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LIFTING PROBLEM FOR MINIMALLY WILD COVERS OF

BERKOVICH CURVES

URI BREZNER AND MICHAEL TEMKIN

Abstract. This work continues the study of residually wild morphisms f : Y →
X of Berkovich curves initiated in [CTT16]. The different function δf intro-
duced in [CTT16] is the primary discrete invariant of such covers. When f

is not residually tame, it provides a non-trivial enhancement of the classical

invariant of f consisting of morphisms of reductions f̃ : Ỹ → X̃ and met-
ric skeletons Γf : ΓY → ΓX . In this paper we interpret δf as the norm of the
canonical trace section τf of the dualizing sheaf ωf , and introduce a finer reduc-

tion invariant τ̃f , which is (loosely speaking) a section of ωlog

f̃
. Our main result

generalizes a lifting theorem of Amini-Baker-Brugallé-Rabinoff from the case of
residually tame morphism to the case of minimally residually wild morphisms.

For such morphisms we describe all restrictions the datum (f̃ ,Γf , δ|ΓY
, τ̃f ) sat-

isfies, and prove that, conversely, any quadruple satisfying these restrictions
can be lifted to a morphism of Berkovich curves.

1. Introduction

1.1. Motivation. This paper continues the study of residually wild morphisms
f : Y → X of Berkovich curves initiated in [CTT16]. The main new tool introduced
in [CTT16] is the different function δf of f , and the main results of [CTT16] describe
its properties, including the behaviour at points of types 1 and 2. See appendix A
for a brief review. The results of [CTT16] sufficed to describe the structure of
the residually wild locus of f when deg(f) = p ([CTT16, Theorem 7.1.4]) and
were generalized in [Tem17] to an arbitrary degree. However, an analogy with the
residually tame case indicated that one should expect existence of finer differential

invariants related to algebraic geometry over k̃. Indeed, it is noted in [ABBR15,
§1.3] that the discrete invariant Γf alone is too crude to satisfy a lifting theorem.
The set of natural discrete (or tropical) restrictions it satisfies is not complete, and
there are non-trivial restrictions on Γf arising from its relation to the algebraic

geometry over k̃. In particular, if one combines f̃ and Γf into a single object, a
metrized curve complex of Amini-Baker (see [AB15]) or a morphism of log curves
(see §5.1.6), then no essential information is lost under the reduction of residually
tame morphism, as indicated by the lifting theorem [ABBR15, Theorem B].

It was mentioned in [ABBR15, Remark 7.6] that this theory is not satisfactory
in the residually wild case, and the reason is now clear: there exist new non-trivial
discrete invariants of covers, the different function δf and the profile function ϕf

(see [Tem17]). Note that δf is determined by ϕf , and the converse is true when f is
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2 URI BREZNER AND MICHAEL TEMKIN

not too wild in the sense that the local multiplicities ny of f are not divisible by p2.
It was natural to expect that these discrete (or tropical) invariants possess reduction

refinements related to algebraic geometry over k̃. Discovering such invariants and
using them to extend the lifting theorem to a non-trivial residually wild case is the
main motivation of this paper. We manage to completely solve the problem for the
class of minimally wild covers (see the definition in §1.3.1).

1.2. Methods and main results.

1.2.1. The different and bivariant differential forms. Probably, our main discovery
is a relation between the different and the dualizing sheaves in the non-archimedean
context. The most non-trivial property of the different proved in [CTT16, Theo-
rem 4.5.4] is a balancing condition on its slopes at a point y ∈ Y of type 2:

2g(y)− 2− ny(2g(x)− 2) =
∑

v∈Cy

(−slopevδf + nv − 1),

where x = f(y). We called it the local RH formula because it resembles the

Riemann-Hurwitz formula for the induced morphism f̃y : Cy → Cx of the reduction

curves, and reduces to it when f̃y is generically étale. In general, this formula
was proved as follows. The homomorphism ψY/X/k : f

∗ΩX,x → ΩY,y shifts Kähler
norms by δf(y), hence rescaling by an element c ∈ k with |c| = δf (y), one obtains

an isomorphism ψ̃ : Ω
H̃(x)/k̃

⊗
H̃(x)

H̃(y)
∼
−→Ω

H̃(y)/k̃
, unique up to multiplication by

an element c̃ ∈ k̃×. Slopes of the different are expressed as the logarithmic orders of

zeros and poles of the induced meromorphic map ψ̃ : f̃∗
yΩCx/k̃

→ ΩCy/k̃
, hence the

local RH formula boils down to the relation between the degrees of both sheaves

and the logarithmic orders of ψ̃ at the closed points of Cy.

Clearly, ψ̃ can be viewed as a meromorphic section τ̃f of (f̃∗
yΩCx/k̃

)′ ⊗ ΩCy/k̃
.

We call such sections bivariant differential forms with respect to f̃y. Technically,
they provide the correct setting for our results, and the first version of the paper
used only such language. We are very grateful to Luc Illusie for the observation

that (f̃∗
yΩCx/k̃

)′ ⊗ ΩCy/k̃
= ωf̃y

is just the dualizing sheaf of f̃y. This allowed us

to reinterpret the results in the following much more conceptual way. Consider the
trace bivariant form τf ∈ ωf corresponding to the map f∗ΩY → ΩX ; it is non-
zero when f is generically étale. The different δf is simply ‖τf‖ with respect to
the natural norm on ωf (see Theorem 3.2.15), so after an appropriate rescaling we
can define the reduction τ̃f,y as an element of the reduction sheaf ω̃f,Cy

. A direct

computation shows that the latter is ωlog

f̃y
(see Theorem 3.3.4), hence the slopes of

the different at y are equal to the logarithmic orders of τ̃f,y at the points of Cy.

1.2.2. Characterization of τ̃f,y. It turns out that τ̃f,y always satisfies certain re-
strictions, that we completely describe when ny = p. Namely, τ̃f,y is exact if
1 > δf (y) > |p| and mixes an exact and a logarithmic part when δf (y) = |p|, see
Theorem 3.4.6 and its converse Theorem 3.4.8. In particular, this explains strange
combinatorial restrictions the slopes of δf always satisfy, see Remark 3.4.9.

1.2.3. p-enhanced reduction. Assume that f : Y → X is minimally wild. Given a
compatible pair of semistable models one naturally obtains a log reduction map

λ : Ỹ log → X̃ log between the reductions with natural logarithmic structures (see
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§5.1.6 and §5.2.6). We provide λ with the additional datum (δf |V , {τ̃f,y}y∈V ),

where V ⊂ Y is the set of points of type 2 corresponding to the generic points of Ỹ .
We call such a datum a p-enhancement of λ if it satisfies certain restrictions, and
our results on δf and τ̃f,y imply that (δf |V , {τ̃f,y}y∈V ) is indeed a p-enhancement.
This is Theorem 5.3.7 which generalizes [ABBR15, Theorem A] to covers which are
minimally wild on the source.

1.2.4. The lifting theorem. Our main lifting result is Theorem 6.2.3 which asserts
that any minimally wild morphism of log-curves λ : C → D provided with a p-
enhancement (δ, {φy}) can be lifted to a minimally wild morphism Y → X of
Berkovich curves. It is a generalization of [ABBR15, Theorem B] but it is substan-
tially weaker in one aspect: we construct both X and Y , rather than construct f
starting with a fixed X whose log reduction is D.

The strategy of the proof is similar to that of [ABBR15, Theorem B]. We first
construct separate liftings for irreducible components of C and D obtaining fi-
nite covers of star-shaped curves. Then we glue these covers along annular covers
h : A′ → A. If h is residually tame then the cover is Kummer and the A-isomorphism
class of A′ is determined by deg(h). This allows gluing in [ABBR15, Theorem B]
even when X is fixed. In the wild case, the set of A-isomorphism classes is huge, but
if the degree is p then we manage to classify all such covers up to automorphisms
of both A and A′. We prove in Theorem 4.3.8 that any p-cover h is either Kummer
or given by a binomial x = yp+ cyn, and h determined by the restriction of δh onto
the skeleton of A′. This allows gluing for minimally wild morphisms, at cost of a
simultaneous gluing of both X and Y from star-shaped curves and annuli.

1.2.5. General wild morphisms. One might wonder if the results of this paper can
be extended to arbitrary wild covers. We critically used the degree-p assumptions
at two places: in Theorem 3.4.6 when describing the reduction form τ̃f,y, and in
Theorem 4.3.8 when classifying annular p-covers. We expect that using the splitting
technique of [Tem17], one can extend the description of τ̃f,y and the notion of p-
enhancement to the case of arbitrary wild covers. In particular, we expect the local
lifting problem for points of type 2 to be treatable by our methods. The actual
bottleneck is the classification of annular p-covers, and in order to push the lifting
theorem further one will have to replace the gluing argument completely.

1.3. The structure of the paper. In Section 2 we establish some facts about one-
dimensional k-analytic fields K. Our main result there is Theorem 2.3.10 about
representing elements of K as sums of a p-th power and a p-orthogonal element.
In Section 3 we develop the theory of reduction of bivariant forms. First, we
have to metrize the sheaf ωf . We introduce Hom-seminorms, slightly extending
the toolkit of [Tem16], and show that the so-defined Kähler norm on ωf is |k×|-
pm. Main results about the reduction τ̃f,y of the trace form are then proved in
§3.4. In Section 4 we classify isomorphism classes of annular covers of degree p.
In Section 5, we introduce p-enhancements of morphisms of nice log curves and
construct the reduction p-enhancements for covers which are minimally wild on the
source, see Theorem 5.3.7. Finally, our main lifting theorem is proved in Section 6.
The paper has two appendices: we recall the basic properties of δf in appendix A,
and discuss log reduction of non-archimedean curves in appendix B.
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1.3.1. Conventions. Let us fix some notation. Throughout this paper k denotes an
algebraically closed complete real-valued field of positive residual characteristic p.
By a nice k-analytic curve we mean a quasi-smooth connected compact separated
strictly k-analytic curve X , and by XG we denote the associated G-topological
space. By an abuse of language, the associated topological space |XG| ([Tem16,
Section 9]) will be also denoted XG. Furthermore, f : Y → X will always denote
a finite generically étale morphism between nice curves. By Γf : ΓY → ΓX we
mean any skeleton of f in the sense of [CTT16, §3.5.9]. The multiplicity of f at a
point y ∈ YG will be denoted ny, see [CTT16, §3.2.1, §3.4.4]. Finally, the different
function of f will be denoted δf , [CTT16, Section 4].

If f is not residually tame at y ∈ Y then we say that y is a wild point of f . If
in addition, ny = p then we say that y is minimally wild. Finally, we say that f is
minimally wild on Y if it only has minimally wild points, and f is minimally wild
if, in addition, any fiber f−1(x) has at most one wild point.

2. One-dimensional G-analytic fields

2.1. Trivial valuation. Throughout Section 2.1, k is assumed to be trivially val-

ued. In particular, k = k̃ is of characteristic p. For expository reasons, we prefer
to consider this case separately since it is very simple and illustrating.

2.1.1. Differential orders on k-curves. Assume that X is a smooth k-curve. The
orders ordv of meromorphic functions at closed points v are induced by the trivial
OX -lattice OX of the sheaf of meromorphic functions MX . Similarly, the lattice
ΩX/k defines differential orders ordv on meromorphic differential forms. We will

also use the logarithmic order logordv = ordv+1 corresponding to the lattice Ωlog
X/k.

The latter is the huge quasi-coherent module obtained by twisting ΩX/k by all
closed points.

2.1.2. Bivariant forms. Assume that f : Y → X is a finite morphism of smooth
connected k-curves. Since X,Y are smooth, the morphism is lci and the invertible
sheaf

ωf = Homf−1OX
(f−1ΩX ,ΩY ) = (f∗ΩX)′ ⊗ ΩY

is the dualizing sheaf of f . Sections of ωf will be called bivariant differential forms
or simply bivariant forms. There is a canonical bivariant form τf corresponding to
the map ψY/X/k : f

∗ΩX → ΩY . In particular, τf vanishes if and only if f is not
generically étale.

For any differential form φ ∈ Γ(ΩX), we have that τf (φ) = f∗(φ), where we
use the convention that the image of φ in Γ(f∗ΩX) is denoted also by φ, and
f∗φ = ψY/X/k(φ) is the pullback of φ to a differential form on Y . In particular,
τf (dXh) = dY f

∗(h) for any h ∈ Γ(OX). With tensor notation, τf = φ′ ⊗ f∗(φ),
where φ is a non-zero form on X and φ′ ∈ Γ(Ω′

X) is its dual.

Remark 2.1.3. The element τf is the image of 1 under the trace map

OY = f∗OX
tf
→ f !OX = ωf .

This explains its importance for Grothendieck’s duality. We will often call τf the
trace (bivariant) form of f .
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2.1.4. Orders of bivariant forms. The generic stalk of ωf is the one-dimensional
k(Y )-vector space ωk(Y )/k(X) = Homk(X)(Ωk(X)/k,Ωk(Y )/k). Its elements will be
called meromorphic bivariant forms. In addition to the OY -lattice ωf of ωk(Y )/k(X),
we will also consider the natural logarithmic lattice

ωlog
f := Homf−1OX

(f−1Ωlog
X ,Ωlog

Y ).

Note that ωlog
f does not possess a tensor description because Ωlog

X is ”too large” and

its “dual” HomOX
(Ωlog

X ,OX) vanishes.
For any closed point v ∈ Y we obtain two induced orders on ωk(Y )/k(X). Similarly

to differential orders, they will be denoted ordv and logordv. This will not lead to
any confusion. Finally, it is easy to see that logordv = ordv − ev + 1, where ev is
the ramification index at v.

2.1.5. Laurent power series. The orders at v can be defined purely formally-locally
via analogous constructions for fieldsK = k((t)). Note thatK is the only k-analytic
field with non-trivial valuation (and its type is 3). Since the group of values is
discrete, we will use the classical additive valuation instead of real valuations. It
will be called the order and denoted ord: |K| → Z ∪ {∞}.

2.1.6. p-order. For any element x ∈ K there exists c ∈ K such that the order of
x− cp is maximal possible. We say that pord(x) := ord(x− cp) is the p-order of x.
It is infinite if and only if x ∈ Kp, and it lies in the set Z\pZ otherwise. Obviously,
pord(x) ≥ ord(x) and the equality holds if and only if ord(x) /∈ pZ. In fact, the
p-order of x =

∑
n cnt

n is equal to the minimal n ∈ Z \ pZ with a non-zero cn.

