such that W is the
closure a of a = ψ(b).

Suppose that b is a closed point of Zη. Then κ(b)/m is a finite field extension,
by the Nullstellensatz [E, Th. 4.19]. Let a = ψ(b) and let W = a. Then κ(b) =
κ(a) = K(W ), so that K(W )/K(T ) is a finite extension, and π|W is a generically
finite morphism.

In general, if π|W is not dominant, then ψ−1(W ) = ∅, and if π|W is dominant,
then ψ−1(W ) = Wη. In the latter case, if k is perfect, then Wη is smooth if and
only if there is an open subset of T over which W is smooth (and the restriction of
π is a smooth morphism).

3. Embedding as the generic fibre of a Q-variety

Every variety X in characteristic zero can be obtained by a base change from a
variety which admits a generic fibre embedding Zη → Z into a variety Z over Q.
This is a well-known result which is a special case of Theorem 1.2. We outline a
proof for completeness and also to illustrate a technique developed in great gener-
ality by Grothendieck [EGA IV, Th. 8.8.2, Prop. 8.13.1] that we will use to prove
Theorem 1.2.

Theorem 3.1. Let X denote a variety over a field k of characteristic zero. Then
there exists a Q-variety Z and a dominant morphism π : Z → T , where T is an
integral Q-variety, such that X is obtained from the generic fibre Zη of π by base
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extension; i.e., X = Zη ×Specm Spec k, where m = K(T ). If X is smooth, then we
can take Z smooth.

Proof. Our k-variety X can be constructed by glueing together finitely many affine
varieties Xi along open subsets. (See [Ha, Ch. II, Exercise 2.12].) Let m denote
the subfield of k obtained by extending Q by the coefficients of the polynomials
comprising (finite) generating sets for the ideals Ii, where Xi = Spec k[y]/Ii, for all
i, together with the coefficients of the polynomials needed to present the glueing
data. In other words: Let {cj} ⊂ k denote the (finite) set of all coefficients above,
and consider the ring homomorphism γ : Q[x]→ k given by γ(xj) = cj , where Q[x]
denotes the ring of polynomials over Q in indeterminates xj . The ker γ is a prime
ideal p, and m denotes the field of fractions of Q[x]/p.

The field m is an extension of Q of finite type. Our variety X can be considered
also as a variety Zm defined over m. (As a k-variety, X is obtained from Zm by
base extension Spec k → Specm.)

Let T := Spec Q[x]/p. For each affine chart Xi = Spec k[y]/Ii above, let Ji ⊂
Q[x, y] denote the ideal with generators obtained from those above by replacing each
coefficient cj by xj . Then there is a Q-variety Z constructed by glueing together the
affine varieties Zi = Spec Q[x, y]/(Ji, p) (where (Ji, p) denotes the ideal generated
by Ji and p) using glueing morphisms obtained in the same way from those for
X = ∪Xi.

Clearly, there is a dominant morphism π : Z → T , and Zm can be identified
with the generic fibre Zη of π (where η = Specm is the generic point of T .)

If X is smooth, then Zm is smooth. The variety Z is a priori singular, but we
can restrict to an open subset of T over which it is smooth (as in §2). �

4. Factorization of a regular morphism

4.1. Ground fields. A variety X may admit many different structures of a k-
variety (i.e., many different morphisms of finite type f : X → Spec k, even for a
fixed field k). This is usually the case when X is not reduced. (A simpler possibility
is that k is finite over a subfield isomorphic to k itself). Nevertheless, a connected
reduced variety possesses a unique maximal ground field, so there is a natural choice
of ground field.

Lemma 4.1. Let X be a connected reduced variety. Then the ring OX(X) contains
a maximal subfield k containing any other subfield. In particular, any morphism
X → Spec l, where l is a field, factors through the morphism X → Spec k corre-
sponding to the embedding k →֒ OX(X).

Proof. Let F be the prime subfield contained in O := OX(X) and let k be the set
of elements f ∈ O such that O contains the subfield F(f). It suffices to prove that
k is a subfield of O, since it is then clear that k is as required. Fix a structure
X → Spec l of an l-variety on X . Then any element f ∈ O induces a morphism
F : X → A1

l = Spec l[T ] whose image Z is constructible, by Chevalley’s theorem

[Ha, Ex. 3.19]. Since Z is connected, either it is a point or it omits at most finitely
many points. In the latter case, f /∈ k because F[T ] has infinitely many primes.
On the other hand, in the first case, the map F is constant on X and equal to an
element of the algebraic closure of l, hence f annihilates an irreducible polynomial
over l and so l[f ] is a subfield of O. This proves that F is constant if and only
if f ∈ k. It follows that k is a ring, and we have also seen that l[f ] is a field for
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any element f ∈ k. Thus k is a field as required. (We have actually proved that it
coincides with the integral closure of l in O.) �

The lemma following shows that to a general connected affine variety X , we
can assign a uniquely defined maximal ground field k just by taking the maximal
ground field of its reduction. However, in sharp contrast to the reduced case above,
the structure morphism X → Spec k is absolutely not canonical. In particular,
non-isomorphic k-varieties can be isomorphic as abstract schemes.

Lemma 4.2. Let X be an affine variety with reduction X0. Then any morphism
f0 : X0 → Spec k, where k is a field, extends to a morphism f : X → Spec k in
the sense that f0 is the composition of f with the reduction morphism X0 → X.
Moreover, suppose that l is a subfield of k such that k/l is separable, and fix an
extension f ′ : X → Spec l of the morphism f ′

0 : X0 → Spec k → Spec l. Then we
can choose f compatible with f ′.

Proof. Let F be the prime subfield of k. Then k/F is separable and X admits a
unique morphism to Spec F. Let l be a subfield of k such that k/l is separable (for
example, l = F to get the first assertion of the lemma). Since k/l is separable, the
morphism Spec k → Spec l is formally smooth, by [Ma, Prop. 28.I]. In particular,
the l-morphism X0 → Spec k extends to an l-morphism X → Spec k. �

Combining Lemmas 4.1 and 4.2, we obtain the following corollary.

Corollary 4.3. Let X be a connected affine variety. Then any morphism X →
Spec l, where l is a perfect field, factors through a morphism X → Spec k of finite
type, where k is a field.

The following example shows why we have to assume that X is connected in
Corollary 4.3.

Example 4.4. Let k be a field which admits an endomorphism ϕ : k → k with
[k : ϕ(k)] = ∞; for example, k = C. Set S := Spec k and let X = S1

∐
S2 be the

disjoint union of two copies of S. Then the morphism X → S which restricts to
the identity on S1 and to Specϕ on S2 cannot be factored as in Corollary 4.3.

4.2. Regular morphisms. The assertion of our factorization theorem 1.2 is in-
cluded in the following result.

Theorem 4.5. Let k denote a perfect field, and let f : X → Y denote a morphism,
where X is a connected affine variety and Y is a k-variety.

