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Luna’s fundamental lemma for diagonalizable groups

Dan Abramovich and Michael Temkin

ABSTRACT

We study relatively affine actions of a diagonalizable group G on locally noetherian
schemes. In particular, we generalize Luna’s fundamental lemma when applied to a di-
agonalizable group: we obtain criteria for a G-equivariant morphism f: X’ — X to be
strongly equivariant, namely the base change of the morphism f /G of quotient schemes,
and establish descent criteria for f /G to be an open embedding, étale, smooth, regular,
syntomic, or lci.

1. Introduction

1.1 Luna’s fundamental lemma

In its original formulation, Luna’s fundamental lemma [Lun73, Lemme fondamental] addresses
the following classical question: we are given an étale equivariant morphism f: X’ — X between
two normal complex varieties with the action of a reductive algebraic group G. We assume
that there are quotients Y = X / G and Y/ = X’ / G with a resulting quotient morphism
f/J G:Y' — Y. Under what conditions is f strongly étale, namely X' =Y’ xy X and f | G
is étale? In other words, when is the following diagram cartesian and the bottom row étale as
well?

x -1, x

1.2 Generalized context
In this paper, we restrict attention to diagonalizable groups, relax all the other conditions, and
deduce further properties of the quotient:

(1) Our schemes are only required to be locally noetherian, with no assumption on being normal
or even reduced.

(2) The action of G on X and X' is assumed to be relatively affine in the sense of Section 5.1.

(3) We provide necessary and sufficient conditions for an arbitrary equivariant morphism f to
be strongly equivariant in the sense that f is the base change of f / G.
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(4) We establish the descent of various properties of f, ensuring that f / G is regular, smooth,
étale, or syntomic (without any finite type assumption) when f has the corresponding prop-
erty.

Condition (2) guarantees the existence of good quotients Y and Y’; see Section 5.1. It also
guarantees that over any point y € Y, the fiber X, contains a unique closed orbit, called here
a special orbit (Section 5.1.8).

Already in the complex case, most equivariant morphisms are not strongly equivariant: one
must require something about how f treats stabilizers and special orbits. Accordingly, we say
that f: X' — X is fiberwise inert (Section 5.5.3) if it sends special orbits to special orbits and if
for each point z € X, the stabilizer G, acts trivially on the fiber X’ x x x.

1.3 The main result

The main result of this article is the following variant of Luna’s fundamental lemma.

THEOREM 1.3.1 (see Theorem 5.6.4). Let X and X' be locally noetherian schemes provided
with relatively affine actions of a diagonalizable group G, and let f: X' — X be a G-equivariant
morphism. Then:

(i) The morphism f is strongly equivariant if and only if f is fiberwise inert and any special
orbit in X' contains a point &' such that the action of G, on Hy(Ly//x ®" k(z')) is trivial.

(ii) Let P be one of the following properties: (a) regular, (b) smooth, (c) étale, (d) an open
embedding. Then the following conditions are equivalent: (1) f is inert and satisfies P, (2) f is
strongly equivariant and satisfies P, (3) f strongly satisfies P.

(iii) The morphism f is strongly syntomic if and only if it is syntomic and strongly equivariant.
Moreover, if f is strongly equivariant, then the following claims hold: (a) if f is Ici, then f || G
is Ici, (b) if f J/ G is lci and Tor-independent with the morphism X — X /| G, then f is Ici.

Part (iii) refers to Avramov’s definition of local complete intersection (lci) morphisms and
the resulting notion of syntomic morphisms described in Section 4.7.9.

Theorem 1.3.1 is the first ingredient in our forthcoming work [AT16] on the weak factorization
of birational maps, generalizing the main theorems of [AKMWO02] and [W1003] to the appropriate
generality of qe (“quasi-excellent”) schemes, and further proving factorization results in other
geometric categories of interest. While [AT16] only requires actions of G,,, we find it both
convenient and fruitful to work with an arbitrary diagonalizable group. A second ingredient
for [AT16], called torification, is developed in the appropriate generality in [AT17], which builds
on this paper.

In these applications of Theorem 1.3.1, it is crucial that X and X’ are allowed to be arbitrary
locally noetherian schemes, not necessarily varieties over a field. Part (iii) of the theorem is
required for results of [AT17] in mixed characteristics: we apply it to charts of logarithmically
regular schemes, which are lci but in general not flat.

Beyond these applications, we found it striking that a sharp condition for strong equivariance
such as statement (i), for morphisms f which are not even lci, was at all possible.

1.4 Comparison with the literature

Luna’s original work applied to normal complex varieties with reductive group actions, and it
was extended to algebraically closed field of arbitrary characteristics by Bardsley and Richard-
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son; see [BR85]. In both works, the only condition one has to impose on an étale equivariant
morphism f is pointwise inertia preservation.

Recently, Alper generalized Luna’s fundamental lemma to the context of good moduli spaces
of Artin stacks; see [Alp10, Theorem 6.10]. In this situation, the morphism from a stack to its
moduli space is an analogue of the morphism X — X / G, and Alper studied the classical
question of describing strongly étale morphisms. In this generality, an additional condition has
to be imposed on f, and the weak saturation condition introduced in [Alpl0, Section 2.2] is
analogous to our condition on special orbits. Comparing to our results, we see that he proves
only an extension of the classical Luna’s fundamental lemma concerning étale morphisms, but
the context is much more general in two aspects: stacks as opposed to schemes acted on by
groups, and the class of groups involved (or stabilizers of stacks).

1.5 Further directions

It would be interesting, perhaps in future work, to further extend our strong variant of Luna’s
fundamental lemma to other tame actions, that is, actions having linearly reductive (or even
reductive) stabilizers and affine orbits. Moreover, one may hope to extend this to tame groupoids
and their quotients, that one may call tame stacks (if the stabilizers are of dimension zero, then
those are the tame stacks of [AOV08]). For example, a simple descent argument shows that all
results of this paper hold for groups of multiplicative type; see Section 5.7.

1.6 Auxiliary results

On the way to proving Theorem 1.3.1, we study related notions of regularity, formal smoothness,
and group actions. Some results which may be of independent interest and will be used in [AT17]
are recorded here. The reader interested only in Theorem 1.3.1 may wish to skip directly to
Section 2.

1.6.1 The splitting of formally smooth morphisms. We review in Section 2 the notions of
regularity and formal smoothness. In particular, Section 2.2.10 introduces the notion of a Cohen
ring C'(k) — k of a field k; further, by [SP17, tag/032A], any formally smooth g: k — D with D a
complete noetherian k-algebra lifts to a formally smooth morphism we denote by C(g): C(k) —
C(D), where C(D) is a complete noetherian local ring such that D = C(D) ®c¢ ) k. This applies
in characteristic zero by taking C(k) = k and C(D) = D. The following result describes an
arbitrary formally smooth homomorphism in terms of such C(g).

THEOREM 1.6.2 (see Theorem 2.2.11). Let f: A — B be a local homomorphism of complete
noetherian local rings with closed fiber f: k = A/ma — B = B/maB.

(i) Assume that f is formally smooth. Then there exist homomorphisms i: C'(k) — A and

j: C(B) — B making the following diagram commutative:

A- ! B
" ow C(f)J L o).
/ ? /

k B
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(ii) Assume that f is formally smooth. Then for any choice of i and j, the homomorphism
A@C(k)C(E) — B is an isomorphism. In particular, f is (non-canonically) isomorphic to the
formal base change of a Cohen lift C(f) of its closed fiber f.

1.6.3 L-local rings. After reviewing groups, actions, and diagonalizable groups in Section 3,
we study diagonalizable group actions on affine schemes in Section 4. Consider a finitely generated
abelian group L and its Cartier dual G = Djy. An action of G on an affine scheme X = Spec A
is an L-grading on A. An important class of L-graded rings that we study is the class of L-local
rings, namely rings A possessing a single maximal L-homogeneous ideal m 4; see Section 4.4. The
residue ring A/m4 has no non-trivial homogeneous ideals, making it a “graded field.” Several
standard results on local rings generalize to this setting, including the following.

PROPOSITION 1.6.4 (Graded Nakayama’s lemma, see Proposition 4.4.10 and Corollary 4.4.11).
Let (A,m) be an L-local ring with residue graded field A/m 4, and let M be a finitely generated
L-graded A-module. Then:

(i) We have mM = M if and only if M = 0.

(ii) A homogeneous homomorphism of L-graded A-modules ¢: N — M is surjective if and only
if g @4 (A/ma) is surjective.
(iii) Homogeneous elements my, ..., m; generate M if and only if their images generate M /mM .

(iv) The minimal cardinality of a set of homogeneous generators of M equals the rank of the
free (A/m4)-module M /mM.

PROPOSITION 1.6.5 (Characterization of equivariant Cartier divisors, see Proposition 4.4.13).
Assume that (A, m) is an L-local integral domain and D C Spec(A) is an equivariant, finitely
presented closed subscheme. Let x be an arbitrary point of V(m), and let X, = Spec(Ox ) be
the localization at x. Then the following conditions are equivalent:

(i) We have D =V (f) for a homogeneous element f € A.

(ii) The subscheme D is a Cartier divisor in X.

(iii) The localization D, = D x x X, is a Cartier divisor in X,.

To characterize the situation discussed above, we say that a relatively affine action of G on
a scheme X is local if X is quasi-compact and contains a single closed orbit; see Section 5.1.9.

PROPOSITION 1.6.6 (Characterization of local actions, see Lemma 5.1.10). Assume that we have
a relatively affine action of G = Dy, on a scheme X . Then the following conditions are equivalent:
(i) The action is local.
(ii) The scheme X is affine, say X = Spec(A), and the L-graded ring A is L-local.
(iii) The quotient Y = X J/ G is local.