2.1.7. Order of differential forms. The completed module of differentials Ω̂K/k is a

one-dimensional K-vector space generated by dt. The differential d̂K : K → Ω̂K/k

will be denoted by d if no confusion is possible. There are two natural integral

structures: the lattice of integral differential forms Ω̂K◦/k = K◦dt generated over

K◦ by the elements dx with x ∈ K◦, and the lattice of logarithmic forms Ω̂log
K◦/k =

K◦ dt
t generated over K◦ by the logarithmic forms dx

x with x ∈ K×. They define

two orders on Ω̂K/k that will be called the differential order and the logarithmic
differential order, respectively. The word “differential” will usually be omitted.
Clearly,

ord(f) = ord(fdt) = logord(fdt)− 1.

We will write ordK and logordK when K is not clear from the context.

Remark 2.1.8. (i) The differential orders are additive versions of the Kähler semi-
norm introduced in [Tem16]. The shift between the two is precisely the order of a
uniformizer. In the non-discrete case the logarithmic seminorm coincides with the
non-logarithmic one, see [Tem16].

(ii) The formal order is compatible with the differential order on curves: if X is
a k-curve, K = k(X) and v ∈ X , then ordv(φ) = ord

k̂(X)v
(φ) for φ ∈ ΩK . Indeed,

ΩK/k →֒ Ω̂K̂/k is an isometry by [Tem16, Theorem 5.6.6].
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2.1.9. Relation to the p-order. The differential order provides a natural interpreta-
tion of the p-order:

Lemma 2.1.10. Let K = k((t)). Then pord(x) = logord(dx) for any element
x ∈ K.

Proof. Let x =
∑

n cnt
n. We observed in §2.1.6 that pord(x) is the smallest n ∈

Z\pZwith cn 6= 0. Clearly this number coincides with logord(dx) = ord(
∑

n ncnt
n).
�

2.1.11. The different. Let L/K be a finite separable extension. Then the different

δL/K is the order of Ann(ΩL◦/K◦) and the logarithmic different δlogL/K is the order

of Ann(Ωlog
L◦/K◦

). So, the following lemma reduces to unwinding the definitions.

Lemma 2.1.12. Let L/K be as above, then

(i) The different measures the difference between the differential order on Ω̂L/k

and the pullback of the differential order on Ω̂K/k, namely

δL/K = ordL(ωL)− eL/KordK(ω)

for any non-zero ω ∈ Ω̂K/k and its image ωL ∈ Ω̂L/k.
(ii) The same relation holds for the logarithmic different:

δlogL/K = logordL(ωL)− eL/K logordK(ω).

(iii) The two differents are related by δlogL/K = δL/K − eL/K + 1.

Choosing ω = dt we obtain the following specific way to compute the different.

Corollary 2.1.13. Let K = k((t)) and L/K be as above. Then

δL/K = ordL(dt) = pordL(t)− 1.

2.1.14. Bivariant forms. For a finite extension L/K we define the one-dimensional
L-vector space

ωL/K := HomK(Ω̂K/k, Ω̂L/k) = (Ω̂K/k)
′ ⊗K Ω̂L/k,

where V ′ denotes the dual of V . Its elements will be called bivariant differential

forms. There is a canonical element τL/K ∈ ωL/K satisfying τL/K(d̂Kx) = d̂Lx for
any x ∈ K. It vanishes if and only if L/K is inseparable. With tensor notation,

τL/K = (d̂Kx)
′ ⊗ d̂Lx for any x with d̂Kx 6= 0.

Remark 2.1.15. It is easy to see that ωL/K is the dualizing sheaf of L/K, whence
the notation. The element τL/K is the trace element from duality theory, i.e. the
image of 1 under the trace map L→ ωL/K .

2.1.16. Orders of bivariant forms. Similarly to the case of differential forms, we

have natural orders ordL/K and ordlogL/K on ωL/K defined by the lattices

ωL◦/K◦ := HomK◦(Ω̂K◦/k, Ω̂L◦/k), ωlog
L◦/K◦

:= HomK◦(Ω̂log
K◦/k, Ω̂

log
L◦/k).

It follows from Remark 2.1.8(ii) that these orders are compatible with analogous or-
ders on k-curves. Clearly, both lattices contain τL/K . Also, we can now reinterpret
the different as follows:
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Lemma 2.1.17. If L/K is a finite extension, then δL/K = ordL/K(τL/K) and

δlogL/K = logordL/K(τL/K). In particular, δL/K (resp. δlogL/K) vanishes if and only if

τL/K generates ωL◦/K◦ (resp. ωlog
L◦/K◦

).

Proof. If L/K is inseparable then τL/K = 0 and the differents are infinite. Assume

that L/K is separable. Choose x ∈ K such that d̂Kx 6= 0. Then

ordL/K(τL/K) = ordL/K

(
(d̂Kx)

′ ⊗ d̂Lx
)
= −eL/KordK(d̂Kx) + ordL(d̂Lx)

and similarly for the log orders. It remains to use Lemma 2.1.12. �

2.2. Types of fields. Similarly to [CTT16], we will use some facts about one-
dimensional analytic k-fields and their parameters, but this time more refined ones.
Therefore it will be convenient to slightly revise some definitions in the mixed
characteristic case.

2.2.1. One-dimensional analytic fields. As in [CTT16, §2.1.1] or [Tem10, Section
6.2], an analytic k-field K is one-dimensional if it is finite over a subfield of the

form k̂(t). Such fields are classified by the invariants FK/k = tr.deg.k̃(K̃) and

EK/k = dimQ(|K×|/|k×| ⊗Z Q) into three types: type 2 has F = 1, E = 0, type 3
has F = 0, E = 1, and type 4 has F = E = 0. If X is a k-analytic curve and x ∈ X
is not Zariski closed then H(x) is one-dimensional and its type is the type of x in
the classification of Berkovich.

2.2.2. Fields of type 5. Recall that in addition to the points of X , the topological
space XG contains so-called points of type 5 whose completed residue fields are
valued field of height 2, see [CTT16, Sections 3.1 and 3.4]. This motivates the
following definition. A valued k-field K is called one-dimensional G-analytic if
either it is a one-dimensional analytic field, or K is of the following special form:

The valuation | | on K has values in R×
>0 × Z ∪ {0} ordered lexicographically,

and denoting the first component by | |1 : K → R≥0, we have that K1 = (K, | |1)
is a one-dimensional k-field. In this case, we say that K is of type 5. The second
projection λ : K× → Z is a multiplicative map but not a valuation. However, −λ
induces a discrete valuation K̃×

1 ։ Z trivial on k̃. It follows thatK1 is of type 2 and
the valuation of K is composed from the valuation of K1 and a discrete valuation

on K̃1 corresponding to a point of the smooth proper k̃-model of K̃1.

2.3. Parameters.

2.3.1. p-seminorm. For a real-valued k-field K we define the p-seminorm by |x|p =
infc∈K |x − cp|. It heavily depends on K and can drop in extensions, so we will
use the full notation | |K,p when needed. This is a straightforward extension of the
p-order to arbitrary real-valued fields.

2.3.2. Best p-power approximations and p-orthogonality. More generally, assume
that K is a valued field. If an element x ∈ K is such that the infimum is achieved:
|x−bp| = minc∈K |x−cp| for some b ∈ L, then we set |x|p = |x−bp| and say that bp

is a best p-power approximation of x (in K). In the particular case when |x|p = |x|,
we say that x is p-orthogonal (in K). In general, one can define |x|p as a cut on
the group of values |K×| rather than an element of |K×|, but we will not need this.
The only convention we will use for a general x ∈ K is that |x|p ≥ r ∈ |K×| means
that |x− cp| ≥ r for any c ∈ K.
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Lemma 2.3.3. Assume K is a valued field and x ∈ K satisfies |x|p ≥ |px|. Then
an element cp is a best p-power approximation if and only if x− cp is p-orthogonal.

Proof. It suffices to consider the case when |x − cp| ≤ |x|. If cp is not a best p-
power approximation then |x− bp| < |x− cp| for some b ∈ K. It is easy to see that
|(c− b)p − cp + bp| ≤ |px| < |x− cp|. Hence |x− cp − (c− b)p| ≤ |x− bp| < |x− cp|,
and we obtain that x − cp is not p-orthogonal. Conversely, if x − cp is not p-
orthogonal, then |x − cp − ap| < |x − cp| for some a ∈ K. It follows easily that
|x− (a+ c)p| < |x− cp|, and hence cp is not a best p-power approximation. �

Now, we can prove our main result about existence of p-power approximations.

Theorem 2.3.4. Let K be a one-dimensional G-analytic k-field of type 2, 3 or 5
and let x ∈ K be an element such that |x|p ≥ |px|. Then x possesses a best p-power
approximation cp ∈ Kp.

Proof. Assume that K is of type 2 or 3 first. By [Tem10, Theorem 6.3.1(i)], K is

unramified over a subfield of the form k̂(y), hence by [Tem10, Proposition 6.2.5]
there exists an orthogonal Schauder basis B of K over k of a very special form:
B = {1} ∪ {up

n

| u ∈ U, n ∈ N}, where U ⊂ K is a subset such that any element
of Spank(U) is p-orthogonal. (The latter proposition is an important ingredient in
proving that K is stable.) Since B = U

∐
Bp and k = ka, we can represent x as∑

u∈U auu +
∑

b∈B c
p
bb

p. Set t =
∑

u∈U auu and c =
∑

b∈B cbb, and let us check
that c is as required.

Since B is an orthogonal basis, we have that |x| = max(|t|, |c|p) and |x− t−cp| ≤
|pcp| ≤ |px|. If |t| = |px| then |x − cp| = |px|, and hence |x|p = |px| and c is as
required. If |t| > |px| then |x− cp− t| < |t| and since t is p-orthogonal by the choice
of B, t+(x− cp− t) = x− cp is p-orthogonal too. By Lemma 2.3.3, c is as required.

Assume now that K is of type 5, and so |y| = (|y|1, λ(y)), where K1 = (K, | |1)
is the associated field of type 2. Let C be the set of elements x− cp ∈ K such that
r = |x − cp|1 is minimal possible. Then C 6= ∅ by the case of type 2, and by the
discreteness of λ it suffices to show that the set λ(C) is bounded from below in Z.
If r = |px|1, then λ(px) is such a bound.

It remains to show that the assumption that r > |px|1 and λ(C) is unbounded
from below leads to a contradiction. Choose b ∈ k such that |b|1 = r−1/p, then
replacing x by x/bp we can achieve that |C|1 = 1 > |px|1. In this case, for any pair
of elements x−cp and x−bp in C, the difference bp−cp satisfies |bp−cp−(b−c)p|1 < 1.

It follows that the image C̃ ⊂ F := K̃1 of C is a coset of F p, that is, C̃ = ỹ+F p for

any y ∈ C. Let λ̃ be the discrete valuation −λ induces on F . Any y ∈ C satisfies

|y|1 = 1 and hence λ(y) = −λ̃(ỹ). We obtain that λ̃(C̃) is unbounded from above,

hence the coset is trivial by §2.1.6: C̃ = F p. This immediately implies that y ∈ C
is not p-orthogonal in K1, and we obtain the contradiction with Lemma 2.3.3. �

2.3.5. Pure and mixed parameters. Let K be a one-dimensional G-analytic k-field.
By a parameter of K we mean any element t ∈ K such that 0 6= |t|p ≥ pt. We say
that the parameter is pure if |t|p > |pt| and mixed if |t|p = |pt|. The second case
can only occur in the mixed characteristic case.

Remark 2.3.6. A similar definition in [CTT16] only requires that K/k̂(t) is finite
and separable. This condition is equivalent to t /∈ k if char(k) = 0 and to t /∈ Kp
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if char(k) = p. Thus, the new definition can be viewed as a refinement of the old
one, which is only essential in the mixed characteristic case.

2.3.7. Tame and monomial parameters. Given a parameter t we use the same def-
initions as in [CTT16]: the radius of t is rt = infc∈k |t − c|, we say that t ∈ K is

monomial if |t| = rt, and t is tame if K/k̂(t) is tame.

Lemma 2.3.8. Assume that K is a one-dimensional G-analytic k-field and x ∈ K
is an element.

(i) If x is a tame parameter then |x|p = rx.
(ii) If K is of type 2, 3 or 5, then x is a tame monomial parameter if and only

if it is p-orthogonal.

Proof. (ii) Fields of type 2, 3 and 5 are stable, hence the extension K/k̂(x) is
defectless. If K is of type 2, then multiplying x by an element of k we can assume

that |x| = 1. Then x is a tame monomial parameter if and only if K̃ is separable

over k̃(x) = k̃(x̃), which happens if and only if x̃ /∈ K̃p. It is easy to see that the
latter happens if and only if x is p-orthogonal.

Assume that K = (K, | |) is of types 3 or 5, and hence K̃ = k̃. If x is monomial
then |k(x)×| is generated over |k×| by |x|, and it follows that x is a tame monomial

parameter if and only if |x| /∈ |K×|p. On the other hand, since K̃ = k̃ is perfect, it
is easy to see that x is p-orthogonal if and only if |x| /∈ |K×|p.

(i) For types 2, 3 and 5, subtracting from x an element c ∈ k we can make it
monomial, and then the assertion reduces to the direct implication in (ii). So let
K be of type 4. Assume that |x|p 6= rx. Subtracting from x an element c ∈ k
we can assume that |px| < rx. Since k = ka we have that |x|p ≤ rx, and hence

|x− yp| < rx for some y ∈ K. Then [K : k̂(yp)] > 1 by [Tem10, Lemma 6.2.8] and

[K : k̂(yp)] = [K : k̂(x)] by [Tem10, Lemma 6.3.3]. Thus K/k̂(x) is non-trivial, and
being immediate it is necessarily wildly ramified. This proves that x is not a tame
parameter when |x|p 6= rx. �

2.3.9. Taming a parameter. Here is the main result on arbitrary parameters that
connects them to tame ones.

Theorem 2.3.10. Assume that K is a one-dimensional G-analytic k-field and
x ∈ K is a parameter. Then there exists a decomposition x = cp + t, where t ∈ K
is a tame parameter and c ∈ K is an element such that |cp| ≤ |x|. If K is not of
type 4, then one can achieve in addition that t is monomial.

Proof. For types 2, 3 and 5, by Theorem 2.3.4 we can find a best p-power approxi-
mation cp of x. Then t = x− cp is p-orthogonal by Lemma 2.3.3, and hence it is a
tame monomial parameter by Lemma 2.3.8. For the type 4 case this follows from
[Tem10, Proposition 6.2.4] applied to the special coset

x+ S0,|x|p(K) := x+ {cp + d| c, d ∈ K, |pcp| < |x|p, |d| < |x|p}.

