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FUNCTORIAL DESINGULARIZATION OF QUASI-EXCELLENT

SCHEMES IN CHARACTERISTIC ZERO: THE NON-EMBEDDED

CASE

MICHAEL TEMKIN

Abstract. We prove that any reduced noetherian quasi-excellent scheme of
characteristic zero admits a strong desingularization which is functorial with
respect to all regular morphisms. As a main application, we deduce that any
reduced formal variety of characteristic zero admits a strong functorial desin-
gularization. Also, we show that as an easy formal consequence of our main
result one obtains strong functorial desingularization for many other spaces
of characteristic zero including quasi-excellent stacks and formal schemes, and
complex or non-archimedean analytic spaces. Moreover, these functors easily
generalize to non-compact setting by use of generalized convergent blow up
sequences with regular centers.

1. Introduction

1.1. Motivation.

1.1.1. Historical overview. Encouraged by Hironaka’s work [Hir] on resolution of
singularities, Grothendieck introduced quasi-excellent (or qe) schemes in [EGA,
IV2, §7.8] in order to provide a natural general framework for desingularization.
Grothendieck observed that the schemes studied by Hironaka were schemes of finite
type over a local qe scheme k, and proved that if any integral scheme of finite type
over a base scheme k admits a desingularization in the weakest possible sense then k
is quasi-excellent. Grothendieck conjectured in [EGA, IV2, 7.9.6] that the converse
is probably true, and thus any qe scheme admits a desingularization, and claimed
without proof that the conjecture holds true for noetherian qe schemes over Q

as can be proved by Hironaka’s method. The latter claim was never checked, so
desingularization of qe schemes of characteristic zero remained a conjecture until
the author’s work [Tem1] in 2008.

It was shown in [Tem1] that, indeed, desingularization of qe schemes over Q can
be obtained from Hironaka’s results relatively easily. Perhaps this is close to the
reduction Grothendieck had in mind, see Remark 1.3.3. However, the main result of
[Tem1] was that desingularization of qe schemes over Q follows from desingulariza-
tion of varieties (by a more complicated argument). This is important, since many
relatively simple proofs for varieties are now available, and they establish a canon-
ical resolution which is compatible with all smooth morphisms between varieties,
as opposed to the non-constructive original Hironaka’s method.

Key words and phrases. Resolution, singularities, quasi-excellent, functorial non-embedded
desingularization.

The author wishes to thank E. Bierstone, P. Milman, J. Kollar, L. Illusie, O. Gabber and O.
Villamayor for useful discussions, and the anonymous referee for numerous valuable comments.

1

http://arxiv.org/abs/0904.1592v2


2 MICHAEL TEMKIN

1.1.2. New goals. The main disadvantage of the results from [Tem1] was that the
desingularization results for qe schemes were weaker than their analogs for varieties
in two aspects: (a) the centers of resolving blow ups were not regular, (b) no
functoriality/canonicity was achieved. The aim of this paper is to strengthen the
methods of [Tem1] in order to construct a desingularization by blowing up only
regular centers and so that the whole blow up sequence is functorial in all regular
morphisms (in particular, we cannot rely on the method of [Hir] anymore since
its resolution is not functorial). Our main results are Theorems 1.2.1 and 5.3.2
providing non-embedded desingularization of noetherian qe schemes over Q and
non-compact objects including all qe (formal) schemes over Q and analytic spaces in
characteristic zero. In comparison with the known non-embedded desingularization
of varieties our results give the strongest known desingularization with the exception
mentioned in Remark 1.2.2: the centers Vi →֒ Xi of our blow ups are not contained
in the maximum locus of the Hilbert-Samuel (or HS) function, moreover, Xi does
not have to be normally flat along Vi. As a drawback, our method does not treat
non-embedded desingularization of generically non-reduced schemes.

Although our method follows the method of [Tem1] closely, we tried to make
the paper as self-contained as possible. So, the familiarity with [Tem1] can be
useful but is not necessary. In particular, we give/recall all needed definitions.
As opposed to [Tem1], this time we split the exposition into two separate papers
concerning non-embedded and embedded desingularization. Note that unlike the
case of varieties, we have to deal with both cases because one cannot deduce the
non-embedded case from the embedded one – there are qe schemes that cannot be
locally embedded into regular ones. This paper deals only with the non-embedded
case (without boundaries), while the embedded case (with boundaries) is dealt with
in [Tem3].

1.1.3. Applications. Currently, it seems that the most applicable case of desingu-
larization of general qe schemes over Q is when the schemes are of finite type over
a ring k[[t1, . . . , tn]] with k a field. For example, this case (in its non-functorial ver-
sion from [Tem1]) was used for studying log-canonical thresholds in [FEM], motivic
integration in [Nic], and desingularization of meromorphic connections in [Ked].
The non-functorial method of [Tem1] could only desingularize affine qe formal
schemes, and in my communication with Mustata, Nicaise, Kedlaya and Soibel-
man I was urged to strengthen the method so that it may desingularize arbitrary
formal schemes of finite type over k[[t1, . . . , tn]]. This served as the main motivation
to continue the research on desingularization of qe schemes and I am very grateful
to them all for the encouragement. I would expect that desingularization of formal
schemes of finite type over k[[t1, . . . , tn]] should be the most applicable particular
case of the main results of this paper. Also, desingularization of Berkovich analytic
spaces of characteristic zero seems to be new (at least, in the non-good case).

1.2. Main result.

1.2.1. Strong non-embedded desingularization. We refer to §§2.1,2.2 for the termi-
nology, which includes the notions of quasi-excellent schemes, regular loci and mor-
phisms, and blow up sequences. Here is the strong non-embedded desingularization
theorem for generically reduced noetherian quasi-excellent schemes in characteristic
zero. In this paper ”strong” means that the desingularization blows up only regular



FUNCTORIAL DESINGULARIZATION OVER Q: THE NON-EMBEDDED CASE 3

subschemes, unlike the terminology of Bierstone-Milman, where one also requires
that each center lies in the maximum locus of the HS function.

Theorem 1.2.1. For any noetherian quasi-excellent generically reduced scheme
X = X0 over Spec(Q) there exists a blow up sequence F(X) : Xn 99K X0 such that
the following conditions are satisfied:

(i) the centers of the blow ups are disjoint from the preimages of the regular locus
Xreg;

(ii) the centers of the blow ups are regular;
(iii) Xn is regular;
(iv) the blow up sequence F(X) is functorial with respect to all regular morphisms

X ′ → X, in the sense that F(X ′) is obtained from F(X) ×X X ′ by omitting all
empty blow ups.

1.2.2. On the non-reduced case.

Remark 1.2.2. (i) Theorem 1.2.1 implies that the same claim holds for all noe-

therian qe schemes over Q. Indeed, given an arbitrary such X with reduction X̃

we can consider the blow up sequence i∗F(X̃) : X ′ 99K X which is the pushfor-

ward of F(X̃) : X̃ ′ 99K X̃ with respect to the closed immersion i : X̃ →֒ X (see

§4.2.1). Then the reduction of X ′ is X̃ ′, so it is regular. Next we kill all generically
non-reduced components by blowing them up along their reductions, obtaining a
blow up X ′′ → X ′ with generically reduced X ′′. Finally, it remains to apply
F(X ′′) : X ′′′ 99K X ′′ to construct a functorial desingularization X ′′′ 99K X .

(ii) We ignore on purpose the case when X is not reduced along an irreducible
component because in this case the assertion of the theorem is not the ”right”
version of desingularization: such naive desingularization simply destroys all gener-
ically non-reduced components. In addition, existence of naive desingularization of
non-reduced schemes does not assert anything new, as we saw in (i).

(iii) The correct way to desingularize non-reduced schemes is to make them
normally flat along the reduction. Loosely speaking, such desingularization does
not kill non-reduced components, but makes their nilpotent structure ”as smooth
as possible”. The only known way to achieve such desingularization is to use an
algorithm such that each its center Vi lies in the maximum HS locus of Xi (or, at
least, Xi is normally flat along Vi), and to stop the algorithm just before it blows
up the non-reduced components. Our algorithm does not possess this property (see
also Remark 1.3.1).

1.3. Overview.

1.3.1. The black box strategy. Now let us discuss our method and the structure of
the paper. In order to construct a desingularization F of all qe schemes over Q we
use as a black box any algorithm FVar which desingularizes varieties of character-
istic zero and is functorial with respect to all regular morphisms (i.e. satisfies the
conditions (i), (iii) and (iv) from the theorem). Moreover, if FVar is strong then
we can also achieve that F is strong, i.e. satisfies the condition (ii) as well. We
consider both strong and non-strong cases mainly because this does not cost us any
extra-work; also, there exist many non-strong algorithms, e.g. those of [Kol] and
[W l].
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1.3.2. Extending FVar. It was checked in a very recent work [BMT] that the al-
gorithm of Bierstone-Milman is functorial with respect to all regular morphisms
(not necessarily of finite type). Thus, for the sake of concreteness, we can start
with the algorithm FVar from [BM2]. (Alternatively, it is shown in [BMT] that one
can start with any algorithm FQ for varieties over Q and extend it to all varieties
using approximation results of [EGA, IV3, §8.8]. In such case, one can also build
on many other available algorithms.) In §2 we fix our terminology and recall many
basic facts about blow ups, desingularizations and formal schemes. We warn the
reader that the terminology differs in part from that of [Tem1], including blow ups
from §2.2.1, desingularization from §2.3.1 and qe formal schemes from §2.4.3.

We extend in §3 the functor FVar to pairs (X,Z), where X is a qe scheme over Q
and Z →֒ X is a Cartier divisor containing the singular locus of X and isomorphic
to a disjoint union of varieties. Each FVar(X,Z) is a desingularization of X , and it
remains unclear if it really depends on Z. Similarly to the method of [Tem1], this
construction goes by passing to the formal completion of X along Z, thus obtaining

a rig-regular formal variety X = X̂Z , and algebraizing X by a variety X ′. Then
FVar(X

′) induces desingularizations on X and X , and the main problem we have to
solve is that the choice of X ′ is absolutely non-canonical. Moreover, and this causes
the main trouble, even the ground field of X ′ can be chosen in many ways. This
complication is by-passed by proving that all information about the singularities of
X can be extracted already from a sufficiently thick nilpotent neighborhood Xn →֒ X
of its closed fiber Xs. Moreover, everything is determined by the scheme Xn, and
is independent of a variety structure of Xn, which is not unique. In particular, we

prove in §3.3 that FVar(X) := ̂FVar(X ′) is canonically defined already by Xn, and
is therefore independent of the choice of the algebraization X ′. This section is the
heart of the paper, and it is the main novelty since [Tem1]. As in loc.cit., Elkik’s
results from [Elk] are the main tool we are using for algebraization. It will also be
convenient (though not critical) to use an improvement of some Elkik’s results by
Gabber-Ramero.

Remark 1.3.1. It is a natural question if one can strengthen our method so that
it will also preserve the property that the centers lie in the maximum HS loci. It
seems that the only stage of our method that will not work is algebraization. At
this stage one would obtain a formal variety X such that the maximum locus of its
HS function is given by an open ideal (informally speaking, the HS function drops
on its generic fiber Xη). Unfortunately, this is clearly insufficient to ensure that X
is locally algebraizable, so it is not clear how to use desingularization of varieties
to desingularize such X.

1.3.3. Constructing F . In §4 we use the desingularizations FVar(X,Z) to construct
another desingularization functor F which applies to all generically reduced noe-
therian qe schemes, and this is done by induction on codimension similarly to the
argument from [Tem1, 2.3.4]. This time we must work more carefully in order not to
lose functoriality of the algorithm and regularity of the centers, but the basic idea is
the same. Actually, we construct a sequence of functors F≤d which desingularize a
qe scheme X over the set X≤d of points of codimension at most d. The construction
is inductive: given the blow up sequence F≤d−1(X) : X ′ → X we insert new blow
ups which resolve its centers and the source over few ”bad” points of codimension
d. Actually, after localization at the bad points we are dealing with schemes whose
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singular loci are disjoint unions of varieties, so the functor FVar suffices to construct
F≤d(X) by patching in F≤d−1(X) over the bad points.

Remark 1.3.2. (i) Because of functoriality, we must build F from scratch, so it
differs from FVar even for simple varieties. See an expository survey [Tem2, §5.2],
where the action of these algorithms is computed and compared for few simple
examples of varieties.

(ii) It remains to be an interesting open question how far one can push the stan-
dard desingularization functors FVar defined in terms of derivative ideals, including
the question if one can extend FVar to all qe schemes of characteristic zero.

(iii) The author conjectures that the existing algorithms can be extended (up to
minor modifications) to all schemes over Q which locally admit closed immersions
into regular affine schemes U = Spec(A) with enough derivatives, and that the
extended algorithm is compatible with all regular morphisms. The condition on
derivatives means that the sheaf DerU/Z, which does not have to be quasi-coherent
and can even have zero stalks, admits global sections ∂1, . . . , ∂n such that for any
point u ∈ U the images of ∂i’s generate the tangent space (mu/m

2
u)∗. Since ex-

istence of the above derivatives is equivalent to existence of an (analog of) Taylor
homomorphism A → A[[T ]] due to Bierstone-Milman, this conjecture agrees with
Bierstone-Milman philosophy. It is an interesting problem to generalize the algo-
rithm from [BM2] accordingly to the conjecture.

(iv) The above conjecture implies functorial desingularization of formal varieties
of characteristic zero. In particular, it would drastically simplify our work in this
paper by proving a much more general result on formal desingularization than we
prove in §3.1.5, and such approach would not use Elkik’s results (we desingularize
all qe formal schemes over Q in §5, but this is based on the intermediate result of
§3.1.5).