1.6.7 Completions. By an L-complete local ring, we mean a complete local ring (A, m) pro-
vided with a formal L-grading A =[], c; An such that A,, C m for each n # 0. Here is a key result
about completions which is used in the paper to prove the formal version of Luna’s fundamental
lemma; see Theorem 4.7.8.

PropPOSITION 1.6.8 (Completions of L-local rings, see Proposition 4.5.6). Assume that L is
a finitely generated abelian group and (A, m) is a noetherian strictly L-local ring. Set mg =
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m N Ag and for each n € L, let A\n denote the mg-adic completion of the Ap-module A,,. Then,
the m-adic completion of A is isomorphic to [],c; An; in particular, it is an L-complete local
ring.

1.6.9 Quotients and strong equivariance. Using the affine theory as a starting point, a global
theory of relatively affine actions is developed in Section 5, leading to the main theorem. We
highlight here the following basic results.

THEOREM 1.6.10 (Properties preserved by quotients, see Theorem 5.2.2). Assume that a diag-
onalizable group G = Dy, acts trivially on a scheme S and an S-scheme X is provided with a
relatively affine action of G.

(i) Assume that X satisfies one of the following properties: (a) reduced, (b) integral, (¢) normal
with finitely many connected components, (d) locally of finite type over S, (e) of finite type over S,
(f) quasi-compact over S, (g) locally noetherian, (h) noetherian. Then X |/ G satisfies the same

property.
(ii) If X is locally noetherian, then the quotient morphism X — X /| G is of finite type.

PROPOSITION 1.6.11 (Preservation of strong equivariance, see Lemma 5.3.2). Let G = Dy, be
a diagonalizable group.

(i) The composition of strongly G-equivariant morphisms is strongly G-equivariant.

(ii) IfY — X is a strongly G-equivariant morphism and g: Z — 'Y is a G-equivariant morphism
such that the composition is strongly G-equivariant, then g is strongly G-equivariant.
(iii) If Y — X is strongly G-equivariant and Z — X is G-equivariant, then the base change
Y xXx Z — Z is strongly G-equivariant.

(iv) If f: Y — X is strongly equivariant, then the diagonal Ay:Y — Y xx Y is strongly
equivariant and Ay /| G is the diagonal of f || G.

2. Regularity and formal smoothness

We recall in this section basic facts about formal smoothness in the local case, which is the
only case we will use later. The cited results are due to Grothendieck, but we will cite [SP17] in
addition to [EGA]. In addition, we will prove in Theorems 2.2.9 and 2.2.11 a splitting result for
local formally smooth homomorphisms, which seems to be new, although it is close in spirit to
what was known.

2.1 Definitions

2.1.1 Regular morphisms. Regular morphisms are a generalization of smooth morphisms in
situations of morphisms which are not necessarily of finite type. Following [EGA, 1Va, 6.8.1],
a morphism of schemes f: Y — X is said to be regular if

e the morphism f is flat and

e all geometric fibers of f: X — Y are regular.
2.1.2 Formal smoothness of local homomorphisms. Let f: (A,m4) — (B,mp) be a local

homomorphism of local rings. By saying that f is formally smooth, we mean that it is formally
smooth with respect to the m4-adic and mp-adic topologies. This means that for any ring C
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with a square zero ideal I and compatible homomorphisms A — C' and B — C/I that vanish
on large powers of m4 and mp, respectively,

A——C

B——C/I,

there exists a lifting B — C making the diagram commutative. Using a slightly non-standard
terminology, we say that a morphism of schemes f: Y — X is formally smooth at y € Y if the
local homomorphism Oy t(,) — Oy,y is formally smooth.

Remark 2.1.3. Unlike regularity, formal smoothness is not a local property. Consider an example
of a discrete valuation ring (DVR) which is not excellent in characteristic p, namely a DVR R
such that K = Frac(R) is not separable over K = Frac(R). For example, set R = k[[z]], take
an element y € k[[z]] which is transcendental over k(z), and set R = R N k(z,y?). Then R is,
indeed, the completion of R, and the homomorphism R — Ris formally smooth but its generic
fiber K — K is not.

2.1.4 Formally factorizable homomorphisms. Following [FR93], we say that a homomor-
phism of noetherian local rings ¢: A — B is formally factorizable if its completion can be
factored into a composition of a formally smooth homomorphlsm of noetherian complete local
rings A= D and a surjective homomorphism D — B. Any such factorization A—> DB
will be called a formally smooth factorization of qb It is proved in [FR93, Theorem 4] that ¢ is
formally factorizable if and only if the extension of the residue fields I/k has a finite-dimensional
imperfection module Yy, = H1 (L) (see [EGA, Ory, 20.6.1 and 21.4.8]).

Remark 2.1.5. Note that dim; Y;/;, = oo can happen only when k has infinite p-rank (that is,
[k : kP] = 00) and the extension [/k is not finitely generated. In particular, formally non-factori-
zable homomorphisms are pretty exotic and almost never show up in applications.

2.2 Properties of formal smoothness
2.2.1 Criteria. Here are the main criteria for the formal smoothness of local homomorphisms
of noetherian rings.

THEOREM 2.2.2. For a local homomorphism f: (A,m) — (B,n) of noetherian local rings, the
following conditions are equivalent:

(i) The morphism f is formally smooth.

(ii) The completion f: A — B is formally smooth.

(ii)’ The completion f: A= B is a regular homomorphism.
(iii) The morphism f is flat and its closed fiber f: k = A/m — B = B/mB is formally smooth.
(iii)’ The morphism f is flat and its closed fiber f: k = A/m — B = B/mB is a regular
homomorphism (that is, B is geometrically regular over k).
Proof. The equivalence of statements (i) and (ii) is almost obvious; see [SP17, tag/07TED]. See

[SP17, tag/07NQ)] for the equivalence of statements (ii), (iii), and (iii)’, and see [SP17, tag/07PM]
for the equivalence of statements (ii) and (ii)’. O

COROLLARY 2.2.3. A morphism of noetherian schemes f:Y — X is regular if and only if it is
formally smooth at all points of Y.
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Proof. First, assume that f is formally smooth at all points of Y, so statement (i) above is
satisfied locally at every point. By the theorem, statement (iii)’ is satisfied locally at every point,
so f is flat and the geometric fibers are locally regular, hence regular. Being flat with regular
geometric fibers, the morphism f is regular.

The other direction is similar: assume that f is regular, so it satisfies statement (iii)’ of the
theorem at every point. By the theorem, statement (i) holds at every point, namely f is formally
smooth at every point. O

As another corollary, we obtain that formal smoothness behaves nicely for qe (that is, “quasi-
excellent”) schemes (for example, see [ILO14, Definition 1.2.10]). In particular, it becomes a local
property (this is due to André, see [And74]).

COROLLARY 2.2.4. Assume that ¢: A — B is a local homomorphism of noetherian rings and A
is a qe ring. Then ¢ is formally smooth if and only if it is regular. In particular, if f: Y — X is
a morphism of noetherian schemes with X a qe scheme and if f is formally smooth at all closed
points of Y, then f is regular.

Proof. Assume that ¢ is formally smooth. By Theorem 2.2.2, the completion qAS . A— Bis regular.
Since A is quasi-excellent, the composition A — A Bis regular. Since B is noetherian, the
completion homomorphism B — B is flat and surjective on spectra. By [SP17, tag/07NT], the
homomorphism ¢ is regular.

The other direction follows from Theorem 2.2.2 or Corollary 2.2.3. O

2.2.5 An adic lifting property. It is shown in [SP17, tag/07NJ] that a formally smooth f
satisfies a strong lifting property with respect to continuous homomorphisms to adic rings. We
will need the following particular case.

LEMMA 2.2.6. Let f: A — B be a formally smooth local homomorphism, let C be a complete
noetherian local ring, and let I C C' be any ideal. Then any pair of compatible homomorphisms
of topological rings A — C' and B — C/I admits a lifting B — C.

Proof. Since C'is noetherian, I is a closed ideal; see [Mat89, Theorem 8.14]. Also, I is contained
in the maximal ideal of C, which is an ideal of definition. Therefore the claim follows from [SP17,
tag/07NJ]. O

COROLLARY 2.2.7. Let A be a local ring with residue field k, let B and C' be complete noetherian
local A-algebras, and assume that B is formally smooth over A. Then an A-homomorphism
g: C — B is an isomorphism if and only if its closed fiber § = g ® o k is an isomorphism.

Proof. Only the inverse implication needs a proof. We first claim that if the closed fiber 7 is
surjective, then g is surjective. Since B and C' are complete with respect to their maximal ideals,
they are also complete with respect to m 4B and m 4C, respectively. As g is surjective, the (n—1)st
infinitesimal fibers C'/m’C — B/m"j B are surjective by Nakayama’s lemma for nilpotent ideals,
and we obtain that ¢ is surjective too.

Setting I = Ker(g) and using Lemma 2.2.6, we obtain that there exists a homomorphism
h: B — C making the following diagram commutative:

A—(C
J h ji
B——0/JI.
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In other words, we have found a section h of g. Note that the closed fiber of h is surjective (in fact,
h =g~ 1). The first statement proven above with g replaced by h gives that h is surjective. [

2.2.8 The splitting of formally smooth homomorphisms. Now we are ready to prove the
main result of Section 2 in the equal characteristic case: any formally smooth homomorphism
between complete noetherian local rings is a base change of its closed fiber. For convenience of
the exposition, we will deal with the mixed-characteristic case separately.

Recall that if A is a complete noetherian local ring with residue field k£ and if A contains
a field, then A contains k as a coefficient field i: K < A by Cohen’s structure theorem [SP17,
tag/032A].

THEOREM 2.2.9. Let f: A— B be a local homomorphism of complete noetherian local rings
with closed fiber f: k= A/my — B = B/maB. Assume that A contains a field.