�

2.3.11. Tame term. Given a k-field K of type 2, 3 or 5 and a parameter x ∈ K,
consider the decomposition x = cp + t as in Theorem 2.3.10. We call t a tame term
of x. Note that |t| = |xp| and t is unique up to adding elements d + bp ∈ K such
that |d| < |bp| = |t|. In addition, for any element x ∈ K, which is not a parameter,
we define its tame term to be equal to 0.
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2.3.12. Tame reduction. When K is of type 2 we will also want to consider an
informative reduction data associated to the tame term t of x. It will be an element
x̃tame that we will call the tame reduction of x. If x is not a parameter we set
x̃tame = 0. Otherwise, choose any a ∈ k with |a| = |x|p = |t|, consider the

element t′ = t/a, and set x̃tame = t̃′. Up to adding elements bp with |b| ≤ 1 and
multiplication by elements d ∈ k with |d| = 1, the element t/a depends only on

x, hence the tame reduction is well defined up to adding elements from K̃p and

multiplying by elements of k̃×.
In the special case when |t|p = |p| we have a canonical choice a = p. The

corresponding tame reduction will be called canonical tame reduction. It is well

defined up to adding elements from K̃p. In fact, we will only need this in the
special case when x is a mixed parameter and |x| = 1.

3. Differentials and reduction

3.1. The case of analytic fields. In Section 3.1 K is a one-dimensional analytic
k-field. The case of type 5 could be dealt with similarly, but would require more
work since some foundations were not developed in [Tem16] and [CTT16].

3.1.1. Completed modules of differentials. Following [Tem16, §4.1.1], we provide
the vector space ΩK/k with a natural Kähler seminorm ‖ ‖K/k,Ω and denote the

completion Ω̂K/k. For shortness, the differential d̂K/k : K → Ω̂K/k will be usually
denoted simply by d and the seminorm will be denoted by ‖ ||. By [CTT16, The-

orem 2.3.2], Ω̂K/k is one-dimensional. In addition, if t ∈ K is a tame parameter

then ‖dt‖ = rt. In particular, dt is a basis of Ω̂K/k.

3.1.2. Reduction. We will be mainly interested in the case when K is of type 2.
Then there exists a tame monomial parameter t with |t| = 1 and hence ‖dt‖ = 1.

In particular, dt generates the unit ball Ω̂⋄
K/k of Ω̂K/k and hence the natural map

h : Ω̂K◦/k◦ → Ω̂⋄
K/k is an isomorphism. Using the unit ball Ω̂K◦/k◦ , we define the

reduction of Ω̂K/k to be the K̃-vector space Ω̂⋄
K/k ⊗k◦ k̃. Since h is an isomorphism

this space is canonically isomorphic to ΩK̃/k̃ and we obtain the reduction map

Ω̂⋄
K/k → ΩK̃/k̃ that will be denoted ω 7→ ω̃. For any x ∈ K◦, the reduction of

d̂K/k(x) is dK̃/k̃(x̃).

3.1.3. p-seminorm versus Kähler seminorm. The Kähler seminorm can be also used
to compute the p-seminorm in the most important cases. This result will not be
used, but we add it for the sake of completeness.

Theorem 3.1.4. Assume that K is a one-dimensional analytic k-field and x ∈ K

is a parameter. Then |x|p = ‖d̂K/kx‖.

Proof. Find a presentation x = cp+ t as in Theorem 2.3.10, then dx = dt+pcp−1dc
and ‖dt‖ = rt. By Lemma 2.3.8 we have that rt = |t|p = |x|p. In addition, |px| ≥
|pcp| ≥ ‖pcp−1dc‖ because ‖dc‖ ≤ |c|. If |x|p > |px| then ‖dt‖ = |x|p > ‖pcp−1dc‖
and hence ‖dx‖ = ‖dt‖ = |x|p. Assume now that |x|p = |px|, and let us study
different types separately.

If K is of type 4 then ‖dc‖ = rc < |c| hence we still have that ‖dt‖ > ‖pcp−1dc‖
and the argument works. If K is of types 2 or 3 then by Theorem 2.3.10 we can
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assume that t is tame and monomial, and hence p-orthogonal by Lemma 2.3.8. If
K is of type 3 then |t| /∈ |K×|p. However, |p| ∈ |K×|p, and |x| ∈ |K×|p because
|x− cp| < |x|. This contradicts that |t| = |x|p = |px|. Finally, assume that K is of
type 2. Then |x|p = |t| ∈ |k×|, hence multiplying x by an appropriate element of

k we can achieve that |x|p = |t| = 1. Since t is p-orthogonal, t̃ /∈ |K̃p| and hence

dt̃ 6= 0. Setting b = cp−1/p we have that dx = dt+ bp−1db, and hence the reduction

is dx̃ = dt̃ + b̃p−1db̃. Zero is the only exact differential form of the form b̃p−1db̃,
hence dx̃ 6= 0 and we obtain that ‖dx‖ = 1 = |x|p, as required. �

3.1.5. Bivariant differentials. If L/K is a finite extension we consider the vector

space of bivariant differentials ωL/K := (Ω̂K)′ ⊗K Ω̂L and provide it with the norm

induced from the Kähler norms on Ω̂K and Ω̂L. The unit ball ω⋄
L/K of this norm

coincides with ωL◦/K◦ := (Ω̂K◦/k◦)′ ⊗K◦ Ω̂L◦/k◦ . Again, it is easy to compute the
reduction:

ω̃L/K := ω⋄
L/K ⊗k◦ k̃ = (ΩK̃/k̃)

′ ⊗K̃ ΩL̃/k̃ = ωL̃/K̃ .

3.1.6. The canonical bivariant form. Finally, we have a canonical element τL/K

corresponding to the map Ω̂K ⊗K L→ Ω̂L.

Theorem 3.1.7. Let L/K be a finite extension of one-dimensional analytic k-
fields. Then,

(i) ‖τL/K‖ = δL/K.

(ii) If K is of type 2, L/K is separable, and c ∈ k satisfies |c−1| = δL/K, then

c̃τL/K = (φ̃)′ ⊗ ψ̃ 6= 0, where φ ∈ Ω̂K/k satisfies ‖φ‖ = 1, and ψ ∈ Ω̂L is the image
of cφ.

Proof. Both sides in (i) vanish if the extension is inseparable, so assume that

L/K is separable. For any non-zero φ ∈ Ω̂K/k with image ψ1 ∈ Ω̂L/k, the ra-
tio ‖ψ1‖/‖φ‖ equals the same number r because the spaces are one-dimensional.
Clearly, ‖τL/K‖ = r. On the other hand, r = δL/K by [CTT16, Theorem 2.4.4], thus
proving (i). In addition, in (ii) we obtain that cτL/K = φ′ ⊗ ψ and ‖φ‖ = ‖ψ‖ = 1,
which implies the assertion. �

3.2. Kähler seminorms on curves. Following [Tem16, §6.1.1] we provide ΩX

with the Kähler seminorm ‖ ‖ = ‖ ‖X/k,Ω and denote its unit ball by Ω⋄
X , see also

[Tem16, Remark 6.1.6].

3.2.1. Pm functions. Recall that a k-analytic curve X possesses a canonical metric
structure, e.g. see [CTT16, §3.6.1]. As in [CTT16, §3.6.3], we say that a real-valued
function on a subset S ⊆ X is piecewise |k×|-monomial or |k×|-pm if its restrictions
onto intervals in S are so. For example, for any function f its norm |f | is a |k×|-pm
function.

3.2.2. Hom-seminorms. Seminorms on sheaves of OX -modules and basic opera-
tions on them are defined in [Tem16, Section 3]. We will also need a notion of
Hom-seminorm, but one should be careful with boundedness. If M,N are semi-
normed modules over a seminormed ring A then L = HomA(M,N) is provided with
a Hom-quasi-norm |φ|L = sup(|φ(m)|N/|m|M ) where m runs over elements m ∈M
with |m| 6= 0. This seminorm is finite if and only if φ is bounded, so | |L defines a

Hom-seminorm on the module Homb
A(M,N) of bounded homomorphisms.
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Assume now that F and G are seminormed OXG
-modules. We define the sheaf

of bounded homomorphisms Homb
OXG

(F ,G) by sheafifying the presheaf that maps

U to Homb
OXG

(U)(F(U),G(U)). The sheafification is not needed if X is compact.

This sheaf is provided with the Hom-seminorm obtained by sheafifying the Hom-
seminorms on the modules of sections.

3.2.3. Pm seminorms. Let F be a sheaf on XG and ‖ ‖ a seminorm on F . Any
section s ∈ F(U) determines the function ‖s‖ : U → R≥0 sending x ∈ U to ‖s‖x.
In general, these functions are only upper semicontinuous, but in many cases they
also satisfy additional properties. We say that the seminorm ‖ ‖ is |k×|-pm if ‖s‖
is |k×|-pm for any section s 6= 0.

Remark 3.2.4. (i) It is an interesting problem to develop a theory of |k×|-pm
seminorms for arbitrary k-analytic spaces using a notion of pm subspaces general-
izing pl subspaces of [Tem16, Section 7.2]. We do not pursue this here, and will
only prove a few very particular results we will need.

(ii) Kähler seminorms and seminorms obtained from them should certainly be
|k×|-pm, in particular, see [Tem16, Theorem 8.1.6]. We will see that for curves this
is indeed so, and the arguments are much simpler than in [Tem16, Theorem 8.1.6].

Lemma 3.2.5. Let X be a nice k-analytic curve, F an invertible OXG
-module,

and ‖ ‖ a seminorm on F . Then ‖ ‖ is |k×|-pm if and only if for any interval
I ⊂ X with the induced |k×|-pm structure, the restriction of the unit ball F⋄|I is
an invertible O◦

XG
|I-module.

Proof. Working locally on X we can assume that s ∈ F is a generator. If ‖ ‖ is |k×|-
pm then the restriction of ‖s‖ onto I is |k×|-pm, hence there exists an admissible
coveringX = ∪Xi with functions fi ∈ OXG

(Xi) such that ‖s‖ = |fi| on Ii = Xi∩I.
Therefore ‖f−1

i s‖ = 1 on Ii and it follows that f−1
i s is anO◦

XG
|Ii -generator of F

⋄|Ii .
Thus, F⋄|I is invertible. The inverse implication is proved similarly, and we omit
the details. �

The lemma implies that the Kähler seminorm on ΩX is |k×|-pm because on any
annulus A with skeleton l and coordinate t, the sheaf Ω⋄

A|l is generated by dt
t , e.g.

see [CTT16, Theorem 4.3.3(ii)].

Corollary 3.2.6. Basic operations on seminorms on invertible sheaves, including
tensor products, duals, and pullbacks, preserve the property of being a |k×|-pm semi-
norm and respect unit balls. For example, given |k×|-pm seminorms on F and G, the
Hom-seminorm on H = Homb

OXG
(F ,G) is |k×|-pm, and H⋄ = HomO◦

XG
(F⋄,G⋄).

3.2.7. The dualizing sheaf. We do not develop any duality theory. In an ad hoc
manner, we just call

ωf := HomOYG
(f∗ΩXG

,ΩYG
) = (f∗ΩXG

)′ ⊗OYG
ΩYG

the dualizing sheaf of a finite morphism f : Y → X of nice k-analytic curves. By
τf ∈ Γ(ωf ) we denote the global bivariant form corresponding to the natural map
ψYG/XG/k : f

∗ΩXG
→ ΩYG

. The Kähler seminorms on ΩXG
and ΩYG

induce a
Hom-seminorm ‖ ‖ω on ωf .

Lemma 3.2.8. If f is generically étale then ωf = Homb
OYG

(f∗ΩXG
,ΩYG

).
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Proof. By the assumption on f , we have that τ 6= 0 and hence τ spans the invertible
module ωf . It remains to show that τ is bounded. In fact, one even has that
‖τf‖ω ≤ 1 because the map ψYG/XG/k is contracting. �

The following remark will not be used, so we only indicate its justification.

Remark 3.2.9. One can show that τ always spans the module of bounded bivariant
forms. So, if f is not generically étale then Homb

OYG
(f∗ΩXG

,ΩYG
) = 0. Let us

illustrate this with the simplest example when char(k) > 0, Y = M(k{t}) and
X = M(k{tp}). It follows from [Tem16, §6.2.1] that the module Γ(Ω⋄

Y ) consists of
all elements hdY t with h ∈ k{t} satisfying |h|y ≤ r(y)−1 for y ∈ Y . In particular,
h may have at most simple poles at the closed points. By the same computation,
Γ(f∗Ω⋄

Y ) consists of all elements hdXt
p with h ∈ k{t} satisfying |h|y ≤ r(y)−p.

Clearly, the second module admits no non-zero maps to the first one. Loosely
speaking, the sheaf Ω⋄

Y is huge, but f∗Ω⋄
XG

is even much larger and cannot be
embedded in it.

Combining Corollary 3.2.6 and Lemma 3.2.8 we obtain

Corollary 3.2.10. Let f be a generically étale morphism of nice k-analytic curves.
Then the seminorm ‖ ‖ω on ωf is |k×|-pm and its unit ball can be expressed as

ω⋄
f = HomO◦

YG
(f∗(Ω⋄

XG
),Ω⋄

YG
).

Remark 3.2.11. This time we do not have a tensor description of the unit ball.
The reason is that the bounded dual of ΩXG

vanishes. Again, this happens because
Ω⋄

XG
is much larger than O◦

XG
and cannot be embedded into it.

3.2.12. Completed fibers. For any point y ∈ Y , the seminorm ‖ ‖ω induces semi-
norms on the stalk ωf,y and the fiber ωf (y) = ωf,y ⊗ κG(y). We claim that they
are compatible with the seminorm on the dualizing module of H(y)/H(x).

Lemma 3.2.13. Let f be a generically étale morphism of nice k-analytic curves
and y ∈ Y a point. Then the maps ωf,y → ωf (y) → ωH(y)/H(x) are isometries. In

particular, the completed fiber ω̂f (y) coincides with ωH(y)/H(x).

Proof. Analogous results for Kähler seminorms on ΩX and ΩY were proved in
[Tem16, Theorem 6.1.8 and Corollary 6.1.9]. Applying the Hom functor we obtain
the assertion. �

Notice that the claim holds for points of type 1 as well. In this case, the semi-

norms on ωf,y and ωf (y) are zero, and hence ω̂f (y) equals 0 = ωk/k.

3.2.14. A new interpretation of the different. As an application of the above theory
we obtain a very conceptual interpretation of δf in terms of the bivariant form τf .

Theorem 3.2.15. Let f : Y → X be a generically étale morphism of nice k-analytic
curves. Then δf = ‖τf‖.