Remark 1.3.3. The author is grateful to O. Villamayor for pointing out that a very
similar scheme of induction on codimension was used by Hironaka himself already in
his great work of 1964, see [Hir, §4.1], where this method is called ”localization”. In
[Tem1, Th. 2.3.6] induction on codimension was used to deduce desingularization of
all noetherian qe schemes over Q from Hironaka’s desingularization theorem. Thus,
it seems plausible that this proof is close in spirit to the argument Grothendieck
talked about in [EGA, IV2, 7.9.6]. Note, however, that Grothendieck also made a
stronger assertion that desingularization of arbitrary noetherian qe schemes follows
from the case of spectra of noetherian complete local rings. This claim still seems
a mystery, and I do not know if this is true and how one can prove this (e.g. by
localization technique).

1.3.4. Applications to other categories. Finally, in §5 we use the functorial desin-
gularization of qe schemes over Q to establish desingularization in other cate-
gories. We show that our result implies desingularization of stacks over Q, of
complex/rigid/Berkovich analytic spaces of characteristic zero, and of qe formal
schemes over Q. The results about stacks (not covered by varieties) and formal
schemes are new. Desingularization of blow ups of affine formal schemes over Q

was proved in [Tem1, 4.3.2], but it was impossible to globalize this result without
canonicity of the construction, see [Tem1, 4.3.3] and the remark after it. The an-
alytic desingularization is well known – it is done by absolutely the same method
as its algebraic analog, but strictly speaking it required a parallel proof until now.
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We show that it is a formal consequence of desingularization of qe schemes. Since
the latter is obtained in this paper from a desingularization FQ of Q-varieties, we
see that all desingularization theories can be built in a very algebraic way using a
single algorithm FQ. At first glance, this might look as a sharp surprise in view
of existence of non-algebraizable formal and analytic singularities. Finally, using
canonical desingularization we also desingularize non-compact objects in §5.3, in-
cluding locally noetherian qe schemes over Q. In particular, this settles completely
Grothendieck’s conjecture in characteristic zero, as non quasi-compact qe schemes
were not treated in [Tem1].
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2. Setup

2.1. Schemes and morphisms.

2.1.1. Varieties. Variety or algebraic variety in this paper always means a scheme
X which admits a finite type morphism X → Spec(k) to the spectrum of a field. If
such a morphism is fixed then we say that X is a k-variety and k is the ground field
of X . The reader should be aware that an abstract scheme X may admit many
different structures of an algebraic variety (especially, when X is not reduced).

2.1.2. Ideals and closed subschemes. Given a scheme X , we will freely pass be-
tween closed subsets and reduced closed subschemes of X . Also, we will freely pass
between ideals I ⊂ OX and closed subschemes Z →֒ X .
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2.1.3. Pro-open subsets and subschemes. A pro-open subset of a scheme X is a
subset S ⊂ |X | which coincides with the intersection of all its neighborhoods. An
equivalent condition is that S is closed under generalizations. If (S,OX |S) is a
scheme then we call it the pro-open subscheme corresponding to S. For example, if
x ∈ X then Xx = Spec(OX,x) is a pro-open subscheme of X .

2.1.4. Filtration by codimension. For a locally noetherian scheme X by X<d, X≥d,
etc., we denote the subsets of X consisting of all points of codimension strictly less
than d, larger than d, etc. We note that S = X<d is a pro-open subset, but usually
it does not underly a pro-open subscheme. We will use in the sequel filtration by
codimension ∅ = X<0 ⊂ X<1 ⊂ X<2 ⊂ . . . , which however may be infinite.

Remark 2.1.1. Even if X is noetherian its dimension can be infinite, due to
some pathological examples by Nagata. For this reason, one should use noetherian
induction instead of a more naive induction by dimension. In all cases of practical
interest, however, noetherian schemes are finite dimensional.

2.1.5. Schematical closure. If U is a pro-open subscheme in a locally noetherian
scheme S and ZU →֒ U is a closed subscheme then by the schematical closure of
ZU in S we mean the schematical image Z of the morphism i : ZU → S (i.e. the
minimal closed subscheme of S such that i factors through it). The following lemma
indicates that this construction works as fine as in the case when U is open in S,
and Z is actually the minimal extension of ZU to a closed subscheme in S.

Lemma 2.1.2. Keep the above notation, then ZU coincides with the restriction of
Z on U .

Proof. It suffices to prove that ZU admits any extension to a closed subscheme
Z →֒ S since the minimal extension then exists by local noetherianity of S. An
arbitrary extension was constructed in [Tem1, 2.1.1] as follows: first one uses [EGA,
IV4, 8.6.3] to extend ZU to a closed subscheme ZV of a sufficiently small open
neighborhood V of U , and then one extends ZV to S using [EGA I, 6.9.7]. �

2.1.6. Schematical density. Assume that S is a scheme with a pro-open subset U .
We say that U is schematically dense in S if for any proper closed subscheme S′ →֒ S
there exists u ∈ U such that S′ ×S Su is a proper subscheme of Su = Spec(OS,u)
(possibly empty). In particular, if U is a pro-open subscheme then this condition
agrees with the usual definition that the schematic image V of the embedding
U →֒ S coincides with S. Indeed, V is the minimal closed subscheme of S whose
restriction onto each Su with u ∈ U coincides with Su. So, V = S if and only if any
proper closed subscheme S′ →֒ S restricts to a proper closed subscheme of some Su

with u ∈ U .

2.1.7. U -admissibility. An S-scheme X is called U -admissible if the preimage of U
in X is schematically dense. This follows the terminology of [RG] and we will not
use the notion ”admissible” in other meanings.

2.1.8. Regular morphisms. Following [EGA, IV2, 6.8.1] we call a morphism of
schemes f : Y → X regular if it is flat and has geometrically regular fibers (in
particular, the fibers are locally noetherian). For morphisms of finite type regular-
ity is equivalent to smoothness, so it can be viewed as a generalization of smoothness
to morphisms not necessarily of finite type. A homomorphism of rings f : A → B
is regular if Spec(f) is regular.
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Remark 2.1.3. (i) We remark that Hironaka uses the notion of universally regular
morphisms instead of regular morphisms reserving the notion of regularity to what
we call reg morphisms below. However, our definition of regularity is the standard
one.

(ii) Let us temporarily say that a morphism f : Y → X is reg if it is flat and
has regular fibers. Then a morphism is regular in our sense if and only if it is
universally reg.

(iii) It seems that reg morphisms are not worth a study (and a special name).
For example, one can easily construct an example of a flat family of integral curves
over A1

Fp
such that the general fiber is regular but all closed fibers are singular.

2.1.9. Singular locus. We define the regular locus Xreg of a scheme X as a set
of points at which X is regular, and the singular locus Xsing is defined as the
complement of Xreg.

2.1.10. Compatibility with regular morphisms. It is well known that regular/singular
locus is compatible with regular morphisms, i.e. for a regular morphisms f : Y → X
we have that Ysing = f−1(Xsing) and Yreg = f−1(Xreg). See, for example, [Mat,
Th. 51].

2.1.11. Singular locus of a morphism. By the singular locus gsing of a morphism
g : Y → X we mean the set of points y ∈ Y at which g is not regular (i.e.
gy : Spec(OY,y) → Spec(OX,g(y)) is not regular).

Lemma 2.1.4. (i) If f : Z → Y and g : Y → X are morphisms of schemes and f
is regular, then (g ◦ f)sing = f−1(gsing).

(ii) If g : A → B and f : B → C are local homomorphisms between local rings
and f is regular, then g is regular if and only if f ◦ g is regular.

Proof. Obviously, (ii) is a particular case of (i). On the other hand, the claim
that z ∈ (g ◦ f)sing if and only if z ∈ f−1(gsing) reduces to checking (ii) for the
local homomorphisms gy : OX,x → OY,y and fz : OY,y → OZ,z , where y = f(z) and
x = g(y). Since fz is faithfully flat, gy is flat if and only if fz ◦ gy is flat. The
homomorphism fz ⊗OX,x

k(x) : OY,y/mxOY,y → OZ,z/mxOZ,z is the base change
of fz, hence it is regular, and by §2.1.10 we obtain that OY,y/mxOY,y is regular if
and only if OZ,z/mxOZ,z is regular. This concludes the proof. �

2.1.12. Quasi-excellent schemes. For shortness, we will abbreviate the word quasi-
excellent as qe. Since qe schemes are defined by two conditions which are of an
interest of their own, we introduce the corresponding classes of schemes. We say
that X is an N-scheme if it is locally noetherian and for any Y of finite type over
X the regular locus Yreg is open. We say that X is a G-scheme if for any point

x ∈ X the completion homomorphism OX,x → ÔX,x is regular. It was proved by
Grothendieck that it suffices to check this only at the closed points. A scheme is
qe if it is both G and N scheme. If in addition X is universally catenary then it is
called excellent. We say that a ring is G, N, qe or excellent if its spectrum is so.
We list few basic well known properties of qe schemes.

Lemma 2.1.5. (i) If X is N, G, qe or excellent then any X-scheme of finite type
is so.

(ii) X is a G-scheme if and only if the local rings of all closed points x ∈ X are
G-rings.
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(iii) If X = Spec(A) is an affine G-scheme then for any ideal I ⊂ A the com-

pletion homomorphism A → ÂI is regular.

2.1.13. Quasi-excellence and completions. The G-property can be lost when passing
to formal completions. Fortunately, the situation with quasi-excellence is better,
as the following result shows.

Theorem 2.1.6 (Nishimura-Nishimura). Let A be a noetherian ring containing Q

and let I ⊂ A be an ideal such that A is complete in the I-adic topology. Then A is
qe if and only if A/I is qe. In particular, formal completion of Q-algebras preserves
quasi-excellence.

Remark 2.1.7. This is Theorem B in [NN]. The main ingredient in its proof
is existence of weak resolution of singularities for local A-schemes of essentially
finite type, and this tool imposes the restriction on the characteristic. In the orig-
inal proof, Nishimura-Nishimura used Hironaka’s theorem (which covers local qe
schemes). Nowadays, one can use any desingularization of varieties and the results
of [Tem1] as an alternative. (Modern desingularizations of varieties are much sim-
pler than Hironaka’s proof, and [Tem1] shows how any of them can be used as a
black box to resolve arbitrary qe scheme over Q.)

Since qe schemes were introduced by Grothendieck, it took more than 20 years
to prove 2.1.6. The question whether the characteristic zero assumption can be
removed was open for another 20 years, until it was answered affirmatively by Ofer
Gabber (unpublished).

Theorem 2.1.8 (Gabber). Let A be a noetherian ring with an ideal I such that
A is complete in the I-adic topology. Then A is qe if and only if A/I is qe. In
particular, formal completion preserves quasi-excellence.

Remark 2.1.9. (i) Gabber’s theorem is not fully written down yet, but the main
lines of the proof are outlined in Gabber’s letter to Laszlo. Gabber accurately
checks the proof of [NN] and shows which modifications are needed in order to use
only the following weaker desingularization ingredient. Weak local uniformization
of qe schemes: any qe scheme can be covered by a regular one in the topology
generated by alterations and flat quasi-finite coverings. The latter theorem is a
subtle and important result of Gabber that will be published soon in a volume
by Illusie, Laszlo and Orgogozo. Actually, it is the only desingularization result
established for all qe schemes.

(ii) Since a full proof of Theorem 2.1.8 is not available yet, we will make only a
single conditional use of it in the paper, see §2.4. All results in characteristic zero,
including all our main theorems, are independent of 2.1.8 and only make use of
2.1.6. Due to Remark 2.1.7, this does not assume dependency on Hironaka’s paper.

2.1.14. Categories. In this paper, we denote by QE the category of generically
reduced noetherian qe schemes and by QEreg its subcategory containing only regular
morphisms. Of main interest for our needs are the full subcategories Varp=0,reg and
QEp=0,reg of QEreg. The objects in Varp=0,reg are finite disjoint unions of generically
reduced varieties of characteristic zero and the objects of QEp=0,reg are generically
reduced noetherian qe schemes over Q. The reason to consider disjoint unions of
varieties defined over different fields will become clear in §2.3.5.

2.2. Blow up sequences.
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2.2.1. Blow ups. Basic facts about blow ups can be found in [Tem1, §2.1] or in
the literature cited there. Recall that the blow up f : BlV (X) → X along a closed
subscheme V is the universal morphism such that f∗(V ) := V ×X BlV (X) is a
Cartier divisor. We will use the terminology of [Tem1] with one important excep-
tion: when we say that Y → X is a blow up (or Y is a blow up of X), we always
mean that the center V of the blow up is fixed. So, strictly speaking, we always
mean (usually implicitly) that an isomorphism Y →̃BlV (X) is fixed. The reason
for this change is that we will study functoriality, and the choice of V increases
canonicity of constructions, see, for example, §2.2.6. Following the convention of
[Kol] we call a blow up Bl∅(X)→̃X empty or trivial blow up. This is the only
blow up we will sometimes ignore. However, even empty blow ups play important
synchronizing role when patching local desingularizations, see §§2.3.4–2.3.6. Note
that though any blow up along a Cartier divisor induces an isomorphism on the
level of schemes, it may play a non-trivial role for functorial desingularization. In
our case this is mainly the synchronization (similarly to empty blow up), but in the
embedded case such blow ups induce non-trivial operations of strict and controlled
transforms, so they cannot be ignored by no means.