(1) Assume that f is formally smooth. Then there exist a coefficient field i: k — A and a
section j: B — B of the surjection B — B which extends the composition foi: k— A — B.

(ii) Assume that f is formally smooth. Then for any choice of such i and j, the homomorphism
A®yB — B is an isomorphism. In particular, f is (non-canonically) isomorphic to the formal
base change of its closed fiber f with respect to i.

Proof. To establish the existence of j, we apply Lemma 2.2.6 to the following diagram:
foi

k——B
B j 1
|
B——8.

Once j is fixed, we obtain a homomorphism g: A®yB — B of complete noetherian local A-
algebras whose closed fiber g: k ®, B = B is an isomorphism. Hence g is an isomorphism by
Corollary 2.2.7. O

2.2.10 The mized-characteristic case. Recall that given a field k with char(k) = p > 0,
a Cohen ring C(k) is a complete DVR with residue field £ and maximal ideal (p). Since C(k) is
formally smooth over Z, (see Theorem 2.2.2), for a complete local ring A with A/m4 = k, the
homomorphism C(k) — k lifts to f: C(k) — A. In fact, this argument is used in the proof of
Cohen’s structure theorem [SP17, tag/032A]: in the mixed-characteristic case, C'(k) < Ais aring
of coefficients of A, and in the equal-characteristic case, Im(f) = k is a field of coefficients of A.

Assume that k is of characteristic p > 0. By [SP17, tag/07NR], any formally smooth homo-
morphism ¢g: k — D with D a complete noetherian k-algebra admits a formally smooth lifting
f: C(k) — E, with E a suitable complete noetherian ring, in the sense that g = f ®@c () k.
Moreover, if f': C(k) — E’ is another such lifting, then, by the formal smoothness of f, the
homomorphism E — D lifts to a homomorphism E — E’, which is necessarily an isomorphism.
For this reason, we will use the notation C(D) = E and C(g) = f.

In order to unify the notation, if R is a ring containing Q, we set C(R) = R, and for any
homomorphism f: R — S, we set C(f) = f. Here is the analogue of Theorem 2.2.9.

THEOREM 2.2.11. Let f: A—> B be a local homomorphism of complete noetherian local rings
with closed fiber f: k= A/my — B = B/mB.
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(i) Assume that f is formally smooth. Then there exist homomorphisms i: C'(k) — A and

j: C(B) — B making the following diagram commutative:

r. v,

(ii) Assume that f is formally smooth. Then for any choice of i and j, the homomorphism
A@c(k)C(E) — B is an isomorphism. In particular, f is (non-canonically) isomorphic to the
formal base change of a Cohen lift C(f) of its closed fiber f.

Proof. As we saw at the beginning of Section 2.2.10, the homomorphism C(k) — k lifts to
i: C(k) — A. In particular, B becomes a C(k)-algebra. Since C(f) is formally smooth by Theo-
rem 2.2.2, the C(k)-homomorphism C(B) — B lifts to a C(k)-homomorphism j: C(B) — B by
Lemma 2.2.6.

Given 7 and j, we obtain a homomorphism g: A@C(k)C (B) — B of complete noetherian local

A-algebras whose closed fiber §: k ®, B =+ B is an isomorphism. Hence g is an isomorphism by
Corollary 2.2.7. O

Remark 2.2.12. In a sense, Theorem 2.2.9 reduces the classification of formally smooth homomor-
phisms f: A — B of complete local rings to the case when the source is a field. By Theorem 2.2.2,
g: k — A is formally smooth if and only if A is geometrically regular over k. Perhaps this is the
“best” characterization of formally smooth k-algebras one can give in general. On the other hand,
if we further assume that K = A/m, is separable over k (for example, if k is perfect), then a bet-
ter characterization is possible: g is formally smooth if and only if A is of the form K[ti,...,,].
Indeed, since k — K is formally smooth, we can extend g to a field of coefficients K < A. Then
we choose t1,...,t, to be any family of regular parameters. Applying Theorem 2.2.11, we obtain
as a consequence that if f is formally smooth and the extension of the residue fields K/k is
separable, then there is an isomorphism of A-algebras A@C(k)C(K) [t1,...,tn] = B.

3. Generalities on group scheme actions

In this section, we fix some basic terminology, including group schemes, orbits, stabilizers, etc.

3.1 General groups

3.1.1 Group schemes and actions. A Z-flat group scheme (respectively, flat S-group scheme)
G will be simply referred to as a group (respectively, S-group). An action of a group G on a
scheme X is given by an action morphism pu: G x X — X satisfying the usual compatibilities:
associativity and the triviality of the unit action. Similarly, an action of an S-group G on an
S-scheme X is given by a morphism p: G xg X — X satisfying the analogous requirements. If
X is an S-scheme and G is a group, then an action of G on X is called an S-action if p is an

S-morphism. Giving such an action is equivalent to providing X with an action of the S-group
GS =G xS.

Remark 3.1.2. The projection and the action morphisms give rise to a groupoid G x X = X for
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the flat, locally of finite presentation (fppf) topology, see [SP17, tag/0234], which often shows
up in constructions related to the action.

3.1.3 Stabilizers. The stabilizer or inertia group of an action of G on X is the X-group
scheme
Ix =Eq(Gx = X)=Gx x_ X,
XxX
where the component maps of Gx — X x X are the action and projection maps and X — X x X
on the right is the diagonal. This is a subgroup of the X-group GGx, which is often not flat. For
any point x € X, we define its stabilizer as the fiber G, = I'x x x Spec(k(z)).

3.1.4 Orbits. Working with varieties, one usually considers only “classical” orbits of group
actions, which can be characterized as orbits of closed points or locally closed orbits. When G
acts on a more general scheme X, it is more natural to take into account orbits of all points.
A set-theoretic orbit of # € X is the image of the map G x Spec(k(z)) — X. This defini-
tion ignores the non-reduced structure which becomes essential when G is non-reduced. For
example, free and non-free actions of y, are distinguished by the nilpotent structure of the
orbits.

In order to define scheme-theoretic orbits, one should use the scheme-theoretic image; see
[Har77, II, Exercise 3.11(d)], [SP17, tag/01R6]. Let O, be the scheme-theoretic image of G x
Spec(k(r)) — X, and let O, be obtained from O, by removing all proper closed subsets of the
form O,. We provide O, with the structure sheaf O35, lo, and call it the G-orbit of x. We do not
know general criteria for O, to be a scheme, but the orbits we will use below are in fact schemes.

Note that in this case, O is a limit of open subschemes of O,.

3.2 Diagonalizable groups

Starting from this point, we consider only diagonalizable groups G. Probably, many results can
be extended to the case of arbitrary linearly reductive or even reductive groups, but we do not
pursue that direction.

3.2.1 The definition. By a diagonalizable group, we mean a finite-type diagonalizable group
G over Z; see [SGA3-2, VIIL.1.1]. In other words, G = Dy, = Spec(Z[L]) for a finitely generated
abelian group L. Note that for any subgroup L’ C L with the quotient L” = L/L’, we have
a natural embedding D;» < Dy and Dy, /Dp» = Dj,. Moreover, this construction exhausts all
subgroups and quotient groups of Dy,.

3.2.2 The action of a diagonalizable group. Any element d € L induces a character x4: G —
Gy, = Dz, and this construction identifies L with the group of all characters of G. An action of
a diagonalizable group G = Dy, on a scheme X can also be described in the dual language by
giving a comultiplication homomorphism of Ox-algebras u: Ox — Ox|[L].

3.2.3 The affine case. If X = Spec(A) is affine, then the action is described by the ho-
momorphism u”: A — A[L], and it is easy to see that such a homomorphism u# is, indeed,
a comultiplication if and only if it corresponds to an L-grading A = @per Ay on A, see [SGA3-1,
1.4.7.3];if a = 3" a,, with a,, € A, then u#(a) = 3 a,n. From here on, we will identify G-actions
on X = Spec(A) with the corresponding L-gradings of A.
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4. L-graded rings

In this section, we study how a diagonalizable group G = Dy, acts on affine schemes X = Spec(A).
On the algebraic side, this corresponds to studying L-graded rings A = ®,c1An.

4.1 Coinvariants and the scheme of fixed points

4.1.1 Coinvariants. Given an L-graded ring A, consider the ideal I generated by all mod-
ules A, with n #£ 0. It is a graded ideal, and one has I, = A, for n # 0 and Iy = Zn#o A, A_,.
Note that A/I = Ay/Iy is the maximal graded quotient of A with trivial L-grading. We call it
the ring of coinvariants of A and denote it Ag or Ar,.

4.1.2 The scheme of fived points. 1f X = Spec(A), then X := Spec(Ag) is the maximal
closed subscheme of X on which the action is trivial. Obviously, X — X is a functor on the
category of affine G schemes. We call it the fized-points functor; see also Section 5.1.13 below.

4.2 Invariants and the quotient

4.2.1 The definition. If A is an L-graded ring, then G = Dy, acts on A, and A, is the set
of all elements on which G acts through y4. In particular, the ring of invariants A% coincides
with Ag. The quotient of X = Spec(A) by the action is the scheme X /G := Spec(Ayp). Obviously,
X — X // G is a functor on the category of affine G schemes. We call it the quotient functor.

4.2.2 Some properties preserved by the quotient functor. It is classical that the properties of
being reduced, integral, and normal are preserved by quotients.

LEMMA 4.2.3. Assume that an L-graded ring A = ®,¢c1, A, satisfies one of the following prop-
erties: A is a reduced ring, an integral domain, or a normal domain. Then Aq satisfies the same

property.

