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SEMISTABLE REDUCTION OVER THICK LOG POINTS

ALEXANDER E. MOTZKIN AND MICHAEL TEMKIN

Abstract. We establish a version of a semistable reduction theorem over a
log point with a non-trivial nilpotent structure. In order to do this we extend
the classical desingularization theories to non-reduced schemes with generically
principal nilradical.

1. Introduction

The main goal of this work is to establish a version of semistable reduction (or
relative desingularization) of schemes over a base of the form Bn = Spec(k[π]/(πn)),
where k is a field of characteristic zero. In particular, we were asked about existence
of such a result by Christian Schnell and Junchao Shentu, and an answer to this
problem might have applications to Hodge theory. A general theory of resolution
of relative (log) morphisms X → B was recently developed in [ATW20] under the
assumption that B is log regular, so it cannot be directly applied to our case. There
is a way to generalize that theory to the base we need, but it will be worked out
elsewhere, and in this work we decided to use more standard tools. In fact, we
manage to deduce our main result from the classical resolution and principalization
theorems.

1.1. Log smoothness over thick points. We would like to stress that a priori
it is not even so clear how to formulate an appropriate semistable reduction con-
jecture whose goal is to resolve a generically smooth morphism X → B = Bn. For
comparison, recall the situation with semistable reduction over a trait, say over
S = Spec(R) with R = k[π](π). If Z → S has a connected but not irreducible
closed fiber Zs, for example, Z = Spec(R[x, y]/(xy − π)), then by Zariski’s con-
nectedness theorem the same will be true for any modification Z ′ of Z, and hence
Z ′ → S is not smooth. The best one can do is to resolve Z and make Zs an
snc divisor. In the zero characteristic case this improves the morphism Z → S
drastically: étale-locally Z becomes isomorphic to the model charts of the form
Spec(R[t1, . . . ,tn]/(td1

1 . . . tdn
n − π)), in particular, it is log smooth with respect to

the natural closed fiber log structures. For the sake of completeness, we note that
such a morphism is called semistable if di ∈ {0, 1}, and one can further make Z → S
semistable by an extension of R and log (or toroidal) blowings up of Z, but we will
not need this.

Adopting the logarithmic approach is also absolutely critical for the results of
[ATW20], so it is natural to adopt it in our case too and to provide B with the log
structure induced by N log π. Nevertheless, it turns out that one cannot in general
modify a generically smooth B-scheme X to X ′ which is log smooth over B. Here
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is the simplest example: X = Spec(k[x, y]/(yn)) with the morphism X → B given
by π = xy. Indeed, the morphism is not smooth at x = 0 because the nilradical
of OX is not generated by π at this point. The situation does not improve if we
increase the log structure on X by adding N logx. Moreover, any modification
X ′ → X induces an isomorphism of the reductions and only increases the nilpotent
structure (for example, by replacing y by y′ = y/xn), hence it does not improve
the situation either. The only way to achieve some sort of resolution of X → B
is to use the whole class of smooth B-curves, including the reducible ones, and
there are plenty of them. For example, Y = Spec(k[x, y]/(xnyn)) is log smooth
over B (where π = xy), and X is an irreducible component of Y . In fact, this
example is the closed fiber of the morphism Z → S from the example above, but
reducible closed fibers over S show up naturally, while reducible schemes over B at
first glance look as a pathology, and by no means they can show up as modifications
of irreducible ones.

We hope that the above discussion and relation to the classical semistable re-
duction over S give enough motivation for our definition: a desingularization of a
B-scheme X is a modification X ′ → X such that locally X ′ can be realized as an
irreducible component and a monomial subscheme of a log smooth B-scheme Y .
The main result of the paper – Theorem 3.3.3 proves that any generically smooth
B-scheme X possesses such a desingularization. Moreover, we show that it can be
chosen of a special combinatorial type: X ′ is étale over Spec(R[ε, t1, . . . ,tn]/(εn))

with π mapped to εtd1

1 , . . . ,tdn
n and the log structure generated by ε and t1, . . . ,tn.

In addition, we show that any closed subscheme Z →֒ X can be made a monomial
subscheme of X ′, which is an analogue of resolution of pairs.

Remark 1.1.1. Here is another argument in favor of our definition of desingu-
larization over B. We mentioned that principalization of ideals on log smooth
B-schemes is possible (and will be developed elsewhere). As usually, it can be used
to obtain a desingularization of B-schemes X as follows. Separate components,
reducing to the case when X is irreducible. Locally embed X into a log smooth
B-scheme M . Principalize IX on M by blowing up centers which are monomial
or log smooth over B and stop when the new blowing up center V contains the
generic point of the strict transform X ′ of X . In particular, V is log smooth over
B and X ′ is its irreducible component. In the situation of [ATW20] (similarly to
the classical resolution) the connected components of V are irreducible, hence X ′ is
one of them and X ′ → X is a B-resolution. In our situation, a log smooth V does
not have to be irreducible, hence we only obtain a modification X ′ → X which is
an irreducible component of a log smooth V . This is precisely the above definition
of a B-desingularization.

Remark 1.1.2. (i) One can wonder if there exist another type of resolutions: a
proper morphism X ′ → X which is birational on one component of X ′ and such
that X ′ → B is log smooth. We do not study this question in the paper, but it
seems plausible that in general this is impossible.

(ii) One can also ask if the embedding of X ′ as an irreducible component of
a B-log smooth Y can be made globally. This also seems to be a not so natural
question, though we show in the paper that this is possible, and if X → B is proper,
then Y can also be taken to be proper over B. This construction uses log blowings
up, which are natural non-birational proper morphisms X ′ → X (which contract
components). However, log blowings up cannot be used to attack the question in
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(i) because they are log étale, and hence if X → B is not log smooth, then the
same is true for X ′ → B.

1.2. Outline of the paper. Now, let us briefly describe our other results and
the structure of the paper. In Section 2 we extend some resolution results to
non-reduced schemes. For the sake of completeness we recall in §2.1 Hironaka’s
resolution of non-reduced schemes by thick manifolds – schemes X with a regular

reduction X̃ = Xred and normally flat along X̃ . However, we only need to work
with schemes X whose nilradical is generically principal, and their resolution is
deduced in §2.3 from the classical functorial principalization: in Theorem 2.3.1 we
show that any such X possesses a functorial modification X ′, which is a principally
thick manifold or a ptm – a thick manifold with a locally principal nilradical, see
§2.2.

In §3.1 we deduce principalization of subschemes of a ptm X from the classical

principalization of subschemes of X̃, and in §3.3 we prove our main result on resolu-
tion of varieties over B. As in the case of S-schemes, we just resolve X (by a thick
manifold since X is non-reduced) and then principalize the divisor (π) on X . There
are small additional subtleties in this case, which are dealt with in §3.2. Finally,
in §3.4 we explain how analogous results can be proved for certain quasi-excellent
schemes, formal schemes and analytic spaces.

Section 4 is devoted to proving that in the case of varieties, after an additional
work the resolved B-scheme X ′ can be globally embedded into a log smooth B-
scheme Y . This operation is less functorial, it depends on the choice of a retract,
and our argument does not apply to general qe schemes or analytic varieties, be-
cause retract does not have to exist in these cases. It might be the case that the
generalization of our main result we prove in Theorem 4.4.1 addresses a not so
natural question. Still, the intermediate results we prove about retracts and factor-
ization of birational morphisms of non-reduced schemes can be of an independent
interest.