(1) The f can be factored as

(4.1) X ∼= Zη ×Specm Spec l
fl

−→ Zη
fm

−−→ Z
fk

−→ Y,

where fk is a morphism of k-varieties, fl is a ground-field extension and
fm is a generic-fibre embedding.

(2) Assume that char k = 0. Then f is regular if and only if the morphism fk
in (4.1) is smooth on a neighbourhood U of Zη. (So, if f is regular, then
we get (4.1) with fk smooth by restricting to U .)

Proof. By Corollary 4.3 the morphism X
f
−→ Y → Spec k extends to a morphism

X → Spec l of finite type. We construct Zη by approximating X with a variety
defined over a finitely generated k-field m. The k-scheme Spec l is the projective
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limit of the k-schemes Specmi where mi runs over all subfields of l that contain k
and are finitely generated over k. By [EGA IV, Thm. 8.8.2(ii)], there exist m = mi

and an m-variety Zη which induces X in the sense that X
∼=−→ Zη ⊗m l. (The latter

is an abbreviation for Zη ⊗Specm Spec l.) Moreover, X is the projective limit of
the k-schemes X ⊗m mi, for the mi which contain m. By [EGAIV, Prop. 8.13.1],
after replacing m with a larger mi if necessary, there is a k-morphism g : Zη → Y
which induces the natural k-morphism X → Y in the sense that the latter factors

through g. In particular, we obtain a factorization X
∼=
−→ Zη ⊗m l→ Zη → Y .

Now we construct Z by approximating Zη with a k-variety. Take an integral k-
variety M0 with field of fractions m. Then Specm is the projective limit of all open
subvarieties Mi →֒M0. By [EGA IV, Thm. 8.8.2(ii)], there exist i and a morphism
Zi → Mi of finite type such that Zη = Zi ×Mi

Specm; then Zη is the projective
limit of the schemes Zj = Zi ×Mi

Mj for Mj →֒ Mi. Obviously, each morphism
Zη → Zi is a generic-fibre embedding. By [EGA IV, Prop. 8.13.1], the k-morphism
Zη → Y is induced by a morphism Z → Y for an appropriate choice of Z = Zj , i.e.
Zη → Y factors through a morphism of k-varieties Z → Y . This proves (1).

Now we prove (2). Note that fl is the base change obtained from h : Spec l →
Specm; hence fl is faithfully flat and fl is regular if and only if h is regular. The
latter condition is automatic in characteristic zero. Note also that fm is regular
because it is a pro-open immersion in the sense of [T1, §2.1] (i.e. fm is a projective
limit of open immersions; in particular, it is injective and OZ |Zη

= OZη
), and fk is

of finite type, hence it is regular if and only if it is smooth. Since f = fk ◦ fm ◦ fl
and regularity is preserved by composition [Ma, Lemma 33.B], we see that f is
regular provided that fk is smooth, and clearly then provided that fk is smooth on
a neighborhood of Zη →֒ Z. Conversely, suppose that f is regular. By [Ma, Lemma
33.B], since fl is faithfully flat, the morphism Zη → Y is regular. Let T ⊂ Z be the
non-smooth locus of fk; then a point z ∈ Z lies in T if and only if the morphism
fz : SpecOZ,z → SpecOY,fk(z) is not regular. Consider z ∈ Zη. Then the local ring

of z in Zη is the same as its local ring in Z, because OZη
= OZ |Zη

. Therefore, fz
is regular because Zη → Y is regular. So z /∈ T ; thus Zη is disjoint from the closed
set T and fk is smooth on U := Z \ T , as required. �

4.3. Application to functorial resolution of singularities.

Corollary 4.6. A desingularization algorithm for algebraic varieties in character-
istic zero is functorial with respect to regular morphisms if and only if it is functorial
with respect to smooth morphisms, ground-field extensions and generic-fibre embed-
dings.

Remarks 4.7. (1) A functorial desingularization algorithm associates to a variety
X a sequence of blowings-up F(X) with the property that, if f : X → Y is an
allowed morphism (e.g., a regular morphism in Corollary 4.6), then the desingular-
ization sequence F(Y ) pulls back to F(X), after perhaps deleting isomorphisms in
the pulled-back sequence when f is not surjective. (For example, if f is an open
immersion, then the centre of a given blowing-up in the resolution sequence for Y
may have no points over X . See also [T2, §§2.3.3–2.3.6].)

(2) Suppose that Y is a k-variety, where char k = 0, and that f : X → Y is a
regular morphism of varieties. Consider a finite covering {Xi} of X by connected
open affine subvarieties. For each i, let γi : Xi →֒ X denote the inclusion and
set fi := f ◦ γi : Xi → Y . For each i, there is a morphism of finite type Xi →
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Spec li (by Corollary 4.3) and fi factors according to Theorem 1.2; let us denote
the factorization as

Xi
∼= (Zi)ηi

×Specm
i
Spec li

(fi)li−−−→ (Zi)ηi

(fi)mi−−−−→ Zi
(fi)k

−−−→ Y.

There are induced morphisms

(4.2)
∐

i

Xi →
∐

i

(Zi)ηi
→

∐

i

Zi → Y,

where
∐

denotes disjoint union. The proof below involves functoriality with respect
to these morphisms. But

∐
i(Zi)ηi

is not necessarily a variety since it does not
necessarily admit a morphism of finite type to Spec of a fixed field. It is therefore
convenient to extend our desingularization theorems to schemes that are disjoint
unions of varieties. (We will extend the use of variety to include such schemes.)
The desingularization theorems of [BM4] extend trivially to this larger category.

Proof of Corollary 4.6. Assume we have a desingularization algorithm that is func-
torial with respect to smooth morphisms, ground-field extensions and generic-fibre
embeddings. Let Y be a k-variety, where chark = 0, and let f : X → Y denote
a regular morphism of varieties. We have to show that the desingularization se-
quence for Y pulls back to that for X (modulo trivial blowings-up in the pull-back
sequence; cf. Remarks 4.7(1)). We use the notation of Remarks 4.7(2). The mor-
phism γ :

∐
Xi → X induced by the inclusions γi : Xi →֒ X is étale and surjective.

By functoriality with respect to smooth (and hence, in particular, étale) morphisms,
it is therefore enough to show that the desingularization algorithm commutes with
pullback by the composite of the three morphisms in (5.2). This is true by the
assumption. �

Remark 4.8. Another approach to functoriality (and, in particular, to the assertion
of Corollary 4.6) of origin in [BM2] involves proving a stronger desingularization
theorem where the centres of blowings-up of a variety X are given by the maxi-
mum loci of an upper-semicontinuous desingularization invariant (see [BM4, §7]).
Functoriality of the algorithm with respect to smooth morphisms, ground-field ex-
tensions and generic-fibre embeddings then implies functoriality with respect to
regular morphisms, directly by Theorem 1.2.

Both Corollary 4.6 and Remark 4.8 have analogues for desingularization of
marked ideals that can be obtained in the same way.