Proof. Only the last case needs justification. Assume that A is a normal domain and so Ay is a
domain. If a,b € Aj are such that b # 0 and ¢ = a/b is integral over Ay, then ¢ € A. Since bc = a
in the domain A and a,b € Ay, we obtain that c is also homogeneous of degree zero. O

Another property preserved by quotients is being of finite type.

LEMMA 4.2.4. Assume that an L-graded ring A = ®,c1 A, is finitely generated over a subring
C C Ap. Then Ay is finitely generated over C.

Proof. We can choose homogeneous C-generators of A, and this gives a presentation of A as
a quotient of an L-graded polynomial algebra B = C|[t1, ..., ;] by a homogeneous ideal I. Then
A, = B, /I, for any n € L, and so Ay is a quotient of By. Note that By = C[M] for the monoid
M = ¢~ (0) with ¢: N! — L given by é(ay,...,a;) = 22:1 a; deg(t;). Since the monoid M is
finitely generated, By is finitely generated over C, and the lemma follows. O

4.2.5 The universality of quotients and fized-point schemes. As opposed to the case of gen-
eral reductive groups, the quotient is universal in the sense of [MFK94, Chapter 0, § 1], regardless
of the characteristic.

LEMMA 4.2.6. Assume that G = Dy, acts on X = Spec(A), writeY = X /G, let Y' —Y be an
affine morphism, and let X' =Y’ xy X. Then X' /G =Y’ and (X")¢ = X& xx X'.
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Proof. Let Y/ = Spec(By). Since Y = Spec(Ay), we obtain X’ = Spec(B), where B = By ® 4, A
with the grading B = ®,crBo ®4, An. So, By is the degree zero component of B, and hence
X' ) G =Y. In addition, A,,B = B, B for any n € L, hence B; = B®4 Ag, giving

(X)¢ = Spec Bg = Spec B®4 Ag = X¢ xx X', O

Remark 4.2.7. A much more general result is proved by Alper in [Alp08, Proposition 4.7(i)] in
the context of good moduli spaces.

4.2.8 Fibers. The quotient morphism X — Y = X / G is G-equivariant with respect to the
trivial action on Y’; hence it contracts the orbits of the action on X. It is well known that two
orbits of closed points are mapped to the same point if and only if their closures intersect, so
on the set-theoretical level, one can view Y as the “separated” quotient of X. For example, if X
is defined over a field, then the same fact is proved for any reductive group action in [MFK94,
Corollary 1.2]. In the case of a diagonalizable group, one can obtain a more precise description
as follows.

LEMMA 4.2.9. Assume that G = Dy, acts on X = Spec(A), and let y be a point of Y = X JJ G.
Then the fiber X, contains a single orbit O which is closed in X,, and this orbit belongs to the
closure of any other orbit contained in X,.

Proof. By Lemma 4.2.6, we can replace Y with y = Spec(k(y)) and X with X, = X xy y.
So, we can assume that Y = Spec(k) for a field £ and X = Spec(A) for an L-graded k-algebra
A = ®per Ay, with Ag = k. The set L’ of elements n € L such that A, contains a unit of A is
a subgroup of L. Furthermore, if n € L', then any non-zero element of A, is a unit because Agy
is a field. So, I = @, 1’ An is the maximal homogeneous ideal of A. The closure of any orbit
is given by a homogeneous ideal, hence contains O = Spec(A/I). It remains to observe that
O = Spec(k[L']) is a single orbit with stabilizer Dy, /1. O

ExAMPLE 4.2.10. If G = G,,, then there are two types of fibers: either X contains a single
G-invariant closed point, or X, is a single orbit with stabilizer j,.

Recall that a morphism X — Y is submersive if U C Y is open if and only if its preimage is
open [SP17, tag/0406]. Lemmas 4.2.6 and 4.2.9 and [MFK94, §0.2, Remarks 5 and 6] imply the
following result.

COROLLARY 4.2.11. If G = Dy, acts on X = Spec(A), then X J/ G is a universal categorical
quotient and the quotient morphism X — X // G is submersive.

EXAMPLE 4.2.12. For completeness, we note that the above theory completely breaks down for
non-reductive groups. The classical example is obtained when X = Spec(A) is GLa(k) and G is
a Borel subgroup acting on X on the left. Then A® = k, but the categorical quotient is ]P’,i. In
particular, Spec(A®) is just the affine hull of the categorical quotient.

4.3 Noetherian L-graded rings

A theorem of Goto and Yamagishi states that any noetherian L-graded ring is finitely generated
over the subring of invariants; see [GY83]. In the case of a finite group action (not necessarily com-
mutative), an analogous claim was recently proved by Gabber; see [ILO14, Proposition 1V.2.2.3].
It seems that the work [GY83] is not widely known in algebraic geometry; at least, we had re-
proved the theorem (in a more complicated way!) before finding the reference. For the sake of
completeness, we outline the proof of [GY83, Theorem 1.1] below.
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PROPOSITION 4.3.1 (Goto—Yamagishi). Assume that A = @, A, is a noetherian L-graded ring.
Then Aq is noetherian, each A, is a finitely generated Ap-module, and A is a finitely generated
Ap-algebra.

Proof. If n € L, then for any Ag-submodule M C A,,, the ideal M A of A satisfies MANA,, = M.
It follows that each A, is a noetherian Ag-module, so Ag is a noetherian ring and each Ag-
module A, is finitely generated. It remains to prove that A is finitely generated over Ag, and the
case of a finite L is, now, obvious.

In general, L is a direct sum of cyclic groups, and using that AL®L" = (AL/)L”, we reduce
the claim to the case when L is cyclic. Thus, we can assume L = Z. It suffices to prove that
Aso = ®n>04, is finitely generated over Ag. Indeed, the same is then true for A<y = ®p<oAn
by symmetry, and we win.

Set Ay = ®,>0A4,. The homogeneous ideal A4 A is finitely generated, so we can choose its
homogeneous generators f1,..., f; € Ay. Note that n; = deg(f;) > 0. Set n = max; n;, and let
C C A>g be the Ag-subalgebra generated by Ay, ..., A,. We claim that C' = A>q, so the latter is
finitely generated over Ag. Indeed, by induction on m > n, we can assume that Ag,..., A,_1 lie
in C. Any g € A, can be represented as »_ g;fi, and the equality is preserved when we remove
from each g; the components of degree different from m — n;. But then g; € A,,_,, C C by the
induction assumption, and so g € C. ]

4.4 L-local rings
In this section, we study L-local rings that play the role of local rings among L-graded rings.

Remark 4.4.1. In fact, one can develop an L-graded analogue of commutative algebra (and
algebraic geometry) which goes rather far. See [Tem04, §1], where graded versions of fields,
local rings, fields of fractions, prime ideals, spectra, valuation rings, etc., are introduced. Many
formulations and arguments are extended to the graded case just by replacing “elements” (of
a ring or a module) with “homogeneous elements.”

4.4.2 Maximal homogeneous ideals. By a maximal homogeneous ideal of an L-graded ring A,
we mean any homogeneous ideal m C A such that no homogeneous ideal n satisfies m C n C A.
Note that m does not have to be a maximal ideal of A.

4.4.3 Graded fields. An L-graded ring k is called an L-graded field if 0 is the only proper
homogeneous ideal of A. Equivalently, any non-zero homogeneous element of A is invertible. Note
that m C A is a maximal homogeneous ideal if and only if A/m is a graded field. Graded fields
are analogues of fields in the category of graded rings. In particular, it is easy to see that any
graded module over k is a free k-module; see [Tem04, Lemma 1.2].

4.4.4 L-local rings. An L-graded ring A that possesses a single maximal homogeneous
ideal m will be called L-local, and we will often use the notation (A, m). A homogeneous homo-
morphism ¢: A — B of L-local rings is called L-local if it takes the maximal homogeneous ideal
of A to that of B. Here are a few other ways to characterize L-local rings.

LEMMA 4.4.5. For an L-graded ring A, the following conditions are equivalent:
(i) The ring A is L-local.
(ii) The ring Ay is local.
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(iii) The action of Dy, on Spec(A) possesses a single closed orbit.

Proof. Homogeneous ideals of A correspond to closed Dp-equivariant subsets of Spec(A); hen-
ce statement (i) is equivalent to statement (iii). On the other hand, each fiber of the quotient
map Spec(A) — Spec(Ap) contains a single closed orbit; hence statement (ii) is equivalent to
statement (iii). O

EXAMPLE 4.4.6. A homogeneous ideal p C A is called L-prime in [Tem04, §1] if for any two
homogeneous elements z, y with xy € p, at least one of them lies in p. Inverting all homogeneous
elements in A\ p, one obtains an L-local ring A,, 1, that we call the homogeneous localization of A
at p. Even if p is prime in the usual sense, A, 1 is usually smaller than the usual localization A,,.

4.4.7 Homogeneous nilpotent radical. By the homogeneous nilpotent radical, we mean the
ideal generated by all homogeneous nilpotent elements. The following result is proved precisely
as its classical ungraded analogue.

LEMMA 4.4.8. Let A be an L-graded ring. Then the homogeneous nilpotent radical of A coincides
with the intersection of all L-prime ideals of A.

4.4.9 Graded Nakayama’s lemma.

PROPOSITION 4.4.10. Let (A, m) be an L-local ring, and let M be a finitely generated L-graded
A-module. Then mM = M if and only if M = 0.

Proof. Note that M = 0 if and only if its support is empty. By Nakayama’s lemma, the latter
consists of all points x € Spec(A) such that M (x) = M ®4 k(x) # 0. Since the support is Dp-
equivariant, it is given by a homogeneous ideal, and hence it either is empty or contains V(m).
It follows that M = 0 if and only if M (x) = 0 for any x € V(m). The latter is equivalent to the
vanishing of M/mM. O

As in the usual situation, Nakayama’s lemma has the following immediate corollary.