2.2.2. Blow up sequences. A price one has to pay for using a finer notion of blow ups
is that the composition X ′′ → X ′ → X of blow ups cannot be considered as a blow
up in a natural way: though X ′′ → X is isomorphic to a blow up BlW (X) → X , it
is not clear how to choose W canonically. Therefore we define a blow up sequence

of length n to be a composition of n ≥ 0 blow ups Xn
fn→ · · · f2→ X1

f1→ X0 with
centers Vi →֒ Xi. In particular, a blow up sequence of length 0 is just the object
X0 itself. Such sequence is called empty. It will be convenient to denote a blow up
sequence as f : Xn 99K X0 and say that Vi’s are its centers. We stress that a blow
up sequence is not defined by the morphism Xn → X even when we blow up regular
schemes along regular centers, see [Kol, 3.33]. A sequence will be called contracted
if all its blow ups are non-empty. Using dashed arrows we will sometimes split blow
up sequences, e.g. f : Xn 99K Xi+1 → Xi 99K X0.

2.2.3. Equality/isomorphism of blow up sequences. An isomorphism between two
blow up sequences X ′

n 99K X0 and Xn 99K X0 is a set of isomorphisms X ′
i→̃Xi

which identify X0’s and the centers. Obviously, if two blow up sequences of X are
isomorphic then the isomorphism is unique. For this reason, we will often say by
slight abuse of language that two such blow up sequences are equal, and this cannot
cause any confusion. For example, this agreement allows us to say ”unique” in
Lemma 2.2.1 below instead of ”unique up to unique isomorphism”.

2.2.4. Trivial extension. We say that a blow up sequence f : X
′ → X is a trivial

extension of a blow up sequence f : X ′ → X if f is obtained from f by removing
few empty blow ups (here we invoke our agreement about equality of blow up
sequences).

2.2.5. Flat base changes. Any blow up sequence f : Xn 99K X0 is compatible with
any flat base change g : Y0 → X0 in the sense that Y1 := Y0 ×X0

X1 is a flat X1-
scheme isomorphic to the blow up of Y0 along Y0×X0

V0, and similarly for all further
blow ups in the sequence. Naturally, the induced blow up sequence Yn 99K Y0 will
be called the pullback of f with respect to g and will be denoted as g∗(f).
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2.2.6. Pushing forward with respect to pro-open immersions. One advantage of hav-
ing the center V of a blow up fU : U ′ → U fixed is that for any pro-open immersion
U →֒ X with a locally noetherian X we can canonically extend fU to a blow up
f : X ′ → X . We simply take the schematical closure of V in X to be the center of
f . Note that fU = f ×X U by Lemma 2.1.2 and §2.2.5, in particular, f extends fU .
Iterating the same construction we obtain the following easy result.

Lemma 2.2.1. Assume that fU : U ′ 99K U is a blow up sequence and i : U →֒ X
is a pro-open immersion with a locally noetherian X. Then there exists a unique
blow up sequence f : X ′ 99K X such that fU = f ×X U and the centers of fU are
schematically dense in the centers of f .

The blow up sequence f will be called the pushforward of fU with respect to the
pro-open immersion i.

2.2.7. T -supported blow up sequences. Assume that X is an S-scheme, U →֒ S is an
open subscheme, T = S \U and V = X×SU . Then we say that a blow up sequence
X ′ 99K X is T -supported if its centers lie over T . In order to avoid any confusion
with V -admissibility of the centers, we will not say that f is ”V -admissible” in this
situation (as opposed to [RG] and [Tem1]). Actually, we will often be interested
in the following two extreme cases: (a) the centers of f are V -admissible, and (b)
the centers of f are T -supported. Note that (a) takes place if and only if f is the
pushforward of its restriction f ×X V with respect to i : V →֒ X , and (b) takes
place if and only if f ×X V is a sequence of empty blow ups.

2.2.8. Strict transform. The following definitions and facts about blow up sequences
follow from the well known particular case of usual blow ups (i.e. the sequences of
length one), which can be found in [Con, §1]. Given a closed subscheme Z0 →֒ X0 we
define the strict transform Zn = f !(Z0) of Z0 under f : Xn 99K X0 as the iterative
strict transform of Z0 with respect to fi’s. Note that Zn 99K Z0 is the blow up
sequence whose centers are the scheme-theoretic preimages of the centers Vi of f .
More concretely, f induces a blow up sequence Zn 99K Z0, where Zi = f !

i(Zi−1) is
isomorphic to the blow up of Zi−1 along Vi−1 ×Xi−1

Zi−1.

2.3. Desingularization.

2.3.1. Desingularization of schemes. By desingularization of a scheme X we mean
an Xsing-supported contracted blow up sequence f : X ′ 99K X with regular X ′.
We will see in §2.3.3 why it is convenient to forbid empty blow ups. Note also
that although the definition makes sense for any locally noetherian scheme X , we
will study only the case when X is generically reduced. The reason for this was
explained in Remark 1.2.2.

2.3.2. Strong desingularization. A desingularization of a scheme is called strong if
the centers of its blow ups are regular schemes. We remark that most of the recent
approaches based on order reduction of marked ideals lead to a desingularization
which is not strong. In particular, this is the case for the algorithms from [W l]
and [Kol], see [Kol, 3.106] or [BM2, 8.2]. A strong desingularization for varieties of
characteristic zero can be found in [Hir], [BM1], or [Vil].
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2.3.3. Compatibility with morphisms. We say that desingularizations g′ : Y ′ 99K X ′

and g : Y 99K X of X ′ and X , respectively, are compatible with respect to a flat
morphism f : X ′ → X if g×X X ′ is a trivial extension of g′. Since g′ is contracted,
this happens if and only if g′ is obtained by removing all empty blow ups from
g ×X X ′. The latter are precisely the pullbacks of blow ups whose centers are
disjoint from f(X ′). In particular, if Xsing ⊂ f(X ′), e.g. f is surjective, then
automatically g′ = g ×X X ′. We will see in Lemma 2.3.1 that this fact has simple
but subtle and important consequences. Actually, we will only be interested in the
case when f is regular.

2.3.4. Functorial desingularization. If C is a subcategory of QEreg, then by a func-
torial (strong) desingularization on C we mean a rule (or a blow up sequence
functor) F which to each object X from C assigns a (strong) desingularization
F(X) : X 99K X in a way compatible with the morphisms from C, i.e. for any mor-
phism f : X ′ → X from C the desingularizations F(X) and F(X ′) are compatible
with respect to f . Clearly, one can view functorial desingularization as a functor
to an appropriate category of blow up sequences, but we do not need to develop
such formalized approach. Nevertheless, it will be convenient to abuse the language
and occasionally call F a desingularization functor. Note also that a non-functorial
desingularization corresponds to the case when Mor(C) consists of identities only.

Lemma 2.3.1. Assume that C is closed under taking finite disjoint unions. If F
is a functorial desingularization on C and f, g : X ′ → X are two morphisms in C,
then f∗F(X) = g∗F(X) as blow up sequences (taking into account the empty blow
ups).

Proof. Since f = f
∐

IdX and g = g
∐

IdX are surjective regular morphisms from

X = X ′
∐

X to X , we have that f
∗F(X) = F(X) = g∗F(X). Restricting this

equality over X ′ →֒ X gives the required equality. �

Remark 2.3.2. (i) Up to empty blow ups both f∗F(X) and g∗F(X) are equal to
F(X ′), so the lemma actually asserts that the empty blow ups are inserted at the
same places.

(ii) The proof might look as casuistics, but it has a real meaning. Desingularizing
X and X ′ simultaneously by F(X) we have to compare their singularities and decide
which one should be blown up earlier, and the trace of this information on X ′ hides
in the empty blow ups.

2.3.5. Restriction to affine subcategory.

Lemma 2.3.3. Let C be any subcategory in QE such that
(i) C is closed under taking finite disjoint unions;
(ii) if f : Y →֒ X is an open immersion and X ∈ Ob(C) then f ∈ Mor(C) (in

particular, Y ∈ Ob(C)).
Then any desingularization functor F on C is uniquely determined by its re-

striction Faff onto the full subcategory Caff formed by the affine schemes from C.
Moreover, any (strong) desingularization functor Faff on Caff extends uniquely to a
(strong) desingularization functor on C.

We only outline the proof of the lemma, since the argument is known. If an
object X of C is covered by open affine subschemes X1, . . . , Xn then X ′ =

∐n
i=1 Xi

is in C and we can consider the desingularization Faff(X ′) :
∐n

i=1 Yi → X ′. The
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blow up sequences Yi 99K Xi agree over the intersections Xi ∩Xj by Lemma 2.3.1,
and hence glue to a global desingularization F(X) : Y → X . We refer to [Kol, 3.37]
or [BM2, §7.1] for a detailed proof along this line.

2.3.6. Abstract invariant.

Remark 2.3.4. (i) It is critical for Lemma 2.3.3 to have disjoint unions in C since
Faff(X ′) contains more information than all blow up sequences Faff(Xi). This is
exactly the information about the order of the blow ups in Faff(X ′) (in particular,
sometimes we may simultaneously perform few blow ups from different Faff(Xi)’s).
Alternatively, one can notice that we glue trivial extensions of Faff(Xi)’s rather
than these sequences themselves, and the list of inserted empty blow ups is the
additional information. Obviously, we cannot combine a single blow up sequence
Faff(X ′) without this information.

(ii) If an algorithm is controlled by an invariant, as in [W l] or [BM2], then the
condition (i) in the lemma is redundant. In this case, the invariant dictates the
order of the blow ups, so the gluing is obvious. Thus, we use disjoint unions to
implicitly encode nearly the same information as contained in the invariant.

(iii) To the best of my knowledge (which might be very incomplete), the idea to
use disjoint unions instead of invariants is due to Kollar, see [Kol, 3.38]. However,
as we will immediately see both approaches are rigorously equivalent.

(iv) To make sense of the above claim we associate to any desingularization
functor F an ordered set as follows. If X,Y are two schemes from C with desingu-
larizations F(X) : Xn 99K X0 = X and F(Y ) : Ym 99K Y0 = Y and points x ∈ Xi

and y ∈ Yj , then we say that x and y are F -equivalent if F(X
∐

Y ) simultaneously
blows them up for the first time. We warn the reader that the equivalence class of
x depends on the whole tower Xi 99K X rather then only on the local situation on
Xi (i.e. it depends on the history, at least to some extent). We denote the above
equivalence class as inv(x) and the set of all equivalence classes as Inv(F). The
latter set is naturally provided with a total order such that given points x, y as
above, F first blows up the point with larger invariant. Theoretically, for each x as
above we have associated an invariant inv(x) ∈ Inv(F) controlling F , though for
practical applications one might often wish to have a more constructive description
of the invariant.

(v) In principle, the structure of Inv(F) can be very (and unnecessary) compli-
cated. For example, one can take an existing algorithm (e.g. of Bierstone-Milman)
and appropriately refine the equivalence relation it defines on singularities. It is
easy to see, that in this way one can construct Inv(F) that contains Q as an ordered
subset. On the other hand, the invariant set of the algorithm of Bierstone-Milman
(and probably, of many other known algorithms) is well-ordered and countable. It

seems that its order can be bounded by ωω2

. The latter is a rough upper bound,
and perhaps one can give a much sharper one. On the other hand it seems certain
that one cannot hope to construct F with a too small set of invariants, e.g. with
Inv(F) = N. For example, a simple argument in [Tem2, 6.3.1] shows that Inv(F)
is much larger than N for the algorithm of Bierstone-Milman and for the algorithm
we will construct in this paper.

2.3.7. Functorial desingularization of varieties. The strong desingularization from
[Hir] is neither functorial nor algorithmic. The desingularization from [BM1] is given
in an explicit algorithmic way, and the functoriality of the latter algorithm with
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respect to smooth morphism was checked later in [BM2]. Finally, it was observed
in [BMT] that a general regular morphism between varieties can be reduced to
smooth morphisms using certain limit procedures. Using this, compatibility with
all regular morphisms was established in [BMT], and the result was also extended
to finite disjoint unions of varieties. We formulate the latter theorem for reader’s
convenience, and it will be used essentially when we will generalize its assertion to
QEp=0,reg.

Theorem 2.3.5. There exists functorial strong desingularization FVar on the cat-
egory Varp=0,reg such that the set Inv(FVar) of invariants is countable.

Remark 2.3.6. It follows from [BMT] that any desingularization functor FVar on
Varp=0,reg is induced from its restriction FQ to the varieties over Q because any
object of Varp=0,reg admits a regular morphism to a variety over Q. It follows
immediately that Inv(FVar) = Inv(FQ), but the latter set is countable because the
geometry over Q is countable (up to an isomorphism, there are countably many
varieties, points and blow up sequences over Q). So, countability in Theorem 2.3.5
is automatic.

2.4. Formal analogs. In this section we recall very briefly basic notions from
the theory of formal desingularization, and we refer to [Tem1, §3] for details. All
formal schemes are assumed to be locally noetherian. Formal schemes and their
ideals will be denoted as X, Y, I ⊂ OX, etc. Throughout §2.4 we assume that the
characteristic is zero, i.e. all (formal) schemes are defined over Q. This is only
needed in order to be able to use Theorem 2.1.6. The reader that trusts Gabber’s
theorem 2.1.8 (as the author does) may remove this assumption and replace each
reference to Theorem 2.1.6 with a reference to Theorem 2.1.8.

2.4.1. Closed fiber. The maximal ideal of definition defines a closed subscheme Xs

called the closed fiber of X. Topologically, |X| = |Xs|.

2.4.2. Support of ideals. We say that an ideal I ⊂ OX is supported on a closed
formal subscheme Z = Spf(OX/J) if Jn ⊂ I for large n. So, an ideal is open if and
only if it is supported on Xs.

Remark 2.4.1. (i) For an open ideal I one can also define its support set-theore-
tically as |Spf(OX/I)| or as the associated reduced closed subscheme of Xs which
is the reduction of Spec(OX/I).