Proof. Both functions are pm, hence it suffices to compare them at a point y ∈ Y hyp.
By Lemma 3.2.13, we can compute ‖τf‖y on the level of completed residue fields,
that is, ‖τf‖y = ‖τH(y)/H(x)‖. By Theorem 3.1.7(i), the latter number equals
δH(y)/H(x), which coincides with δf (y) by the definition of δf . �
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3.2.16. Computation of the different. Finally, we provide a convenient explicit for-
mula for δf , which is an analogue of Lemma 2.1.12(i). By f∗(‖φ‖X) = ‖φ‖X ◦ f we
denote the pullback of the real-valued function ‖φ‖X to Y .

Lemma 3.2.17. Let f : Y → X be a generically étale morphism of nice k-analytic
curves, and let φ ∈ ΩX(X) be any non-zero differential form on X. Then δf =
‖f∗(φ)‖Y /f∗(‖φ‖X).

Proof. It suffices to check this at a point y ∈ Y hyp. Set x = f(y) and ψ = f∗(φ),
then δH(y)/H(x) = ‖ψ(y)‖Ω̂,H(y)/‖φ(x)‖Ω̂,H(x) by [CTT16, Theorem 2.4.4]. �

3.3. Reductions.

3.3.1. General framework. Let XG denote the topological space realizing the G-
topology of X , see [CTT16, §3.1.2]. For any x ∈ X of type 2 the curve Cx naturally
embeds into XG. Given a seminormed OXG

-module F , the reduction of FCx
:=

F|Cx
is defined to be F̃Cx

:= F⋄
Cx

⊗k◦ k̃. Its stalk at the generic point x will be

denoted F̃x. As customary, the image of a section s under reduction will be denoted

s̃ ∈ F̃x. These notions are especially useful for |k×|-pm seminorms because of the
following lemma.

Lemma 3.3.2. Let X be a nice curve and (F , ‖ ‖) an invertible OX-module pro-

vided with a |k×|-pm seminorm. Then F̃Cx
is a lattice in F̃x for any point x ∈ X of

type 2, and hence induces an order ordv for any closed point v ∈ Cx. Furthermore,
if s is a section of F on a G-neighborhood of v, then ‖s‖x = |c−1| for some c ∈ k

and the reduction c̃s ∈ F̃x can be used to compute the slopes of ‖s‖ via

slopev(‖s‖) = −ordv(c̃s).

Proof. We will prove both claims together. In the first one, no s is given, so we
simply fix a non-zero s. By definition, ‖s‖x ∈ |k×| hence a required c ∈ k exists.
Multiplying s by c−1 does not affect n = slopev(‖s‖), hence we can assume that

‖s‖ = 1. Fix tv ∈ O◦
X,x such that t̃v is a uniformizer at v. Then s′ = t−n

v s has slope

0 at v. In particular, if I = [x, x′] is a sufficiently small interval in the direction
of v then ‖s′‖ = 1 along I. It follows that s′ generates F⋄

v and hence s̃′ generates

F̃Cx,v. In particular, F̃Cx,v is invertible and hence defines an order ordv. Moreover,

since s̃′ = t̃−n
v s̃, we obtain that ordv(s̃) = −n. �

3.3.3. Reduction of the dualizing sheaf. The above lemma in fact reduces to a tau-
tological unraveling of definitions. An informative input is obtained by computing
reductions of sheaves one studies. In our case, this is done as follows:

Theorem 3.3.4. Assume that Y is a nice k-analytic curve and y ∈ Y is a point

of type 2. Then Ω̃YG,Cy
= Ωlog

Cy/k̃
. Furthermore, if f : Y → X is a generically étale

finite morphism of nice curves then ω̃f,Cy
= ωlog

f̃y
.

Proof. The first claim was proved in [CTT16, Lemma 4.5.2]. By Corollary 3.2.10
we obtain that

ω̃f,Cy
= HomO◦

YG,Cy
(f∗(Ω⋄

XG,Cy
),Ω⋄

YG,Cy
)⊗k◦ k̃ = HomOCy

(f̃∗
y (Ω

log
Cx

),Ωlog
Cy

) = ωlog

f̃y
.

�
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As a corollary we can describe behaviour of slopes of the Kähler seminorm of
differential forms at points of type 2.

Corollary 3.3.5. Let X be a nice k-analytic curve, x ∈ X a point of type 2, and
φ a differential form defined in a neighborhood of x. Then mv = slopev(‖φ‖) + 1
equals zero for almost any v ∈ Cx, and the divisor O(−

∑
v∈Cx

mvv) is rationally
equivalent to ΩCx/k̃

. In particular, if x is an inner point then
∑

v∈Cx
mv = 2−2gx.

Proof. Choose c ∈ k with |c| = ‖φ‖x and set ψ = c̃−1φ ∈ Ω
H̃(x)/k̃

. By Lemma 3.3.2,

1−mv is the order of ψ at v with respect to the reduction of ΩXG,Cx
at x, which

is Ωlog

Cx/k̃
by Theorem 3.3.4. Thus, mv = 1 − logordv(ψ) = −ordv(ψ) is the usual

differential order of ψ. The assertion follows. �

Absolutely in the same way one describes seminorms of bivariant forms, so we
formulate the result and skip the proof. By ny we denote the multiplicity of f at
y, see §1.3.1.

Corollary 3.3.6. Let f : Y → X be a generically étale morphism of nice k-analytic
curves, y ∈ Y a point of type 2, and φ ∈ ωf (U) a bivariant form defined in a
neighborhood of y. Then mv = slopev(‖φ‖) + 1−nv equals zero for almost any v ∈
Cy, and the divisor O(−

∑
v∈Cy

mvv) is rationally equivalent to ωf̃y
. In particular,

if y is an inner point and x = f(y), then
∑

v∈Cy
mv = 2− 2gy − ny(2− 2gx).

Remark 3.3.7. Theorem 3.2.15 and Corollary 3.3.6 immediately imply the local
RH formula in Theorem A.2.1(ii). Moreover, if gy > 0 then Pic0(Cy) is non-trivial
and this imposes a further restriction on the slopes. In fact, we see that the slopes
of δf = ‖τ‖f are controlled by a finer invariant, the reduction of τf . On the other
hand, so far we have not obtained a new explanation of some other properties of
the different, including the restrictions on its slopes from Theorem A.1.1(iii). We
will see in Remark 3.4.9 that they are related to the fact that the reduction of τf
is a meromorphic bivariant form of a rather special type.

3.4. Reduction of the different. Our next goal is to study reduction of τf .

3.4.1. Scaled reduction. For a point y ∈ Y of type 2, take c ∈ k with |c| = δf (y)

and consider the meromorphic bivariant form τ̃f,y = c̃−1τf on Cy. We call τ̃f,y the

scaled reduction of τf at y; it is defined up to multiplying by a constant a ∈ k̃×.
The notation using tilde is slightly abusing but this will not lead to any confusion.
Let us summarize what we know about τ̃f,y so far.

Lemma 3.4.2. With the above notation
(i) slopev(δf ) = −logordv(τ̃f,y) = −ordv(τ̃f,y) + nv − 1,
(ii) τ̃f,y = τ̃H(y)/H(x),

(iii) τ̃f,y = (φ̃)′ ⊗ ψ̃ ∈ (f̃∗
yΩH̃(x)/k̃

)′ ⊗ Ω
H̃(y)/k̃

, where φ ∈ Ω̂H(x) is any form

satisfying ‖φ‖ = 1, and ψ ∈ Ω̂H(y) is the pullback of cφ, where c ∈ k is such that

|c−1| = δf (y).

Proof. Indeed, (i) follows from Theorem 3.3.4 and Lemma 3.3.2, (ii) follows from
Lemma 3.2.13, and (iii) follows from (ii) and Theorem 3.1.7(ii). �
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3.4.3. The tame case. Now, let us compute τ̃f,y more specifically. In the tame case,
the trace form is compatible with the reduction:

Lemma 3.4.4. Keep the above notation. If f is residually tame at y then δf (y) = 1
and τ̃f,y = τf̃y .

Proof. Since δf (y) = 1 by Theorem A.1.1(ii), the reduction does not involve any
rescaling. By Lemma 3.4.2(iii), locally at y we can present τf as φ−1⊗f∗(φ), where

‖φ‖x = 1. Hence τ̃f,y = φ̃−1 ⊗ f̃∗
y (φ̃) is the trace form τf̃y of the generically étale

morphism f̃y. �

Note that the lemma conceptually explains why the assertion of TheoremA.2.1(2)

reduces to the RH formula for f̃y in the residually tame case.

3.4.5. The degree-p case. Next we study the simplest residually wild case, the case
of degree p. In view of Lemma 3.4.2 it suffices to study the situation with one-
dimensional fields.

Theorem 3.4.6. Let L/K be a separable wildly ramified extension of degree p of
one-dimensional analytic k-fields of type 2. Choose a tame monomial parameter

z ∈ K such that |z| = 1 and set w̃ = z̃1/p ∈ H̃(y). Let zL denote z viewed as an

element of L, and let t̃ be the tame reduction of zL. Moreover, if zL is a mixed
parameter then choose t̃ to be the canonical tame reduction. Then τ̃L/K is equal to:

(i) (dz̃)′ ⊗ dt̃ if z is a pure parameter in H(y),

(ii) (dz̃)′ ⊗ (dt̃+ w̃p−1dw̃) otherwise.

In addition, case (ii) takes place if and only if δL/K = |p|, in particular, k is of
mixed characteristic.

Proof. Fix c ∈ k× such that |c| = δ−1
L/K . Furthermore, take c = p−1 if δf(y) = |p|.

We will prove the theorem by applying Lemma 3.4.2(iii) to the form φ = dz. Since

z is a tame monomial parameter at x we have that ‖φ‖x = 1 and 0 6= φ̃ = dz̃. Let

ψ ∈ Ω̂L be the image of cφ, then in view of Lemma 3.4.2(iii) we should only prove

that ψ̃ equals dt̃ or dt̃+ w̃p−1dw̃, respectively.
Fix a presentation zL = wp + t1 in L, where t1 is the tame term if zL is a

parameter, and |t1| < |p| otherwise. This fits the notation of the theorem since z̃1/p

is the reduction of w. Note that ψ = cdzL = cpwp−1dw + cdt1 and ‖dt1‖y = |t1|y.

Since z̃ /∈ H̃(x)
p
we have that w̃ /∈ H̃(y)

p
and hence w is a tame monomial parameter

at y. In particular, ‖dw‖y = |w|y = 1 and hence ‖pwp−1dw‖y = |p|. If z is a pure
parameter then |t1|y > |p| and hence |c−1| = δf (y) = |t1|y > |p|. Setting t = ct1 we

obtain that ψ̃ = c̃dt1 = d̃t = dt̃, and clearly t̃ is a tame reduction of zL.
If z is not a pure parameter then |t1|y ≤ |p| and hence δf(y) = ‖c−1ψ‖y ≤ |p|. By

Theorem A.1.1(ii) we must have δf (y) = |p|. Thus c = p−1 and ψ = wp−1dw + dt

where t = p−1t1. In particular, ψ̃ = dt̃ + w̃p−1dw̃ and t̃ is the canonical tame
reduction of zL in this case. �

3.4.7. Mixed bivariant forms. Theorem 3.4.6 motivates the following definition. Let
F/E be a finite extension of fields of characteristic p and assume that [E : Ep] = 1.
In particular, ΩE and ΩF are one-dimensional. A bivariant form (dx)′ ⊗ dt ∈
ωF/E = (ΩE)

′ ⊗E ΩF will be called exact. If E = F p then by a mixed bivariant
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form we mean any φ ∈ ωF/E of the form (dEw
p)′ ⊗ (φ0 + wp−1dFw), where φ0 is

exact and w ∈ F \ E. We have proved in Theorem 3.4.6 that the reduction of a
trace form is always exact or mixed. The converse also holds:

Theorem 3.4.8. Let K be a one-dimensional k-field of type 2 and let F = K̃1/p

be the purely inseparable extension of K̃ of degree p. Let φ ∈ ωF/K̃ is a non-zero

bivariant form for F/K̃, and let δ0 ∈ |k×|. Assume that either |p| < δ0 < 1 and φ
is exact, or δ0 = |p| and φ is mixed. Then there exists a wildly ramified extension

L/K of degree p such that δL/K = δ0 and φ = τ̃L/K under the identification L̃ = F .

Proof. Fix any field L of type 2 with L̃ = F . For example, one can take L to be
any wildly ramified extension of K of degree p. (In fact, it is easy to see that the

k-isomorphism class of L is determined by L̃, so the choice is not essential here.)
We will construct an embedding K →֒ L satisfying assertions of the lemma.

By definition, either φ = (dz̃)′⊗dt̃ or φ = (dz̃)′⊗(dt̃+w̃p−1dw̃), where z̃ ∈ K̃\K̃p,

t̃ ∈ L̃ \ L̃p, and w̃ = z̃1/p. Choose liftings z ∈ K and t, w ∈ L, and note that they
are tame monomial parameters by Lemma 2.3.8. In particular, K is tame, and

hence unramified, over K0 = k̂(z).
Fix c ∈ k× such that |c| = δ0 and c = p if δ0 = |p|, and consider the element

v = wp + ct. Since ṽ = w̃p is transcendental over k̃, there is an isomorphism

K0 = k̂(v) sending z to v, and we obtain an embedding K0 →֒ L whose reduction

is the embedding K̃0 = k̃(z̃) →֒ L̃. Since K/K0 is unramified and K̃ is a separable

subextension of L̃/K̃0, the embedding K0 →֒ L factors through an embedding
i : K →֒ L. If we identify K with the image of i, then z = wp + ct, and by
Theorem 3.4.6 we obtain that τ̃L/K = φ, as required. �

Remark 3.4.9. (i) Mixed forms are combined from an exact part and a part
λ = (dEw

p)′⊗wp−1dFw, which reveals a logarithmic behaviour. It can be identified

with the section (dww )⊗(1−p) of Ω
⊗(1−p)
F . In particular, all its zeros are of order p−1,

and all poles are of order divisible by p− 1.
(ii) Assume that nf (y) = p. Since any exact/mixed form can be obtained as the

reduction of τf,y, it is possible to deduce all properties of the different from the
special form of τf,y. For example, let us explain the properties from Remark A.1.3.
If |p| < |δf (y)| < 1 then τ̃f,y is exact. It follows that ordv τ̃f,y /∈ −1 + pZ for any
v ∈ Cy, hence slopevδf /∈ pZ by Lemma 3.4.2(i). If δf (y) = |p| then φ = φ0 + λ is
mixed, and one can check that its order is bounded by p− 1 (in the extreme case
the zero comes from λ and φ0 vanishes to a higher order). In particular, the slopes
of δf at y are non-negative, and hence |p| is the minimal possible value of δf .