COROLLARY 4.4.11. Let (A,m) be an L-local ring with residue graded field k = A/m, and let
M be a finitely generated L-graded A-module. Then:

(i) A homogeneous homomorphism of L-graded A-modules ¢p: N — M is surjective if and only
if  ® 4 k is surjective.
(i) Homogeneous elements my, ..., m; generate M if and only if their images generate M /mM.

(iii) The minimal cardinality of a set of homogeneous generators of M equals the rank of the
free k-module M /mM.

4.4.12 FEquivariant Cartier divisors. As a corollary of the graded Nakayama’s lemma, we
can give the following characterization of equivariant divisors that will be used in [AT17] when
toroidal actions are studied. (The finite presentation assumption is only essential in the non-
noetherian case.)

PROPOSITION 4.4.13. Assume that (A, m) is an L-local integral domain and D C Spec(A) is an
equivariant, finitely presented closed subscheme. Let x be an arbitrary point of V(m), and let
X = Spec(Ox ;) be the localization at x. Then the following conditions are equivalent:

(i) We have D = V(f) for a homogeneous element f € A,
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(ii) The scheme D is a Cartier divisor in X,

(iii) The localization D, = D x x X, is a Cartier divisor in X,.

Proof. The only implication that requires a proof is (iii) = (i). By our assumptions, D = V(1)
for a finitely generated homogeneous ideal I, so I/mI is a free A/m-module of a finite rank d.
Since D, is Cartier, the k(z)-vector space I ® 4 k(z) = (I/mI) ®4 k(z) is one-dimensional, and
we obtain d = 1. Then [ is generated by a single homogeneous element f by Corollary 4.4.11. [

4.4.14 Regular parameters. Let (A,m) be an L-local ring. Then O = Spec(A/m) is the
closed orbit of Spec(A), and hence A/m = k[L'], where k = Ay/my is the residue field of Ay and
L' C L is a subgroup.

LEMMA 4.4.15. Keep the above notation and assume that A is a regular ring and the torsion
degree of L' is invertible in k. Let n be the codimension of O in Spec(A); then there exist
homogeneous elements ty,...,t, € A that generate m.

Proof. By Nakayama’s lemma (Lemma 4.4.11(iii)), we should only check that the rank of the
free A/m-module m/m? is n. Note that m/m? defines the conormal sheaf to O. But O is regular
by our assumption on the torsion of L', hence the rank of the conormal sheaf is n. ]

4.5 Strictly L-local rings

4.5.1 The definition. An L-local ring (A, m) is called strictly L-local if m contains any A,
with n # 0. Here are a few natural ways to reformulate this.

LEMMA 4.5.2. Let (A, m) be an L-local ring, and let mo = mN Ag. Then the following conditions
are equivalent:

(i)
(ii) The closed orbit of Dy, on Spec(A) is a point.
(iV) m = mg D (@O;AneLAn)-

The ring A is strictly L-local.

4.5.3 Regularity and coinvariants.

LEMMA 4.5.4 ([Fog73, Corollary of Theorem 5.4]). If a strictly L-local ring (A, m) is regular,
then the ring of coinvariants Ay, is regular.

Proof. Choose t1,...,t; as in Lemma 4.4.15. Since A/m is a field, they form a regular family of
homogeneous parameters. First, consider the case when all ¢; are of degree zero. We claim that
A = Agp, and so A;, = A is regular. Indeed, we have m = mgA, where mg = m N Ag. Choose
0 # n € L. Since A,, C m, we obtain mgA,, = A,. But A, is a finitely generated Ag-module by
Proposition 4.3.1, and so A, = 0 by Nakayama’s lemma.

Now, assume that the degrees are arbitrary, and reorder the t; so that t1,...,?, are the only
elements of degree zero. Then A’ = A/(tg+1, ..., 1) is regular and we have A}, = Ap. It remains
to observe that the images of ¢y, ..., t, form a regular family of parameters of A’, and so A} = A’
by the above case. O

4.5.5 Completion. By an L-complete local ring, we mean a complete local ring (A, m) pro-
vided with a formal L-grading A = [],,c; An such that A, C m for each n # 0. In particular,
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A is strictly L-local in the formal sense and its residue field is trivially graded. Homogeneous
homomorphisms of L-complete local rings are defined in the obvious way. The main motivation
for considering this class of rings is the following result.

PROPOSITION 4.5.6. Assume that L is a finitely generated abelian group and (A, m) is a noethe-
rian strictly L-local ring. Set mg = m N Ap, and for each n € L, let ﬁn denote the my-adic
completion of the Ay-module A,,. Then, the m-adic completion of A is isomorphic to [, En ;
in particular, it is an L-complete local ring.

Proof. Write mé“ = mpA. We need to relate the m-adic and mé“—adic topologies on A. We have
the following.

LEMMA 4.5.7. (i) There exist a constant b > 0 and, for every n € L, a constant r(n) > 0, such
that the following holds. Let a € A, Nm”~. If N > bq + r(n), then a € (mg‘)q.

(ii) For each N, the set {n € L | A, ¢ m™} is finite.

Proof. (i) By Proposition 4.3.1, the ring A is finitely generated over Ap; hence we can choose
homogeneous Ag-generators fi,..., fr € A~ Ap. Denote their degrees by ni,...,ng € L~ {0},
and consider the monoid homomorphism ¢: N¥ — L sending the ith generator to n;. An element
of A, is a polynomial in the f; whose monomials have exponents in ¢! (n). Any monomial with
exponent in ¢~1(0) lies in mg, and the claim is proven if we find b > 0 and r(n) > 0 and show
that each monomial appearing in a € A, NmY with N > bq +7(n) is divisible by a product of ¢
monomials in mg. Writing |(l1,...,lx)| = >_ l;, we need to find b > 0 and r(n) > 0 and show that
each monomial f{l e f,lj of degree |(I1,...,lx)| =N = bg+r(n) in f; such that ¢(l1,...,lk) =n
is divisible by a product of ¢ monomials lying in mg. This is a combinatorial question on lattices.

Consider first the case n = 0. The monoid ¢~1(0) is finitely generated, ¢=1(0) = (g1, ..., gs).
Write b = max(|g;|). If (I1, . .., lx) € $~1(0), then it has an integer expression (I1,...,lt) = > ¢:g;,
and ¢ = Y ¢; > N/ max(|gi|). So, f{l . fli’“ is the product of at least ¢ elements of the form f9
in mg. This gives the result in this case.

Consider the general case. Since the monoid N* is noetherian, the ideal generated by ¢~!(n)
has finitely many generators hi,...,hy € ¢ '(n). It follows that ¢~'(n) = U; (h; + ¢71(0)).
Write 7 = max(|h;|). Then any (l1,...,lt) € ¢~1(n) of degree N > bq + r can be written as
hi +t, with t € $~1(0) and deg(t) > bg; hence t is the sum of at least q elements of ¢~1(0), which
gives the general case.

(i) Let a € A, C A with a € m”". Then any expression a = chffjl ---f,ijk has at least
one monomial of degree |(l;1,...,l;:)| < N. But the set of (I1,...,l;) of degree < N is finite;
therefore the set of n = ¢(l1,...,1;) with |(I1,...,lx)| < N is finite, as required. O

Proof of Proposition J.5.6, continued. Note that A,, = lim An/(mNNA,) since miy A, < (mVn

Ay, C mg(N)An by Lemma 4.5.7(i). Also, claim (ii) of the same lemma implies that &, A4,,/(m~ N

Ap) =T1,, An/(mY N A,). Using that products are compatible with limits, we obtain

A =1lim A/m" = lm @nerAn/(m™ 0 Ay) = lim [ An/(m™ 0 A)
N N N

nel

= [T lm A,/ (mN 0 4,) = T] 4,

nel N neL

as required. 0
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4.6 Strongly homogeneous homomorphisms

We say that a homogeneous homomorphism ¢: A — B of L-graded rings (respectively, L-
complete local rings) is strongly homogeneous if A ®4, By = B (respectively, A®4,By = B)
as L-graded rings (respectively, L-complete local rings). Similarly, if P is a property of homo-
morphisms stable under base changes, for example smoothness, then we say that ¢ is strongly P
if it is strongly homogeneous and ¢g: Ag — By satisfies P. In particular, ¢ satisfies P.

In addition, we will use the notion of strong formal smoothness, but only for local homomor-
phisms of strictly L-local rings. This makes sense because formal smoothness of local homomor-
phisms is preserved by base changes along local homomorphisms, and if A is strictly L-local,
then Ag — A is a local homomorphism.

Our next aim is to establish a criterion of strong homogeneity in one of the following two
cases:

(1) the local case: ¢ is a local homomorphism of noetherian strictly L-local rings

(2) the formal case: ¢ is a local homomorphism of noetherian L-complete local rings

4.6.1 Reduction to the formal case. First, let us reduce the problem to the formal case.

LEMMA 4.6.2. Assume that ¢: A — B is a homogeneous local homomorphism of noetherian
strictly L-local rings. Then ¢ is strongly homogeneous if and only if its completion qb A— Bis
strongly homogeneous.

Proof. Clearly, ¢ is strongly homogeneous if and only if f,,: A, ® 4, Bo — By, is an isomorphism
for any n € L, and it follows from Proposition 4.5.6 that ¢ is strongly homogeneous if and only if
Jn: A R A Bg — Bn is an isomorphism for any n € L. Since B,, is finitely generated over By, we
have Bn = B, ®pB, Bo, and since A, is finitely generated over Ay we have An® A Bo =A,®4, Bo

Thus, gn: An ®24, Bo — B, ®p, Bo is the base change of f, with respect to the faithfully flat
homomorphism By — By, and hence f, is an isomorphism if and only g,, is an isomorphism. The
lemma follows. O

4.6.3 The fiber. Let ¢ be as in case (1) or (2). Set m = my and k = A/m, and consider
the fiber ¢: k — A = B/mB of ¢. If ¢ is strongly homogeneous, then the fiber is strongly
homogeneous too, and since k is trivially graded, we obtain that A is trivially graded too. The
geometric meaning of the latter condition is that the action of Dy, on the fiber Spec(A) is trivial.