(ii) In general, one can define support set-theoretically using a generic fiber of X
(there are different definitions of the latter in rigid, analytic or adic geometries).

2.4.3. Quasi-excellent formal schemes. We give the following definition of quasi-
excellence, which is a priori more restrictive than its analog in [Tem1, §3.1]. A
locally noetherian formal scheme X is quasi-excellent or qe if for any morphism
Spf(A) → X of finite type the ring A is qe. It follows from Theorem 2.1.6 that
X is qe if and only if it admits a covering by open subschemes Spf(Ai) with qe
rings Ai. In particular, Gabber’s theorem implies that all reasonable definitions
of quasi-excellence coincide (including this definition and the definition in [Tem1])
and that quasi-excellence is preserved under taking formal completion along a closed
subscheme.
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2.4.4. Formal blow ups. In the affine case, a formal blow up B̂lI(Spf(A)) → Spf(A)
is the formal completion of the blow up BlI(Spec(A)) → Spec(A). This definition
is compatible with formal localizations on the base and hence globalizes to the case

of a general formal blow up B̂lI(X) → X along an ideal I ⊂ OX.

2.4.5. Charts. Thus, the formal blow ups are glued from the charts Spf(A{I/g})

with g ∈ I, where we set A{I/g} = Â[I/g]. We warn the reader that A{I/g} does
not have to be a subring of A{g} though A[I/g] ⊂ Ag. For example, set R = k[[π]]
and A = R{t} so that X = Spf(A) is a formal affine line over Spf(R). Consider the
π-chart of the blow up along the open ideal (t, π). It is of the form Spf(A{t/π}),
and one easily sees that A{t/π}→̃R{t′} where t = πt′. On the other hand, A{π} = 0
because π is topologically nilpotent.

2.4.6. Compatibility with usual blow ups. Formal completion is compatible with
(formal) blow ups, i.e. it takes blow ups of schemes to formal blow ups of formal
schemes.

2.4.7. Support. If X is a formal S-scheme and Z →֒ S is a closed formal subscheme

then we say that a formal blow up B̂lJ(X) → X is Z-supported if J is Z ×S X-
supported, i.e. InOX ⊂ J where Z = Spf(OS/I).

2.4.8. Formal blow up sequences. A formal blow up sequence f : Xn 99K X is defined
in an obvious way. Such a sequence is Z-supported for a formal subscheme Z →֒ X
if all centers of f are Z-supported.

2.4.9. Singular locus. Singular locus of a qe formal scheme is a reduced closed
subscheme Xsing or the corresponding ideal I ⊂ OX. For an affine formal scheme
Spf(A) this is the ideal that defines Spec(A)sing, and this local definition globalizes
because formal localizations are regular morphisms on qe formal schemes. Singular
loci are compatible with formal completions: if a scheme X is qe (and so its formal

completion X = X̂I is qe by Gabber’s theorem) then Xsing is the completion of
Xsing along IOXsing

by [Tem1, 3.1.4]. One defines the non-reduced locus of a qe X
similarly, and says that X is regular or reduced if the corresponding locus is empty.

Remark 2.4.2. Though I do not know such examples, it seems probable that
regularity (and even reducedness) can be destroyed by formal localization of a
noetherian adic ring. If this is the case then these notions do not make any sense
for general noetherian formal schemes. At the very least, some examples show that
reducedness can be destroyed by formal localizations in the non-noetherian case.

2.4.10. Desingularization. A (strong) desingularization of X is defined similarly to
the scheme case: it is an Xsing-supported formal blow up sequence with regular
source (and regular centers).

2.4.11. Rig-regularity. We say that X is rig-regular if its singular locus is given by
an open ideal (i.e. is Xs-supported). Note that a desingularization in the rig-regular
case is given by blowing up open ideals, i.e. blowing up formal subschemes which
are usual schemes.

Lemma 2.4.3. Let X be a qe scheme with a closed subscheme Z and let X = X̂Z

denote the formal completion, then
(i) any Z-supported blow up sequence f : X′ 99K X is the completion of a uniquely

defined Z-supported blow up sequence f : X ′ 99K X;
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(ii) if Xsing ⊂ Z then any (strong) desingularization f : X′ 99K X is the completion
of a uniquely defined (strong) desingularization f : X ′ 99K X.

Proof. Note that X is qe by Theorem 2.1.6. Any Z-supported closed subscheme of
X is given by an open ideal, so it is defined already as a closed subscheme in X .
So, the center V0 of the first blow up of f is a closed subscheme of X and we can
set X1 = BlV0

(X). Then X1 is the completion of X1, hence we can algebraize the
center V1 →֒ X1 by V1 →֒ X1, and proceed by induction on the length of f. This
proves (i), and (ii) follows from (i) and the compatibility of formal completions with
singular loci. �

2.4.12. Regular morphisms. A morphism f : Y → X between qe formal schemes is
regular if there exist affine coverings Xi = Spf(Ai) and Yi = Spf(Bi) of X and Y
such that f(Yi) ⊂ Xi and the induced homomorphism Ai → Bi is regular.

2.4.13. Completions of regular morphisms.

Lemma 2.4.4. Let A be a qe ring with an ideal I, Â be its I-adic completion and

B be a noetherian I-adic Â-ring. Then the homomorphism Â → B is regular if and
only if the homomorphism A → B is regular.

Proof. The direct implication is obvious since the completion homomorphism A →
Â = C is regular by quasi-excellence of A. Conversely, suppose that A → B is
regular. Since any prime ideal in B is contained in an open prime ideal, in order to
prove that C → B is regular we should show that for any open prime ideal q ⊂ B
with preimage p ⊂ C the homomorphism f : Cp → Bq is regular. Moreover, in view
of Andre’s theorem on localization of formal smoothness, see [And], it suffices to
check that f is formally smooth because C is qe by Gabber’s Theorem 2.1.6. Recall
that by [EGA, 0IV, 19.7.1 and 22.5.8] formal smoothness of the local homomorphism
f is equivalent to its flatness and geometric regularity of its closed fiber. The ideals

p and r = p ∩ A are open, hence Âr→̃Ĉp. This isomorphism and faithful flatness

of Cp → Ĉp imply that pCp is the only prime ideal of Cp over r. Hence Cp/rCp is
local Artinian, and since it is regular by quasi-excellence of A, it has to be a field.
In particular, we obtain that rCp = pCp. Thus, the closed fiber Bq/pBq→̃Bq/rBq

of f is geometrically regular over the residue field Cp/pCp→̃Ar/rAr by regularity

of A → B. Finally, the completion homomorphism Cp → Ĉp is flat because Cp is

noetherian and the homomorphism Ĉp→̃Âr → B̂q is flat because A → B is flat,

hence g : Cp → B̂q is flat and we deduce that f is flat because g is its composition

with the faithfully flat completion homomorphism Bq → B̂q. �

Corollary 2.4.5. Let f : Y → X be a regular morphism between qe schemes, and

let I ⊂ OX and J ⊃ IOY be ideals with the completions X = X̂I and Y = ŶJ .
Then the completion f : Y → X of f is regular.

Proof. We can assume that X = Spec(A) and Y = Spec(B), and let Â and B̂
be the I-adic and the J -adic completions, respectively. Then the homomorphism

A → B → B̂ is regular, and therefore Â → B̂ is regular by Lemma 2.4.4. �

2.4.14. Regularity and affine subschemes.

Lemma 2.4.6. If a morphism f : Y → X between qe formal schemes is regular and
X′ = Spf(A′) and Y′ = Spf(B′) are open formal subschemes of X and Y such that
f(Y′) ⊂ X′, then the induced homomorphism A′ → B′ is regular.
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Proof. First we prove that regularity survives formal localizations. Namely, assume
that Y = Spf(B), X = Spf(A), the homomorphism A → B is regular, A′ = A{f}

and B′ = B{g}. Obviously, A′ → B′ is the completion of a regular homomor-
phism Af → Bg which is a localization of A → B. Hence A′ → B′ is a regular
homomorphism by Corollary 2.4.5.

To complete the proof it now suffices to prove the following claim. Assume that
Y = Spf(B), X = Spf(A), X = ∪Xi = Spf(Ai) and Y = ∪Yi = Spf(Bi) such
that Ai = A{fi}, Bi = B{gi}, f(Yi) ⊂ Xi and the homomorphisms Ai → Bi are
regular. In particular, the compositions A → Ai → Bi are regular. Then we
claim that the homomorphism A → B is regular. Assume to the contrary that
f : Spec(B) → Spec(A) is not regular. Since any point of Spec(B) specializes to a
point of Spf(B), there exists a point x ∈ Y ⊂ Spec(B) such that the homomorphism
f is not regular at x. Since the morphisms Spec(Bi) → Spec(B) are regular,
the composed morphisms Spec(Bi) → Spec(B) → Spec(A) are not regular at the
preimage of x by Lemma 2.1.4(i). However, x has a non-empty preimage in some
Spec(Bi) because Yi’s cover Y. This contradicts the regularity of A → Bi, and
therefore f is regular. �

3. Extending FVar to schemes with small singular locus

Loosely speaking, the aim of §3 is to extend the functor FVar to generically
reduced qe schemes over Q whose singular locus is sufficiently small. More precisely,
we will extend FVar to pairs (X,Z) where X is a generically reduced noetherian qe
scheme over Q and Z →֒ X is a Cartier divisor isomorphic to a disjoint union of
varieties and containing Xsing. This is an intermediate result towards our proof of
the main Theorem 1.2.1, so we do not pursue any generality in §3. The question
of extending FVar to wider classes of schemes was discussed in Remark 1.3.2. The
construction of FVar(X,Z) goes by completing X along Z and algebraizing the
obtained formal variety, and the main difficulty is to prove that this construction
is independent of the algebraization.

3.1. Extending FVar to formal varieties.

3.1.1. Formal varieties. A noetherian formal scheme X is called a formal variety if
its closed fiber Xs is a variety.

Remark 3.1.1. (i) Formal varieties are called special formal schemes in [Tem1,
§3.2].

(ii) It is easy to prove that an equicharacteristic X is a formal variety if and only
if locally it is of the form Spf(k[T1, . . . , Tn][[S1, . . . , Sm]]/I) where k is any field of
definition of Xs; see [Tem1, 3.2.1] for a proof. Note that the latter formal scheme
is of finite type over Spf(k[[S1, . . . , Sm]]) because of the isomorphism

k[T1, . . . , Tn][[S1, . . . , Sm]]→̃k[[S1, . . . , Sm]]{T1, . . . , Tn}
3.1.2. Rig-smoothness. Let A be an adic ring and let B = A{T1, . . . , Tn}/I be
topologically finitely generated over A. Following [Elk], one defines a Jacobian ideal
H ⊆ B that depends on some choices (see also [Tem1, §3.3]) and shows that its

radical HB/A =
√
H depends only on A and B. Moreover, the construction of HB/A

is compatible with formal localizations, hence one obtains a reduced Jacobian ideal
HY/X for any finite type morphism f : Y → X. One can view the corresponding
closed subscheme of Y as the non-smoothness locus of f . In particular, f is smooth
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if and only if HY/X = OY. An arbitrary morphism f : Y → X is rig-smooth if it
is of finite type and HY/X is open. The following remark will not be used, so the
reader not familiar with non-archimedean geometry can safely skip it.

Remark 3.1.2. (i) Intuitively, rig-smoothness means that the ”generic fiber” of f
is smooth.

(ii) If X = Spf(k[[π]]) then the generic fiber fη : Yη → Xη can be defined in the
categories of rigid, analytic or adic spaces. Rig-smoothness of f is equivalent to
smoothness of f rig

η by [Tem1, 3.3.2], and by comparison of smoothness in rigid and

adic categories, this also equivalent to smoothness of fad
η . Smoothness for analytic

spaces is more restrictive since one requires the boundary to be empty. Morphisms
corresponding to smooth morphisms of rigid spaces are called quasi-smooth (or,
sometimes, rig-smooth), thus f is rig-smooth if and only if fan

η is quasi-smooth.

3.1.3. Algebraization of formal varieties. A formal variety is called (locally) alge-
braizable if (locally) it is isomorphic to a formal completion of a variety.

Remark 3.1.3. (i) It is well known that formal singularities can be non-algebraizable.
So, a general formal variety does not have to be locally algebraizable.

(ii) The main algebraization tool is [Elk, Th. 7] by Renée Elkik. This theorem
implies that if A possesses a principal ideal of definition and Spf(B) → Spf(A) is a
rig-smooth morphism then Spf(B) is A-algebraizable.

(iii) It is an interesting question if the assumption about a principal ideal of
definition can be weakened. Because of this assumption we have to introduce the
class of principal formal varieties below.

3.1.4. Locally principal formal varieties. By a locally principal formal variety we
mean a pair (X, I) consisting of a formal variety X and an invertible ideal of def-
inition I ⊂ OX, and we say that (X, I) is principal if I is isomorphic to OX. By
a (regular) morphism of locally principal formal varieties f : (X′, I′) → (X, I) we
mean a (regular) morphism f : X′ → X such that I′ = IOX′ .

Remark 3.1.4. (i) It is easy to see that an affine equicharacteristic formal scheme
X with an ideal I is a principal formal variety if and only if it is of finite type over
(S = Spf(k[[π]]), (π)), where k is a field of definition of Xs and π is a generator of
the ideal of definition (we refer to [Tem1, 3.2.3] for details).

(ii) In the zero characteristic case, a principal formal variety X is rig-regular if
and only if it is rig-smooth over an S as in (i).