5. Functoriality of desingularization of a marked ideal with

respect to generic-fibre embeddings

In this section we prove that the desingularization algorithm for marked ideals
[BM4, §5] is functorial with respect to generic-fibre embeddings (Proposition 5.3
below). Theorem 1.3 then follows from Corollary 4.6 together with functoriality
with respect to ground-field extensions and with respect to smooth morphisms
([BM4, §7]; see Remark 5.1 below).

Let π : Z → T denote a dominant morphism of k-varieties, where k is a field of
characteristic zero. Let ψ : Zη → Z denote the embedding of the generic fibre of
π, as in Section 2. (Zη is an m-variety, where m = K(T ).) If I ⊂ OZ is an ideal
(i.e., a coherent sheaf of ideals), let Iη ⊂ OZη

denote the inverse image (pullback)
ψ∗(I). Then Iη is a coherent sheaf of ideals on Zη.
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Every subvariety of Zη is of the form Cη, where C is a subvariety of Z such that
π|C : C → T is dominant. Moreover Cη is smooth if and only if there is an open
subset of T over which C (and also π|C) is smooth (Section 2). Let BlCZ → Z
denote the blowing-up with centre a subvariety C of Z. By functoriality of blowing-
up with respect to flat base extension,

(5.1) (BlCZ)η = BlCη
Zη

(where we understand Cη = ∅ and BlCη
Zη = Zη if π|C is not dominant).

5.1. Marked ideals. A marked ideal I is a quintuple I = (Z,N,E, I, d), where:
Z ⊃ N are smooth varieties, E =

∑s

i=1Hi is a simple normal crossings divisor on
Z which is tranverse to N and ordered (the Hi are smooth hypersurfaces in Z, not
necessarily irreducible, with ordered index set as indicated), I ⊂ ON is an ideal,
and d ∈ N. The cosupport of I,

cosupp I := {x ∈ N : ordxI ≥ d} .

We say that I is of maximal order if d = max{ordxI : x ∈ cosuppI}. The
dimension dim I denotes dimN .

A blowing-up σ : Z ′ = BlCZ → Z (with smooth centre C) is admissible
for I if C ⊂ cosupp I, and C, E have only normal crossings. The (controlled)
transform of I by an admissible blowing-up σ : Z ′ → Z is the marked ideal
I ′ = (Z ′, N ′, E′, I ′, d′ = d), where N ′ is the strict transform of N by σ, E′ =∑s+1
i=1 H

′
i, where H ′

i denotes the strict transform of Hi, for each i = 1, . . . , s, and
H ′
s+1 := σ−1(C) (the exceptional divisor of σ, introduced as the last member of E′),

and I ′ := I−d
σ−1(C) · σ

∗(I) (where Iσ−1(C) ⊂ ON ′ denotes the ideal of σ−1(C)). In

this definition, note that σ∗(I) is divisible by Id
σ−1(C) and E′ is a normal crossings

divisor transverse to N ′, because σ is admissible.
We define a resolution of singularities of a marked ideal I as a finite sequence

of admissible blowings-up after which cosuppI = ∅.
Let I be a marked ideal as above, and let ϕ : Y → Z denote a regular mor-

phism. We define the inverse image (or pullback) ϕ∗(I) as the marked ideal
(Y, ϕ−1(N), ϕ−1(E), ϕ∗(I), d) (where ϕ−1(E) inherits the ordering of E). If ψ :
Zη → Z is a generic-fibre embedding as above, then ϕ∗(I) = Iη, where the lat-
ter denotes the marked ideal (Zη, Nη, Eη, Iη, d). (Nη is empty (so cosuppIη = ∅)
unless π|N is dominant, and Eη is empty if no component of E dominates T .)

Remark 5.1. There are two proofs of functoriality of the desingularization algo-
rithm for a marked ideal with respect to étale or smooth morphisms in [BM4, §7].
The first proof comes from Kollar [K, Prop. 3.37]. For this argument, we assume
that our marked ideals are equidimensional and that the smooth or regular mor-
phisms considered have constant relative dimension; it seems inconvenient to carry
out the proof without these assumptions. The proof is by induction on dimension.
It uses functoriality in the inductive step in a way that necessitates working with
marked ideals I = (Z,N,E, I, d) where Z may have several components (cf. Re-
marks 4.7(2)). Although the blowings-up of different components are independent,
a functorial algorithm depends on which we take first, second, etc. (In dimension 1,
the algorithm dictates blowing up the points of maximum order of I at each step.)
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The second proof of functoriality with respect to smooth morphisms involves
proving the stronger desingularization theorem [BM4, Thm. 7.1], where the cen-
tres of blowing up are given by the maximum loci of an upper-semicontinuous
desingularization invariant (cf. Remark 4.8). The invariant is defined by induction
on dim I. This functorial desingularization algorithm does not require an equidi-
mensionality assumption on the marked ideals, and applies to smooth or regular
morphisms that are not necessarily of constant relative dimension.

5.2. Test transformations and equivalence. Let I denote a marked ideal as
above. Sequences of test transformations are introduced to test for invariance of lo-
cal numerical characters of I (see [BM4, §6]). Test transformations are transforma-
tions of a marked ideal by morphisms of three possible kinds: admissible blowings-
up, projections from products with an affine line, and exceptional blowings-up:

Product with a line. Let Z ′ := Z×A1, and let π : Z ′ → Z denote the projection.
We define the transform I ′ of I by π as the marked ideal I ′ = (Z ′, N ′, E′, I ′, d′ =

d), where N ′ := π−1(N), I ′ := π∗(I), but E′ =
∑s+1

i=1 H
′
i, whereH ′

i := π−1(Hi), for
each i = 1, . . . , s, and H ′

s+1 denotes the horizontal divisor D := Z × {0} (included
as the last member of E′).

Exceptional blowing-up. A blowing-up σ : Z ′ → Z is called an exceptional
blowing-up for I if its centre C is an intersection Hi ∩Hj of distinct hypersurfaces
Hi, Hj ∈ E. We define the transform I ′ = (Z ′, N ′, E′, I ′, d′) of I by σ as the
marked ideal in the same way as for an admissible blowing-up. (In the case of an
exceptional blowing-up, N ′ = σ−1(N) and I ′ = σ∗(I).)

A test sequence for I0 = I means a sequence of morphisms

Z = Z0
σ1←− Z1 ←− · · ·

σt←− Zt ,

where each successive σj+1 is either an admissible blowing-up, the projection from
a product with a line, or an exceptional blowing-up.

We say that two marked ideals I and I1 (with the same ambient variety Z and
the same normal crossings divisor E) are equivalent if they have the same test
sequences (i.e., every test sequence for one is a test sequence for the other).

Lemma 5.2. Let Zη → Z denote a generic-fibre embedding as above. Suppose
that I = (Z,N,E, I, d) and J = (Z,P,E,J , e) are marked ideals on Z. If I is
equivalent to J , then Iη is equivalent to J

η
.