2. Desingularization on principally thick manifolds

In this section we will extend the classical resolution theory to schemes which
do not have to be generically reduced but whose nilradical is generically principal.
Everything will be deduced rather straightforwardly from the classical theory.

2.1. Hironaka’s resolution of non-reduced schemes. In the famous 1964 pa-
per [Hir64] Hironaka also established desingularization of arbitrary non-reduced
varieties that we are going to recall briefly.

2.1.1. Thick manifolds. Let us fix some terminology first. We warn the reader that
the notion of thick manifolds is non-standard.

Definition 2.1.2. (i) A scheme X is normally flat along a subscheme Y given by
an ideal I ⊆ OX if In/In+1 is a flat module over OY = OX/I for any n.

(ii) A locally noetherian scheme X is called a thick manifold if its reduction Xred

is regular and X is normally flat along Xred.
(iii) By thickness of a noetherian scheme X at a point x we mean the sum

hX(x) of dimensions of the k(x)-vector spaces (Nn/Nn+1) ⊗ k(x), where N is the
nilradical of OX .
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The normal-flatness condition means that although there might be a non-reduced
structure, it behaves “as nice as possible”.

Lemma 2.1.3. (i) If η ∈ X is a generic point, then hX(η) is the length of the
Artin ring OXη.

(ii) The thickness function hX : X → N is upper-semicontinuous, and X is nor-
mally flat along Xred if and only if hX is a locally constant function. In the latter
case, X has no embedded components.

Proof. The first claim is obvious. In (ii) set Y = Xred and note that for a finite
OY -module M the function rM (x) = dimk(x)M ⊗ k(x) is upper semicontinuous
on Y , and rM is locally constant if and only if M is flat. The equivalence in (ii)
follows by applying this to hX =

∑
n rNn/Nn+1 – due to the semicontinuity, hX is

locally constant if and only if each summand is. Finally, if X has an embedded
component, then there exists a closed immersion X ′ →֒ X such that the locus V
where X ′ 6= X is nowhere dense but non-empty. In this case, hX = hX′ outside of
V and hX jumps on V . In particular, for any generic point η with a specialization
x ∈ V one has hX(η) = hX′(η) ≤ hX′(x) < hX(x) and hence X is not a thick
manifold. �

2.1.4. Hironaka’s theorem. In a sense, thick manifolds are non-reduced schemes
which are as close to regular ones as possible, and desingularization of non-reduced
schemes by thick manifolds is the best one can hope for – one has to keep the
nilpotent structure at the generic points, but it becomes as simple as possible
everywhere else.

Definition 2.1.5. (i) Throughout this paper a morphism X ′ → X is called a
modification if it is proper and induces an isomorphism U ′ = U of dense open
subschemes.

(ii) A desingularization of a scheme X is a modification X ′ → X such that X ′

is a thick manifold.

Hironaka proved that this desingularization is, indeed, possible.

Theorem 2.1.6 ([Hir64, Main Theorem I∗]). There exists a construction which
associates to any variety X of characteristic zero a projective desingularization
F(X) = X ′ → X

In fact, Hironaka proved his theorem for the more general class of schemes of
finite type over a local quasi-excellent ring of characteristic zero.

2.1.7. Strong resolution. Hironaka’s proof is existential, but modern methods that
grew from his approach can also provide a smooth-functorial desingularization. Un-
fortunately, a convenient reference is missing in the literature, so let us describe the
situation briefly. Nowadays there are two main resolution methods, both originat-
ing from Hironaka’s work, that will be called basic (or weak in the literature) and
strong. Basic resolution is achieved by blowing up smooth centers in the ambient
manifold M , but the induced blowings up of the scheme X itself may have singular
centers. Its primary invariant is the order of an ideal IX ⊂ OM . This resolution
was studied in the majority of recent works and it is smooth-functorial by results
of W lodarczyk, see [W lo05].

Strong resolution uses the whole Hilbert-Samuel function as the primary invari-
ant and it only blows up smooth centers such that X is normally flat along them.
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The price one has to pay is that the process is much heavier, as well as the proofs.
In fact, one reduces this resolution to the basic one by encoding the HS function in
terms of the order of another ideal (called a presentation). So far, the only known
way to resolve general non-reduced schemes is via a strong resolution methods. A
canonical strong desingularization was established by Bierstone-Milman, see [BM97,
Theorem 11.14] (though it was only formulated in the embedded version), and its
functoriality properties were briefly checked in [BMT11, Theorem 6.1. Addendum]
(one should check that the reduction to a basic method is smooth-functorial).

However, we will see that already the basic method suffices to resolve varieties
with generically principal nilradical, and this is the only case we will need later. In
particular, smooth-functoriality is then automatic.

2.2. Principally thick manifolds. We say that a scheme X is nilprincipal if its
nilradical is a locally principal ideal. If, in addition, X is a thick manifold, then we
say that X is a principally thick manifold or a ptm.

Definition 2.2.1. Let X be a ptm. By a family of parameters at a point x ∈ X
we mean a family ε, t1, . . . ,td ∈ OX,x such that ε generates the nilradical of OX,x

and t1, . . . ,td induce a family of regular parameters of OXred,x = OX,x/(ε). We call
ε a nilpotent parameter and call t1, . . . ,td regular parameters.

Thickness on a ptm has especially simple interpretation.

Lemma 2.2.2. Let X be a ptm, x ∈ X a point and ε ∈ Ox a nilpotent parameter
at x. Then the thickness hX(x) is the minimal number h such that εh = 0.

Proof. Let N be the nilradical, then Nx = εOx and Nn/Nn+1 is non-zero if and
only if Nn 6= 0, that is n < h. In the latter case, (Nn/Nn+1) ⊗ k(x) is generated
by the image of εn and hence is of dimension 1. �

Remark 2.2.3. (i) Due to our definition, ptm’s of thickness 1 are just usual mani-
folds (or regular schemes) with dummy nilpotent parameter ε = 0. Because of this
they should often be dealt with slightly differently, and since all results for them
are standard we will simply exclude this case when this is convenient.

(ii) We will later enhance ptm’s to log schemes with the log structure generated
by log(ε). In this situation, the case of thickness 1 is not exceptional anymore, in
particular, the corresponding log scheme is not log regular.

Lemma 2.2.4. If X is a non-reduced ptm and ε, t1, . . . ,td is a family of parameters
at x, then their images form a basis of the cotangent space mx/m

2
x.

Proof. Since X is singular and of dimension d at x, we have dim(mx/m
2
x) > d.

The d + 1 parameters generate mx, hence their images generate mx/m
2
x and by a

dimension consideration they form a basis. �

Lemma 2.2.5. Let M be a regular scheme and X →֒ M a closed subscheme given
by an ideal I ⊂ OM , x ∈ X, dimx(M) = d and dimx(X) = l. Then X is a
non-reduced ptm locally at a point x ∈ X if and only if there exist a family of local
parameters x1, . . . ,xd ∈ OM,x such that Ix = (xn

1 , x2, . . . ,xr) for r = d − l. In
addition, if these conditions are satisfied and (ε, t1, . . . ,tl) is a family of parameters
of OX,x, then one can choose x1, xr+1, . . . ,xd to be any lift of (ε, t1, . . . ,tl).