(iii) It follows from (ii) and the theorem of Elkik that any affine rig-regular
principal formal variety of characteristic zero is algebraizable; see [Tem1, 3.3.1] for
details.

3.1.5. Desingularization of rig-regular locally principal formal varieties. Let V̂arp=0

denote the category of finite disjoint unions of rig-regular locally principal formal
varieties of characteristic zero with regular morphisms.

Theorem 3.1.5. There exists unique up to unique isomorphism desingularization

functor F̂Var on V̂arp=0 such that F̂Var is compatible with FVar under formal com-

pletions. Moreover, F̂Var is strong if and only if FVar is strong.

The theorem will be proved only in §3.4.1. Since formal varieties from the
theorem are locally algebraizable, the uniqueness is obvious. To prove existence
we, at the very least, should show that if such an X admits two algebraizations,
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say X→̃X̂ and X→̃Ŷ , then the completions of the blow up sequences FVar(X) and
FVar(Y ) give rise to the same formal blow up sequence of X. We will solve this
problem in §3.3 by showing that the desingularization of X and Y is canonically
determined already by a sufficiently thick infinitesimal neighborhood of Xs. The
main tool will be results of Elkik and Gabber-Ramero that we will recall in §3.2.

3.2. Scheme-theoretic singular locus. Consider a morphism f : X = Spec(B) →
S = Spec(A) and let fsing ⊂ X be its singular locus. It is a natural question if one
can meaningfully extend this set-theoretic notion to a scheme-theoretic one.

3.2.1. Jacobian ideals. A rough version of such a notion was introduced in [Elk].
Namely, one considers a closed immersion X →֒ W = AN

S , chooses generators
of the ideal J ⊆ F = A[t1, . . . , tN ] defining X in W , and assigns to this datum
a Jacobian ideal HF on W whose cosupport is fsing (it is denoted HB in [Elk,
§0.2]). In particular, this ideal may be used to define singular locus of morphisms
of formal schemes (see §3.1.2), and it plays a crucial role in the proof of the famous
Popescu’s theorem, see [Po]. The disadvantages of this definition is that it depends
on the choices and V (HF ) does not have to be a subscheme of X . This indicates
that V (HF ) gives an upper bound on a scheme-theoretic singular locus, and indeed
there is a more precise definition by Gabber-Ramero.

3.2.2. Gabber-Ramero ideal. Gabber-Ramero introduced in [GR, 5.4.1] an ideal

HF = AnnFExt1B(LB/A, J/J
2)

where LB/A is the cotangent complex of Illusie. By [GR, 5.4.2(iii)] this ideal anni-

hilates Ext1B(LB/A, N) for any B-module N . Since J ⊆ HF , we can view V (HF )
as a closed subscheme of X given by the ideal HB/A = HFB. The latter is the

biggest ideal of B that annihilates any module of the form Ext1B(LB/A, N), hence
it depends only on the homomorphism A → B. By [GR, 5.4.2], the vanishing locus
of HB/A is the singular locus of f , in particular, B is smooth over A if and only if
HB/A = B. Thus, it is natural now to set fsing = V (HB/A), as a subscheme of X .
Moreover, it is shown in [GR, 5.4.6] that V (HF ) is a subscheme of V (HF ) (regard-
less to the choices in the definition of HF ), supporting the intuition that V (HF ) is
an upper bound on fsing. We will use Gabber-Ramero ideals in the sequel, though
we will indicate in comments how one could use only the results of [Elk] instead.
First, let us list basic compatibility properties of HB/A.

Proposition 3.2.1. Let f : A → B be a ring homomorphism.
(i) Gabber-Ramero ideal can only increase under base changes. Namely, if A →

A′ is a homomorphism and B′ = B ⊗A A′ then HB/AB
′ ⊆ HB′/A′ .

(ii) Gabber-Ramero ideals satisfy the following transitive domination property:
if g : B → C is another homomorphism then HB/AHC/B ⊆ HC/A. In particular,
if g is smooth (resp. f is smooth) then HB/AC ⊆ HC/A (resp. HC/B ⊆ HC/A).

Proof. Claim (i) is precisely [GR, 5.4.2(i)(a)]. To prove (ii) we recall that by [Ill,
II.2.1.2] one associates to A → B → C an exact transitivity triangle

LC/B [−1] → LB/A ⊗L
B C → LC/A → LC/B

In particular, for any C-module N we obtain an exact sequence

Ext1C(LC/B, N) → Ext1C(LC/A, N) → Ext1C(LB/A ⊗L
B C,N)
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It suffices to prove that HB/AHC/B annihilates the middle module in this sequence.
Since HC/B annihilates the left one, we should only check that HB/A annihilates
the module on the right. But this follows from the isomorphism

Ext1C(LB/A ⊗L
B C,N)→̃Ext1B(LB/A,RHomC(C,N))→̃Ext1B(LB/A, N)

where the first map is an adjunction isomorphism. �

3.2.3. Principal affine pairs. By a principal affine pair over a field k we mean a
pair (X, I) consisting of an affine k-variety X = Spec(A) with a principal invertible
ideal I ⊂ OX corresponding to I ⊂ A. Thus, I = (π) for a non-zero divisor π.
Sometimes, we will denote such pair as (A, I). The support of I will be called the
closed fiber and we will denote it Xs. The closed fiber underlies schemes Xn =
Spec(A/In), and the pair (Xn, In), where In = IOXn

, will be called the n-th
fiber of (X, I). The henselization and the formal completion of the pair will be

denoted (Xh, Ih) and (X̂, Î), respectively. We have natural regular morphisms

X̂ → Xh → X and closed immersions of Xn into the above schemes which are
compatible with the ideals and induce isomorphisms on the m-th fibers for m ≤ n.

3.2.4. Morphisms of pairs. A morphism between principal pairs f : (X ′, I ′) →
(X, I) is a morphism h : X → X ′ such that I ′ = IOX′ . If X , X ′ and h are
defined over k then we say that f is a k-morphism. Also, we define a morphism

f : (X
′
, I ′

) → (X, I) between n-th fibers, henselizations or completions as a mor-

phism h : X → X
′

that respects the ideals. Note that we do not impose any
condition on the original pairs in this definition. A morphism f as above is said to
be regular, isomorphism, etc. if h is so. Finally, to any morphism f we obviously
associate n-th fibers, henselization and completion which will be denoted fn, fh

and f̂ , and similarly to any morphism f between completions, henselizations or
n-th fibers we can associate a morphism fm between the m-th fibers, where m ≤ n.

3.2.5. Conductor. Assume now that (X, I) is a principal pair and f : Y = Spec(B) →
X a finite type morphism. Then we define the conductor of f to be the minimal
number r such that Ir ⊆ HB/A. If no such number exists then the conductor
is infinite. Note that the conductor is finite if and only if f is smooth over the
complement of V (I).

Remark 3.2.2. (i) It follows from Proposition 3.2.1(i) that the conductor does not
increase under base changes.

(ii) It follows from Proposition 3.2.1(ii) that the conductor does not increase
when one replaces B with a smooth B-algebra C.

(iii) So far, we did not use that I is principal and invertible. Nevertheless, it
is not so clear if the notion of conductor makes too much sense in general, so we
prefer to impose the restrictions on I from the beginning.

3.2.6. The lifting theorem. The following lifting result will be a critical tool in the
sequel. In some sense it indicates that, indeed, the ”non-smoothness of f is bounded
by tr”.

Theorem 3.2.3 (Gabber-Ramero). Assume that f : (Y,J ) → (X, I) is a mor-
phism of principal pairs of conductor r. If the pair (X, I) is henselian, n > r a
number, and εn : Xn → Yn is a section of fn that can be lifted to a section ε′n+r of
fn+r, then εn can also be lifted to a section ε : X → Y of f .
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Proof. This is, actually, the claim of [GR, 5.4.13] when one takes trivial I in the
loc.cit. �

Remark 3.2.4. (i) Note that ε does not have to agree with ε′n+r on the m-th fibers
for m > n.

(ii) The above theorem of Gabber-Ramero improves an analogous result of Elkik
(see [Elk, Th. 2 and Cor. 1]), in which a weaker conductor is defined through
Jacobian ideals. Note that the bounds in Elkik’s theorem are implicit because I
can be any finitely generated ideal in [Elk]. Tracing the proof, one may check that
when I is principal and invertible the bound is essentially as we stated (in terms
of Jacobian ideals), e.g. see [Elk, Lemma 1] and the proof of [Elk, Th. 1].

3.3. Intrinsic dependence of desingularization on the singular locus. In-
tuitively, it is natural to expect that for a scheme X all information about its
singularities, including the desingularization information, is contained in a ”suffi-
ciently thick” closed subscheme Y with |Y | = Xsing. It is a very interesting and
difficult question how to define such property of Y rigorously, but we will not study
it here in general. We will only consider a very special case of what we call Elkik
pair, which suffices to prove Theorem 3.1.5.

3.3.1. Elkik pairs. Until the end of §3.3 we assume that the characteristic is zero.
By Elkik pair over k we mean a principal affine pair (X, I) over k such that Xsing

is contained in the closed fiber Xs. Note that for any generator π of I the generic
fiber Xη of the induced morphism f : X → A1

k is a regular scheme, and hence f
is smooth along Xη by the characteristic zero assumption. In particular, removing
from X few bad fibers we can achieve that f is smooth outside of Xs and then the
conductor of f : (X, I) → (A1

k, (π)) is a finite number that we denote r(X, π).

3.3.2. Conductor of Elkik pairs. Instead of studying the question whether r(X, π)
depends only on (X, I), we define the conductor r(X, I) as the minimal possible
value of r(X, π), where π runs over the set of all generators of I. Any π for which
the minimum is achieved will be called a featured generator.

3.3.3. Recovery of a henselian Elkik pair from a sufficiently thick fiber. It is a well
known, but difficult to find in the literature, folklore that the results of [Elk] imply
that the henselization of an Elkik pair is determined up to an isomorphism by a
sufficiently thick fiber. Let us show that, indeed, this is a simple consequence of the
lifting theorem. We work with Gabber-Ramero version, but obviously one could
use only [Elk], obtaining slightly worse bounds. In the following proposition we say
that a morphism is henselian-smooth if it is a henselization of a smooth morphism.

Proposition 3.3.1. Assume that (X, I) and (X ′, I ′) are Elkik pairs over k, r is
the conductor of (X, I) and n > r is a number. Then for any smooth k-morphism
fn : (X ′

n, I ′
n) → (Xn, In) that can be lifted to a smooth morphism

f ′
n+r : (X ′

n+r, I ′
n+r) → (Xn+r, In+r)

there also exists a lifting of fn to a henselian-smooth morphism of henselizations
f : (X ′h, I ′h) → (Xh, Ih). Moreover, if fn (or even f0) is an isomorphism then f
is an isomorphism, and so the henselizations are k-isomorphic if and only if the
m-th fibers are k-isomorphic for a single m > 2r. In particular, the fiber X2r+1

determines Xh up to an isomorphism.
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Proof. Fix any featured generator π of I and denote its images in Ih and In also by
π. Then X and all its derived schemes are provided with compatible morphisms to
S = Spec(k[π]). Let π′ ∈ I ′

n be the image of π under the homomorphism induced
by fn, and denote by π′ any lifting of π′ to I ′. We view X ′h as an S-scheme via
the morphism taking π′ to π. The morphism X ×S X ′h → X ′h is a base change
of X → S, hence its conductor is bounded by r by Remark 3.2.2(i). By Theorem
3.2.3 there exists a section X ′h → X ×S X ′h which lifts

(fn, IdX′

n
) : X ′

n → Xn ×S X ′
n

Projecting this section onto X gives a morphism φ : X ′h → X that lifts fn. By
the universal property of henselizations, the latter morphism factors through a
morphism f : X ′h → Xh that lifts fn.

Note that X ′h = proj limX ′
α where X ′

α → X ′ are étale morphisms inducing
isomorphisms on henselizations. By [EGA, IV4, 8.13.1], φ factors through a mor-
phism g : Y = X ′

α → X for large enough α, and clearly f = gh. We claim that the
fibers of g are smooth. Indeed, gn = φn = fn is smooth, hence g0 is smooth and it
suffices to check that gm is flat for any m > n. Let X = Spec(A) and Y = Spec(B).
By local criterion of flatness [Mat, Th. 49, (4) =⇒ (1)] with respect to the ideal
πA it suffices to show that πmA/πm+1A⊗A0

B0→̃πmB/πm+1B. This follows from
the fact that, since A and B have no π-torsion, πmA/πm+1A→̃A/πA = A0 and
πmB/πm+1B→̃B0. Smoothness of the fibers implies (actually is equivalent to) for-

mal smoothness of the completion homomorphism Â → B̂, and the latter implies
that g is smooth along Xs. In particular, replacing Y with a small enough neigh-
borhood of the closed fiber we achieve that g is smooth. In particular, f = gh

is henselian-smooth. Finally, if f0 = g0 is an isomorphism then g is strictly étale
along Xs and hence its henselization f is an isomorphism. �

In the above proof we also showed that the henselian-smooth morphism f is
approximated by a smooth morphism g between Elkik pairs. We record this result
too for the sake of latter referencing.

Corollary 3.3.2. Let (X, I), (X ′, I ′), r, and n be as in Proposition 3.3.1. Then
there exist a smooth morphism g : Y → X and an étale morphism φ : Y → X ′ such
that φ ×X Xs is an isomorphism (equivalently, φh : Y h→̃X ′h is an isomorphism)
and the induced morphism gn ◦ φ−1

n : X ′
n → Xn equals to fn.