Proof. This follows directly from the definitions, together with the fact that any
test sequence for Iη lifts to a test sequence for I over some neighbourhood of Zη
in Z (cf. (5.1)) and the fact that if b ∈ Nη and a = ψ(b), then ordaI = ordbIη (see
Section 2). �

5.3. Functoriality with respect to generic-fibre embeddings.

Proposition 5.3. Let ψ : Zη → Z denote a generic-fibre embedding and let I
denote a marked ideal on Z, as above. Then the sequence of blowings-up involved
in the desingularization algorithm [BM4, §5] for Iη is the pullback of the desingu-
larization sequence for I.

Remark 5.4. In the blowing-up sequence for I, any centre of blowing up that does
not dominate T pulls back to an empty centre, so that the corresponding blowing-up
over Zη is the identity morphism.
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Proof of Proposition 5.3. The proof consists simply of following that in [BM4, §5]
step-by-step. The proof is by induction on dim I. We will not go through the
entire process. The proof (or the algorithm) as presented in [BM4, §5] has two
main steps, each of which involves an important construction: in Step I, passage
from a marked ideal I = (Z,N,E, I, d) of maximal order to a coefficient ideal C(I)
on an open subset U of Z, to decrease the dimension by 1 (for induction), and
in Step II, passage from a general marked ideal I to a companion ideal G(I) of
maximal order, to reduce to Step I.

It is easy to see that G commutes with I 7→ Iη (by the definition of G; we leave
the details to the reader). For C, commutativity with respect to I 7→ Iη is true
only on the level of equivalence classes. This is proved in the following subsection.
Our proposition follows from these two results. �

Remark 5.5. Step II in [BM4, §5] involves proving that the equivalence class of
G(I) depends only on the equivalence class (and dimension) of I. This result is
proved using the fact that two local numerical characters of a marked ideal, ordaI/d
and ordH,aI/d, H ∈ E (where ordH,a denotes the order along H) are invariants
of the equivalence class. In [Hi], Hironaka proposes to prove Theorem 1.3 above
using a weaker notion of equivalence where test sequences involve only admissible
blowings-up and product with an affine line. Although ordaI/d is an invariant of
the weaker equivalence class, ordH,aI/d is not [BM3, Ex. 5.14].

5.4. Coefficient ideals. Let I = (Z,N,E, I, d) denote a marked ideal as above.
Recall from Section 1 that the derivative ideal D(I) is the image of the natural
morphism DerN × I → ON . Let DE(I) ⊂ ON denote the ideal generated by all
local sections of I and all derivations that preserve the ideal IE of E. Higher-
derivative ideals are defined inductively by

Dj+1
E (I) := DE(DjE(I)), j = 1, . . . .

We define marked ideals

DjE(I) := (M,N,E,DjE(I), d− j), j = 1, . . . , d− 1,

and

CkE(I) :=
k∑

j=0

DjE(I), k ≤ d− 1;

CkE(I) is a marked ideal
(
M,N,E, CkE(I), dCk

E
(I)

)
. (CkE(I) is a weighted sum of

marked ideals; see [BM4, §3.3].) The marked ideals I and CkE(I), k ≤ d − 1, are
equivalent [BM4, Cor. 3.1].

Suppose that I = (Z,N,E, I, d) is of maximal order. Then every point of
cosuppI has an open neighbourhood U ⊂ Z in which I has a maximal contact
hypersurface P ⊂ N |U [BM4, §4]. The corresponding coefficient ideal is defined as

CE,P (I) :=
(
U,P,E, Cd−1

E (I)|P , dCd−1
E

(I)

)
.

It follows that CE,P (I) is equivalent to I|U [BM4, Cor. 4.1].

Lemma 5.6. Suppose that ψ : Zη → Z is a generic fibre embedding as above. Then
CE,P (I)η = ψ∗CE,P (I) is equivalent to CEη,Pη

(Iη).

Proof. This is immediate from the preceding equivalence and Lemma 5.2. �
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Remark 5.7. Lemma 5.6 can be understood also in another way. The marked
ideal CE,P (I) is equivalent to a smaller coefficient ideal Cz,P (I) defined using only
derivatives in the normal direction to the hypersurface P ⊂ N (i.e., derivatives
with respect to a local generator z of the ideal of P in ON ) [BM4, Ex. 4.4(1)]. For
this variant of the coefficient ideal, ψ∗Cz,P (I) = Cz|Nη ,Pη

(Iη). (Derivatives along

elements of m that are transcendental over k are not explicitly involved; cf. Remark
1.4.) Lemma 5.6 follows also from the latter, [BM4, Ex. 4.4(1)], and Lemma 5.2.

6. Functoriality of desingularization of a variety

We begin with a precise statement of Theorem 1.1.

Theorem 6.1. Given a variety X over a field k of characteristic zero, there is
finite sequence of blowings-up σj+1 : Xj+1 → Xj with smooth centres,

(6.1) X = X0
σ1←− X1 ←− · · ·

σt←− Xt ,

such that:

(1) Xt is smooth and the exceptional divisor in Xt has only normal crossings.
(2) All centres of blowing up are disjoint from the preimages of X \ SingX.
(3) The resolution morphism σX : Xt → X given by the composite of the σj

(or the entire sequence of blowings-up (6.1)) is associated to X in a way
that is functorial with respect to regular morphisms. (See Remarks 4.7(1).)

This theorem can be proved with the following stronger version of the condition
(2): For each j, let Cj ⊂ Xj denote the centre of the blowing-up σj+1 : Xj+1 → Xj.
Then either Cj ⊂ SingXj or Xj is smooth and Cj lies in the support of the
exceptional divisor of σ1 ◦ · · · ◦ σj . In fact, we prove Theorem 6.1 together with
the following addendum (where (3), (4) should again be understood modulo trivial
blowings-up as in Remarks 4.7(1)).

Theorem 6.1 Addendum. Given any embedding (i.e., closed immersion) X |U →֒
Z, where U is an open subset of X and Z is smooth, there is a sequence of blowings-
up τj+1 : Zj+1 → Zj,

(6.2) Z = Z0
τ1←− Z1 ←− · · ·

τt←− Zt ,

which satisfies the following conditions. Set Y0 := X |U . For each j, let Cj denote
the centre of τj+1, let Ej+1 denote the exceptional divisor of τ1 ◦ · · · ◦ τj+1, and
define Yj+1 inductively as the strict transform of Yj by τj+1. Then:

(1) Each Cj is smooth and has only normal crossings with respect to Ej.
(2) For each j, either Cj ⊂ Sing Yj or Yj is smooth and Cj ⊂ Yj ∩ suppEj .
(3) Each Xj |U = Yj and, over U , the resolution sequence (6.1) is given by the

restriction of (6.2) to the Yj .
(4) The sequence of blowings-up (6.2) is associated to X |U →֒ Z in a way that

is functorial with respect to regular morphisms (of the ambient variety Z).