4. Étale annular p-covers

In this section we study wild covers of annuli of degree p.

4.1. Annular covers.

4.1.1. Annuli, skeletons and coordinates. Let Y = M(A) be a closed annulus of
exponential modulus r ∈ (0, 1). The boundary ∂(Y ) = {a, b} consists of two points
and the interval lY = [a, b] is the minimal skeleton of Y . We will call l = lY the
skeleton of Y . An ordering (a, b) of the boundary will be called an orientation on
Y . Orienting Y is equivalent to orienting the skeleton. For any real-valued function
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φ : Y → R we will denote by φl : l → R its restriction on l. For example, any f ∈ A
induces a function |f |l : l → R≥0.

By a monic coordinate on Y we mean any element y ∈ A inducing on isomor-
phism of Y onto the standard annulus A(r, 1) of radii r ≤ 1 and 1. Equivalently,
A ≃ k{y, ry−1}. Any such coordinate induces an isomorphism of |k×|-pm spaces
l ≃ [r, 1]. For an oriented annulus Y we will only consider monic coordinates
inducing an oriented isomorphism l ≃ [r, 1].

For completeness, we will also allow the case of exponential modulus 1. ThenA =
k{y, y−1}, the boundary consists of a single point q, and orienting Y is equivalent

to ordering the two infinite points of Cq = Spec(k̃[ỹ±1]) = Gm,k̃.

4.1.2. Units and domination. Given elements u, v ∈ A with u a unit, we say that u
strictly dominates v and write v ≺ u if |v/u|A < 1, where | |A denotes the spectral
norm on A. This happens if and only if |v/u|q < 1 for any q ∈ Y if and only if
|v/u|q < 1 for any q ∈ ∂(Y ). In particular, v ≺ u if and only if |v|l < |u|l as
functions on l.

Fix a monic coordinate y. It is easy to see that an element u is a unit if and only
if the series u =

∑
i∈Z aiy

i contains a dominant term any
n, i.e. a term that strictly

dominates all other terms. (This corrects the inaccurate formulation in [CTT16,
Lemma 3.5.8(i)], where the spectral norm was used instead of domination.) In the
sequel, we will need the following computation:

Lemma 4.1.3. Assume that u, z ∈ A are such that u is a unit strictly dominating
z, and i is an integer. Then (u+ z)i − ui = ui−1zQ, where |Q|A ≤ 1.

Proof. Dividing by ui we can assume that u = 1. It suffices to show that zQ =
(1+ z)i− 1 is a linear combination with integer coefficients of elements zl for l ≥ 1.
If i ≥ 0 this is obvious, and for i < 0 the claim follows by expanding the right hand
side of (1 + z)i = (1− z + z2 − . . . )−i. �

4.1.4. Annular covers. By an annular m-cover we mean a finite morphism f : Y →
X of degree m between annuli. Using monic coordinates y and x on Y and X it
is described by a series x = ϕ(y) =

∑
i∈Z ciy

i, that will be called a presentation of

f . Since x is a unit, there is a dominant term cdy
d. In particular, |f |l = |cdyd|l is

a monomial function of slope d on l, and r(X) = r(Y )m. Moreover, |cd| = 1 and
replacing x by c−1

d x we can assume that cd = 1.
Furthermore, the absolute value of d equalsm, and the sign of d indicates whether

f is compatible with the orientations induced by the coordinates. In particular,
choosing compatible orientations we can and always will assume that d = m. A
presentation with dominant term ym will be called a monic presentation.

4.1.5. Kummer and binomial covers. Let X = M(k{x, rx−1}) be a closed annulus
with a fixed monic coordinate x, and let g : Y → X be a residually tame annular
covering. Then m := deg(g) /∈ pZ and, using that the radius of convergence of
(1 + t)1/m is 1, one easily obtains that y = x1/m is a monic coordinate on Y . In
particular, Y is X-isomorphic to the Kummer covering of degreem, i.e. the annular
covering M(k{y, r

1
m y−1}) → X .1

1In fact, any tame étale covering of X is Kummer by [Ber93, Theorem 6.3.5]. The difficult
part is to prove that the cover is annular.
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Kummer covers are given by monomials. By a standard binomial m-cover we
mean a cover A(r, 1) → A(rm, 1) given by y 7→ ym + cny

n. A binomial cover is an
annular cover f : Y → X isomorphic to a standard one. In other words, f admits
a monic presentation of the form ϕ(y) = ym + cny

n.

Remark 4.1.6. (i) An isomorphism of morphisms is given by compatible isomor-
phisms between targets and sources. In our situation, this amounts to choosing
coordinates both on Y and X . Our main result about étale annular p-covers will
be that it is either Kummer or binomial.

(ii) Unlike the tame case, it is crucial to play with both coordinates. In particular,
the above result is wrong once a coordinate onX is fixed. The set ofX-isomorphism
classes of étale annular p-covers of X is huge.

4.1.7. Étale annular covers and the different. Let f : Y → X be an annularm-cover
with a monic presentation x = ϕ(y) =

∑
i∈Z ciy

i. Then f is étale if and only if

the derivative ϕ′(y) =
∑

i∈Z iciy
i−1 is a unit, that is, there is a dominant term

ncny
n−1. In the tame case, m /∈ pZ and one automatically has that n = m.

By [CTT16, Theorem 4.1.6], the restriction δl of δ onto the skeleton l = lY
coincides with the restriction of |yx−1ϕ′| onto l. Since |x| = |ym| on l we obtain
that δl coincides with the norm of the unit y1−mϕ′(y) =

∑
i∈Z iciy

i−m and hence

coincides with the norm of the dominant term ncny
n−m. In particular, n −m is

the slope of the different on l.

4.2. Metrization of Aut(A(r, 1)).

4.2.1. The group of automorphisms. Consider a standard annulus A(r, 1) = M(A),
where A = k{y, ry−1}, and let G = G(r) be its group of automorphisms. Once
the coordinate is fixed, we can identify elements φ ∈ G with their presentations
ϕ(y), and we will not distinguish them. This identifies G with the set of series
φ =

∑
i∈Z aiy

i possessing a dominant term any
n with n ∈ {±1} and |anyn|A = 1

(i.e. either n = 1, |a1| = 1 or n = −1, |a−1| = r), and the operation corresponds to
the composition.

4.2.2. Composition. In fact, one can compose automorphisms φ with arbitrary ele-
ments g =

∑
i∈Z giy

i. Namely, g(φ(y)) =
∑

i giφ(y)
i is a well defined element of A.

Even more generally, the composition g ◦ h is defined when h ∈ A has a dominant
term hny

n with n 6= 0 and |hnyn|A = 1, and hence can be viewed as a morphism
A(r, 1) → A(r|n|, 1) = M(B) for B = k{x, r|n|x−1}, and g(x) ∈ B is a function on
A(r|n|, 1).

4.2.3. The metric. The group G+ of orientation preserving automorphisms is given
by n = 1. On this group we introduce a metric by setting ‖φ‖ = |y−1φ − 1|A.
Note that φ = a1y + λy, where a1 ∈ k, |a1| = 1 and |λ|A < 1, and the value of
‖φ‖ ∈ [0, 1] measures how far φ is from the identity automorphism y. The subset
of G+ defined by ‖φ‖ < 1 will be denoted G◦◦, it is characterized by the inequality
|a1 − 1| < 1. Finally, we naturally extend the metric to G by setting ‖φ‖ = 1 for
any φ ∈ G \G+.

Lemma 4.2.4. (i) Sending φ to α(φ) := y−1φ−1 establishes an isometric bijection
G◦◦ → A◦◦, which is an approximation to a homomorphism in the following sense:
for any φ, ψ ∈ G◦◦ one has that

|α(φ ◦ ψ)− α(φ) − α(ψ)|A ≤ |α(φ)|A · |α(ψ)|A.
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Moreover, the same inequality holds for any φ, ψ ∈ G+.
(ii) Let φ ∈ G◦◦, and assume that h ∈ A and u ∈ A× are such that h ≺ u. Then

|u−1(h ◦ φ− h)|A ≤ |u−1h|A · ‖φ‖.

Proof. (i) Clearly,G◦◦ → A◦◦ is a bijection, and it is an isometry by the definition of
‖ ‖. Assume now that φ, ψ ∈ G+, and let α(φ) =

∑
i∈Z aiy

i and α(ψ) =
∑

i∈Z biy
i.

Substituting ψ(y) = y +
∑
bjy

j+1 into φ(y) = y +
∑

i∈Z aiy
i+1 we obtain that

φ(ψ(y)) = ψ(y) +
∑

i aiψ(y)
i+1 and so

α(φ◦ψ)−α(φ)−α(ψ) =
∑

i∈Z

aiy
−1ψ(y)i+1−

∑

i∈Z

aiy
i = aiy

−1
∑

i∈Z

(
ψ(y)i+1 − yi+1

)
.

We claim that any term of the right hand side sum satisfies the asserted bound.
Indeed, by Lemma 4.1.3 we have that ψ(y)i+1 − yi+1 = yi+1α(ψ)Qi where Qi

satisfies |Qi|A ≤ 1. Hence
∣∣aiy−1(ψ(y)i+1 − yi+1)

∣∣
A
≤ |aiy

i|A · |α(ψ)|A · |Qi|A ≤ |α(φ)|A · |α(ψ)|A.

(ii) If ayn is the dominant term of u then u = aynw, where w is a unit such
that |w|A = |w−1|A = 1. Therefore we can replace u by yn in the assertion. Let
h =

∑
i ciy

i. Since |y−nh|A = maxi |ciyi−n|A, it suffices to prove that

|y−nci(φ
i − yi)|A ≤ |ciy

i−n|A · ‖φ‖

for each i. We have that φ = y(1 + v(y)) with |v|A = ‖φ‖. Hence

|y−nci(φ
i − yi)|A = |ciy

i−n((1 + v)i − 1)|A ≤ |ciy
i−n|A · |(1 + v)i − 1|A,

and it remains to note that |(1 + v)i − 1|A ≤ |v|A by Lemma 4.1.3. �

The lemma implies the following result.

Corollary 4.2.5. The function ‖ ‖ makes G a complete non-archimedean group
with an open subgroup G◦◦:

(i) ‖ ‖ is symmetric: ‖φ‖ = ‖φ−1‖,
(ii) ‖ ‖ is non-archimedean: ‖φ ◦ ψ‖ ≤ max(‖φ‖, ‖ψ‖).

Proof. Completeness is clear from Lemma 4.2.4, and if G is non-archimedean, then
clearly G◦◦ is an open subgroup.

(i) It suffices to show that ‖φ−1‖ ≤ ‖φ‖ for φ ∈ G+. Applying Lemma 4.2.4(i)
to φ and ψ = φ−1 we obtain that

|α(φ) + α(φ−1)|A ≤ |α(φ)|A · |α(φ−1)|A ≤ |α(φ)|A.

This implies that ‖φ−1‖ = |α(φ−1)|A ≤ |α(φ)|A = ‖φ‖, as required.
(ii) This is deduced from Lemma 4.2.4(i) in a similar fashion. �

The following remark will not be used, so the reader can skip it.

Remark 4.2.6. (i) It is easy to see that G◦◦ is normal in G and mapping φ =∑
i ciy

i to c̃1 induces an isomorphism G+/G
◦◦ ∼
−→k̃×.

(ii) We do not try to make this precise, but G◦◦ behaves as the maximal subgroup
of G with a pro-unipotent model over k◦.
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4.3. Classification of étale annular p-covers.

Notation 4.3.1. We now restrict to the case of p-covers. So, until the end of
Section 4, f : Y → X denotes an annular p-cover. We orient Y so that the monomial
function δ|l is non-decreasing, and orient X compatibly. By l = [r, 1] we denote the
skeleton of Y . By x = ϕ(y) =

∑
i∈Z ciy

i we will always denote a monic presentation

of f , and then ncny
n−1 will denote the dominant term of ϕ′(y).

Lemma 4.3.2. Keep the above notation. Then n ≥ p and one of the following
possibilities holds:

(1) n = p and k is of mixed characteristic.
(2) (n, p) = 1 and 1 > |cnyn−p|l > |p|.

Proof. By §4.1.7 the non-decreasing function δl equals |ncnyn−p|. Hence n ≥ p.
Clearly, the free term p of y1−pϕ′(y) dominates any term iciy

i−p with i ∈ pZ.
Therefore, either (1) holds or (n, p) = 1. In the second case, yp ≻ cny

n and
cny

n−1 ≻ pyp−1, hence 1 > |cnyn−p|l > |p|. �

4.3.3. The different. For brevity, a monomial function h = |cts| on an interval I
will be called relevant if one of the following two possibilities holds:

(1) h(I) = |p| > 0,
(2) h is increasing, h(I) ⊂ (|p|, 1), and (s, p) = 1.

Lemma 4.3.4. With Notation 4.3.1, δl is a relevant monomial on l.

Proof. We observed in §4.1.7 that δl = |ncnyn−p|. Hence the assertion follows from
Lemma 4.3.2. �

4.3.5. Dominant tame term. We will later see that cases (1) and (2) in Lemma 4.3.2
correspond to Kummer and binomial covers, respectively. In case (2), we call cny

n

the dominant tame term of ϕ. It strictly dominates any other term ciy
i with

(i, p) = 1. In case (1), the dominant tame term is zero by definition. In this case,
pyp strictly dominates any term ciy

i with (i, p) = 1.
In view of the following lemma, by a dominant tame term of f we mean any

monomial of the form ccny
n with c ∈ k and |c| = 1.

Lemma 4.3.6. Let f : Y → X and ϕ(y) be as in Notation 4.3.1, and let t be the
dominant tame term of ϕ. Then,

(i) Any other monic presentations of f has a dominant tame term of the form
ct, where c ∈ k and |c| = 1.

(ii) Conversely, for any c ∈ k with |c| = 1 there exists a presentation whose
dominant tame term is ct.

Proof. The case δl = |p| is obvious. In the sequel we assume that δl > |p|, hence
the dominant tame terms are non-zero. Then the presentation in (ii) is obtained
by the coordinate change x′ = cp/(n−p)x and y′ = c1/(n−p)y.

Let us prove (i). Note that δl is an invariant of f . Writing t = cny
n we see that

δl = |cnyn−p| hence |cn| is determined by f , and n is determined by f when r < 1. If
r = 1 then a more refined argument is needed. For example, ∂(Y ) = {q} is a single

point and Cq = Spec(k̃[ỹ±1]). A direct computation shows that τ̃f,y = (dỹp)′⊗dỹn,
and this easily implies that n is an invariant of f . �
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4.3.7. The main theorem. The following result completely classifies isomorphism
classes of étale annular p-covers. Its main part is that any such cover is either
Kummer or binomial.