Proof. The inverse implication is obvious since Xred is locally given by the vanishing
of (x1, . . . ,xr), and the nilradical of OX,x is generated by the image of x1.
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Conversely, assume that X is a ptm and fix any family (x1, xr+1, . . . ,xd) of ele-
ments of OM,x that reduces to a family of parameters (ε, t1, . . . ,tl) at x. The images
of (x1, xr+1, . . . ,xd) in mM,x/m

2
M,x are linearly independent because their images

in mX,x/m
2
X,x form a basis by Lemma 2.2.4. The kernel of the map mM,x/m

2
M,x ։

mX,x/m
2
X,x is the image of Ix, hence the family (x1, xr+1, . . . ,xd) can be completed

to a family of regular parameters (x1, . . . ,xd) so that x2, . . . ,xr ∈ Ix.
Let n be the thickness of X at x. Then locally at x the ideal I ′ = (xn

1 , x2, . . . ,xr)
is contained in I, hence defines a ptm X ′ containing X . We claim that the surjection
φ : OX′,x ։ OX,x is an isomorphism. Indeed, any element a ∈ Ker(φ) is nilpotent
because Xred and X ′red are smooth of the same dimension l = d− r at x, and using
that X and X ′ are of thickness n we obtain that a = 0. �

We say that a ptm (or a scheme) X is locally embeddable (in a regular scheme) if
any point x ∈ X has a neighborhood isomorphic to a closed subscheme of a regular
scheme M . For example, any k-variety satisfies this property. The above lemma
implies that locally embeddable ptms are isomorphic to a divisor nD with a regular
D in an ambient regular scheme:

Corollary 2.2.6. If X is a locally embeddable ptm, then any point x ∈ X possesses
a neighborhood U and a closed immersion U →֒ M , such that M is regular and U
is the divisor in M of the form V (tn), where t is a parameter of OM,x and n is the
thickness of X at x.

Proof. By Lemma 2.2.5, x has a neighborhood U isomorphic to a closed subscheme
V (tn1 , t2, . . . ,tr) of a regular scheme M ′, where t1, . . . ,td is a regular family of pa-
rameters of OM ′,x. It remains to take M = V (t2, . . . ,tr) and define t ∈ OM,x to be
the image of t1. �

The following corollary certainly holds for arbitrary ptm’s, but we only need the
case of locally embeddable ones and then the argument is very simple.

Corollary 2.2.7. Any ptm X, which is locally embeddable in a regular scheme,
is Cohen-Macaulay. In particular, if i : U →֒ X is an open immersion, whose
complement is of codimension at least 2, then OX = i∗OU .

Proof. By Corollary 2.2.6, locally X is a Cartier divisor in a smooth (hence CM)
variety. Therefore, X is itself CM. The second claim is, perhaps, better known for
normal schemes, but it holds more generally for S2-schemes and, in fact, provides
an equivalent characterization of this property. The original source is the theory
of Z-purity, see [Gro67, Théorème IV.5.10.5], a modern treatment (in the relative
setting) is in [HK04, Proposition 3.5]. �

2.2.8. Other characterizations. For the sake of completeness we provide alternative
characterizations of ptm’s, though this will not be used in the sequel.

Lemma 2.2.9. Given a scheme X the following conditions are equivalent:
(i) X is a ptm.
(ii) X is a generically nilprincipal thick manifold.
(iii) Xred is regular, X is nilprincipal and without embedded components.

Proof. (i) implies (ii) and (iii) because thick manifolds have no embedded compo-
nents by Lemma 2.1.3(ii). In the sequel, let I denote the nilradical of OX .
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(ii)=⇒(i) Looking at the generic points we see that the locally free module I/I2

is of rank 1. Its local generator at a point x lifts to a local generator of the stalk
Ix and hence X is nilprincipal.

(iii)=⇒(i) We will work locally at x ∈ X . Let ε ∈ Ox be a generator of Ix and
let n be the minimal number with εn = 0. We should prove that X is normally
flat along Xred at x and we claim that, in fact, each Ii

x/I
i+1
x with i < n is free of

rank 1 over OXred,x = OX,x/Ix. Clearly, Ii
x/I

i+1
x is generated by the image of εi,

so we should prove that its annihilator in OX,x/Ix is zero. Moreover, it suffices to
prove the latter only for i = n− 1, and since In

x = 0 this happens if and only if the
annihilator of εn−1 in OX,x is contained in (in fact, equal to) Ix. The latter holds
because otherwise X would contain an embedded component on whose complement
εn−1 vanishes. �

Remark 2.2.10. Note that X is generically nilprincipal if and only if for any
generic point η ∈ X the Artin ring Oη has principal maximal ideal mη = (ε). Such
Artin rings are very special, e.g. see [AM69, Proposition 8.8], in addition, they can
be described as quotients of DVR’s by non-zero ideals.

2.3. Desingularization of generically nilprincipal varieties. Now we are ready
to formulate the resolution result for non-reduced schemes with simplest nilpotent
structure.

Theorem 2.3.1. There exists a construction which associates to any generically
nilprincipal variety X of characteristic zero a projective desingularization F(X) =
X ′ → X which depends on X smooth-functorially: for any smooth morphism Y →
X one has that F(Y ) = F(X) ×X Y .

Proof. Step 1. Assume that X is irreducible and embedded as a closed subscheme in
a smooth variety M . In this case we apply the smooth-functorial principalization
from [W lo05] to IX ⊂ OM (one can use also the methods of [Kol07] or [BM08],
but they all are equivalent). It outputs a sequence of blowings up fi : Mi → Mi−1,
1 ≤ i ≤ n with smooth centers Vi ⊂ Mi and snc boundaries Ei ⊂ Mi such that
E0 = ∅, M0 = M , Ei = f−1

i (Ei−1) ∪ f−1
i (Vi−1), Vi has simple normal crossings

with Ei and lies in the preimage of X , and IXOMn
is invertible and supported on

En. As one always does when deducing resolution from principalization, we cut
this sequence at Ml such that fl+1 is the first blowing up whose center Vl maps
onto X ; it exists because the preimage of X lies in En. Then the strict transform
Xl ⊂ Ml of X (i.e. the schematic closure of X ×M Ml \ El) is non-empty, lies in
Vl and contains an irreducible component of Vl. Since Vl is smooth, Xred

l is an
irreducible component of Vl, in particular, it is smooth. So far, we repeated the
standard argument, which constructs the resolution Xred

l → Xred of the integral
scheme Xred, but we claim that, moreover, Xl → X is a resolution of X .

Generically on X the principalization works as follows: there is no boundary
and whenever dim(M) > dim(X) + 1 the order is one by Lemma 2.2.5, so one
simply replaces M by a maximal contact – any smooth divisor containing X . Once
dim(M) = dim(X) + 1, one has IX = (tn), where n is the thickness of X and H =
V (t) is the reduction of X . It follows that the order is n, the only maximal contact
is H and the algorithm simply resolves the marked ideal (IX , n) by blowing up H .
By our assumption this happens at stage l, so at this stage at any point x ∈ Xl there
is no new boundary (we are in Step 1b of the algorithm in [W lo05]), d = ordx(IXl

)
equals 1 whenever dim(Ml) > dim(Xl) + 1, and d = n once dim(Ml) = dim(Xl)
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because the algorithm first deals with the locus where dim(Xl) is maximal and by

our assumption it blows up the whole H = Xl
red. Note that nH is the schematic

closure of the generic point of Xl, hence nH →֒ Xl and IXl
is contained in the

divisorial ideal In
H . In particular, I−n

H IXl
is an ideal, and since the degrees of In

H

and IXl
are equal to n everywhere along Xl, the order of I−n

H IXl
is zero, that is,

Xl = nH . So, as claimed Xl is a principally thick manifold and Xl → X is a
projective desingularization.

For the sake of completeness, we note that the blowing up Xl+1 → Xl is the
last blowing up of the principalization, it happens at Step 1ba in [W lo05], and the
invariant at this step is (1, 0, 1, 0, . . . ,1, 0, n, 0,∞).