A weaker version of Theorem 6.1 (and the Addendum) can be obtained directly
from Theorem 1.3 applied to the marked ideal I = (Z,Z, ∅, IX , 1), where X →֒ Z is
a (local) embedding ofX in a smooth k-variety Z and IX ⊂ OZ is the ideal ofX (see
[BM4, §1.1]. In this version, the resolution sequence (6.1) is given by restricting the
blowing-up sequence provided by Theorem 1.3 to the successive strict transforms
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Xj of X — the intersections of the centres Cj with the Xj will not necessarily be
smooth, nor will condition (2) of the Addendum necessarily hold.

Theorem 6.1 (including the Addendum) as stated except for weaker functoriality
conditions — with respect to smooth morphisms and base-field extensions — is
proved in [BM2, BM4] (under the tacit assumption that the smooth morphisms
have constant relative dimension. We show how to remove this restriction in §6.3
below.) The proof involves the Hilbert-Samuel function HX,a ∈ NN, a ∈ X , and
desingularization of an associated marked ideal that we call a presentation of the
Hilbert-Samuel function. We will use commutativity of a presentation with respect
to generic-fibre embeddings (Proposition 6.3 below) together with Theorem 1.2 and
Remark 4.8 to deduce Theorem and Addendum 6.1 in full (see §6.4).

6.1. The Hilbert-Samuel function. If a is a closed point, then the Hilbert-
Samuel function HX,a is defined as

HX,a(k) := length
OX,a

mk+1
X,a

, k ∈ N .

Thus HX,a ∈ NN. We can extend the definition to arbitrary points of X so that
a 7→ HX,a will be upper-semicontinuous (where the set of sequences NN is totally-
ordered lexicographically):

In general, define Λ : NN → NN by

Λ(F )(k) =

k∑

j=0

F (j) , k ∈ N ,

where F ∈ NN. Define Λj : NN → NN, j ≥ 1, inductively by Λj(F ) = Λ(Λj−1(F )).
Suppose that R is a Noetherian local ring with maximal ideal m. Define H(0)(R) ∈
NN by

H(0)(R)(k) := length
R

mk+1
, k ∈ N .

For each j ∈ N, let H(j)(R) denote Λj(H(0)(R)). If a ∈ X , then we define H
(j)
X,a :=

H(j)(OX,a), for all j ∈ N, and we let HX,a denote H
(l)
X,a, where l denotes the

transcendence degree of the residue field κ(a) over k (i.e., the dimension of the
closure of a).

The Hilbert-Samuel function HX,a determines the minimal embedding dimension
eX,a of X at a (in a smooth affine k-variety): eX,a = HX,a(1)− 1.

The Hilbert-Samuel function HX,· : X → NN has the following basic properties,
established by Bennett [Be] (see [BM1, BM2] for simple proofs): (1) HX,· distin-
guishes smooth and singular points. (2) HX,· is (Zariski) upper-semicontinuous.
(3) HX,· is infinitesimally upper-semicontinuous (i.e., HX,· cannot increase after
blowing-up with centre on which it is constant). (4) Any decreasing sequence in
the value set of the Hilbert-Samuel function stabilizes.

6.2. Presentation of the Hilbert-Samuel function. The Hilbert-Samuel func-
tion HX,a is a local invariant that plays the same role with respect to strict trans-
form of a variety X as the order plays with respect to (weak) transform of a
(marked) ideal. More precisely, for all a ∈ X , there is an embedding X |U →֒ Z,
where U is a neighbourhood of a and Z is smooth, and a marked ideal I =
(Z,N, ∅, I, d) which has the same test sequences as X := (Z, ∅, X |U , H), where
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H = HX,a. (We define a test sequence for X = (M,E,X,H) by analogy with that
for a marked ideal (§5.2), but where a blowing-up σ : Z ′ → Z with smooth centre
C is admissible if C ⊂ suppX := {x ∈ X : HX,x ≥ H} and C, E have only normal
crossings, and where X transforms by strict transform.) We call I a presentation
of HX,· at a.

A construction of a presentation is given in [BM2, Ch. III] and some familiarity
with the latter will be needed to understand the results of this section in detail.
The essential point needed is that I is generated by suitable powers of a special
system of generators of IX ⊂ OZ at a which is determined by the vertices of the
diagram of initial exponents N(IX,a) with respect to a local coordinate system for
Z at a (see §6.5 below).

We can choose a presentation I = (Z,N, ∅, I, d) of HX,· at a so that Z is a
smooth minimal embedding variety for X at a. Given I, there is an étale morphism
ϕ : Z ′ → Z onto a neighbourhood of a such that ϕ∗(I) is equivalent to a marked
ideal J = (Z ′, N ′, ∅,J , e) of maximal order and codimension zero (i.e., N ′ = Z ′)

6.3. Functoriality with respect to smooth morphisms. If a is a maximum
point of HX,· and I is a presentation of HX,· at a, then the corresponding maximal
value of HX,· decreases after desingularization of I. This is the main point of a
presentation of the Hilbert-Samuel function, needed to prove the strong desingu-
larization theorem for a variety using functorial desingularization of a marked ideal
together with the basic properties of the Hilbert-Samuel function in §6.1 above.

In [BM4, §7], versions of Theorem 6.1, where the functoriality assertion is with
respect to smooth morphisms and base-field extensions, are proved using a presen-
tation of the Hilbert-Samuel function, again following either of the two schemes
recalled in Remark 5.1 above.

However, there are equidimensionality issues for smooth morphisms that are
not treated in previous works, even using a desingularization invariant. (These
issues were raised in a letter from Ofer Gabber to the third author.) We can
deal with them only using the second of the two methods in Remark 5.1, which
again involves proving a stronger desingularization theorem where the centres of
blowing up are given by the maximum loci of a desingularization invariant invX
defined inductively over a sequence of admissible blowings-up. Since the marked
ideal J above is of maximal order, the desingularization invariant invJ for J is a
finite sequence whose first term is 1 throughout the cosupports of the successive
transforms of J (see [BM4, §7.2]); invX is defined at the corresponding points of X
and its successive strict transforms by replacing this first term by HX,a. For details
we refer to [BM2, BM3, BM4]. (It is important to begin with a presentation J as
above so that the desingularization invariant will be independent of the choice of a
local embedding variety for X .)

As shown in [BM4], blowing up with centre = maximum locus of invX gives an
algorithm for resolution of singularities of arbitrary X , functorial with respect to
smooth morphisms of constant relative dimension.

In order to prove functoriality with respect to arbitrary smooth morphisms,
we first note that (in the notation of §6.1), Λk(HX,a) = HX×Ak,(a,0). (See also
§6.5 below.) Moreover a presentation I = (Z,N, ∅, I, d) of HX,· at a induces a
presentation of HX×Ak,· at (a, 0) by pull-back by the projection Z × Ak → Z.