Theorem 4.3.8. Assume that f : Y → X is an étale annular p-cover. Then f
admits a presentation x = yp+t, where t is a dominant tame term of f . Conversely,
any Kummer or binomial presentation of f is of this form.

The proof of this theorem requires some computations and will occupy Sec-
tion 4.4. In view of 4.3.5 we immediately obtain the following

Corollary 4.3.9. Fix r ∈ |k×| with r < 1 and consider the set Cr of isomorphism
classes of étale annular p-covers f : Y → X such that r is the exponential modulus
of Y . Then the correspondence f 7→ δf |l induces a bijection of Cr onto the set of
relevant monomials on l = [r, 1].

4.4. Proof of Theorem 4.3.8.

4.4.1. The general line. In view or Lemma 4.3.6, it suffices to show that f is either
Kummer or binomial. Let X = M(B) and Y = M(A). Fix an initial monic presen-
tation x = ϕ0(y) of f . Our aim is to change both coordinates making the presen-
tation binomial, but it will be convenient to fix the isomorphisms B = k{x, rpx−1}
and A = k{y, ry−1} and identify the automorphisms of these algebras with power
series. In this language we should find automorphisms h(x) ∈ B and g(y) ∈ A
of B and A, respectively, so that the new presentation ϕ = h ◦ ϕ0 ◦ g is of the
form yp + cyn. We will construct h and g via a converging series of iterations,
g = g0 ◦ g1 ◦ . . . and h = · · · ◦h1 ◦h0 such that gi and hi tend to the identities. The
product will then converge by Corollary 4.2.5.

4.4.2. Two-term decompositions. Let ϕ =
∑

i∈Z ciy
i be a monic presentation of

f with dominant tame term t. By a two-term decomposition of ϕ we mean a
decomposition ϕ(y) = ψ(yp) + λ(y), where ψ(yp) =

∑
i∈Z aiy

pi and the following
condition holds: (1) if t = 0 then λ ≺ pyp, (2) if t = cny

n 6= 0 then t is the
dominant term of λ. By §4.3.5, any presentation possesses the natural two-term
decomposition obtained by separating the terms with i divisible and non-divisible
by p. However, it will be convenient to use other decompositions too. We say that
the decomposition is simple if ψ(yp) = yp.

Lemma 4.4.3. For any element α(y) ∈ A there exists a decomposition α(y)p =
α1(y

p) + pα2(y) such that |α1(y
p)|A ≤ |α(y)|pA and |α2(y)|A ≤ |α(y)|pA.

Proof. If α =
∑

i∈Z ciy
i then one can take α1 =

∑
i∈Z c

p
i y

pi. �

4.4.4. Estimating the error. Viewing ψ and λ as elements of B and A, respectively,
set

sp = sp(ψ) := |x−1ψ(x)− 1|B = |y−pψ(yp)− 1|A.

In addition, set s = s(λ) := |p−1y−pλ|A in case (1), and s = s(λ) := |t−1λ− 1|A in
case (2). Note that s < 1 and sp < 1 for any two-term decomposition of a monic
presentation, and if s = sp = 0 then ϕ = ψ + λ = yp + t is either Kummer or
binomial. Our strategy will be to alternate coordinate changes of y that “improve”
λ and reduce s, and coordinate changes of x that “improve” ψ and reduce sp.
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4.4.5. Improving ψ(yp). We simply define h(x) to be the inverse of ψ(x) in the
group G(rp)◦◦ = Aut(B)◦◦. Also, set h0(x) = h(x)− x. Until the end of Section 4,
notation like ϕ′ denote another presentation of f rather than the derivative of ϕ.

Lemma 4.4.6. Assume that ϕ = ψ + λ is a presentation of f with a two-term
decomposition, and let h be as above. Then ϕ′(y) = h(ϕ(y)) has a simple two-term
decomposition yp + λ′ such that s′ = s(λ′) ≤ max(s, sp).

Proof. Setting ρ = h0(ϕ) − h0(ψ) and λ
′ = λ+ ρ we have that

ϕ′ = ϕ+ h0(ϕ) = ψ + λ+ h0(ψ) + ρ = h(ψ) + λ+ ρ = yp + λ′.

We claim that this is a required two-term decomposition, and to show this we
should somehow control ρ. In fact, it is easy to see that the claim (and the lemma)
will follow once we show that ρ = bλ with |b|A ≤ sp.

If h0(x) =
∑

i∈Z aix
i then ρ =

∑
i∈Z ρi, where ρi = ai((ψ + λ)i − ψi). As

ψ strictly dominates λ by the definition of the two-term decomposition, we have
ρi = aiψ

i−1λQi with |Qi|A ≤ 1 by Lemma 4.1.3. So, b is the sum of bi = aiψ
i−1Qi

and it suffices to prove that |bi|A ≤ sp. Since ‖h‖ = ‖ψ‖ by Corollary 4.2.5(i),

|x−1h0|B = ||h|| = ||ψ|| = |x−1ψ(x) − 1|B = sp.

Therefore |ai| ≤ sp for i > 0 and |ai| ≤ rpi−psp for i ≤ 0. Since |ψ(yp)i|A = |yip|A
for any i ∈ Z, we obtain that |aiψi−1|A ≤ sp and hence |bi|A ≤ sp, as required. �

For the sake of simplicity, in the next two lemmas we restrict to the case of
simple decompositions.

4.4.7. Improving λ in case (1). Set α = −p−1y−pλ and g(y) = y+αy. Clearly g is
an element of G(r)◦◦ = Aut(A)◦◦ satisfying ‖g‖ = |α|A = s.

Lemma 4.4.8. Assume that ϕ = yp+λ is a simple two-term decomposition in case
(1), and let g(y) be as above. Then ϕ′ = ϕ(g(y)) has a two-term decomposition
ψ′ + λ′ such that s′p = sp(ψ

′) ≤ sp and s′ = s(λ′) ≤ s2.

Proof. We have that ϕ′(y) = gp + λ(g) = yp(1 +α)p + λ(g). Taking αp = α1 + pα2

as in Lemma 4.4.3 we obtain

(1 + α)p = 1 + pα+ pα2Q+ α1 + pα2

for some Q ∈ A◦. By the definition of α we have pypα = −λ(y), hence ϕ′ = ψ′+λ′

with ψ′ = yp(1 + α1) and

λ′ = pyp(α2Q + α2) + λ(g(y))− λ(y).

By the construction, all terms of ψ′ are p-th powers of y and |y−pψ′ − 1|A =
|α1|A ≤ sp. It remains to show that λ′ ≺ pyp and s(λ′) ≤ s2. Since |α2|A ≤ sp and
Q ∈ A◦, we immediately obtain that |α2Q+ α2|A ≤ s2. The desired bound on the
second term of λ′ is obtained by Lemma 4.2.4(ii):

|p−1y−p(λ(g(y))− λ(y))|A ≤ |p−1y−pλ|A · ‖g‖ = s2.

�
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4.4.9. Improving λ in case (2). Note that c−1
n λ ∈ A possesses an n-th root ρ(y) =

c
−1/n
n λ1/n with dominant term y. So, ρ is an element of Aut(A)◦◦ and we define
g(y) to be the inverse automorphism.

Lemma 4.4.10. Assume that ϕ = yp + λ is a simple two-term decomposition in
case (2), and let g(y) be as above. Then ϕ′ = ϕ(g(y)) has a two-term decomposition
ψ′ + λ′ such that s′p = sp(ψ

′) ≤ sp and s′ = s(λ′) ≤ γs, where γ := |t−1pyp|A < 1.

Proof. Present λ as cny
n(1 + λ0). Then |λ0|A = s and since (n, p) = 1 we also

have that |(1 + λ0)
1/n − 1|A ≤ |λ0|A ≤ s (for example, use that the binomial series

(1+u)1/n =
∑

i∈N

(
1/n
i

)
ui has coefficients in k◦). Since ρ = y(1+λ0)

1/n, we obtain
that ‖ρ‖ ≤ s, and hence ‖g‖ ≤ s by Corollary 4.2.5(i).

Note that ϕ′ = gp+λ(g) = gp+ cnρ(g)
n = gp+ t. Setting g = y+αy, we obtain

that gp = (1 + pαQ+ αp)yp for some Q ∈ A◦. Since |α|A = ‖g‖ ≤ s, we have that
|αp|A ≤ sp. Taking αp = α1 + pα2 as in Lemma 4.4.3, we obtain ϕ′ = ψ′ + λ′,
where ψ′(yp) = yp(1 + α1) and λ′(y) = t + pyp(αQ + α2). It remains to observe
that s′p = |α1|A ≤ |αp|A = sp and

s′ = |t−1pyp(αQ + α2)|A ≤ |t−1pyp|A · |αQ+ α2|A ≤ γs.

Finally, γ < 1 by Lemma 4.3.2. �

Proof of Theorem 4.3.8. By Lemma 4.4.6 f possesses presentations ϕ which ad-
mit simple two-term decompositions. So, without restriction of generality, we can
assume that the initial decomposition of ϕ0 is simple, say ϕ0 = yp +λ0. We induc-
tively define a sequence of presentations ϕi with simple two-term decompositions
yp + λi as follows:

(i) ϕ′
i = ϕi ◦ gi and, depending on the case, its two-term decomposition ψ′

i + λ′i
is obtained from ϕi via Lemma 4.4.8 or Lemma 4.4.10, respectively.

(ii) ϕi+1 = hi ◦ ϕ′
i and its two-term decomposition yp + λi is obtained from ϕ′

i

via Lemma 4.4.6.
Set si = s(λi). Then si+1 ≤ s2i in case (1), si+1 ≤ max(spi , γsi) in case (2), and

sp(ψ
′
i) ≤ spi in both cases by Lemmas 4.4.6, 4.4.8 and 4.4.10. Since γ only depends

on the tame term, it is fixed in the process, and we obtain that the sequences (si)
and (sp(ψ

′
i)) are strictly decreasing and converge to zero. By the construction,

‖hi‖ = sp(ψ
′
i) and ‖gi‖ = si. By Corollary 4.2.5 the limits g = limn g0 ◦ . . .◦ gn and

h = limn hn ◦ . . . ◦h0 exist, and the limit two-term decomposition of ϕ := h ◦ϕ0 ◦ g
satisfies s = sp = 0. So, ϕ = yp + t is a presentation of f as required. �

Remark 4.4.11. (i) We worked with strictly analytic annuli, but Theorem 4.3.8
and its proof apply to non-strict annuli as well. The only difference is that one has
to work with skeletons l = [r1, r2] and one cannot normalize the coordinate so that
the dominant term cpy

p becomes monic.
(ii) In particular, Theorem 4.3.8 applies to annuli A(r1, r2) over a trivially valued

algebraically closed ground field k of positive characteristic. The interesting case is
obtained for r2 < 1, when the theorem is equivalent to the following statement: if
K = k((t)) and L/K is a separable extension of degree p then there exist uniformiz-
ers x ∈ K and y ∈ L such that yp + yn = x, where n > p and (p, n) = 1. We have
used here that the coefficient of yn can be taken 1 by Lemma 4.3.6(i). In particular,
since δL/K = n− 1, we obtain that the k-isomorphism class of the extension L/K
(up to isomorphisms of both K and L) is determined by the different. To the best
of our knowledge this is a new result.
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(iii) One can also prove the above directly using the method of Section 4.4.
The argument simplifies in two aspects: there is only the binomial case, and the
automorphisms of K and L are given by series t+

∑
i≥2 ait

i without negative power

terms. In particular, an initial presentation looks as x = ψ(yp) + λ(y), where yp

and cyn are the dominant terms of ψ and λ, respectively.

4.5. Étale p-covers of punctured discs. A similar and slightly simpler classifi-
cation exists for étale p-covers of punctured discs.

4.5.1. Punctured and pointed discs. By a pointed disc we mean a closed disc D with
a fixed k-point O called the origin. Its skeleton l is the interval l = [O, q], where q is
the maximal point of D. A monic coordinate is any function t on D vanishing at O
and taking D isomorphically onto the unit closed disc M(k{t}). An analytic space
isomorphic to D \ {O} will be called a punctured disc. By an m-cover of pointed
or punctured discs, we mean a finite morphism f : Y → X of degree m between
pointed or punctured discs. In particular, in the case of pointed discs, f is totally
ramified at the origin. In fact, we do not really have to distinguish the two notions:

Lemma 4.5.2. Any m-cover of punctured discs extends to an m-cover of pointed
discs.

Proof. Let f : Y → X be an m-cover of punctured discs. Choosing monic coordi-
nates we can assume that Y = Dy \ {Oy} and X = Dx \ {Ox} are the standard
punctured unit discs with coordinates y and x. In particular, f is given by an
invertible function on Y . Viewing f as a function on a closed annulus A(r, 1) ⊂ Dy

we can present it as a series
∑

i∈Z aiy
i, and the same series represents f for any r

with 0 < r ≤ 1. By our assumption amy
m is the dominant term on any A(r, 1). It

follows that all terms with i < m vanish, in particular, f extends to the finite map
Dy → Dx. �

4.5.3. Étale p-covers. An m-cover of pointed discs will be called étale if it is étale
on the corresponding punctured discs. If (m, p) = 1 then it is easy to see that
étale m-covers Y → X are Kummer, and all étale m-covers of X are X-isomorphic.
Étale p-covers are classified as follows:

Theorem 4.5.4. Assume that f : Y → X is an étale p-cover of pointed discs.
(1) If k is of mixed characteristic then the cover is Kummer, that is, yp = x for

appropriate monic coordinates.
(2) If k is of equal characteristic then the cover is binomial. In fact, f admits a

monic presentation x = yp + cny
n if and only if |cnyn|l = δf |l, where l = l(Y ) is

the skeleton of Y .