Step 2. Assume that X is irreducible. In this case one locally embeds X into a
smooth variety M and takes the resolution Xl → X provided by Step 1. A standard
argument used in all works on functorial resolution shows that this is independent
of the local choice of embeddings and globalizes to a smooth-functorial method to
resolve X – usually one works with an integral X because principalization does not
provide resolution of general non-reduced varieties, but this reduction only uses
that X is irreducible.

Step 3. The general case. In general, let η1, . . . ,ηs be the generic points of X
with the induced scheme structure and let Xi be the schematic closure of ηi. Then∐

iXi → X is a modification, which depends on X in a way which is easily seen
to be compatible with smooth morphisms X ′ → X . If Yi → Xi are the resolutions
provided by Step 2, then F(X) =

∐
i Yi is a resolution of X , and by the above F

is smooth-functorial. �

3. Resolution on ptm’s

In this section we will prove our main result – a version of semistable reduction
over closed subschemes of a trait (i.e. zero dimensional schemes with principal

radical). In the sequel, given a ptm X we will use the notation X̃ = Xred to denote
its reduction.

3.1. Principalization on ptm’s. In this section we construct principalization of
ideals on a ptm using the usual principalization on its reduction.

3.1.1. Blowings up. Principalization is achieved by iteratively blowing up regular
centers.

Lemma 3.1.2. Assume that X is a ptm and V →֒ X a regular center. Then
X ′ = BlV (X) is a ptm too, and the reduction of X ′ is the blowing up of the reduction

of X along V , that is, X̃ ′ = BlV (X̃).

Proof. The second claim follows from the fact that X̃ ′ is the strict transform of the

closed subscheme X̃ of X , and hence by the classical properties of blowings up X̃ ′

is the blowing up of X̃ along V ×X X̃ = V . In particular, X̃ ′ is regular.
It remains to check that X ′ is a ptm, and this is a local claim over a point

x ∈ V . So, we can assume that X = Spec(A) is a local scheme with closed
point x. Choose local parameters ε, t1, . . . ,tn at x, such that V = V (ε, t1, . . . ,tr).
Then the ε-chart is empty, so X ′ is covered by the charts X ′

i = Spec(Ai), with
Ai = A[ε/ti, t1/ti, . . . ,tr/ti] ⊆ Ati , and it is easy to see that ε′ = ε/ti generates the
nilradical of Ai. Thus, the nilradical of X ′ is locally principal and the reduction

X̃ ′ is regular, that is, X ′ is a ptm. �
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3.1.3. Snc divisors. Working on a ptm X one has to distinguish Weil and Cartier
divisors. Weil divisors are just divisors on the reduction, while Cartier divisors
contain infinitesimal information as well. Saying a “divisor” on X we will always
mean an effective Cartier divisor D = V (f) ⊂ X . A divisor D will be called snc if

locally on X it factors as D =
∑

iDi such that each reduction D̃i = Di ×X X̃ is

smooth and D̃ = ∪iD̃i is an snc divisor on X̃. A divisor D′ is D-monomial if it is
of the form D′ =

∑
i niDi. A regular closed subscheme V →֒ X has simple normal

crossings with D if it has simple normal crossings with D̃ as a subscheme of X̃.

Remark 3.1.4. If D is a divisor with an snc reduction D̃ = ∪iDi, then it can

freely happen that D is not snc because the factorization of D̃, does not lift to
a factorization of D, and the same is true for monomiality. For example, if X =

Spec(k[x, y, ε]/(ε2)) then D = V (xy + ε) is not snc, though D̃ is snc, and D′ =

V (y2 + ε) is not V (y)-monomial, though D̃′ is V (y)-monomial. In addition, there
exists different snc divisors with the same reduction, for example, (x) and (x + ε).

In the sequel, by a ptm with a boundary we mean a ptm X and an snc divisor
E →֒ X , also called a boundary. A boundary E is called ordered if it is provided

with a decomposition E =
∑l

i=1 Ei into components (not necessarily irreducible)

with smooth reductions Ẽi.

3.1.5. Addmissible blowings up and transforms. Assume that (X,E) is a ptm with
a boundary and I ⊆ OX is an ideal corresponding to a closed subscheme Z =
V (I), then a Z-admissible blowing up is a blowing up f : X ′ = BlV (X) → X ,
where V is regular, has snc with E and is contained in Z. Since I ⊆ IV and the
exceptional divisor Ef = V ×X X ′ is a Cartier divisor, the principal transform

I ′ = (IOX′)I−1
Ef

is defined. It corresponds to the subscheme Z ′ of X ′ that we also

denote Z ×X X ′ − Ef and call the principal transform of Z under f .
In addition, if E =

∑n
i=1 Ei is ordered, then for each i we set E′

i = Ei ×X X ′ −
Vi ×X X ′, where Vi is the union of all components of V contained in Ei (and so
Vi×XX ′ is the component of Ef contained in Ei×XX ′). Finally, we set E′

n+1 = Ef

and define the total transform of E to be the ordered boundary E′ =
∑n+1

i=1 E′
i.

Since E′ is independent of the ordering of E and an ordering can be chosen locally,
we also obtain a definition of total transform for unordered boundaries.

When the thickness is 1 these definitions are nothing but the classical ones from
the principalization theory on regular schemes. Moreover, they are compatible with
the reduction:

Lemma 3.1.6. Assume that (X,E) is a ptm with an (ordered) boundary, Z →֒ X
is a closed subscheme and f : X ′ → X is a Z-admissible blowing up with center

V →֒ Z, and let Z ′ and E′ be the transforms. Also, let Z̃ = Z ×X X̃ and Ẽ =

E ×X X̃, and let Z̃ ′ and Ẽ′ be their transforms under the blowing up of X̃ along

V . Then, E′ is an snc divisor in X ′, Z̃ ′ = Z̃ ×X′ X̃ ′ and Ẽ′ = E′ ×X′ X̃ ′.

Proof. Recall that by Lemma 3.1.2 f̃ : X̃ ′ → X̃ is the blowing up along V . In

particular, Ef = V ×X X ′ and Ef̃ = V ×X̃ X̃ ′ and it follows that Ef̃ = V ×X X̃ ′ =

Ef ×X′ X̃ ′. Using that (Z ×X X ′) ×X′ X̃ ′ = Z ×X X̃ ′ = Z̃ ×X̃ X̃ ′, we obtain that

also Z̃ ′ = Z̃ ×X′ X̃ ′.
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For concreteness assume that E =
∑n

i=1 Ei is ordered and let E′ =
∑n+1

i=1 E′
i

and Ẽ′ =
∑n+1

i=1 Ẽ′
i. The above paragraph easily implies that Ẽ′

i = Ẽi ×X′ X̃ ′ for

any i. Since by the usual theory Ẽ′ is an snc divisor with irreducible components

Ẽ′
i, it follows that E′ is snc. �

3.1.7. Principalization. Assume that (X,E) is a ptm with a boundary and Z →֒ X
is a closed subscheme, then a principalization of Z (or of its associated ideal IZ)

on (X,E) is a sequence of Zi-admissible blowings up Xi+1 = BlXi
(Vi)

fi
→ Xi with

0 ≤ i ≤ n − 1, where (X0, E0, Z0) = (X,E,Z) and for 0 ≤ i < n one defines
inductively Ei+1 and Zi+1 to be the transforms of Ei and Zi, and Zn = ∅. We will
use dashed arrows to denote sequences of morphisms, e.g. Xn 99K X .