3.3.4. Naive restriction of a desingularization on an Elkik fiber. All schemes and
morphisms in §3.3.4 are defined over a field k. Let (X, I) be an Elkik pair over
k, and assume that f : X(p) 99K X(0) is a (strong) desingularization of X = X(0).
In particular all centers V (i) →֒ X(i) of f sit over Xs, and hence we can choose

l such that each V (i) is contained in the l-th fiber X
(i)
l . To simplify the notation

we set X ′ = X(1), V ′ = V (1) and V = V (0). Set r = max0≤i≤p r(X
(i), I(i)). For

any number we define the naive restriction of f onto the n-th fiber as the sequence

fn : X
(p)
n 99K X

(0)
n provided with the closed subschemes V (i) →֒ X

(i)
n . A serious

disadvantage of the naive restriction is that the situation is not fully controlled
by Xn for the following two reasons. First, although X is determined by Xn up
to an isomorphism whenever n > 2r, not any automorphism of Xn has to lift
to X . However, any automorphism of Xn−r does lift, so if V ⊆ Xn−r then at
least X ′

n−r is determined up to an Xn−r-automorphism. Second, there might be
non-trivial Xn−r-automorphisms σ of X ′

n−r even though each X-automorphism of
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X ′ is trivial. So, the subscheme V →֒ X completely determines the morphism
X ′ → X , but given only Xn and V →֒ Xn−r we cannot reconstruct the morphism
X ′

n−r → Xn−r. Fortunately, it turns out that any such σ is the identity modulo
large enough power of I, so sufficiently thick fibers X ′

m are determined uniquely.

Lemma 3.3.3. Keep the above notation, and assume that n > max(r, l) + r. Then
the Xn-scheme X ′

n−l−r is determined by Xn and V up to a unique Xn-isomorphism.

Proof. Let us explain first how one can non-canonically construct X ′
n−l−r from

Xn and V . Find any realization of (Xn, In) as the n-th fiber of an Elkik pair
(Y, I ′). The original (X, I) is a possible choice, but since we are proving intrinsic
dependency on Xn there are other equally good alternatives. Set Y ′ = BlV (Y )
and consider the fiber Y ′

n−l−r. To prove the lemma we should show that the above
a priori non-canonical construction is actually canonical, and we will do that by
establishing a canonical Xn-isomorphism f ′

n−l−r : Y ′
n−l−r→̃X ′

n−l−r. By Proposition

3.3.1 there exists an isomorphism fh : Y h→̃Xh which induces identity on the (n−
r)-th fibers. In the sequel it will be more convenient to work with the formal

completion f̂ : Ŷ →̃X̂ and the completed blow up Ŷ ′ → Ŷ (the reason for switching
to formal schemes is that the theory of henselian schemes, their blow ups, etc.,

was not developed in the paper). Since V →֒ Xn−r, f̂ induces an isomorphism

f̂ ′ : Ŷ ′→̃X̂ ′ whose (n− l−r)-th fiber is an isomorphism f ′
n−l−r. It remains to prove

uniqueness of f ′
n−l−r, and this follows from the following claim by taking m = n−r.

Assume that φ is an automorphism of Ŷ that preserves V and induces identity

on Ym. Then the induced automorphism φ′ of Ŷ ′ induces identity on Ym−l. The

latter claim reduces to a simple computation on charts of Ŷ ′. Let Ŷ = Spf(A) and

V̂ = V (J) for an ideal J ⊂ A containing πl, where π is a generator of I. By §2.4.5,

Ŷ ′ is covered by charts Zg = Spf(A{J/g}) with g ∈ J . Note that φ′ moves Zg

to Zφ(g) and takes a function f/g ∈ A{J/g} to φ(f)/φ(g) ∈ A{J/φ(g)}. In the

intersection Zgφ(g) = Spf(A{J2/gφ(g)}) we have that

f

g
− φ

(
f

g

)
=

f

g
− f + πma

g + πmb
= πm−l · π

l

g
· bf − ag

φ(g)
∈ πm−lA{J2/gφ(g)}

This proves that φ′
m−l acts trivially on (Zgφ(g))m−l. Also, the same argument shows

that the open immersions (Zgφ(g))m−l →֒ (Zg)m−l and (Zgφ(g))m−l →֒ (Zφ(g))m−l

are actually isomorphisms. So, φ′
m−l preserves the charts and acts trivially on them,

and hence is an identity. �

3.3.5. Restriction of a desingularization on an Elkik fiber. The lemma implies that

for large enough n the subscheme V (0) →֒ X
(0)
n2 defines X

(1)
n(n−1) up to a unique

isomorphism, the subscheme V (1) →֒ X
(1)
n(n−1) defines X

(2)
n(n−2) up to a unique iso-

morphism, etc. The sequence of morphisms X
(p)
n(n−p) → · · · → X

(0)
n2 induced by the

desingularization f : X(p) 99K X(0) and the centers V (i) →֒ X
(i)
n(n−i) for 0 ≤ i ≤ p−1

will be called the n-th restriction of f onto the Elkik fiber and will be denoted
f |X

n2
. The restriction allows to encode the desingularization in Elkik fibers in a

way which is canonical up to the choice of n. The latter is not a real trouble,
since any choice of large enough n does the job equally well, and the subschemes

V (i) →֒ X
(i)
n(n−i) and V (i) →֒ X

(i)
N(N−i) with N ≥ n are identified by the closed
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immersion X
(i)
n(n−i) →֒ X

(i)
N(N−i). For this reason, we will not worry about n in the

sequel, and each time n appears in the notation of a restriction we will assume that
it is large enough.

3.3.6. Ghost blow ups. In order to formalize the above data, we define a ghost blow
up as a morphism f : X ′ → X and a closed subscheme V →֒ X such that f is an
isomorphism over the complement of V . Naturally, V is called the center of f and
the ghost blow up is empty if its center is. Obviously, f |X

n2
is a ghost blow up

sequence which is also contracted, i.e. does not contain empty ghost blow ups.

3.3.7. Compatibility with smooth k-morphisms. Let (X, I) and (Y, I ′) be Elkik
pairs, let f : X ′ 99K X and g : Y ′ 99K Y be some desingularizations, and con-
sider the restrictions f = f |X

n2
and g = g|Y

n2
for large enough n (depending

on X and Y ). Given a flat morphism h : (Yn2 , I ′
n2) → (Xn2 , In2) between the

Elkik fibers we denote by h∗(f) the base change of f with respect to h, i.e. the

tower h∗(X
(p)
n(n−p)) → · · · → Y

(0)
n2 with the subschemes h∗(V (i)) where by definition

h∗(Z) = Z ×X
n2

Yn2 for an Xn2 -scheme Z. We say that f and g are compatible

with respect to h if g is obtained from h∗(f) by eliminating empty ghost blow ups.

Lemma 3.3.4. Let F be a desingularization algorithm for k-varieties which is
compatible with smooth k-morphisms. Then the restriction of F on Elkik fibers
is compatible with smooth k-morphisms between the fibers in the following sense:
let (X, I) and (Y, I ′) be Elkik pairs over k, and let r be the conductor of (X, I).
If n is large enough (depending on X and Y ) then for any smooth k-morphism
h : (Yn2+r, I ′

n2+r) → (Xn2+r, In2+r) the n-th restrictions F(X)|X
n2

and F(Y )|Y
n2

are compatible with h|n2 .

Proof. Corollary 3.3.2 tells that hn2 lifts to a smooth morphism of Elkik pairs
f : (Z, I ′′) → (X, I) and an étale morphism of Elkik pairs g : (Z, I ′′) → (Y, I ′)
such that gh is an isomorphism and hn2 = fn2 ◦ g−1

n2 . By our assumption, F is
compatible with f and g, so f∗(F(X)) is a trivial extension of F(Z) and similarly
for g. Moreover, g∗(F(Y )) actually coincides with F(Z) because Ysing ⊆ Ys and
hence Ysing is contained in the image of Z. In particular, h∗

n2(F(X)|n2) is a trivial
extension of F(Z)|n2→̃F(Y )|n2 . �

3.3.8. Compatibility with regular morphisms. Now, we are going to generalize Lemma
3.3.4 to the case of regular morphisms h : Yn2 → Xn2 . Note that even if h is smooth
and X,Y are k-varieties, h does not have to be a k-morphism. For this reason we
do not have an analog of Corollary 3.3.2 anymore. Our strategy will be to reduce
to Q-varieties using approximation and to use that Lemma 3.3.4 covers all regular
morphisms between Q-varieties.

Proposition 3.3.5. Let F be a desingularization functor for varieties of character-
istic zero that is compatible with all regular morphisms. Then the restriction of F
on Elkik fibers is compatible with regular morphisms between the fibers in the follow-
ing sense: let (X, I) and (Y, I ′) be Elkik pairs over fields k and l, respectively. Then
there exists a number r depending on (X, I) such that for any large enough n de-
pending on X and Y and a regular morphism h : (Yn2+r, I ′

n2+r) → (Xn2+r, In2+r),

the n-th restrictions F(X)|X
n2

and F(Y )|Y
n2

are compatible with h|n2 .
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Proof. By [BMT, 7.5] X is the filtered projective limit of a family Xα of affine Q-
varieties with smooth transition morphisms, and then the projections X → Xα are
regular. Moreover, taking only α ≥ α0 for a large enough α0 we can easily achieve
that I is defined already on each Xα, and each pair (Xα, Iα) is an Elkik fiber over
Q. Set r = r(Xα0

, Iα0
); then the conductor of each pair (Xα, Iα) does not exceed

r by Remark 3.2.2(ii). Define in a similar way a family Yα′ with limit Y . Since
F is compatible with regular morphisms, F(X) is induced from F(Xα), and hence
the restriction of F to Xn2 (resp. Yn2) is induced from its restriction to each Xα,n2

(resp. Yα′,n2). Fix any α′, then by [EGA, IV4, 8.13.1] the composed morphism
hα′ : Xn2+r → Yn2+r → Yα′,n2+r is induced from a morphism hα,α′ : Xα,n2+r →
Yα′,n2+r with large enough α. The latter morphism does not have to be smooth but
its restriction onto a neighborhood U of the image of Xn2+r is smooth by Lemma
2.1.4 because the composition of hα,α′ with the regular morphism Xn2+r → Xα,n2+r

is the regular morphism hα′ . Replacing Xα,n2+r with U we can assume that hα,α′ is
a smooth morphism of Q-varieties. Then hα,α′ |n2 is compatible with the restriction
of F by Lemma 3.3.4, and therefore h|n2 is compatible with the restriction as
well. �

The following remark will not be used so we leave the proof to the interested
reader.

Remark 3.3.6. One can also prove that if (X, I) and (Xα, Iα) are as in the proof
of Proposition 3.3.5 then r(X, I) = minα r(Xα, Iα). It then follows that one can
take r = r(X, I) in the formulation of the proposition.

3.4. Functorial desingularization via algebraization.

3.4.1. Proof of Theorem 3.1.5. Let (X, I) be an affine principal rig-regular formal
variety of characteristic zero. Choose a generator π ∈ I, then a rig-smooth mor-
phism X → S = Spf(k[[π]]) arises and therefore there exists an algebraization

(X, I)→̃(X̂, Î), where (X, I) with I = (π) is an Elkik pair over k. The comple-
tion of the desingularization FVar(X) of X is a desingularization f : X′ → X, and
it follows from Proposition 3.3.5 that f intrinsically depends on (X, I). Indeed,
if the latter is isomorphic to another completed Elkik pair (Y, J) then the iso-
morphism induces isomorphism of all fibers and already the restrictions onto large
enough fiber (depending on X) are isomorphic by 3.3.5. Thus, we can denote f as

F̂Var(X). Furthermore, Proposition 3.3.5 implies that the functor F̂Var (which is
defined, so far, in the principal affine case) is compatible with any regular mor-
phism h : (Y, I′) → (X, I) because the fibers hn : (Yn, I ′

n) → (Xn, In) are regular.
It follows by the standard gluing argument from §§2.3.5–2.3.6 that the definition

of F̂Var extends to all rig-regular locally principal formal varieties of characteristic
zero and their disjoint unions, and the obtained desingularization is compatible
with all regular morphisms.

3.4.2. Desingularization of schemes with small singular locus. Consider a category
Csmall as follows. Objects of Csmall are pairs (X,Z), where X is a generically
reduced noetherian qe scheme of characteristic zero and Z is a Cartier divisor in X
which contains Xsing and is a disjoint union of varieties. Morphisms in Csmall are
morphisms (X ′, Z ′) → (X,Z) such that X ′ → X is regular and Z ′ = X ′ ×X Z.
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Theorem 3.4.1. The functor FVar extends to a desingularization functor FC which
assigns to a pair (X,Z) a desingularization of X in a way functorial with all mor-
phisms from Csmall. If FVar is strong then FC is strong.

Proof. To define FC we note that X := X̂Z is a rig-regular locally principal formal

variety by [Tem1, 3.1.5(ii)], hence it admits a desingularization f = F̂Var(X) by
Theorem 3.1.5. Since X is rig-regular, the centers of its desingularization are Xs-
supported. By Lemma 2.4.3 f algebraizes to a desingularization f : X ′ 99K X , and
f is strong if and only if f is strong. It remains to observe that given a morphism
f : (X ′, Z ′) → (X,Z) we obtain a morphism of their completions f : X′ → X because
Z ′ = X ′ ×X Z. Moreover, if f is regular then f is regular by Corollary 2.4.5. Since

F̂Var is compatible with any regular morphism f, we obtain that FC is functorial
with respect to all morphisms from Csmall. �

Remark 3.4.2. (i) Though it is reasonable to expect that FC is functorial with
respect to all regular morphisms X ′ → X , we did not prove that. Moreover, it is
even unclear if the desingularization of (X,Z) is actually independent of the choice
of Z (in case, there are few possibilities).