LEMMA 4.6.4. Let k be a trivially graded field and A a noetherian local k-algebra with residue
field | = A/mp and an L-grading making the structure homomorphism 1 : k — A homogeneous.
Provide the l-vector spaces Q0 j, @Al and my / m% with the induced L-grading. Then the following
conditions are equivalent:

(i) The k-algebra A is trivially graded.

(ii) The field | and the space my/m% are trivially graded.

(iii) The field I and the space Q5 @ [ are trivially graded.

Proof. Clearly, condition (i) implies condition (ii). Conversely, if condition (ii) holds, then each
vector space m} / mXH is trivially graded. Since N,m) = 0 by the noetherian assumption, it
follows that A is trivially graded.
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To prove the equivalence of conditions (ii) and (iii), we observe that the homomorphisms
k — A — [ induce an exact triangle of cotangent complexes—the transitivity triangle [I1171,
I1.2.1.2.1]—whose associated exact sequence of homologies contains

Tl/k: — mA/m% — QA/k ®Al*> Ql/k

Both in conditions (ii) and (iii), the field [ is trivially graded, and hence the end terms Y;/, and
1, are trivially graded. Thus, my / m?\ is trivially graded if and only if 24 is trivially graded,
as needed. O

Remark 4.6.5. The assumption on the grading of [ is automatic when A is strictly L-local (as
will be in all our applications), but it cannot be omitted in general. For example, consider the
case when k =R and A =1 =C =R &R as a Z/2Z-graded field.

4.6.6 Lifting a formal grading. The following lemma will be our main tool in studying ho-
momorphisms with trivially graded fiber.

LEMMA 4.6.7. Let ¢: A — B be a homogeneous local homomorphism of L-complete noetherian
local rings with a trivially graded fiber k — B = B/maB. Assume that g: A — D andh: D — B
form a formally smooth factorization of ¢ (Section 2.1.4). Then one can provide D with a formal
grading such that the following conditions hold:

(i) Both g and h are homogeneous homomorphisms.
(ii) The fiber D = D/maD is trivially graded.

(iii) The homomorphism g is a graded base change of the trivially graded homomorphism
C(k) — C(D) introduced in Section 2.2.10.

Proof. Since B is trivially graded, we have B = By/moBy, where my is the trivially graded
component of my. Fix a ring of coefficients i: C'(k) — Ag, so that all rings we consider become
C'(k)-algebras. In particular, we obtain homomorphisms ip,: C(k) — By and ip: C(K) — D
which we utilize below.

Recall that the homomorphism C(g): C(k) — C(D) discussed in Section 2.2.10 is formally
smooth; considering the composed homomorphism C(D) — D — B and the diagram

C(k:) ZB*O> BO
B

C(Q)J/ J
—— B,

C(D)
we can lift C(D) — B to a C(k)-homomorphism C(D) — By.
We claim that the composed homomorphism \: C(D) — By — B lifts to a homomorphism
C(D) — D such that the composition C(D) — D — D is the canonical projection p: C’@) — D.

Indeed, we have natural homomorphisms (\,p): C(D) — B ><§5 and D — B x5 D, giving
a commutative diagram

Ck)—2—D

C(@9) . J
B

=
D) Bx-D.
D) 7 B
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By the Chinese remainder theorem, the homomorphism D — B ><§5 is surjective, and using
the formal smoothness of C(g) again, we can lift (A, p) to a homomorphism C(D) — D.

At this stage, Theorem 2.2.11(ii), applied to the formally smooth homomorphism g: A — D,
asserts that D = A@C(k)C(E), making g the base change of C'(k) — C(D). Provide C(D) with
the trivial grading. This induces the trivial grading on D, giving property (ii). The formal grading
A = [l,cr An provides a formal grading D = [, An@)C(k)C’(ﬁ) making g a graded base
change, giving property (iii); in particular, g is homogeneous. The homomorphism C(D) — B is
homogeneous since it factors through By. This implies that An@@c(k)C (D) — B factors through
A, By C By, so h is homogeneous, showing property (i), as needed. O

4.6.8 Strong formal smoothness. Already the case D = B of the above lemma allows us to
completely describe strongly formally smooth homomorphism (as defined in Section 4.6).

COROLLARY 4.6.9. Assume that ¢: A — B is a homogeneous local homomorphism of L-complete
noetherian local rings. Then:

(i) The homomorphism ¢ is strongly formally smooth if and only if it is formally smooth and
has a trivially graded fiber.

(ii) If ¢ is formally smooth, then the following conditions are equivalent: (a) ¢ has a trivially
graded fiber, (b) ¢ is strongly homogeneous, (c¢) ¢ is strongly formally smooth.

Proof. The forward direction in statement (i) follows from the discussion in Section 4.6.3, so
we assume that ¢ is formally smooth with trivially graded fiber and prove that ¢ is strongly
homogeneous and ¢q is formally smooth. Applying Lemma 4.6.7 with D = B, we obtain B =
A@C(k)C(E), where C(k) and C(B) are trivially graded. In particular, By = A0®O(k)0(§),
and hence ¢ is strongly homogeneous. Moreover, ¢ is a base change of the formally smooth
homomorphism C(k) — C(B); hence ¢y is formally smooth and we obtain statement (i).

To prove statement (ii), we note that the implications (¢c) = (b) == (a) are obvious, and
the implication (a) = (c) follows from statement (i). O

4.6.10 Strong homogeneity and the cotangent compler. Now we will study general factoriz-
able homomorphisms; see Section 2.1.4. In this case, one should also control the grading of the
kernel of a factorization D — B. Naturally, this is related to the first homology of the cotangent
complex L /4.

LEMMA 4.6.11. Assume that g: A — D is a formally smooth homogeneous local homomor-
phism of L-complete noetherian local rings with a trivially graded fiber k — D, let I C D be
a homogeneous ideal, B = D/I, and | the residue field of B. Then the following conditions are
equivalent:

(i) The composition A — B is strongly homogeneous.

(ii) The ideal I is generated by elements of degree zero.
(iii) The module (I/1?) ®@p 1 is trivially graded.
(iv) The homology group Hi(Lp, ®% 1) is trivially graded.
Proof. (i)<=(ii) The homomorphism A — D is strongly homogeneous by Corollary 4.6.9(i);
hence A — B is strongly homogeneous if and only if D — B is strongly homogeneous. The latter
happens if and only if D/I = B = D ®p, By = D/IyD, where Iy is the trivially graded part
of I, that is, if and only if condition (ii) holds.
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(ii)<=>(iii) The direct implication is clear. Conversely, assume that condition (iii) holds; then
the B-module I/I? is generated by elements of degree zero by the graded Nakayama’s lemma;
see Corollary 4.4.11(ii). Since elements of I generating I/I? generate I by the usual Nakayama’s
lemma, we obtain condition (ii).

(iii)<=(iv) Consider the exact triangle A obtained from the transitivity triangle
Lpja ®p B — Lp/a — Lg/p = Lp/a ®p B[1]

by applying - ®% [. By the formal smoothness of A — D, the complex Lp /A ®% 1 is quasi-
isomorphic to Qp, 4 ®p 1. By [1lI71, 111.1.2.8.1], we have Hyo(Lg/p) = 0 and Hy(Lg/p) = I/1%
therefore Hy (Lp/p®gl) = (I/1*)®pl. It follows that the exact sequence of homologies associated
with A contains the sequence

0— Hy(Lpa®%1) — (I/1*) @51 — Qpa®pl.

By our assumption on A — D, the term Qp/4 ®p [ is trivially graded; hence (I/1?) ®p 1 is
trivially graded if and only if H1(Lp/4 ®% 1) is trivially graded. O

4.6.12 The main result: formal factorizable case. We summarize what we have done so far
in the factorizable case. This will later be generalized to arbitrary homomorphisms, see Theo-
rem 4.7.8, but our result here is slightly more precise since we use only formally smooth factor-
izations in part (ii).

THEOREM 4.6.13. Assume that ¢: A — B is a formally factorizable homogeneous local homo-
morphism of L-complete noetherian local rings. Then the following conditions are equivalent:

(i) The homomorphism ¢ is strongly homogeneous.

(ii) The homomorphism ¢ factors into a composition of homogeneous homomorphisms A —
D — D/I = B, where D is L-complete, A — D is formally smooth with a trivially graded fiber,
and I is generated by elements of degree zero.

(iii) The l-vector spaces Ho(LLp/4 ®%1) = Qp/a®@pland Hi(Lpa ®% 1) are trivially graded.

Proof. By Lemma 4.6.4, the homomorphism ¢ has a trivially graded fiber if and only if Q5,4 ®pl
is trivially graded. This means that any of the conditions (i), (ii), and (iii) imply both that ¢
has a trivially graded fiber and that Qp,4 ®p [ is trivially graded.

Fix a factorization A — D — B with a formally smooth A — D. Since ¢ has trivially graded
fiber, we may apply Lemma 4.6.7: in case (i) or (iii), we may grade D so that A — D and D — B
become homogeneous and with a trivially graded fiber; this holds by assumption in case (ii).