3.1.8. The principalization theorem. It turns out that the usual principalization on

X̃ induces a principalization on X yielding the following result:

Theorem 3.1.9. There exists a method which to any triple (X,E,Z) consisting
of a ptm X of finite type over a field k of characteristic zero, a boundary E and a
closed subscheme Z →֒ X associates a principalization

P(X,E,Z) : Xn 99K X0 = X

so that P depends on the triple (X,E,Z) smooth-functorially: if X ′ → X is a
smooth morphism of ptm’s, E′ = E ×X X ′ and Z ′ = Z ×X X ′, then P(X ′, E′, Z ′)
is obtained by pulling back the blowings up sequence P(X,E,Z) and removing all
trivial blowings up (those with empty centers).

Proof. Choose any smooth-functorial principalization method for varieties, e.g. the

method from [W lo05]. Set Ẽ = E×X X̃ and Z̃ = Z×X X̃ and let X̃i+1 = BlVi
(X̃i),

0 ≤ i < n be the principalization of Z̃ on (X̃, Ẽ). We pushforward the blowing up

sequence X̃n 99K X̃0 = X̃ by setting X0 = X and Xi+1 = BlVi
(Xi). This makes

sense because applying Lemma 3.1.2 inductively we obtain that X̃i is, indeed, the

reduction of Xi and hence Vi →֒ X̃i →֒ Xi. Applying Lemma 3.1.6 inductively we
obtain that Vi has snc with the boundary Ei, which is the transform of Ei−1, and Vi

is a subscheme of Zi, which is the transform of Zi−1. In other words, the blowings

up are Zi-admissible. Finally, Lemma 3.1.6 also implies that Z̃i = Zi ×Xi
X̃i for

any i ≤ n. Since Z̃n is empty this implies that Zn is empty, and hence the sequence
Xn 99K X0 = X is a principalization of Z, that we denote F(X,E,Z).

Smooth-functoriality of the constructed principalization follows from the smooth-
functoriality of the usual principalization and the easily checked fact that all other

ingredients, such as the reduction morphism X̃ → X , are compatible with smooth
base changes. �

3.2. Divisors with monomial reduction.

3.2.1. Modifications with a trivial reduction. Let f : Y → X be a morphism of
ptm’s. Then the following conditions are equivalent: (i) f is a bijective modification,
(ii) is a modification and a homeomorphism, (iii) f is generically an isomorphism

and the reduction f̃ is an isomorphism. If these conditions are satisfied, we say
that f is a modification with a trivial reduction.
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Example 3.2.2. An important example of a modification with a trivial reduction

is the blowing up Y = BlD̃(X) along a divisor D̃ →֒ X̃ of the reduction. Locally
on X we can assume that X = Spec(A) is affine and f ∈ A is such that its image

f̃ ∈ A/N defines D̃, where N is the nilradical. Then D̃ = V (N + (f)) in X and
Y = Spec(A[Nf ]) consists of the f -chart, since other charts correspond to nilpotent

elements and hence are empty.

More generally, if D̃1, . . . ,D̃l are divisors of X̃ then by induction on l one can

define a sequence Xl 99K X0 = X with Xi+1 = BlD̃i
(Xi) because D̃i ⊂ X̃ = X̃i.

3.2.3. Monomialization. We saw in Remark 3.1.4 that if D is a divisor with an
Ẽ-monomial reduction, D itself does not have to be monomial with respect to
any boundary or it can be monomial with respect to another boundary. All these
problems are remedied by applying a simple blowing up sequence.

Lemma 3.2.4. Assume that X is a ptm with an ordered boundary E and D is a

Cartier divisor such that D̃ is Ẽ-monomial. Let D̃ =
∑

i,n nD̃i,n be the decompo-

sition, where D̃i,n is the union of components of D of multiplicity n that lie in Ẽi.
Let X ′

99K X be the modification with trivial reduction obtained by blowing up cen-

ters V1,1, . . . ,V1,n1
, V2,1, . . . , where Vi,j =

∐
n≥j D̃i,n. Then D ×X X ′ is monomial

with respect to the transform E′ of E.

Proof. It suffices to check the claim locally at a point x ∈ X . Let ni ≥ 0 be

such that x ∈ D̃i,ni
. Choose parameters ε, t1, . . . ,tl so that E = V (t1 . . . tr) at

x. Then locally at x we have that D̃ = V (
∏r

i=1 t̃
ni

i ) and hence D = V (f) for
f =

∏r
i=1 t

ni

i + εa. Since ε′ = ε/
∏r

i=1 t
ni

i , t1, . . . ,tn are parameters of X ′ at x we
obtain that f =

∏r
i=1 t

ni

i (1 + ε′a) in OX′,x and 1 + ε′a is a unit. This finishes the
proof. �

For the sake of completeness we note that the same sequence is produced by the
usual principalization:

Remark 3.2.5. In fact, the sequence X̃ ′
99K X̃ in the above lemma is precisely

the principalization blowings up sequence of D̃ on (X̃, Ẽ) produced by the classical
order reduction algorithms with marking 1. So, similarly to the argument in the
proof of Theorem 3.1.9, its pushforward X ′

99K X in the lemma is a principalization
of D.

3.3. Resolution of B-schemes.

3.3.1. Distinguished B-pairs. Let B = Spec(k[π]/(πn)). By a distinguished B-
pair we mean a morphism f : X → B and a divisor E on X such that X is a
ptm, E is a boundary on X , and πOX = NI, where N is the nilradical of OX

and V (I) is an E-monomial divisor. In down to earth terms this means that
locally on X there exists coordinates (ε, t1, . . . ,tn) such that E = V (t1, . . . ,tr) and

f#(π) = εtd1

1 , . . . ,tdr
r . In particular, X → B locally factors through a morphism

h : X → X0 = Spec(k[ε, t1, . . . ,tn]/(εn)), and if X → B is of finite type, then h is
étale.
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3.3.2. The main result. Now we can prove our main result on resolution of B-
schemes.

Theorem 3.3.3. Let k be a field of characteristic zero and B = Spec(k[π]/(πn)).
Then there exists a procedure F which obtains as an input a generically smooth
morphism of finite type X → B and a closed nowhere dense subscheme Z →֒ X,
and outputs a modification F(X,Z) : X ′ → X with a X ′ a ptm and a boundary
E′ on X ′ such that Z ′ = Z ×X X ′ is an E′-monomial divisor and (X ′, E′) is a
distinguished B-pair. In addition, F depends smooth functorially on the input: if
Y → X is smooth and T = Z ×X Y , then F(Y, T ) = F(X,Z) ×X Y .

Proof. First, by Theorem 2.3.1 there exists a modification X1 → X with X1 a ptm.
Second, applying Theorem 3.1.9 to X1 and Z1 ×X X1 we obtain a modification of
ptm’s X2 → X1 and an ordered boundary E2 on X2 such that Z2 = Z ×X X2

is E2-monomial. Third, the generic smoothness of f implies that generically π
generates the nilradical N2 ⊂ OX2

on an open subscheme U . Principalizing X2 \U
on (X2, E2) by Theorem 3.1.9 we obtain a modification X3 → X2, such that X3 is
provided with an ordered boundary E3 and N3|U = (π)|U for U = X3 \ E3.