Proof. Choosing monic coordinates of Y and X we obtain a presentation x = ϕ(y)
of f . Clearly, cpy

p is the dominant term of ϕ, and by a linear change of coordinates
we can assume that cp = 1. Since f is totally ramified at the origin O ∈ Y , one
in fact has that ϕ = yp +

∑
i>p ciy

i. The fact that f is étale outside of O means

that ϕ′ is invertible outside of O, and hence the dominant term of ϕ′ is the first
non-zero term. Now we have two cases:

(1) If char(k) = 0 then pyp−1 is the dominant term of ϕ′. In particular, |ci| < |p|
for any i ∈ N \ pN and δl := δf |l identically equals |p|.
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(2) If char(k) = p then the dominant term of ϕ′ is ncny
n−1, where n is the

smallest number such that (n, p) = 1 and cn 6= 0. In this case, we call cny
n the

dominant tame term of ϕ. Note that |y−pt|l = δl.
We see that in the case of pointed discs the separation into two cases goes

accordingly to the characteristic of k. The remaining argument follows the proof
of Theorem 4.3.8 and is slightly simpler, so we only outline it. By a two-term
decomposition of a monic presentation ϕ we mean a decomposition ϕ = ψ(yp) +
λ(y), such that yp is the dominant term of ψ, |λ| < |p| in case (1), and cny

n

is the dominant term of λ in case (2). Then one modifies ϕ by composing with
automorphisms of punctured discs, precisely as in the proof of Theorem 4.3.8. The
computations simplify because these automorphisms are given by series t+

∑
i>2 ait

i

without negative terms. �

5. Skeletons

5.1. Skeletons of nice curves.

5.1.1. Four levels of skeletons. In the simplest form, skeletons in Berkovich ge-
ometry are certain nice topological subspaces of an analytic space X . Usually,
they admit a few natural levels of enhancements. Namely, the basic topological
level (Top) can be enhanced to a reduction level (Red), a tropical or combinatorial
level (Trop), and what we call a log reduction level (LogRed). There are forgetful
functors (LogRed)→(Red)→(Top) and (LogRed)→(Trop)→(Top), and (LogRed) is
obtained by combining the information of (Red) and (Trop). So, loosely speaking
the information kept on these levels fits into a “bicartesian diagram”

(Top)
� _

��

� � // (Trop)
� _

��

(Red) �
�

// (LogRed)

We do not try to formalize the above principle, but we indicate the worlds these
objects live at, and we will later see this in detail in the case of curves.

(Top) A skeleton ΓX is a topological space.

(Red) The reduction level corresponds to algebraic geometry over k̃. A typical
example, is the reduction Xs of X corresponding to a formal model X, and ΓX is
reconstructed as the topological realization of a simplicial space related to Xs.

(Trop) The tropical level corresponds to tropical geometry or PL geometry over
|k×|. A typical example is a tropical or PL enhancement of ΓX .

(LogRed) The log reduction level is an amalgam of (Red) and (Trop). Sometimes
this can be done ad hoc, for example, via metrized curve complexes of Amini-Baker
([AB15]). A more conceptual way to treat this information is to work within the
log geometry over Spec(k) with the log structure |k×|≤1 → 0.

5.1.2. Triangulations. Following Ducros, by a triangulation of a nice curve X we
mean a finite set V = V (1)

∐
V (2) ⊂ X of points of types 1 and 2 such that V (2) 6= ∅

and X \V is a disjoint union of open discs, punctured open discs, and open annuli.
One can enhance V to the four levels as follows.
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5.1.3. Topological skeletons of curves. Take V = VΓ to be the set of vertices of
the graph Γ whose edges are skeletons of punctured disc and annuli components of
Γ \V . Then Γ is a (topological) skeleton of X in the sense of [CTT16, Section 3.5].
We call elements of V (1) = Γ(1) marked points of X of infinite vertices of Γ, and we
call elements of V (2) finite or ordinary vertices.

5.1.4. Tropical skeletons of curves. The graph Γ inherits a natural metric from X
which is singular at all marked points. In addition, one often provides Γ with the
genus function g : Γ0 → N ([CTT16, §3.3.2]) making it a metric genus graph in the
sense of [CTT16].

5.1.5. The reduction level. Providing a triangulation V is equivalent to marking a
finite set of type 1 points D = Γ(1) and providing a semistable model X of X such
that the reduction map πX : X → Xs maps D bijectively onto a finite set Ds of

smooth points of the nodal k̃-curve C = Xs. The formal fiber Xq = π−1
X

(q) over
q ∈ C can be as follows:

(1) If q is a generic point then Xq = {x} for x ∈ V (2), and Cx = X̃x is the
corresponding normalized component of C.

(2) If q is a nodal point then Xq is an open annulus whose skeleton is a finite
edge of Γ.

(3) If q ∈ Ds is a marked point then Xq is a pointed disc with marked point
Q ∈ D lifting q. Its skeleton is an infinite edge of Γ.

(4) If q is an ordinary smooth point then Xq is an open disc component of X \V .

It follows that the multipointed k̃-curve (C,Ds) can be constructed from X

and Γ in the following ad hoc manner. First, one takes the smooth curve C̃ =∐
x∈V (2) Cx. Second, for any finite edge e = [x1, x2] in Γ, one identifies the points

of Cxi
corresponding to e (it may happen that x1 = x2). This pushout procedure

outputs a nodal pinching C of C̃. Third and final, for any edge e = [x, d] with
d ∈ Γ(1), one marks the point on Cx corresponding to e.

5.1.6. The log reduction level. This level combines the tropical and reduction level.
It can be achieved by enriching the metric graph Γ by the relevant algebra-geometric
information. This is done in the definition of metrized curve complexes in [AB15].
Loosely speaking, at each finite vertex v one installs the curve Cv and associates
the edges starting at v to points of Cv.

In this paper we will use another approach, which we find more conceptual.
Note, nevertheless, that for semistable curves both approaches are equivalent, so
everything can be translated to the language of [ABBR15]. We will enrich C by a
log structure MC , which contains the information about the metric structure of Γ.
Loosely speaking this provides a way to remember |π| after reducing an equation of
the form xy−π = 0 modulo k◦◦. In fact, such situation was the original motivation
for introducing log structures by Fontaine-Illusie.

The following ad hoc definition will suffice for our needs in the paper. Let slog

denote the log enrichment of s = Spec(k̃) by the log structure Ms → k̃ associated

with k◦ \ {0} → k̃. Note that Ms = (k◦ \ {0})/(1 + k◦◦), and non-canonically this
is also the log structure associated with Ms = |k×|≤1 → 0. We enrich the nodal
curve C to an slog-curve (C,MC) as follows:

(1) The log structure is slog-trivial at any point q which is not marked or nodal,
that is, M q =M s.



28 URI BREZNER AND MICHAEL TEMKIN

(2) The log structure at a marked point u ∈ Ds is generated by a uniformizer
xu ∈ mu, that is, M q =M s × xNu .

(3) The log structure at a nodal point z ∈ Ds is generated by uniformizers x1
and x2 of the two branches at z modulo a relation x1x2 = π, where π ∈ k◦ is
such that |π| is the exponential modulus of the formal fiber Xz. Namely, Mz =
Ms × xN1 × xN2 /(x1x2 = |π|). Note that this log structure is Zariski when xi lie on
different components of C, but it is only an étale log structure otherwise, since MC

only makes sense in the étale topology, and x1, x2 are only defined étale-locally.

Remark 5.1.7. We chose a relatively ad hoc definition of MC , which was also
used in the proof of [FRTU16, Theorem 4.4]. A more conceptual way is outlined in
appendix B: one promotes all objects, including X , X and C, to the log geometric
level.

5.1.8. Nice slog-curves. By a nice slog-curvewe mean a nodal k̃-curve C with a finite
set U of smooth marked points provided with a following log structure: M q =M s

at ordinary smooth points, Mu = Ms × xNu at marked points, and Mz = Ms ×
xN1 ×xN2 /(x1x2 = r) at nodal points z, where r ∈ |k×|<1. Note that r is determined
by the monoid Mz, and we will call r = r(z) the modulus of the log node z. So, it
is obvious that (C,MC) determines the metric skeleton Γ.

Remark 5.1.9. Any nice slog-curve (C,MC) is log smooth over slog. This fact is
not essential for this paper, but we think it is a strong indication in favor of using
the log reduction language.

5.2. Skeletons of morphisms. Next, we discuss skeletons of finite covers of
curves.

5.2.1. Finite morphisms of slog-curves. We say that a morphism λ : (C,MC) →
(D,MD) of slog-curves is finite if the morphism C → D is. For any smooth point
q ∈ C we define nq to be the usual multiplicity of q in the fiber. For a double point
z a priori there are two multiplicities corresponding to the two branches. However,
the log structure forces them to coincide, and we will freely use the notation nz.
Let us justify this claim.

Lemma 5.2.2. Let λ be as above and z ∈ C a double point with preimages z1, z2 in
the normalization Cnor. Then the multiplicities ni = nzi are equal and the moduli
of z and t = λ(z) are related by r(z)n1 = r(t).

Proof. If xi are uniformizers at zi and yi are uniformizers at the images of zi in
Dnor, then (yi) = (xni

i ). So, yn1
1 yn2

2 = x1x2 = r(t) in M t. It follows easily from the

description of M t that n1 = n2, and then also r(z)n1 = yn1
1 yn2

2 = r(t). �

Remark 5.2.3. A finite morphism λ : (C,MC) → (D,MD) of nice slog-curves is
log smooth at a point q ∈ C if and only if (nq, p) = 1. Again, we will not really
need this, but this provides a conceptual explanation to the fact that in all our
work the tame case is very simple.

5.2.4. Compatible triangulations. Let f : Y → X be a finite morphism of nice
curves. A pair of triangulations VY ⊂ Y and VX ⊂ X is called compatible if
f−1(VX) = VY . Such a pair extends to all four levels, in particular, it induces a
finite morphism of the associated log reductions λ : (C,MC) → (D,MD). Clearly,
using λ one can also descend to lower levels and obtain a finite morphism of metric
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graphs Γf : ΓY → ΓX and a finite morphism of nodal k̃-curves h : C → D. Recall
that the multiplicity function nf : Y → N≥1 of f (e.g., see [Tem17, §2.1.5]) is con-
stant on each edge e of ΓY by [CTT16, Lemma 3.5.10]. Clearly, ne = nz for the
corresponding double point z ∈ C, and f |e is monomial of degree ne.

Remark 5.2.5. The maps h and Γf satisfy certain natural restrictions. For ex-
ample, the multiplicities of h along two branches of a nodal point coincide, and
Γf satisfies a harmonicity condition from [ABBR15]. We leave spelling this out to
the interested reader. On the log reduction level, one only has to assume that λ is
finite, and the other conditions follow. This is one more argument in favor of the
logarithmic language in our setting.

5.2.6. Triangulation of covers. By a triangulation of a finite generically étale mor-
phism f : Y → X of nice curves we mean compatible triangulations V = (VY , VX)
such that VY contains the ramification set Ram(f). In this case, f splits on the
complement of the triangulations to a disjoint union of annular, disc, and punc-
tured disc étale covers. The associated morphism λ : (C,MC) → (D,MD) of log
reductions will be called the log reduction of f associated with V .

5.3. p-enhancements.

5.3.1. The tame case. It seems that if f : Y → X is residually tame then any log

reduction catches all discrete and k̃-geometric information about f . We do not try
to find a rigorous formulation of this principle, but illustrate it with the following
example. The associated tropical skeleton Γf : ΓY → ΓX satisfies the Riemann-
Hurwitz formulas at all non-boundary vertices v of ΓY of type 2:

2g(v)− 2 = nv(2g(f(v)− 2) +
∑

e∈Br(v)

(n(e)− 1).

Indeed, this is the usual RH formula for the reduction, but all entries are encoded
already in Γf . For example, ne is the degree of f on e.

5.3.2. The different. A new discrete invariant, which is non-trivial when f is resid-
ually wild, was introduced in [CTT16]. It is the restriction of the different function
δf onto ΓY . As we saw, the different is monomial on edges, and using its slopes one
restores the RH formula and even extends it to the case when f is not residually
tame at v:

2g(v)− 2 = nv(2g(f(v))− 2) +
∑

e∈Br(v)

(−slopee(δf ) + n(e)− 1).

5.3.3. The p-enhancement. The bivariant forms τ̃f,y we introduced earlier provide
a natural way to upgrade δf |ΓY

to the log reduction level. We will only consider a
special case when the wildness is not too large. Let λ : C → D be a finite morphism
of nice slog-curves, let {Ci}i∈I be the set of normalized irreducible components of
C, and let ηC = {ηi}i∈I be the set of generic points of C. Assume that any closed
point v ∈ C at which λ is not log-étale satisfies nv = p. In particular, if a morphism
Ci → Dj is inseparable, then it is a geometric Frobenius. Then by a p-enhancement
of λ we mean a following data:

(1) meromorphic bivariant forms φi ∈ ωk(ηi)/k(λ(ηi)),
(2) a function δ : ηC → (0, 1],
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such that the following four conditions are satisfied, where for any point q ∈ Ci we
set sq = −logordq(φi).

(1) If k(ηi)/k(λ(ηi)) is separable then δ(ηi) = 1 and φi = τk(ηi)/k(λ(ηi)).
(2) If k(ηi)/k(λ(ηi)) is inseparable then either |p| < δ(ηi) < 1 and φi is exact,

or δ(ηi) = |p| and φi is mixed.
(3) Let δΓ : ΓC → [0, 1] be the extension of δ which is monomial on any edge

and satisfies the condition δΓ(u) = |nu| for any marked point u ∈ C. Then
for any oriented edge e starting at a finite vertex q ∈ Ci the degree of δΓ
on e equals sq.

(4) If q sits over an ordinary smooth point then sq = 0.

Remark 5.3.4. Condition (3) can be reformulated more explicitly as the combi-
nation of the following two conditions:

(i) For any double point z ∈ C and any order of the preimages zl ∈ Cil , l = 1, 2
one has that δ(ηi1)r(z)

sz1 = δ(ηi2). In particular, sz1 = −sz2 .
(ii) For any marked point u ∈ Ci, if char(k) > 0 then sq < 0, and if char(k) = 0

then sq = 0 and δ(ηi) = |nu|.

Remark 5.3.5. It is an interesting question if there is a conceptual way to interpret
our ad hoc definition. In particular, can it be related to a generalization of dualizing
sheaves to morphisms of log schemes?

5.3.6. Enhanced log reduction of covers. Now, let us return to our study of reduc-
tions of f .

Theorem 5.3.7. Let f : Y → X be a generically étale, minimally wild on Y , finite
morphism of nice k-analytic curves, let V be a triangulation of f , and let λ : C → D
be the corresponding log reduction of f . Then the forms τ̃f,y for y ∈ V (2) and the

restriction δ : V (2) → (0, 1] of δf provide a p-enhancement of λ.

Proof. In view of Lemma 3.4.2(ii), the forms τ̃f,y satisfy condition (1) by Lemma 3.4.4,
and they satisfy condition (2) by Theorem 3.4.6. Consider the function δΓ =
δf |ΓC

. We claim that it satisfies condition (3). Indeed, the condition for marked
points is satisfied by Theorem A.2.1(i), and the condition for slopes is satisfied by
Lemma 3.4.2(i). Finally, condition (4) follows from [CTT16, Theorem 6.1.9(i)]. �

6. The lifting theorem

6.1. Star-shaped curves. By a star-shaped curve we mean a pair (X, x), where
X is a nice k-analytic curve and x ∈ X is a point of type 2 such that X \ {x} is a
disjoint union of open discs and semi-open annuli. A morphism f : (Y, y) → (X, x)
is a morphism f : Y → X such that f−1(x) = {y}.