It follows that under any of the assumptions (i), (ii), and (iii), the setup of Lemma 4.6.11
holds. Furthermore, assumption (i) is equivalent to Lemma 4.6.11(i), assumption (ii) is equivalent
to Lemma 4.6.11(ii), and assumption (iii) is equivalent to Lemma 4.6.11(iv). The equivalence of
assumptions (i), (ii), and (iii) now follows from the equivalence in Lemma 4.6.11. O

Remark 4.6.14. Let ¢: A — B be a local homomorphism of L-complete noetherian local rings,
and assume that the extension of the residue fields [/k is separable (in particular, ¢ is factoriz-
able). In this case, one can describe ¢ very explicitly.

Fix a ring of coefficients C(k) — A. If ¢ is formally smooth, then by Remark 2.2.12 there
exists an isomorphism of A-algebras A@C(k)c (D[t1,--.,tn] = B. It follows that, in general, ¢
is strongly homogeneous if and only if there exists a homogeneous isomorphism of A-algebras

(ABcr) CDtrs - - tal)/(frs-- - fm) = B,
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where ¢; and f; are of degree zero.

4.7 Elimination of the formal factorization assumption

The aim of this section is to extend the main results of Section 4.6 to non-factorizable homo-
morphisms. This only requires us to replace formally smooth factorizations by so-called Cohen
factorizations. The arguments are very similar, so we will mainly indicate the modifications one
has to make.

4.7.1 Cohen factorization. Let ¢: A — B be a homomorphism of noetherian complete local

rings. A Cohen factorization of ¢ is a factorization of the form A i> D - B, where D is
a noetherian complete local ring, g is surjective, f is flat, and the ring D/m 4D is regular.

Remark 4.7.2. (i) Cohen factorizations were introduced by Avramov, Foxby, and Herzog in
[AFH94] to study local homomorphisms between noetherian complete local rings. In particu-
lar, they showed that such a factorization always exists. Later, this notion was exploited by
Avramov in [Avr99] to establish foundational properties of general lci morphisms.

(ii) For the sake of comparison with the formally smooth factorizations, recall that f is formally
smooth if it is flat and D/m 4D is geometrically regular over A/m 4. Flat morphisms with regular
fibers are sometimes called weakly regular, but they are not especially useful. So it may be
surprising that Cohen factorizations do provide a useful tool.

4.7.3 Graded Cohen factorization. The following result will serve as a replacement of Lem-
ma 4.6.7.

LEMMA 4.7.4. Let ¢: A — B be a homogeneous local homomorphism of L-complete noetherian
local rings with a trivially graded fiber k — B = B/mB. Then there exists a Cohen factorization

h
A% D = B such that the following conditions hold:

(i) Both g and h are homogeneous homomorphisms.

(ii) The homomorphism g is a graded formal base change of a homomorphism v: C(k) —
C(D[y1,--.,yn], where | = B/mp and the gradings are trivial. In particular, the fiber D =
D/maD is trivially graded.

We note that, unlike the situation in Remark 4.6.14, the homomorphism ) does not take
C(k) to C(I) in general.

Proof. The proof is a graded variation on the proof of [AFH94, Theorem 1.1], and it is also
close to the proof of Lemma 4.6.7, so we only describe the construction. The rings A and B
have the same residue fields as Ay and By, respectively, so we can fix structure homomorphisms
C(k) — Ag and C(I) — By. Choose a surjective homomorphism C(I)[yi,...,yn] = Bo that
takes y; to a family of generators of mp,; then the composed homomorphism C(k) — Ay — Bo
lifts to a homomorphism ¢: C(k) — C()[y1,...,yn]. We provide ¢ with the trivial grading
and define g to be the graded formal base change A — D = A@C(k)C’(l)[[yl, .oy Yn]. We claim
that ¢ satisfies condition (ii). Indeed, ¢ is flat because ¢ and the completion homomorphism
A®cmw CDy1,-- - ynl — D are flat, and D/maD = [y, ..., yn] is regular.

It remains to construct h. The graded homomorphisms C(I)[y1,...,yn] - Bo — B and ¢
induce a homomorphism h: D — B, so we should only check that h is onto. Since D/mp = I,
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we should only prove that h(D) contains a set of generators of mp. Clearly, h(D) contains m4B
and mp,, and it remains to note that since B/m4B is trivially graded, mp = maB +mp,. O

4.7.5 The cotangent complex. Next, we adjust Lemma 4.6.11 to Cohen factorizations.

LEMMA 4.7.6. Assume that g: A — D is a graded formal base change of a trivially graded
homomorphism : C(k) — C()[y1,...,yn], where k = A/ma and |l = D/mp. If I C D is
a homogeneous ideal and B = D/I, then the following conditions are equivalent:

(i) The composition A — B is strongly homogeneous.

(i)
(iii) The module (I/1?) ®p 1 is trivially graded.
v)

(i

Proof. The proof is a copy of the proof of Lemma 4.6.11 with the only difference that in the
exact sequence

The ideal I is generated by elements of degree zero.

The homology group Hi(Lp,4 ®I§ l) is trivially graded.

Hy(Lpya ®pl) = Hi(Lpa ®p1) = (I/1%) @51 — Qpa ®@pl,

the first term can be non-zero. However, we claim that it is trivially graded, and hence it is still
true that (I/I1?) ®p [ is trivially graded if and only if H;(Lp /A ®% 1) is trivially graded.

It remains to study Hi(Lp/a ®@%1). Set E = C()[y1,---,yn]. Since ¢ is flat, the homo-
morphisms ) and C(k) — A are Tor-independent, and hence Lp,4 = Lg /o) ®% D by [1I71,
Corollary I11.2.2.3]. Thus, Lp /4 ®Ib I = Lg/om ®IE [ is trivially graded since ) is trivially
graded. O

4.7.7 The main result: formal case. Now, we can eliminate the formal factorization assump-
tion from our main formal result.

THEOREM 4.7.8. Assume that ¢: A — B is a homogeneous local homomorphism of L-complete
noetherian local rings. Then the following conditions are equivalent:

(i) The homomorphism ¢ is strongly homogeneous.

(ii) The homomorphism ¢ possesses a Cohen factorization A 2% D — D/I = B, where g is a
graded formal base change of a trivially graded homomorphism ¢ : C(k) — C(I)[y1, - .., yn] and
I is generated by elements of degree zero.

(iii) The I-vector spaces Ho(Lp/4 ®%1) = Qp/a®pland Hi(Lpa ®% 1) are trivially graded.

Proof. The proof of Theorem 4.6.13 applies, with Lemmas 4.6.4 and 4.6.11 replaced by Lem-
mas 4.7.4 and 4.7.6. O

4.7.9 Descent of lci. 'The notion of general lci morphisms between noetherian schemes was
introduced by Avramov; see [Avr99, Section 1, Definition, pp. 458-459]. This is equivalent to
the following: a local homomorphism of noetherian local rings ¢: A — B is called complete
intersection if its completion possesses a Cohen factorization A — D — B such that the kernel of
D — Bis generated by a regular sequence. This turns out to be independent of the factorization.
A morphism of locally noetherian schemes is Ici if all its local homomorphisms are complete
intersections. In particular, ¢ is complete intersection if and only if it is Ici, and we will use the
notion lci from here on.
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Recall that a flat lci morphism is called syntomic. Traditionally, one assumes a syntomic
morphism to be locally of finite presentation, but with Avramov’s general notion of lci morphisms,
this assumption becomes redundant. Unlike general lci morphisms, syntomic morphisms are
preserved by arbitrary base changes, so the notion of being strongly syntomic makes sense (as
defined in Section 4.6).

LEMMA 4.7.10. Let ¢: A — B be a homogeneous local homomorphism of L-complete noetherian
local rings.

(i) Assume that ¢ is strongly homogeneous. If ¢ is Ici, then ¢o: Ay — By is lci. Conversely, if
¢ is Ici and the homomorphisms ¢y and Ag — A are Tor-independent, then ¢ is Ici.

(ii) The homomorphism ¢ is strongly syntomic if and only if it is syntomic and strongly homo-
geneous.

Proof. The implication (i) = (ii) is obvious, so let us prove part (i). The inverse implication is
clear since lci morphisms are preserved by Tor-independent base changes and compositions, and
the completion homomorphism A ® 4, By — A® Ao Bo = B is lci.

Assume now that ¢ is lci. Consider a Cohen factorization A — D — D/I = B as in Theo-
rem 4.7.8. Then I is generated by a regular sequence of length n, and hence any generating
sequence of I of size n is a regular sequence. Note that n is the dimension of (I/I?) ®p I, where
| = D/mp. By Lemma 4.7.6, the module (I/I?) ®p [ is trivially graded; hence we can find
T1,...,2, of degree zero whose images generate (I/I?) ®p l. By Nakayama’s lemma, the x;
generate I. As we noted above, the x; form a regular sequence in D and hence also in Dgy. It
remains to note that Ay — Dy is a formal base change of C(k) — C(I)[yi,...,¥ym], and hence
Ay — Dg — By is a Cohen factorization of ¢g, and that the kernel of Dy — By coincides with
Iy and hence is generated by the regular sequence 1, ..., Ty,. O

Remark 4.7.11. It may happen that ¢ is strongly homogeneous and ¢q is lci but ¢ is not lci.
For example, take Ag = k[z] and By = Ap/(x) = k. Extend Ay to a graded algebra A =
Agle]/(£2, z¢), where ¢ is homogeneous of a non-zero degree. Finally, set B = A®4,By = A/zA =
kle]/(e%). Then ¢: A — B is strongly homogeneous but not lci since xe = 0 and hence {z} is
not a regular sequence.

4.8 The strictly local Luna’s fundamental lemma

We complete our study of strong homogeneity with a summary of the strictly local case. Section 5
is devoted to the global relatively affine case.

THEOREM 4.8.1. Assume that ¢: A — B is a homogeneous local homomorphism of noetherian
strictly L-local rings. Then:

(i) The homomorphism ¢ is strongly homogeneous if and only if the [-vector spaces Ho(L /4 ®%
) =Qp/a®@pland Hi(Lg/a ®% 1) are trivially graded.