Now, locally on X3 there exists a factorization (π) = N3I, and the locally prin-
cipal ideal I is invertible because it is trivial at the generic point and X3 has no
embedded components. Note that I does not have to be E3-monomial, moreover
it is not uniquely defined hence the factorization does not have to globalize. How-
ever, blowing up the components of E3 as in Lemma 3.2.4 we obtain a modification
X ′ → X3 with a trivial reduction such that the pullbacks of each I as above be-
come monomial, that is, on X ′ we locally have factorizations (π) = N ′I with an
E′-monomial I. Such a factorization is unique because if (π) = N ′I ′ is another
factorization with an E3-monomial I ′, then V (I) and V (I ′) restrict to the same

divisor on X̃3 and hence contain the same components of E3 with the same multi-
plicities. Thus the factorization (π) = NI globalizes, and this shows that X ′ → X
is as required.

The smooth-functoriality of the construction follows from functoriality of all
ingredients we used. �

3.4. Other geometric spaces. We deduced our results from the classical princi-
palization theorem for algebraic varieties. Now, let us discuss what can be done for
more general schemes, complex analytic spaces, etc. These are nowadays standard
reductions that were described in details in a few papers, so we only outline them.

3.4.1. Analytic spaces. It is folklore knowledge that the classical principalization
theorem and its proof apply almost verbatim for complex analytic spaces and non-
archimedean analytic spaces of characteristic zero, though, to the best of our knowl-
edge, the only formalized framework, in which this was checked, is given in [BM97].
Starting with principalization for analytic spaces one can establish analogues of
Theorems 2.3.1, 3.1.9 and 4.4.1 using precisely the same arguments as in the paper.

3.4.2. Schemes with enough derivations. In fact, the classical principalization algo-
rithm and its justification applies to the wider context of ideals on regular schemes
with enough derivations, where the latter were defined in [Tem12, Remark 1.3.2(iii)].
The only new (and simple) thing one should check is that any smooth blow up of
an X with enough derivations also has enough derivations. Strictly speaking, this
was also never published, but a much more involved case of an algorithm in the
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setting of enough derivations was worked out with all details in [ATW20]. More-
over, the functoriality holds with respect to arbitrary regular morphisms and not
only the smooth ones. Once principalization for such schemes is known, our argu-
ments extend to this setting verbatim, and one obtains that Theorems 2.3.1, 3.1.9
and 4.4.1 hold for schemes locally embeddable into regular schemes with enough
derivations, and the functoriality is with respect to arbitrary regular morphisms.
Then the usual formal argument (see [Tem12, §5.2]) implies that the same results
extend to analytic spaces (recovering the claim of §3.4.1) and formal schemes locally
embeddable into regular formal schemes with enough derivations.

3.4.3. Arbitrary qe schemes. It seems certain that the maximal generality, in which
Theorems 2.3.1, 3.1.9 and 4.4.1 should hold, is that of arbitrary qe schemes of char-
acteristic zero. However, resolution of non-reduced schemes was not established in
such generality and only a weaker form of principalization was proved in [Tem18,
Theorem 1.1.11] – it outputs a regular scheme with a monomial ideal, but the inter-
mediate steps can be singular. This would suffice to deduce the last two theorems,
but it cannot be used for the non-embedded resolution of generically nil-principal
schemes. All in all, the only stumbling block is resolution of arbitrary non-reduced
qe schemes.

4. Complements

In this section we will slightly refine our main result by constructing a global em-
bedding of a modification into a log smooth B-scheme. This requires an additional
preparation.

4.1. Factorization. In addition to the analogues of the usual resolution and prin-
cipalization we will need certain results about factorization and resolution of in-
determinacies for ptm’s. We will only cover the cases that will be needed in our
applications.

Theorem 4.1.1. Assume that f : Y → X is a modification of ptm’s with a trivial

reduction. Assume, in addition, that there exist an ordered boundary E =
∑l

i=1 Ei

on X such that f is an isomorphism over X \ E. Then there exists a sequence

of blowings up of components of Ẽi’s Y ′
99K Y such that the composed morphism

f ′ : Y ′ → X splits into a composition of blowings up of components of Ẽi’s. The
sequence Y ′

99K Y and the splitting of f ′ depend on the datum functorially with
respect to smooth morphisms X → X and pullbacks f : Y = Y ×X X → X and
E = E ×X X.

Proof. To simplify notation we identify the underlying topological spaces of X and
Y . Notice that locally we can factor NXOY as INY , where I is invertible – just
take local generators εY and εX , then εX = aεY and we take I = (a). This does not
yield a global divisor NY /NX because an element a is defined only up to adding an
element annihilated by εY , but the reduction (ã) is unique and we obtain a global

divisor on X̃ that we denote D̃ = ÑY /NX . Clearly, it is Ẽ-monomoial, so we fix the

decomposition D̃ =
∑

i,n nD̃i,n with D̃i,n ⊂ Ẽi. Now, let Y ′
99K Y be the sequence

obtained by successive blowing up the centers Vi,j =
∐

n≥j D̃i,n and let E′ be the

transform of the boundary to Y ′. By Lemma 3.2.4 the local divisors (a) become
E′-monomial on Y ′. The reductions (ã) agree on the intersections (this happens
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already on X), hence we obtain a factorization NY ′ = D′NX with an E′-monomial
divisor D′.

Choose the presentation D′ =
∑

i,n nD
′
i,n with D′

i,n ⊂ Ei (we do not need this,

but in fact only even n’s show up and D̃′
i,2n = D̃i,n). We claim that Y ′ → X

splits into the blowing up sequence Y ′ = Xm 99K X0 = X with centers V ′
i,j =∐

n≥j D̃
′
i,n. Indeed, this can be checked locally at a point x ∈ X . Choose pa-

rameters εX , t1, . . . ,tn ∈ OX,x such that E = V (t1 . . . tr) and let ni be such that
x ∈ D′

i,ni
. Then εY = εX/

∏r
i=1 t

ni

i is a generator of the nilradical of OY ′,x and
hence an embedding OXm,x ⊆ OY ′,x arises. Moreover, it is an isomorphism by
Nakayama’s lemma because the reductions coincide and OXm,x contains a genera-
tor of the nilradical of Oy′,x. Thus, Y ′ = Xm and we have constructed a splitting of
Y ′ → X . The check that our construction is smooth-functorial is straightforward
and we omit it. �

Corollary 4.1.2. Let X → Bn = Spec(k[π]/(πn)) be generically smooth. Then
there exists a construction G(X → Bn) = Y → X → Bn such that the composed
morphism is smooth away from an snc divisor. This construction is functorial with
respect to smooth morphism.

Proof. As X → Bn is generically smooth, X is generically nilprincipal and we may
apply Theorem 2.3.1 to get X ′ → X such that X is a ptm. Let Z ⊂ X be the
singular locus of the composed morphism X ′ → X → Bn, and by Theorem 3.1.9
we have a principalization P(X ′, ∅, Z) : Y → X ′ such that the composed morphism
Y → Bn is smooth away from an snc divisor. This process is smooth-functorial as
both ingredients are. �

Remark 4.1.3. We make two remarks on this result:

(1) The morphism Y → X ′ is a modification of ptms with trivial reduction, so
if we wish to apply Theorem 4.1.1 we may.

(2) In practice, this means that given a generically smooth X → Bn there is a
resolution which étale-locally looks like X ′ = Speck[ǫ, t1, ..., tl]/(ǫn) → Bn

given by π 7→ ǫ · tn1

1 ...tal

l .