Suppose that X is locally equidimensional. Define a modified invariant inv∗
X by

replacing the first term HX,x of invX(x) at each (closed) point x by Λd−q(HX,x),
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where d = dimX and q = q(x) := dimOX,x. Then blowing up with centre =
maximum locus of inv∗

X gives an algorithm for resolution of singularities of locally
equidimensional varieties X , functorial with respect to arbitrary smooth morphisms.

We can use the preceding idea together with a suggestion of Gabber (in the

letter cited above) to define a modified invariant inv#
X such that blowing up with

centre = maximum locus of inv#
X gives an algorithm for resolution of singularities

of arbitrary varieties X, functorial with respect to arbitrary smooth morphisms: Let
#(x) denote the number of different dimensions of irreducible components of X at
x. Let q(x) denote the smallest dimension of the irreducible components. Define

inv#
X by replacing the first term HX,x of invX(x) at each (closed) point x by the

pair (#(x), Λd−q(HX,x)), where d = dimX and q = q(x). It is easy to see that a
marked ideal is a presentation of the Hilbert-Samuel function at x if and only if it
is a presentation of (#(·), Λd−k(HX,·)). The assertion follows.

Remark 6.2. The fact that the invariants HX,· and (#(·), Λd−k(HX,·)) share a
common presentation at every point means, in particular, that every component of
a constant locus of one of these invariants is also a component of a constant locus

of the other. It follows that the maximum loci of the two invariants invX and inv#
X

are each unions of closed components of constant loci of the invariant invX , but not
necessarily of the same closed components in each case — i.e., the order in which we
blow up these components may not be the same. The invariant (#(·), Λd−k(HX,·))
is contrived to force us to blow up components in an order that gives functoriality
with respect to arbitrary smooth morphisms.

6.4. Functoriality with respect to generic-fibre embeddings. In order to
deduce Theorem 6.1 (and its Addendum) with the full version of functoriality, i.e.,
with respect to regular morphisms in general, using Theorem 1.2 and Remark 4.8, it
is now again enough to prove functoriality with respect to generic-fibre embeddings.
For the latter, because of Lemma 5.2 and Proposition 5.3, it is enough to prove
Proposition 6.3 following.

Let ψ : Xη → X denote a generic-fibre embedding, corresponding to a dominant
morphism of k-varieties π : X → T , where T is integral. Let b denote a closed
point of Xη and let a = ψ(b) ∈ X . Then there is a neighbourhood U of a in X
so that X |U embeds in a smooth k-variety Z such that π extends to a (dominant)
morphism Z → T . We can choose U and Z such that Z is a minimal embedding
variety for X at a.

For simplicity of notation, we will write simply X instead of X |U , and Xη for
the generic fibre of the latter. Then Xη = X ×Z Zη and there is a commutative
diagram

Xη
ψ

−−−−→ X
y

y

Zη −−−−→ Z

where the horizontal arrows are the generic-fibre embeddings and the right (respec-
tively, left) vertical arrow is a morphism of k-varieties (respectively, m-varieties,
where m = K(T )).
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Proposition 6.3. With the notation preceding, there is a neighbourhood V of a in Z
and a presentation I = (Z|V , N, ∅, I, d) of HX,· at a such that Iη is a presentation
of HXη ,· at b.

More precisely, we claim that, for suitable local coordinates for Z, the presen-
tation constructed in [BM2, Ch. III] has the required properties. Since we do not
want to repeat the construction, we will give only the new ingredients needed by a
reader who is familiar with the latter to verify our claim in a straightforward way.

6.5. The diagram of initial exponents. The construction of a presentation in
[BM2, Ch. III] depends on the way that the Hilbert-Samuel function can be com-
puted using the diagram of initial exponents of the ideal IX ⊂ OZ of X with respect
to local coordinates for Z at a point of X .

Consider a ring of formal power series R = K[[X ]] = K[[X1, . . . , Xn]] over a field
K. If α = (α1, . . . , αn) ∈ Nn, put |α| = α1 + . . . + αn. We totally order Nn by
using the lexicographic ordering of (n + 1)-tuples (|α|, α1, . . . , αn). Consider F =∑
α∈Nn FαX

α ∈ K[[X ]], where Xα := Xα1
1 · · ·X

αn
n . Let suppF := {α : Fα 6= 0}.

The initial exponent expF means the smallest element of suppF . (expF := ∞ if
F = 0.)

Let I be an ideal in R. The diagram of initial exponents N(I) ⊂ Nn is defined
as

N(I) := {expF : F ∈ I \ {0}}.

Clearly, N(I) + Nn = N(I). It follows that there is a smallest finite subset V

of N(I) (the vertices of N(I)) such that N(I) = V + Nn. (V = {α ∈ N(I) :
(N(I) \ {α}) + Nn 6= N(I)}.)

Given N ⊂ Nn such that N + Nn = N, let HN ∈ NN denote the function

HN(k) = #{α ∈ Nn \N : |α| ≤ k} , k ∈ N

(where #S denotes the number of elements in a finite set S). Then H(0)(R/I) =
HN(I) (see §6.1). It is easy to see that, if N is a product N = Np × N∗, then
HN = Λp(HN∗).

Suppose that (x1, . . . , xn) is a coordinate system (system of parameters) on an
open subset U of Z. If c is a closed point in U , then there is a unique isomorphism

ÔZ,c
∼=
−→ κ(c)[[X1, . . . , Xn]] such that each xi 7→ xi(c) +Xi, where xi(c) denotes the

image of xi in the residue field κ(c) = OZ,c/mZ,c. If IX ⊂ OZ denotes the ideal of
X , then the diagram of initial exponents N(IX,c) of IX,c with respect to the given
coordinate system denotes N(I), where I ⊂ κ(c)[[X ]] is the ideal induced by IX,c.

We totally order {N ⊂ Nn : N + Nn = N} by giving each N the lexicographic
order of the sequence of its vertices (in increasing order). Each point of X admits
a coordinate neighbourhood in Z in which the associated diagram N(IX,c) can be
extended to arbitrary points so that c 7→ N(IX,c) is upper-semicontinuous.

6.6. Proof of Proposition 6.3. By restricting Z and T to suitable affine open
neighbourhoods of the point a and its image in T , we can assume (by the Jacobian
criterion for smoothness) that:

(1) T is a subvariety V (P ) of A
p+q
k determined by an ideal (P ) ⊂ k[y, z] =

k[y1, . . . , yp, z1, . . . , zq] generated by polynomials P1(y, z), . . . , Pq(y, z), where
the determinant JP of the Jacobian matrix ∂P/∂z = (∂Pi/∂zj) is nonvan-
ishing on T .
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(2) Z = V (P,G) ⊂ An+m
k , where n ≥ p, m ≥ q, (P,G) is an ideal in k[x,w],

x = (u, v) = (u1, . . . , up, v1, . . . , vn−p),

w = (s, t) = (s1, . . . , sq, t1, . . . , tm−q),

(P,G) is generated by P1(u, s), . . . , Pq(u, s) (from (1)) together with polyno-
mialsG1(x,w), . . . , Gm−q(x,w), and the determinant J(P,G) of ∂(P,G)/∂(s, t)
is nonvanishing on Z.