(ii) Since it cannot cause any confusion, we will denote FC as FVar in the sequel.

4. Construction of F
4.1. Induction on codimension.

4.1.1. Unresolved locus. When working on (strong) desingularization of a scheme X
we will use the following terminology: given an Xsing-supported blow up sequence
f : X ′ 99K X by the unresolved locus of f we mean the smallest closed set funr =
T ⊂ X such that f induces a (strong) desingularization on X \ T . Note that
T = f(X ′

sing) (resp. T is the union of f(X ′
sing) and the images of all singular loci

of the centers of f).

4.1.2. Desingularization up to codimension d. We say that a blow up sequence
f : X ′ 99K X is a (strong) desingularization up to codimension d if funr ⊂ X>d.
This happens if and only if f induces a (strong) desingularization on a neighborhood
on X≤d.

Remark 4.1.1. (i) If d = dim(X) then desingularization is the same as desingular-
ization up to codimension d. On the other side, if X ′ 99K X is a desingularization
up to codimension d − 1 then X ′ can have singularities in any codimension and
their local structure can be even worse than that of the original X . However, the
global structure of X ′

sing is relatively simple because it is contractible to a finite set

of closed points of X . In particular, X ′
sing is a disjoint union of proper varieties,

while Xsing can be any qe scheme of dimension smaller than d.
(ii) The desingularization of integral schemes in [Tem1] is constructed as a blow

up sequence Xn 99K X0 = X , where each Xd desingularizes X up to codimension d
and the blow up Xd+1 → Xd is T -supported for some closed T ⊂ X disjoint from
X≤d. Thus, the desingularization is built successively by improving the situation
over X1, X2, etc. To construct the blow up Xi+1 → Xi we should care only for
the preimages of finitely many ”bad” points from X i+1, and, similarly to (i), this
reduces the problem to the case when Xsing is a variety. The latter case is reduced
to desingularization of varieties by completing and algebraizing, similarly to our
desingularization of Csmall in §3.4.2.
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(iii) We will adopt a similar strategy here with two modifications as follows: (a)
we will also insert new T -supported blow ups in the middle of the sequence in order
to correct the old centers over Xd+1 (in case of strong desingularization) and in
order to make the preimage of each bad point to a Cartier divisor, and (b) we will
work with functors F≤d on QEp=0,reg rather than with desingularizations of single
schemes. In a sense, we will construct F by establishing an exhausting filtration
F≤d by its blow up ”subsequences” that desingularize each X up to codimension
d. This plan will be precisely formulated in §4.1.5.

4.1.3. Equicodimensional blow up sequences. We say that a blow up sequence or a
desingularization f : Xn 99K X0 of a locally noetherian scheme X = X0 is equicodi-
mensional if for each center Vi of f there exists a number d such that Vi is disjoint
from the preimage of X<d and Vi is X≤d-admissible. Let gi : Xi → X denote the
natural projection, then the above condition can be re-stated as follows: gi(Vi) is of
pure codimension d and for the discrete set Ti = gi(Vi) ∩Xd of its maximal points
the set g−1

i (Ti)∩Vi is schematically dense in Vi. In the above situation we say that
Vi is of pure X-codimension d.

4.1.4. Filtration by codimension.

Lemma 4.1.2. Let f : Xn 99K X0 = X be an equicodimensional blow up sequence
and let U be obtained from X by removing the images of all centers of f of X-
codimension ≥ d. Then there exists a unique blow up sequence f≤d−1 : Xm 99K X
such that all centers of f≤d−1 are of X-codimension strictly smaller than d and
f≤d−1 ×X U is obtained from f ×X U by removing the empty blow ups.

Proof. The lemma dictates what the restriction of f≤d−1 over U is. Since the
centers of f≤d−1 are of X-codimension strictly smaller than d, the whole f≤d−1

must be the pushforward of f≤d−1|U with respect to the open immersion U →֒ X
(i.e. we simply take the centers of f≤d−1 to be the schematical closures of the
centers of f≤d−1|U , as was observed in §2.2.7(a)). �

4.1.5. The strategy of constructing F and F≤d. Let F be an equicodimensional
desingularization functor. Then we can define functors F≤d by setting F≤d(X) =
(F(X))≤d. The procedure of removing centers of large X-codimension is compatible
with regular morphisms, so F≤d is a functor in the same sense as F is: if f : Y → X
is regular then F≤d(Y ) is a trivial extension of F≤d(X)×X Y . Moreover, each F≤d

is an up to codimension d desingularization functor because F(X)|U = F≤d(X)|U
for a neighborhood U of X≤d. The sequence of functors F≤d is compatible in the
sense that (F≤d)≤e = F≤e for any pair e ≤ d.

Lemma 4.1.3. (i) Each equicodimensional desingularization functor F defines a
compatible sequence {F≤d}d∈N of equicodimensional desingularizations up to codi-
mension d.

(ii) Conversely, assume that {F≤d}d∈N is a compatible sequence of equicodi-
mensional desingularizations up to codimension d, and for any scheme X from
QEp=0,reg and numbers e ≥ d the centers of F≤e(X) of X-codimension > d are

Td-supported, where Td = F≤d
sing(X) is the unresolved locus of F≤d(X). Then the

sequence {F≤d(X)}d∈N stabilizes for large d’s, and hence the sequence {F≤d}d∈N

gives rise to an equicodimensional desingularization functor F on QEp=0,reg.
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Proof. The assertion of (i) was observed earlier. Assume given a sequence F≤d and
a scheme X as in (ii). The condition on the centers implies that F≤d(X)|X\Td

=

F≤e(X)|X\Td
and hence Te ⊆ Td. Thus, T1 ⊇ T2 ⊇ T3 . . . and hence this sequence

stabilizes by noetherian induction. However, Tn is of codimension n, hence the only
possibility for stabilization is that Tn = ∅ for large enough n, and then the sequence
F≤d(X) stabilizes for d ≥ n. �

We will construct successively a compatible family F≤d as in Lemma 4.1.3(ii).
Each F≤d+1 will be obtained by inserting few blow ups into F≤d in order to correct

it over the codimension d points of F≤d
sing. First we have to prove few easy claims

about inserting blow ups into a blow up sequence, and this will be done in §4.2.

4.2. Operations with blow up sequences.

4.2.1. Pushing forward with respect to closed immersions.

Lemma 4.2.1. Let X0 be a scheme with a closed subscheme V0 = V ′
0 and let

g : Vn 99K V0 be a blow up sequence of length n. Then there exists a unique blow
up sequence f : Xn 99K X0 of length n such that for each 1 ≤ i < n the i-th strict
transform V ′

i →֒ Xi of V0 is V0-isomorphic to Vi and for each 0 ≤ i < n the i-th
center of f is contained in V ′

i and is mapped isomorphically onto the i-th center of
g by the V0-isomorphism V ′

i →̃Vi.

Proof. The center of the first blow up of f must coincide with that of g. Then
the strict transform of V0 is V0-isomorphic to V1 (and the isomorphism is unique
because both are modifications of V0). The isomorphism V ′

1→̃V1 dictates the choice
of the second center of f , etc. �

In the situation of the lemma, we will say that f is the pushforward of g with
respect to the closed immersion V0 →֒ X0.

4.2.2. Extending.

Definition 4.2.2. Assume that f : Xn 99K X0 is a blow up sequence of length n
and with centers Vi, 0 ≤ m ≤ n is a number and U →֒ X0 is an open subscheme
such that Vi is U -admissible for each m < i < n. Let, furthermore, g : X ′

m 99K Xm

be any (X0 \ U)-supported blow up sequence of length n′, then by an extension of
f with g we mean a blow up sequence of the form

f ′ : X ′
n

f ′

n−1◦···◦f
′

m

99K X ′
m

g
99K Xm

fm−1◦···◦f0
99K X0

of length n + n′ obtained from f by inserting g before fm and such that the fol-
lowing conditions are satisfied: (a) after the base change with respect to the open
immersion U →֒ X0, f ′ becomes a trivial extension of f ; (b) for each i ≥ m the
center V ′

i of f ′
i : X ′

i+1 → X ′
i is U -admissible. By successive extending of f we mean

applying the above extension operation few times.

Lemma 4.2.3. Given f : Xn 99K X0 and g : X ′
m 99K Xm as in definition 4.2.2,

there exists a unique extension f ′ of f by g. The center V ′
m of f ′

m is naturally
isomorphic to the strict transform of the center Vm of fm under g, i.e. V ′

m = g!(Vm).

Proof. The conditions (a) and (b) leave no choice in the definition of the centers
V ′
i for m ≤ i < n: we must have that Vi ×X U→̃V ′

i ×X U and V ′
i is the schematic

closure of this scheme in X ′
i. These rules dictate an inductive construction of
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the canonical sequence of blow ups f ′
i+1 : X ′

i+1 = BlV ′

i
(X ′

i) → X ′
i starting with f ′

m.
Then it is clear that the sequence satisfies all properties an extension should satisfy.
Regarding the second claim, we just use the definition of the strict transform and
the fact that both V ′

m and Vm have a common schematically dense open subscheme
which is the preimage of U . �

4.2.3. Merging.

Lemma 4.2.4. Assume that X is a scheme with pairwise disjoint closed subschemes
T1, . . . , Tn, Ui = X \ (

∐
j 6=i Tj), U =

∐n
i=1 Ui, and g : U ′ 99K U is a (

∐n
i=1 Ti)-

supported blow up sequence. Then there exists a unique (
∐n

i=1 Ti)-supported blow
up sequence f : X ′ 99K X such that f |Ui

= g|Ui
for each 1 ≤ i ≤ n.

In the situation described in this obvious lemma we will say that f is merged
from the the blow up sequence g or from its components g ×U Ui.

4.2.4. Compatibility with flat base changes. Since blow up sequences are compatible
with flat base changes in the sense of §2.2.5, one can check straightforwardly that
all constructions from §4.2 are also compatible. So, we obtain the following lemma.

Lemma 4.2.5. The operations of pushing forward, merging and extending blow up
sequences are compatible with flat base changes.

4.3. The main theorem. Now we have all necessary tools to construct a strong
desingularization functor F on QEp=0,reg from the functor FVar which was extended
to a functor on Csmall by Theorem 3.4.1. Note, however, that the functor F will not
coincide with FVar even on varieties, since we must build the new desingularization
functor from scratch for the sake of compatibility.

Proof of Theorem 1.2.1. By Lemma 4.1.3 it suffices to build a compatible sequence
of functors F≤d which provide an equicodimensional (resp. strong) desingulariza-
tion up to codimension d and such that the centers of F≤d of X-codimension d sit

over Td−1 = F≤d−1
sing . The construction will be done inductively, and we start with

empty F≤0 since generically reduced schemes are regular in codimension 0. Thus,
we can assume that the sequence F≤0, . . . ,F≤d−1 is already constructed, and our
aim is to construct F≤d. First we will construct F≤d(X) for a single scheme X , and
then we will check that the construction is functorial. The required sequence will
be obtained by extending the blow up sequence f = F≤d−1(X) : Xm 99K X0 = X
few times. To simplify notation, after each extension we will denote the obtained
blow up sequence as f : Xm 99K X0, but this should not cause any confusion. By
our assumption, Td−1 is a closed subset of X≥d, hence it has finitely many points of
codimension d, which are the generic points of the irreducible components of Td−1

of codimension d. Let T denote the set of these points.
Extension 0. We denote by T the Zariski closure of T with the reduced scheme

structure and extend f in the sense of Definition 4.2.2 by inserting g : BlT (X) → X

as the first blow up. As an output we obtain a blow up sequence F≤d
0 (X) : X ′

m 99K

X ′
0 → X0 = X of length m + 1 where the first center (the inserted one) is regular

over a neighborhood of T . As agreed above, we set f = F≤d
0 (X) and increase m

by one after this step. We claim that the scheme-theoretic preimage of T in each
Xi with i > 0 is a Cartier divisor Di. Indeed, this is obvious for D1 and for larger
i’s we use the following lemma.
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Lemma 4.3.1. If X ′ → X is a blow up and D →֒ X is a Cartier divisor then the
locally principal closed subscheme D′ = D ×X X ′ of X ′ is a Cartier divisor.

Proof. We can work locally on X , so let X = Spec(A), D = (f), and X ′ be the blow
up along an ideal I ⊂ A. It is suffices to check the claim for a chart Spec(A[ Ia ]) of
the blow up, where a ∈ I. Since f is a regular element of A, it is a regular element
of Aa and hence also a regular element of A[ Ia ] ⊆ Aa. Thus, D′ is a Cartier divisor
in X ′. �

Extensions 1, . . . , n. This step is needed only in the case of strong desingulariza-
tion (otherwise one can run it as well, but this would only unnecessarily complicate

the algorithm). The last n centers of F≤d
0 (X) are regular over X≤d \ T but do not

have to be so over T . We remedy this problems by n successive extensions. Let

us describe the i-th one. It obtains as an input a blow up sequence f = F≤d
i−1(X)

in which only the last n− i centers can be non-regular over T and outputs a blow

up sequence F≤d
i (X) with only n − i − 1 bad blow ups in the end. By our as-

sumption, Xi+1 → Xi is the first blow up of f whose center W can be non-regular
over T . The intersection of Wsing with the preimage of T can be non-empty, but

it is definitely contained in W ∩ X≤d
i ⊆ W≤d−1. Consider the blow up sequence

F≤d−1(W ) : W ′ 99K W , which exists by the induction assumption. Its centers Vj

can have singularities only over W≥d, in particular, the image of (Vj)sing in X is
contained in X>d. By Lemma 4.2.1, the pushforward X ′

i 99K Xi of F≤d−1(W ) with
respect to the closed immersion W →֒ Xi is a blow up sequence with centers Vj . In
particular, its centers are regular over X≤d.