4.2. Retracts. By a retract of a ptm X we mean a morphism r : X → X̃ which

is a retract of the closed immersion i : X̃ →֒ X , that is, r ◦ i = idX̃ . In general, a
retract does not exist, but if X is of finite type over a field k, then it exists whenever

X is affine. Indeed, X is a nilpotent thickening of X̃ and X̃ is smooth over k, hence

the k-morphism idX̃ lifts to a k-morphism r : X → X̃. (For an arbitrary ptm X , a
retract at least exists at the generic points η ∈ X , namely, rη : η → η̃ corresponds
to a choice of a field of definition k(η̃) →֒ OX,η of the Artin ring OX,η.) We will
show that after blowing up X one can extend a generic retract to a retract of the
whole X . The argument will be similar to the proof of Theorem 4.1.1 but a bit
more elaborate. Here is the main particular case we will need.

Lemma 4.2.1. Let X be a ptm of finite type over a field k with nilradical N ⊂ OX ,

let D = V (I) be a Cartier divisor with a smooth reduction D̃ = D ×X X̃ and
complement X0 = X \D, and let i : X0 →֒ X denote the open immersion. Assume

that D is irreducible with generic point ν and r0 : X0 → X̃0 is a retract of X0, then
(i) The retract r0 extends to r if and only if the homomorphism φ : i∗OX̃0

→֒
i∗OX0

induced by r0 takes OX̃ to OX .
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(ii) The following three conditions are equivalent and they hold for a large enough
n: (a) φ takes OX̃ to OX [I−nN ], (b) φ takes OX̃,ν to OX,ν [I−n

ν Nν ], (c) r0 extends

to a global retract on Bl
ñD

(X).
(iii) Assume that n ≥ 1 is such that the conditions in (ii) are satisfied and let

X ′ = BlD̃(X). Then φ takes OX̃′ to I1−nOX′ .

Proof. All claims can be checked locally on X , where we use in (ii) that X is quasi-
compact. Thus, we can assume that X = Spec(A) and I = (t), and then X0 =

Spec(At), X̃ = Spec(Ã) and X̃0 = Spec(Ãt), where Ã = A/N . Let s0 : Ãt → At

be the section corresponding to r0. Since X̃ →֒ X is a homeomorphism, r0 extends

to r if and only if the homomorphism of sheaves extends, that is s0(Ã) ⊆ A. This
proves (i).

Recall that X ′ = Bl
ñD

(X) = Bl(tn)+N (X) consists of the t-chart, hence X ′ =

Spec(An), where An = A[t−nN ]. Clearly, X ′ → X is a homeomorphism and we
denote the preimage of ν by ν′. Applying (i) to X ′ we obtain that (a) and (c) are
equivalent, and the equivalence of (a) and (b) reduces to the claim that if r0 extends
to ν′, then r0 extends to the whole X ′. But X ′ can be obtained from the ptm X

by n successive blowings up of D̃, hence X ′ is a ptm and any regular function on
X0 that extends to ν′ automatically extends to the whole X ′ by Corollary 2.2.7.
The claim about extension of r0 follows.

Let us now prove that for a large n the condition (a) is satisfied. Given ã ∈ Ã
choose a lift a ∈ A and notice that s0(ã) − a ∈ Nt and hence lies in a subring

An = A[t−nN ] of At. Choosing a set ã1, . . . ,ãl of k-generators of Ã and a large

enough n, we obtain that s0(ãi) ∈ An for any 1 ≤ i ≤ l and hence s0(Ã) ⊂ An.
This proves the second part of (ii).

Finally, in (iii) X ′ = Spec(A′), where A′ = A1, and hence the nilradical of A′ is

N ′ = t−1N and Ã = Ã′. Therefore, s0(Ã′) ⊂ An = A′[t1−nN ′], proving (iii). �

Theorem 4.2.2. There exists a method which to any ptm with a boundary (X,E) of
finite type over a field k of characteristic zero and a generic retract rη : η → η̃, where
η =

∐n
i=i Spec(OX,ηi

) and η1, . . . ,ηn is the set of generic points of X, associates a
sequence of admissible blowings up

R(X,E, rη) : (X ′, E′) 99K (X,E)

such that rη extends to a retract r : X ′ → X̃ ′. Moreover, one can construct R
functorially with respect to étale morphisms Y → X provided with a compatible
pair of generic retracts rηY

and rηX
.

Proof. We will first construct the retract as a composition of two admissible blow-
ings up sequences, and only then discuss the functoriality. To simplify notation we
assume that X is irreducible and η is the generic point, but the argument works
in general as well. Let sη : k(η) →֒ OX,η be the field of coefficients corresponding
to rη. Recall that X has no embedded components, hence OX,x ⊆ OX,η for any
x ∈ X and by Lemma 4.2.1(i) rη extends to r locally at x ∈ X if and only if
sη(OX̃,x) ⊆ OX,x. Clearly, this is an open condition and we denote by U the open

set of such points x ∈ X , and denote by Z = X\U the complement. In other words,

Z is the indeterminacy locus of the rational map rη : X → X̃. The first part of R is
the principalization P(X,E,Z) : X ′ = Xl 99K X0 = X of Z. Let E′

1, . . . ,E
′
l be the
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components of E′ created by P , then the indeterminacy locus Z ′ of rη : X ′ → X̃ ′

is contained in E′′ =
∑l

i=1 E
′
i.

The remaining procedure iteratively blows up unions of components of Ẽ′′. In

particular, the reduction X̃ ′ remains unchanged, so we can identify Ẽ′
i with sub-

schemes of further blowings up. The choice of the center on each step is done by
the following rule: for any generic point ν ∈ E′′ let i = i(ν) be the number for
which ν ∈ E′

i and let n(ν) be the minimal n ≥ 0 which satisfies the condition of
Lemma 4.2.1(ii). The step takes all generic points ν such that n(ν) > 0 (i.e. the
point is in the indeterminacy locus) and the lexicographic value of (n(ν), i(ν)) is
maximal, and blows up the reduced closed subschemes with these generic points. In

other words, we blow up components of Ẽ′
i with the maximal value of the invariant

(n(ν), i(ν)). The maximal value of the invariant drops after each blowing up by
Lemma 4.2.1(ii) and (iii). Part (i) of the same lemma says that once n drops to
zero, the indeterminacy locus is empty, that is, rη extends to a global retract.

Finally, let us discuss the functoriality. So let us assume that f : Y → X is étale,
EY = E×X Y and a generic retract rηY

is the pullback of rηX
. The principalization

is functorial with respect to smooth morphisms, so we should only check that the
indeterminacy locus and the invariant n(ν) used in the second step are compatible
with f . Moreover, if D is the irreducible component of ν, then by Lemma 4.2.1(ii)

n(ν) is the minimal n such that blowing up ñD resolves the indeterminacy at ν.
Blowings up are compatible with smooth (even flat) morphisms, hence it suffices
to check functoriality of the indeterminacy locus: if y ∈ Y and x = f(y), then rηX

extends to x if and only if rηY
extends to y. Furthermore, since the indeterminacy

locus is open, localizing X and Y appropriately we can reduce the problem to the
following particular case: rXη

extends to a global retract rX if and only if rYη

extends to a global retract rY . Clearly, it suffices to check the latter locally, so we
can assume that X and Y are affine.

Assume that rηX
: ηX → ηX̃ extends to r : X → X̃. Then a morphism Y → X →

X̃ arises and the X̃-morphism idỸ lifts uniquely to a X̃-morphism rY : Y → Ỹ by

the étalenes of Ỹ over X̃ and affineness of Y . Thus, the retract rX lifts uniquely to
a retract rY . Since the lift rηY

of rηX
is also unique by the same argument, both

agree, that is rY is the extension of rηY
. Conversely, if rηY

extends to rY , then it
is easy to see that rηX

extends to rX .
�

We do not know if functoriality holds for smooth morphisms as well.