(3) The morphism Z → T is induced by the inclusion k[y, z] →֒ k[x,w] given
by u = y, s = z.

It follows that

(4) Zη = V (Gη) ⊂ A
(n−p)+(m−q)
m , where (Gη) ⊂ m[v, t] = K(T )[v, t] is the

ideal generated by the polynomials Gj,η(v, t) which are induced by the
Gj(u, v, s, t), j = 1, . . . ,m− q.

Since J(P,G) = JP · JG, where JG = det (∂G/∂t), we see that det (∂Gη/∂t) is
nonvanishing on Zη.

Therefore, y = (y1, . . . , yp), x = (x1, . . . , xn) = (u1, . . . , up, v1, . . . , vn−p) and
v = (v1, . . . , vn−p) (respectively) induce local coordinates (regular parameters) on
T , Z and Zη (respectively).

Let W denote the closure of a = ψ(b) in X . Then there is an open subset
V of W on which the projection to T is étale (see §2), so that y = (y1, . . . , yp)
is a system of coordinates on V . Given a closed point c of V , let Xπ(c) denote
the fibre X ×T π(c) over π(c) and let IXπ(c)

denote the ideal of Xπ(c) ⊂ Zπ(c). Let

N(IX,c) and N(IXπ(c),c) denote the diagrams of initial exponents with respect to the

coordinates x and v (respectively) for Z and Zπ(c) (respectively). By semicontinuity
of the diagram of initial exponents, we can assume that N(IX,c) and N(IXπ(c) ,c)

are constants, say N ⊂ Nn and N∗ ⊂ Nn−p (respectively), on the closed points c
of V . It follows in a simple way that N = Np × N∗, and N(IXη ,b) = N∗, where
N(IXη ,b) is the diagram with respect to the coordinates v = (v1, . . . , vn−p) for Nη.

(Compare with [BM3, Proof of Th. 6.18].) In particular, HX,a = H
(p)
Xη ,b

. (p is the

transcendence degree of m over k.)
A presentation I of the Hilbert-Samuel function HX,· at a with respect to the

coordinates x = (u, v), as constructed in [BM2, Ch. III], is characterized by certain
formal properties [BM2, (7.2)] related to the vertices of N(IX,c) above. Because
of the product structure N = Np ×N∗ of this diagram, it is easy to verify that, if
these properties are satisfied at every closed point of an open subset of W , then
they are satisfied by the induced marked ideal Iη at b. The details are left to the
reader. �

7. Absolute desingularization

In this section, we apply the same approximation methods of [EGA IV, §8] that
we used in the proof of Theorem 4.5 to show that any desingularization algorithm for
Q-varieties that is functorial with respect to smooth morphisms extends uniquely
to a desingularization algorithm for a class C of schemes over Q which includes all
varieties of characteristic zero as well as their localizations and Henselizations along
closed subvarieties. Moreover, the algorithm for C will be functorial with respect
to all regular morphisms between schemes in C.
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We refer to [EGA IV, §§18.6, 18.8] for definitions of Henselization and strict
Henselization.

Remarks 7.1. (1) One of our main motivations here is to extend the desingulariza-
tion algorithm for a variety X to its Henselization Xh

Z along a closed subvariety
Z. Since Xh

Z → X is a regular morphism, we could just pull back the desingular-
ization sequence from X , but it would not be clear that the induced desingular-
ization sequence depends only on the scheme Xh

Z . The problem is that, while the
ground field morphismX → Spec (k) is more or less unique (by §4.1), the morphism
Xh
Z → Spec (k) admits many deformations in general.
For example, even in the caseX = A1

C, if x is the origin, then the homomorphism

OX,x → κ(x)
∼=
−→ C admits many different extensions to the Henselization.

Therefore, given a desingularization algorithm for k-varieties, the blowing-up
sequence for Xh

Z obtained by pulling back that of X might depend on the mor-
phism Xh

Z → Spec (k). We overcome this obstacle by descending to Q — we show
that an absolute desingularization algorithm for varieties defined over Q induces
a desingularization algorithm for Henselian varieties (and certain other schemes)
that depends only on the schemes.

(2) Our Henselian result will be used in [T2] to construct a canonical desin-
gularization of rig-regular formal varieties in characteristic zero (independent of
algebraization). The class includes, for example, formal completion of a variety
along its singular locus.

It seems to be an interesting open question whether the algorithm of [BM2]
extends to functorial desingularization of formal varieties in general. It is true that,

if X and Y are varieties (over perhaps different ground fields) and ÔX,x ∼= ÔY,y, for
some x ∈ X, y ∈ Y , then the desingularizations of X, Y induce the same sequences

of formal blowings-up of X̂x := Spec ÔX,x and Ŷy . We can show this using a formal
presentation of the Hilbert-Samuel function as given in [BM2, §78] together with
the marked ideal techniques of [BM4] and commutativity of blowing up and formal
completion [T1, Lemma 2.1.8].

Definition 7.2. Consider a filtered projective family {Xi}i∈I of Q-varieties with
smooth affine transition morphisms fji : Xj → Xi. The projective limit X =
proj limi∈I Xi exists in the category of schemes, by [EGA IV, §8]. Assume that X
is Noetherian. Since the morphisms Xj → Xi, j ≥ i, are regular, each projection
fi : X → Xi is regular. (See, for example, [S, §1.4]. The same argument shows,
moreover, that X is Noetherian provided that dimXi is bounded.) Let Cloc denote
the family of all such schemes X , and let C we denote the class of schemes each
obtained by gluing together finitely many elements of Cloc.

Remarks 7.3. (1) A simple argument in the proof of Theorem 7.5 below shows that
we could consider only families of affine varieties Xi in Definition 7.2 — we would
get a smaller category Cloc, while the category C would not change.

(2) Any noetherian (or even quasi-compact quasi-separated) scheme in char-
acteristic zero is a projective limit of Q-varieties, by a noetherian approximation
theorem of Thomason [Th, C.9], but the transition morphisms are not smooth (or
even flat) in general.

For example (in positive characteristic), if K is a perfect field of positive tran-
scendence degree over Fp, then Spec (K) is not a projective limit of a filtered family
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of Fp-varieties with smooth transition morphisms. This follows from the fact that
K is not separable over any finitely generated subfield of positive absolute tran-
scendence degree.

A deep theorem of Popescu [P] states that any regular morphism X → Y is
a projective limit of smooth morphisms Xi → Y . But the transition morphisms
Xj → Xi and the projections X → Xi cannot be made regular in general.

Theorem 7.4. Any desingularization algorithm for Q-varieties that is functorial
with respect to smooth morphisms extends uniquely to a desingularization algorithm
on C that is functorial with respect to all regular morphisms. Moreover, if the orig-
inal algorithm satisfies the stronger conditions of Theorem 6.1, then the extended
algorithm satisfies the same conditions.