Let now f ′ : X ′
m 99K X ′

i 99K Xi 99K X0 be obtained from f by inserting X ′
i 99K

Xi instead of Xi+1 → Xi as in Definition 4.2.2. By Lemma 4.2.3 the center of
X ′

i+1 → X ′
i is the strict transform of W , hence it is W ′. Since W ′ is regular over

X≤d by the construction, only the last i− 1 blow ups of f ′ can be non-regular over

T (the blow ups from the sequence X ′
m 99K X ′

i+1). So, we can set F≤d
i (X) = f ′.

Remark 4.3.2. The scheme W does not have to be integral. So, we essentially
exploited here that the resolution functor F is defined for all reduced schemes.

Extension n+ 1. At this stage we already have a blow up sequence f = F≤d
n (X)

such that all its centers are regular over X≤d. The only problem is that though
the singular locus of Xm is disjoint from the preimage of X≤d \ T it can intersect
the preimage of T . For any x ∈ T consider the pro-open subscheme Xx := Xm ×X

Spec(OX,x) of Xm and the scheme-theoretic preimage Dx = (Dm)|Xx
of x. Clearly,

(Xx)sing ⊆ Dx, and Dx is a Cartier divisor by Extension 0. Thus, the pair (Xx, Dx)
is an object of Csmall, and hence so is (

∐
x∈T Xx,

∐
x∈T Dx). Applying FVar to the

latter pair we obtain a list of (resp. strong) desingularizations fx : X ′
x 99K Xx for all

x ∈ T . (Actually, each fx is FVar(Xx, Dx) saturated with few synchronizing empty
blow ups.) Let U →֒ X be an open neighborhood of X≤d such that the closures
x ∈ U of distinct points x ∈ T are pairwise disjoint, and set Um = Xm×XU . Define
gx : Ux 99K Um as the pushforward of fx with respect to the pro-open immersion
Xx →֒ Um. Since each gx is x-supported, Lemma 4.2.4 implies that we can merge
all gx’s into a single blow up sequence g : U ′

m 99K Um. Finally, we define f ′ : X ′
m 99K

Xm to be the pushforward of g with respect to the open immersion Um →֒ Xm,
and set F≤d(X) = f ◦ f ′. Then F≤d(X) coincides with F≤d−1(X) over X≤d \ T
and coincides with f ◦ fx over each Spec(OX,x) for x ∈ T . By our construction the
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latter is a (resp. strong) desingularization of Spec(OX,x), hence the constructed
F≤d(X) is a (resp. strong) desingularization of X up to codimension d.

Remark 4.3.3. To illustrate a certain flexibility (and non-canonicity) of the method,
note that we could use the blow up sequences FVar(Xx, Dx) instead of fx’s in the
construction of F≤d(X) (in other words, we could omit all empty blow ups in
fx’s). Although such choice would work as well, our construction seems to be more
natural.

It remains to check that F≤d is functorial. By Lemma 4.2.5 the operations
of pushing forward, extending and merging of blow ups are compatible with a

regular (and even flat) base change h : X̃ → X , and we claim that it follows easily
that all intermediate constructions in our proof are functorial. Indeed, the set of

the maximal points of h−1(T ) is exactly the set T̃ of points of X̃≤d over which

F≤d−1(X̃) is not a desingularization. Hence the Zariski closure of T̃ coincides with

T ×X X̃ in Extension 0, and therefore the blow up sequence F≤d
0 is functorial.

In the i-th Extension we have that W̃ = W ×X X̃ by inductive functoriality of

F≤d
i−1. Hence F≤d−1(W̃ ) is a trivial extension of F≤d−1(W ) ×X X̃ by functoriality

of F≤d−1, and so F≤d
i is functorial. The last Extension is dealt with similarly. �

Remark 4.3.4. The same proof actually applies to a more general situation, which
might include, for example, schemes of arbitrary characteristic. Let C be a subcat-
egory of QEreg which is closed under blow ups and taking subschemes. Define a
category Csmall as usually, i.e. the objects are pairs (X,Z) with X in C and Z a
Cartier divisor containing Xsing and isomorphic to a finite disjoint union of vari-
eties, and the morphisms are the regular ones. Then the same argument as above
shows that starting with a (strong) desingularization functor FVar on Csmall one
can construct a (strong) desingularization functor F on C. Obviously, in the case
of non-strong desingularization one can skip extensions 1, . . . , n.

5. Desingularization in other categories

5.1. Desingularization of stacks.

5.1.1. Stacks. Let X be an Artin stack, in particular, X admits a smooth covering
p : U → X by a scheme. Given such a covering set R = U×XU with the projections
s and t onto U , let m denote the projection p13 of R×s,U,tR→̃U×XU×XU onto R,
and let e : U → R denote the diagonal. Then (U,R, s, t,m, e) is a scheme groupoid
called a smooth atlas of X. We will consider only smooth atlases and say that a
stack is qe if it admits a qe smooth atlas, i.e. an atlas in which U is qe (and so R
is also qe).

5.1.2. Blow ups of stacks. Any 1-morphism of stacks Y → X lifts to a morphism of
atlases if one chooses a fine enough atlas of Y. We say that a morphism f : Y → X
is a blow up along a closed substack Z if it admits an atlas (f1, f0) : (Y1 ⇒ Y0) →
(X1 ⇒ X0) with f0 the blow up along Z0 = Z ×X X0 and f1 the blow up along
Z1 = Z×X X1. Note that in this case one can choose X1 ⇒ X0 to be any atlas of
X and then take Yi = Y×X Xi.
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5.1.3. Desingularization.

Theorem 5.1.1. The blow up sequence functor F extends uniquely to the 2-
category of generically reduced noetherian qe stacks over Q.

Proof. Given a generically reduced qe stack X, find a qe atlas s, t : R ⇒ U of
X. Note that U and R are automatically generically reduced. By functoriality
of F the smooth morphisms s and t extend to smooth morphisms tn, . . . , t0 = t
and sn, . . . , s0 = s between the whole blow up sequences F(R) : Rn 99K R and
F(U) : Un 99K U . Moreover, the groupoid composition map m : R ×s,U,t R → R is
smooth, hence it extends to a tower of groupoid maps mi : Ri ×si,Ui,ti Ri → Ri.
Thus, we have actually constructed a tower of groupoid blow ups (Rn ⇒ Un) 99K

(R ⇒ U), which gives rise to a blow up sequence F(X) : Xn 99K X0 = X. Since Un

is regular the stack Xn is regular.
Now, we have to check that the construction is independent of the chart. This

reduces to applying the functoriality of F few more times in the situation when
two charts are dominated by a third one and comparing the corresponding blow up
sequences. Finally, the compatibility of the construction with regular 1-morphisms
and 2-isomorphisms between them is checked similarly, so we skip the details. �

5.2. Desingularization of formal schemes and analytic spaces.

5.2.1. Categories. Let C′ be any of the following categories: noetherian qe formal
schemes over Q, quasi-compact complex analytic spaces (maybe non-separated),
quasi-compact k-analytic spaces of Berkovich or quasi-compact rigid k-analytic
spaces for a complete non-Archimedean field k of characteristic zero, which is non-
trivially valued in the rigid case. We will be interested in the full subcategory C of
C′ whose objects have nowhere dense non-reduced locus.

5.2.2. Regularity. There is a natural notion of regular morphisms in all these cat-
egories: see §2.4.12 for the formal case, regularity is smoothness in the complex
analytic and rigid analytic cases, and it is quasi-smoothness as defined by Ducros
in [Duc2] in the case of Berkovich analytic spaces (for strictly analytic spaces this is
equivalent to rig-smoothness, and in general this means that the morphism becomes
rig-smooth after large enough ground field extension).

5.2.3. Excellence. Recall that Berkovich analytic spaces are excellent by [Duc1]. As
for complex analytic spaces X , let us say that a Stein compact V ⊂ X is excellent if
so is the ring OX(V ). We claim that X can be covered by excellent Stein compacts.
Indeed, there exists an open covering X = ∪i∈IVi such that each Vi admits a closed
immersion into an open polydisc Mi. Choose closed polydiscs Bi ⊂ Mi such that
Xi = Bi ∩ Vi cover X . The rings OMi

(Bi) are excellent by [Mat, Th. 102], hence
so are their quotients OX(Xi), i.e. Xi’s are excellent Stein compacts.

Remark 5.2.1. In general, OX(V ) does not have to be noetherian, though it
is always noetherian for a semi-algebraic V (cf. [Fri]). It seems plausible that
if OX(V ) is noetherian then it is qe, but this result seems to be missing in the
literature.
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5.2.4. Desingularization. Let Creg be obtained from C by removing all non-regular
morphisms.

Theorem 5.2.2. Let Creg be as above. Then F induces a strong desingularization
on Creg by formal/analytic blow up sequence functor FC. For analytic and rigid
analytic spaces, it is also compatible with ground field extensions.

Proof. Each compact space X from C can be covered by finitely many charts Xi

which are affine formal schemes, affinoid spaces, or excellent Stein compacts. Sim-
ilarly, we cover each intersection Xi ∩ Xj by spaces Xijk which are affine formal
schemes, affinoid spaces, or excellent Stein compacts, though these coverings may
be infinite (if X is not quasi-separated). The rings of functions Ai = OX(Xi)
and Aijk = OX(Xijk) are excellent noetherian rings in each of these cases, and it is
known that the homomorphisms φijk : Ai → Aijk are regular. Also, the non-reduced
locus on Xi is compatible with the non-reduced locus on Xi := Spec(Ai) under the
morphism Xi → Xi of locally ringed spaces, and so Xi is generically reduced.
The desingularization blow up sequence F(Xi) induces a formal/analytic blow up
sequence FC(Xi) : X ′

i 99K Xi by completing/analytifying the centers. These se-
quences agree on the intersections because F is compatible with the regular homo-
morphisms φijk. So, F(Xi)’s glue to a single blow up sequence FC(X ′) : X ′ 99K X
which desingularizes X . Compatibility of FC with regular morphisms follows from
compatibility of the original F . �

5.3. Desingularization in the non-compact setting.

5.3.1. Categories. Let C
′

be any of the following categories: locally noetherian qe
schemes over Q, locally noetherian qe stacks over Q, locally noetherian qe for-
mal schemes over Q, complex analytic spaces, Berkovich k-analytic spaces or rigid
spaces over k for a complete non-Archimedean field k of characteristic zero. As

earlier, let C be the full subcategory of C
′

whose objects have nowhere dense non-
reduced locus and let Creg be obtained from C by removing all non-regular mor-
phisms.

5.3.2. Blow up hypersequences. By a hypersequence we mean a totally ordered set
I with an initial element 0 and such that any element i ∈ I possesses a successor
which will be denoted i + 1. By a hypersequence {Xi}i∈I in C we mean a set of

objects of C ordered by a hypersequence I and provided with a transitive family of
morphisms fji : Xj → Xi for each j ≥ i (so fii = IdXi

). If I is a hypersequence
with a finite subsequence i0 < i1 < · · · < in, and Xin → Xin−1

→ · · · → Xi0 is a
blow up sequence, then we can define its trivial extension {Xi}i∈I by taking fkj to
be an empty blow up for any any pair j, k ∈ I such that either im < j ≤ k ≤ im+1

for some 0 ≤ m < n, or j ≤ k ≤ i0, or in ≤ j ≤ k. By a blow up hypersequence we
mean a hypersequence {Xi}i∈I such that each morphism fi := fi+1,i is a blow up,
and each point x ∈ X0 possesses a neighborhood U for which the hypersequence
{Xi ×X U}i∈I is a trivial extension of its finite subsequence.

Remark 5.3.1. (i) Any blow up hypersequence converges to an object X∞ (if I
has a maximal element i then X∞ = Xi). So, if I has no maximal element we can
extend {Xi}i∈I to a blow up hypersequence {Xi}i∈I∪{∞}.

(ii) Clearly, an infinite blow up sequence which stabilizes over compact sub-
objects of X0 is a blow up hypersequence. Often one can perform few blow ups
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simultaneously thus ”shrinking” the initial hypersequence to a hypersequence or-
dered by N ∪∞, i.e. to a usual sequence · · · → X1 → X0 augmented by its limit.
For example, this is obviously the case when X0 is a disjoint union of compact com-
ponents. However, we saw in Remark 2.3.4 that functorial properties are destroyed
by such operation, since one cannot ignore the order of the blow ups even when
X0 is a disjoint union of compact pieces. The existing desingularization algorithms
can be extended to non-compact case functorially only when one allows blow up
hypersequences because the resolving invariant takes values in complicated ordered
sets rather than in N (see Remark 2.3.4(v)).

5.3.3. Desingularization.

Theorem 5.3.2. Let Creg be as above. Then the functor FC from Theorem 5.2.2

induces a strong desingularization functor FC which assigns to objects of Creg count-
able algebraic/formal/analytic blow up hypersequences with regular maximal element
X∞. In particular, the morphism X∞ → X is a functorial desingularization of X
by a single proper morphism.

Proof. We act as in the proof of Theorem 5.2.2, though this time a chart {Xi}
can be infinite. We have defined resolutions FC(Xi) = FC(Xi) in the proof of
Theorem 5.2.2. Obviously, we can saturate each blow up sequence FC(Xi) with
trivial blow ups so that one obtains a blow up hypersequence FC(Xi) whose objects
are parameterized by the invariants of FC (and so there are countably many of
them). Then the hypersequences FC(Xi) agree on the intersections because they
agree over each compact subspace in the intersections, and hence glue to a single
countable hypersequence FC(X). �
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