Lemma 6.1.1. Assume given a finite separable extension L/K of one-dimensional
analytic k-fields of type 2.

(i) There exists a boundaryless star-shaped curve (X0, x) with an isomorphism
H(x) = K such that x ∈ Int(X0).

(ii) For any curve (X0, x) as in (i) there exists a star-shaped subdomain (X, x) →֒
(X0, x) such that x ∈ Int(X) and L/K lifts to a morphism f : (Y, y) → (X, x) of
star-shaped curves (in the sense that H(y) = L as K-fields) such that f is finite
and étale.
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Proof. This is a simple consequence of the following two facts: (1) any point of
type 2 has a fundamental family of star-shaped neighborhoods by [Ber90, Propo-
sition 3.6.1], (2) given a germ (X, x), the category of its étale covers by germs
(Y, y) is equivalent to the category of finite separable extensions of H(x), and the
equivalence is obtained by sending (Y, y) to H(y)/H(x). �

6.2. The main theorem.

6.2.1. Minimally wild morphisms. We say that a finite étale morphism λ : C → D
of nice slog-curves is minimally wild if any point v ∈ C such that f is not log-étale
at v satisfies nv = p, and any fiber f−1(u) contains at most one such point. In
particular, it follows that for any irreducible component Di there exists at most
one irreducible component Cj above Di such that λj : Cj → Di is not generically
étale, and in this case λj is the geometric Frobenius.

6.2.2. The lifting theorem. Here is the main lifting result of the paper.

Theorem 6.2.3. Let λ : C → D be a minimally wild finite morphism of nice slog-
curves provided with a p-enhancement (φ, δ). Then there exists a morphism of nice
k-analytic curves f : Y → X such that λ is a logarithmic reduction of f .

Proof. Step 1. Setup. We will use the following notation:
(1) I and J are the sets of normalized irreducible components Di of D and Cj

of C. The generic points will be denoted xi ∈ Di and yj ∈ Cj , and the same letters
will be used for the corresponding points of type 2 in k-analytic curves we will
construct.

(2) The sets of marked points will be denoted U ⊂ C and V ⊂ D. Note that we
are allowed to enlarge the logarithmic structures on D and C in a compatible way.
On the level of marked points this simply means that we add few smooth points to
U and add their preimages to V . This operation does not affect the p-enhancement.

(3) The sets of double points will be denoted Z ⊂ D and T ⊂ C.
Step 2. Construction of star-shaped curves. By Lemma 6.1.1(i), for each i ∈ I

we can choose a star-shaped curve (Xi, xi) such that xi ∈ Int(Xi) and Ki := H(xi)

satisfies K̃i = k(Di). The connected components of Xi \ {xi} are parameterized by
the closed points of the smooth compactification of Di, and we remove from Xi the
components parameterized by the points not lying in Di. Then (Xi, xi) becomes a

star-shaped curve such that X̃xi
= Di.

For each Cj mapped to Di we define Lj/Ki as follows. If Cj → Di is generically
étale then Lj/Ki is the unramified extension lifting k(Cj)/k(Di). If Cj → Di is
radicial then by Theorem 3.4.8 there exists an extension Lj/Ki such that δLj/Ki

=
δ(yj) and τ̃Lj/Ki

= φj . By Lemma 6.1.1(ii), shrinking Xi if necessary we can also
construct for each j a star-shaped curve (Yj , yj) with a finite morphism fj : Yj → Xi

lifting the extension Lj/Ki.
For a point q ∈ Di the corresponding component Xi,q of Xi \{xi} is either a disc

or an annulus. Shrinking Xi and replacing Yi by its preimage we can achieve that
Xi,q is an annulus whenever q is not an ordinary smooth point of D. Furthermore,
enlarging the log structure we can also achieve that Xi,q is an annulus if and only
if q is not an ordinary smooth point of D. Finally, shrinking the annuli Xi,q we can
assume that they all are of the same radius r ∈ |k×| such that r2 > r(z) for any
z ∈ Z, and we fix a number s ∈ |k×| such that r < s < 1.
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Step 3. Objects of gluing data. The morphism f : Y → X will be glued from
morphisms of three types:

(1) fi : Yi =
∐

j→i Yj → Xi for i ∈ I, where the morphism fj : (Yj , yj) →

(Xi, xi) were constructed in Step 2.
(2) fu : Yu =

∐
v→u Yv → Xu for u ∈ U , where (Xu, xu) is a pointed closed

disc of radius s with coordinate x, and each fv : (Yv, yv) → (Xu, xu) is an
nv-cover as follows. Let Ci be the component containing v, l = logordv(φi)
the slope of δ on ev, and c ∈ k such that |c| = δ(yi). Then fv is the
Kummer cover given by x = ynv if l = 0, and fv is the binomial cover given
by x = yp + cyl if l 6= 0.

(3) fz : Yz =
∐

t→z Yt → Xz for z ∈ Z, where Xz is a closed annulus of radii
s−1r(z) and s with coordinate x, and ft : Yt → Xz is an nz-cover as follows.
Let Cj1 and Cj2 be the components containing the preimages of t in Cnor

(possibly, j1 = j2), and let c ∈ k and l ∈ Z be such that |c| = δ(yj1) and
|c|r(t)l = δ(yj2). Then ft is the Kummer cover given by x = ynt if l = 0,
and ft is the binomial cover given by x = yp + cyl if l 6= 0.

Step 4. The gluing maps. To obtain X we will patch the star-shaped curves Xi

by discs Xu and glue these curves along the annuli Xz. This will be done so that
the gluings extend to the morphisms fi, fu and fz. We have two cases:

(1) For each u ∈ U , consider the disc Xu of radius s and let X ′
u ⊂ Xu be the

annulus of radii r and s. Let Di be the normalized component containing u. The
connected component of Xi \ {xi} corresponding to u is a semi-open annulus Xi,u

of radii r and 1, and we define X ′
i,u to be the subannulus of radii r and s. The base

change of fv with respect to X ′
u →֒ Xu will be denoted f ′

v : Y
′
v → X ′

u. Similarly,
the base change of fj,v : Yj,v → Xi,u with respect to X ′

i,u →֒ Xi,u will be denoted

f ′
j,v : Y

′
j,v → X ′

i,u.

We will glue Xu and Xi via an isomorphism gu : X
′
u

∼
−→X ′

i,u. If λ is log-étale over

u, we choose an arbitrary gu. Otherwise, there exists a single point v ∈ λ−1(u)
such that nv = p. Let Cj be the component of v, then f ′

j,v is an étale annular
p-cover, and by Corollary 4.3.9 its isomorphism class is determined by the skeleton
of the different. In Step 3, we chose the binomial or Kummer cover fv so that the
skeletons of the differents of f ′

v and f ′
j,v are equal. Thus, f ′

v and f ′
j,v are isomorphic,

and choosing appropriate isomorphisms gu and gv : Y
′
j,v

∼
−→Y ′

v we obtain a gluing of

morphisms fi and fv along f ′
v

∼
−→f ′

j,v.
Once gu is fixed we still have to glue other preimages ofXu. Namely, for any point

w ∈ λ−1(u) with (nw, p) = 1 we should lift the isomorphism gu to an isomorphism

gw : Y ′
j,w

∼
−→Y ′

w. This is possible because all étale nv-covers of X
′
u are X ′

u-isomorphic

by §4.1.5. This completes the gluing of fu and fi along f
′
u

∼
−→f ′

i,u.
(2) Let z ∈ Z be a double point. The subannuli A1 = A(r, s) and A2 =

A(s−1r(z), r−1r(z)) are disjoint because rs > r2 > r(z). Let z̃1 ∈ Di1 and z̃2 ∈ Di2

be the two preimages of z. We will glue Xz to Xi1,z̃1 and Xi2,z̃2 along A1 and A2,
respectively. This is done in a symmetric way, so we will only consider the case of
l = 1 and set z̃ = z̃1, i = i1 and X ′

z̃ = A1 for shortness. The latter will be identified
by an isomorphism gz̃ with the subannulus X ′

i,z̃ of Xi,z̃ of radii r and s.

Construction of gz̃ copies the construction of gu from the above case (1) almost
verbatim. If the normalized morphism Cnor → Dnor is log étale over z̃ then any gz̃
works. Otherwise, there is a single point t̃ over z̃ such that nt̃ = p, and, copying the
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notation of (1), the p-covers f ′
t̃
and f ′

j,t̃
are isomorphic because they have the same

skeletal different. We simultaneously choose gluing isomorphisms gz̃ : X
′
z̃

∼
−→X ′

i,z̃

and gt̃ : Y
′
t̃

∼
−→Y ′

j,t̃
establishing an isomorphism of the p-covers. For any other point

w̃ over z̃, the morphisms Y ′
w̃ → X ′

z̃ and Y ′
j,w̃ → X ′

i,z̃ are Kummer covers of degree

nw̃ ∈ k̃×, hence an isomorphism gw̃ : Y ′
w̃

∼
−→Y ′

j,w̃ can be chosen so that it lifts the
already fixed isomorphism gz̃.

Step 5. Verification. It is easy to see that the connected components of X \
{xi}i∈I are of three types:

(1) Open discs Dq parameterized by ordinary smooth points q ∈ D. These are
the disc components of the curves Xi \ {xi}.

(2) Pointed open discs (Du, xu) parameterized by points u ∈ U . Each Du is
glued from the corresponding annulus Xi,u and pointed disc (Xu, xu).

(3) Open annuli Az of radii r(z) and 1 parameterized by double points z ∈ Z.
Each Az is glued from the corresponding annuli Xi1,z̃1 , Xz and Xi2,z̃2 .

It follows that the points {xi, xu}i∈I,u∈U provide a triangulation with log re-
duction C. In the same way, one checks that the preimages of these points in Y
provide a triangulation of Y and λ : C → D is the corresponding log reduction of
f . Finally, by the construction of Step 2, the values of δf and τ̃f at the points yi
coincide with δ(yi) and φi. So, f is a required lift of (λ, φ, δ). �

Appendix A. The different function

Recall that a different function δf : Y → [0, 1] was introduced in [CTT16]. It is
|k×|-pm and assigns to y ∈ Y hyp the value of the different of H(y)/H(f(y)).

A.1. Restrictions on the slopes. First, let us recall basic properties of δf , see
[CTT16, Corollary 4.1.8 and Theorems 4.2.6].

Theorem A.1.1. If f : Y → X and Γf : ΓY → ΓX are as in §1.3.1, then
(i) δf is a |k×|-pm function on Y hyp, and it is monomial on each edge of ΓY ,
(ii) |nf (y)| ≤ δf (y) ≤ 1 for any y ∈ Y hyp, and δf(y) = 1 if f is residually tame

at y,
(iii) for any y ∈ Y (2) and v ∈ Cy the slope s = slopev(δf ) satisfies

|nf (v)| ≤ δf (y) ≤ |nf (v) + s|.

Remark A.1.2. In fact, (ii) and (iii) are the only restrictions on δ and s, and any
allowed combination can be already obtained for a binomial étale annular covering
A1 → A2 of the form x = tn + ctm, with n = nv, s = n−m and δf (y) = |c|.

Remark A.1.3. The conditions (ii) and (iii) of the theorem are most restrictive in
the mixed characteristic case. For example, if n = p then |p| ≤ δf ≤ 1, s /∈ pZ\{0},
and s = 0 can happen only when δf (y) = 1 or δf (y) = |p|.

A.2. Local behaviour of the slopes. The following result describes the restric-
tions δf satisfies locally at a point y ∈ Y . It summarizes [CTT16, Theorems 4.5.4,
4.6.4, 6.1.9].

Theorem A.2.1. Let f : Y → X and Γf be as in §1.3.1, then

(i) For any point y ∈ Y (1) of type 1 one has that slopey(δf ) = δlogOy/Of(y)
and

δf (y) = |ny|.
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(ii) For a non-boundary point y ∈ Y of type 2 with x = f(y) one has that

2g(y)− 2− ny(2g(x)− 2) =
∑

v∈Cy

(−slopevδf + nv − 1).

In particular, almost all slopes of δf at y equal the inseparability degree ni
y of

H̃(y)/H̃(x).
(iii) The different behaves trivially outside of ΓY in the sense that slopevδf =

nv − 1 for any direction v not pointing towards ΓY .

Remark A.2.2. (i) We call part (ii) of the theorem local Riemann-Hurwitz for-

mula. It reduces to the Riemann-Hurwitz formula for f̃y : Cy → Cx when f is

residually tame at y, but contains information not encoded in f̃y otherwise. We
show in this paper that this information is related to the reduction of τf .

(ii) The theorem implies the global Riemann-Hurwitz formula for f , which in-
cludes correction terms at the boundary points when X and Y are not proper, see
[CTT16, Theorems 6.2.3 and 6.2.7].

Appendix B. Log reduction of nice curves

B.1. Nice k-analytic log curves. By a multipointed nice k-analytic curve we
mean a nice k-analytic curve X provided with a finite set D of marked points of
type 1. An equivalent way to encode this datum is to consider the associated nice
log curve (X,MX) with the logarithmic structure MX →֒ OX induced by D, that
is, MX,x = OX,x \ {0} and MX,x = N if x ∈ D, and MX,x = O×

X,x, MX,x = 1

otherwise. Note that (X,MX) is log smooth over k with the trivial log structure
k× →֒ k.

B.2. Semistable models. A semistable model of (X,D) is determined by a formal
model X of X such that the reduction map X → Xs maps D bijectively onto a set

Ds ⊂ Xs of k̃-smooth points. In this case, the closed immersion D →֒ X extends
to a closed immersion D →֒ X with D a disjoint union of copies of Spf(k◦), and
we call (X,D) a semistable formal model of (X,D). This can also be promoted to
the logarithmic geometry by setting MX =MX ∩OX. Loosely speaking, MX is the
subsheaf of OX consisting of functions invertible on the complement of Xs∪D. The
main advantage of working on the log level is that Xlog = (X,MX) is log smooth
over Slog = (S,MS), where S = Spf(k◦) and MS = k◦ \ {0} →֒ k◦.

B.3. Reduction. Restricting everything to the closed fiber slog we obtain an slog-

smooth enhancement X̃ log = (X̃,MX̃) of the closed fiber X̃ = Xs. Clearly, X̃
log is

the log reduction of X in the sense of §5.1.6, and the construction is functorial: if
f : Y → X is as in §1.3.1 and VY , VX are compatible triangulations, then f induces
morphisms of the associated log enhanced models Ylog → Xlog and their closed

fibers, yielding a log reduction morphism Ỹ log → X̃ log.
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