Proof. Fix a desingularization algorithm F for Q-varieties. First we extend F to
Cloc. LetX be an element of Cloc and letX = proj limi∈I Xi denote a representation
of X as a projective limit of Q-varieties with smooth affine transition morphisms.
Then the desingularizations F(Xi) are compatible, so that each of them induces
the same desingularization sequence for X , which we denote F(X). Moreover, if
the F(Xi) satisfy the conditions of Theorem 6.1, then F(X) also satisfies them.

We have to prove that F(X) is independent of the choice of the projective limit
representation and that this extension of F to Cloc is compatible with all regular
morphisms. For both tasks, it is enough to prove that, given another family {Yj}j∈J
of Q-varieties with smooth affine transition morphisms and limit Y , and given a
regular morphism h : Y → X , there exist i ∈ I, j ∈ J and a regular morphism
hji : Yj → Xi compatible with h in the sense that the following diagram commutes.

Y −−−−→ Yj

h

y
yhji

X −−−−→ Xi

Indeed, if we have morphisms such that the diagram commutes, then, on the one
hand, F(Y ) is induced by F(Yj) and hence by F(Xi) (since F is compatible with
the smooth morphisms hji), and, on the other hand, F(X) is induced by F(Xi).
Therefore, F(Y ) is induced by F(X), thus proving compatibility with regular mor-
phisms. The fact that F(X) is well defined is then obtained by applying the pre-

ceding argument to an isomorphism X
∼=
−→ X and two representations of X as a

projective limit.
To find a regular hji as above: Fix i. By [EGA IV, Cor. 8.13.2], the morphism

Y → Xi factors through Yj , for some j. So we get a morphism hji and it remains
to show only that it can be chosen regular. We claim that the image of Y in Yj
lies in the maximal open subscheme U of Yj such that hji|U is smooth. Indeed, let
y ∈ Y and let yj ∈ Yj , xi ∈ Xi denote its images. Then the local homomorphisms
ψ : OYj ,yj

→ OY,y andOXi,xi
→ OY,y are regular (since the morphisms Y → Yj and

Y → X → Xi are regular); hence the homomorphism OXi,xi
→ OYj ,yj

is regular,
by [Ma, Lemma 33.B] (where all we need to know about ψ is that it is faithfully
flat). Thus yj ∈ U and therefore Y lies in U . Applying [EGA IV, Cor. 8.13.2] again,
we see that the morphism Y → U factors through Yk for some k ≥ j. Then the
morphism hki : Yk → U → Xi is smooth since Yk → Yj and U → Xi are smooth.

Finally, we can extend F from Cloc to C using the gluing argument of [K,
Prop. 3.37]: Given X in C, take a covering of X by open subschemes Xi ∈ Cloc,
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i = 1, . . . k. Then the disjoint unions
∐
iXi and

∐
i≤j Xi ∩Xj belong to Cloc, and

we have a commutative diagram
∐
i≤j Xi ∩Xj −−−−→

∐
iXi

y
y

∐
iXi −−−−→ X

where the left and top arrows are induced by Xi ∩Xj →֒ Xi and Xi ∩ Xj →֒ Xj,
respectively. These arrows are étale, hence smooth, so that F on Cloc is compatible
with them. It follows that the blowing-up sequences F(Xi) glue together to give a
desingularization F(X). Clearly, F is compatible with regular morphisms among
members of C. �

Theorem 7.5. (1) The class Cloc contains all separated varieties of characteristic
zero, as well as their localizations, Henselizations and strict Henselizations along
closed subvarieties. As a result, the class C contains analogous classes of schemes
(that are not necessarily separated).

(2) If {Xi}i∈I is a filtered projective family of separated schemes in Cloc with
regular affine transition morphisms then X = proj limi∈I Xi belongs to Cloc.

Proof. We start with (2). For each Xi fix a representation Xi

∼=
−→ proj limj∈Ji

Xij

with smooth affine transition morphisms between Q-varieties Xij . Using [Th, C.7]
we can assume that all Xij are separated. We recall that the schematic image
X ′
ij of Xi in Xij means the smallest closed subscheme of Xij through which the

morphism Xi → Xij factors. The morphism Xi → X ′
ij is regular and each transi-

tion morphism Xij → Xik restricts to a regular morphism X ′
ij → X ′

ik; hence, by

replacing Xij with X ′
ij , for all j, we can assume that the projections Xi → Xij are

schematically dominant.
We will now add certain transition morphisms Xij → Xkl with i ≥ k, which are

regular, affine, and moreover make the entire family {Xij}i∈I,j∈Ji
into a filtered

family with projective limit X . This will prove (2). For each i′ ≥ i and j ∈ Ji
let fi′ij : Xi′ → Xij denote the morphism obtained by composing Xi′ → Xi and
Xi → Xij . Note that if fi′ij factors through a morphism fi′j′ij : Xi′j′ → Xij , then
fi′j′ij is unique becauseXi′ → Xi′j′ is schematically dominant andXij is separated.
If such fi′j′ij exists and is affine and regular, then we declare that (i′j′) ≥ (ij).
Affineness and regularity are preserved by composition, so this defines an order on
the set J :=

∐
i∈I Ji. Moreover, this makes J into a filtered ordered set because

the argument from the proof of Theorem 7.4 shows that for each i′ ≥ i and j ∈ Ji
the morphism fi′j′ij exists and is regular and affine for j′ ≥ j′0(i, i

′, j). Since

X
∼=
−→ proj limi∈I proj limj∈Ji

Xij

∼=
−→ proj lim(ij)∈J Xij , the family {Xij}(ij)∈J is as

required, and X is in Cloc.
The assertion (1) follows from (2): Indeed, suppose that Y is a variety over a

field l that is finitely generated over Q. Then Y is a pro-open subscheme of a
Q-variety; hence Y is the projective limit of all its open neighborhoods and the
transition morphisms are open immersions. So Y is in Cloc. An arbitrary variety X
is of the form Y ⊗l k := Y ×Spec l Spec k with Y and l as above (see Theorem 3.1),
so X is the projective limit of varieties Xi = Y ⊗l ki where ki is a finitely generated
l-subfield of k. The transition morphisms are regular by the characteristic zero
assumption, and if X is separated then each Xi is a separated ki-variety. Then all
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Xi ∈ Cloc and hence X ∈ Cloc, by (2). Finally, the strict Henselization (respectively,
Henselization, or localization) of X along a closed subvariety Z is a projective limit
of a family of X-étale schemes Xj . Since the Xj are separated k-varieties, we get
(1) using (2) again. �

Remarks 7.6. (1) It is interesting to ask whether the category C can be naturally
extended further. (See, for example, Remark 7.1(2).)

(2) In principle, ifX admits a regular morphism f to a variety Y , we could induce
a desingularization of X from a desingularization of Y (even though X might not
be quasi-excellent!). We do not know if this desingularizaton would be independent
of f ; even a tool as strong as Popescu’s theorem would seem to be of no help here.
(See also remark 7.3(2).)
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