4.3. Log blowings ups. We will need one more construction on a ptm with bound-
ary. Informally speaking, it replaces boundary components by varieties intersecting
X so that one obtains a thick version of a normal crossings variety. The most con-
venient way to realize this is by using log geometry.

4.3.1. Associated log structure. As often happens one can encode the boundary in a
log structure, and in various applications this is even a more conceptual approach.
Given a ptm with a boundary (X,E) we define the associated log structure MX as
follows: for a point x ∈ X let t0 = ε be a generator of the nilradical of Ox and let
t1, . . . ,tr ∈ Ox be parameters that define the irreducible components of E passing
through x and consider the prelogarithmic structure Mx = ⊕r

i=0N log(ti) → Ox

which sends log(ti) to ti. Since the choice of ε and ti is unique up to a unit, the
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associated log structure Mx is independent of the choices, and it is easy to see that
the local definitions patch to a global log structure MX on X . Clearly, E can be
reconstructed from MX , so we also address to the log scheme (X,MX) as a ptm
with a boundary.

4.3.2. Log blowings up of reduced divisors. We will use a very special form of log
blowings up of a ptm with a boundary (X,MX).

Lemma 4.3.3. Let (X,MX) be a ptm with a boundary and D̃ a smooth component

of the induced boundary Ẽ of X̃. Then X ′′ = BlD̃(X) is an irreducible component
of X ′ = LogBlD̃(X). In addition, X ′′ is a monoidal subscheme of X ′.

Proof. The claim can be checked locally over a point x ∈ D̃, so assume that X =

Spec(A) and (ε = t0, t = t1, . . . ,tn) is a family of parameters such that D̃ = (ε, t)
and E = V (t1 . . . tr) at x. Then Y = Spec(Z[t0, . . . ,tr]) is a chart for X , and hence
X ′ → X is the base change of the log blowing up of Y along (t0, t1). Since Y is log
regular, the latter is the usual blowing up described by the charts, and hence X ′ is
glued from two charts: X ′

t = Spec(A[ε′]/(tε′ − ε)) and X ′
ε = Spec(A[t′]/(t′ε− t)).

Recall that X ′′ = Spec(A′′), where A′′ = A[ εt ]), and note that A′′ is the image
of A′ = A[ε′]/(tε′ − ε) in At, hence X ′′ is the irreducible component of X ′, is the
strict transform of X and lies in the t-chart. Furthermore, it is easy to see that
A′′ = A′/(ε′h), where h is the thickness of X , hence X ′′ is given by vanishing of
the monomial ideal (ε′h). �

Here is a concrete typical example.

Example 4.3.4. Let A = k[t, ε]/(εn) and X = Spec(A) with the log structure

induced by N log(ε) ⊕ N log(t). Then D̃ = V (t, ε) is a monomial subscheme, which

is also a smooth divisor in X̃ . The log blowing up X ′ = LogBlD̃(X) is glued from
two charts:

X ′
t = Spec(A[ε′]/(tε′ − ε)) = Spec(k[ε′, t]/(t2ε′2))

and

X ′
ε = Spec(A[t′]/(t′ε− t)) = Spec(k[t′, ε]/ε2).

Thus, X ′ has two irreducible components. The first component is BlD̃(X) =

Spec(k[t, ε′])/(ε′2); it is contained in X ′
t. The other component is a ptm with

nilradical (ε) and reduction isomorphic to P1
k with coordinate t′; it is contracted

to D̃ in X .

For our applications we will need to construct sequences of log blowings. The
following results follows from Lemma 4.3.3 by an obvious induction on the length
of the sequence.

Corollary 4.3.5. Let (X,MX) be a log ptm with a boundary, and let D̃1, . . . ,D̃l

be smooth components of the associated snc boundary Ẽ ⊂ X̃. Then there exists a
sequence of log blowings up Xl 99K X0 = (X,MX) such that the following conditions
are satisfied: the strict transform X ′

i of X in Xi is a monomial subscheme of

Xi, each X ′
i+1 is the blowing up of X ′

i along D̃i, in particular, each X ′
i → X

is a modification with the trivial reduction and D̃i →֒ X ′
i →֒ Xi are monomial

subschemes, and Xi+1 = LogBlD̃i
(Xi).
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4.4. Log smooth resolution. To get our last main result it remains to assembly
various pieces we have developed altogether.

Theorem 4.4.1. Assume that k is a field of characteristic zero, B = Spec(k[π]/(πn))
and X → B is a generically smooth morphism of finite type with a closed nowhere
dense subscheme Z →֒ X. Let MB be the log structure on B generated by N log(π) →
MB, where log(π) is mapped to π. Then there exists a log smooth morphism
(Y,MY ) → (B,MB), an irreducible component X ′ of Y and modification X ′ → X,
such that Z ′ = Z ×X X ′ is a divisor and both X ′ and Z ′ are monomial subschemes
of Y . In addition, the choice of Y and X ′ can be made depending étale-functorially
only on X → B, Z →֒ X and a generic retract rη : ηX → ηX̃ , and if X → B is
proper one can also choose Y → B to be proper.

Proof. Acting as in the proof of Theorem 3.3.3 we can find a modification X1 → X
such that X1 is a ptm with an ordered boundary E1 and Z1 = Z ×X X1 is E1-
monomial. Next, the generic smoothness of f implies that generically π generates
the nilradical N ⊂ OX1

on an open subscheme U . Principalizing X2\U on (X2, E2)
by Theorem 3.1.9 we obtain a modification X2 → X1, such that N|U = (π)|U for
U = X2\E2. Next, we apply Theorem 4.2.2 to construct a modification g : X ′ → X2

with a ptm X ′ and an ordered boundary E′ containing the preimage of E2 such

that X ′ possesses a retract X ′ → X̃ ′.

Set U ′ = X ′ \ E′ and Y ′ = X̃ ′ ×B̃ B = SpecX̃′O′
X̃

[π]/(πn). Then the natural

morphism f : X ′ → Y ′ is a modification with a trivial reduction. In addition, f is

an isomorphism over the complement to Ẽ′, hence by Theorem 4.1.1 replacing X ′

once again by a successive blowing up along components of E′, we can achieve that
f factors into a composition X ′ = Y ′

n 99K Y ′
0 = Y ′ of blowings up of components of

Ẽ′
i’s, say Y ′

i+1 = BlVi
(Y ′

i ).
Finally, we provide Y ′ with the log structure combined from the log structures

induced from B and the log structure on Ỹ ′ = X̃ ′ given by Ẽ′. More formally,

consider the closed immersion i : Ũ ′ →֒ Ỹ ′, then MỸ ′
= i∗O

×

Ũ ′
∩OỸ ′

provides X̃ with

the structure of a log smooth log scheme over k (with the trivial log structure k× →֒

k) and we set (Y ′,MY ′) = (Ỹ ′,MỸ ′
)×Spec(k) (B,MB). In particular, the projection

(Y,MY ′) → (B,MB) is log smooth. By Corollary 4.3.5 there exists a sequence of log
blowings up Y = Yn 99K Y0 = Y ′ such that Y ′

i →֒ Yi is the irreducible component

which is a modification of Y ′ and the centers are log subschemes Vi →֒ Ỹ ′ = Ỹ ′
i →֒

Y ′
i →֒ Yi. Thus, X ′ is an irreducible component of Y and since the log blowings up

are log étale the composition Y 99K Y ′ → B is log smooth.
The étale-functoriality of the construction follows from functoriality of all ingre-

dients we used. �
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