(ii) Assume that ¢ is formally smooth; then the following conditions are equivalent: (a) the
l-vector space Qg 4 ®p 1 is trivially graded, (b) ¢ has a trivially graded fiber, (c) ¢ is strongly
homogeneous, (d) ¢ is strongly formally smooth.

(iii) The homomorphism ¢ is strongly syntomic if and only if it is syntomic and strongly homo-
geneous. Moreover, if ¢ is strongly homogeneous, then the following claims hold: (a) if ¢ is Ici,
then ¢ is Ici, (b) if ¢g is Ici and Tor-independent with the homomorphism Ay — A, then ¢ is
Ici.

99



D. ABRAMOVICH AND M. TEMKIN

Proof. Recall that by Lemma 4.6.2, the homomorphlsm ¢ is strongly homogeneous if and only
if its completion ¢: A — B is so. Since H, (Lp/a ®51) = H; (]LB/A ®L 1) by [FR93, Lemma 1],
claim (i) follows from Theorem 4.6.13.

Parts (a) and (b) of claim (ii) are equivalent by Lemma 4.6.4. The equivalence of parts (b),
(c), and (d) reduces to Corollary 4.6.9(ii) because ¢g: Ag — By is formally smooth if and only
if its completion is formally smooth, and the latter coincides with the degree zero part of $ by
Proposition 4.5.6.

Note that ¢ is lci or syntomic if and only if qAS is so. Since (gg)o is the completion of ¢y by

Proposition 4.5.6, it suffices to prove claim (iii) for ¢, and this has already been done in Lemma
4.7.10. O

5. Luna’s fundamental lemma

In Section 5, we study relatively affine actions of diagonalizable groups on general noetherian
schemes and extend the classical Luna’s fundamental lemma to this case. To simplify the ex-
position, we work with split groups and indicate in Section 5.7 how the non-split case can be
deduced.

5.1 Relatively affine actions

5.1.1 The definition. An action of G = Dy, on a scheme X is called relatively affine if there
exists a scheme Z provided with the trivial G-action and an affine G-equivariant morphism
f: X — Z. In this case, we define the quotient X | G = Spec,(f+(Ox)¢). We omit Z in the
notation because the quotient is categorical by the following theorem, and hence it is independent
of the scheme Z. By definition, if Y = X // G is covered by affine open subschemes Y;, then the
X; = Y; Xy X form an open affine equivariant covering of X and Y; = X; / G. Therefore,
Lemma 4.2.9 and Corollary 4.2.11 extend to the relative situation.

THEOREM 5.1.2. Assume that a scheme X is provided with a relatively affine action of a diago-
nalizable group G.

(i) The morphism X — Y = X )/ G is submersive and Y is the universal categorical quotient
of the action.

(ii) For eachy €Y, the fiber X, contains a single orbit O which is closed in X,,, and this orbit
belongs to the closure of any other orbit contained in X,,.

From here on, we will consider only relatively affine actions.

Remark 5.1.3. The notion of a relatively affine action is not as meaningful for non-reductive
groups because it does depend on Z. For instance, in the situation of Example 4.2.12, we can
take Z to be either Spec(k) or Pi. For both choices, the relative quotient coincides with Z.

5.1.4 Strongly equivariant open subschemes. Assume that X is provided with a relatively
affine action of G = Dy. An open subscheme U — X is called strongly equivariant if it is the
preimage of an open subscheme V' — Y // G. Note that V = U J/ G. We used a covering of X by
strongly equivariant schemes to prove Theorem 5.1.2. In general, one can use strongly equivariant
open subschemes to work locally on X // G without describing the quotients explicitly.

LEMMA 5.1.5. Assume that a diagonalizable group G = D, acts on a scheme X and that we
have a covering of X by open equivariant subschemes X;. If the action on each X; is relatively
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affine and each intersection X;; = X; N X; is strongly equivariant in both X; and X, then the
action on X is relatively affine and each X; is strongly equivariant in X.

Proof. By definition, the schemes Y; = X; / G glue along their open subschemes Y;; = X;; / G to
form a scheme Y. Hence the quotient morphisms X; — Y; glue to an affine quotient morphism

X =Y. O

EXAMPLE 5.1.6. If X = Spec(A), where A is L-graded, and f € A is a homogeneous element,
then U = Spec(Ay) is equivariant but usually not strongly equivariant. However, it is strongly
equivariant if f is of degree zero. In particular, an important particular case of Lemma 5.1.5 is
when the X; are affine and each Xj; is a localization of both X; and X, at elements of degree
Zero.

5.1.7 Geometric quotients. If the action of G on X is relatively affine and each fiber of the
quotient morphism p: X — X // G consists of a single orbit, then we say that the quotient is
geometric and use the notation X /G instead of X / G. This matches the terminology, but not
the notation, of geometric invariant theory (GIT); see [MFK94, Definition 0.6].

5.1.8 Special orbits. If an orbit of a G-action on X is closed in the fiber of X — X /G, then
we say that the orbit is special. Obviously, such an orbit is a scheme.

5.1.9 Local actions. We say that a relatively affine action of G on a scheme X is local if X
is quasi-compact and contains a single closed orbit.

LEMMA 5.1.10. Assume that we have a relatively affine action of G = Dy, on a scheme X. Then
the following conditions are equivalent:

(i) The action is local.
(ii) The scheme X is affine, say X = Spec(A), and the L-graded ring A is L-local.
(iii) The quotient Y = X J/ G is local.

Proof. A scheme is local if and only if it is quasi-compact and contains a single closed point.
Therefore, conditions (i) and (iii) are equivalent. The equivalence of conditions (ii) and (iii) was
proved in Lemma 4.4.5. O

5.1.11 Localization along a special orbit. Assume that O is a special orbit of a relatively
affine action on X and y is its image in Y. Consider the localization Y, = Spec(Oy,,), and set
Xo = X xy Y. We call Xp the equivariant localization of X along O. Note that Xp /G =Y,
by the universality of the quotient; in particular, G acts locally on Xo.

Remark 5.1.12. (i) Set-theoretically, X consists of all orbits whose closure contains O. So, even
if O = {z} is a closed point, it typically happens that Xo is larger than the localization of X
at . Equivariant localization of a scheme X = Spec(A) corresponds to homogeneous localization
of A in the sense of Example 4.4.6.

(ii) Even if O is only locally closed in the fiber of X — X // G, one can define an equivariant
localization X — X whose only closed orbit is O. We will not use this construction. If O is not
special, then the localization morphism Xo < X is not inert (see Section 5.5 below), and the
morphism Xp / G — Y can be bad (for example non-flat).
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5.1.13 The schemes of fized points. If X is acted on by G, then the scheme of fized points
of X is the maximal closed subscheme X& of X such that X© is equivariant and the action
of GG on it is trivial. In other words, it is the maximal closed subscheme over which the inclusion
Ix — G x X becomes an isomorphism. For diagonalizable groups, the existence and functoriality
of fixed-point schemes is guaranteed by [SGA3-2, Exemple VIII.6.5(a)], where one sets Y = G
and Z = X x X, and Z' C Z is the diagonal. If X = Spec(A) is affine, then, as we noted in
Section 4.1.2, we have X = Spec(Ag).

5.1.14 Inertia stratification. If G is diagonalizable and G’ C G is a subgroup, then
X(G,) = XG/ N Ugngg/XG

1

is the maximal G-equivariant subscheme Y with constant inertia equal to G’ (that is, such that
Iy = G’ xY). The family of subschemes {X(G’)}¢ce provides a G-equivariant stratification
of X that we call the inertia stratification. Set-theoretically, this is the stratification of X by the
stabilizers of points.

5.1.15 Regularity. The fixed-points functor preserves regularity; see [Fog73, Corollary of
Theorem 5.4]. We provide a simple proof in our situation.

PRroOPOSITION 5.1.16. Assume that a diagonalizable group G acts on a regular scheme X. Then
the scheme of fixed points X is regular. In particular, the strata of the inertia stratification of
X are regular.

Proof. The claim is local at a point z € X¢ < X. Since z is G-invariant, we can replace X
with the equivariant localization along x. Then X is the spectrum of a strictly L-local ring, and
it remains to use Lemma 4.5.4. O

5.1.17 The case of G,,. We discuss a construction which is specific to G = G,,, = Dy and
will be used in [AT16]; we indicate the general case in Remark 5.1.19 below. Assume that X
is provided with a relatively affine action of G. Following [W1o00], we define X; and X_ to
be the open subschemes obtained by removing all orbits that have a limit at 400 and —oo0,
respectively. The construction of X is local on X /G and if the latter is affine, say X = Spec A
and X / G = Spec Ay, then Xy = X N\ V(A_) with A_ = ®,,<0A,. Similarly, X_ = X \V(Ay)
for A.|_ = @n>0An~

LEMMA 5.1.18. Assume that G = G, acts in a relatively affine manner on a scheme X.

(i) The group G acts in a relatively affine manner on Xy and X_.
(ii) If X = Spec(A) is affine, then the schemes X = Spec(A[f~']) with homogeneous f € A_
(respectively, f € A;) form an open strongly equivariant covering of Xy (respectively, X_).

Proof. If f € A_, then V(A_) C V(f), and hence Xy is an equivariant open subscheme of X .
By definition, X = Uytca,, m<0Xf. By Lemma 5.1.5, it suffices to check that Xy, is strongly
equivariant in Xy for f € A, and g € Ay, with m,n < 0. It remains to notice that Xy, can be
described as the localization of Xt obtained by inverting the degree zero element f~"¢™ € A[f -1
see Remark 5.1.6. O

Remark 5.1.19 (see [Tha96]). For arbitrary G = Dy, and affine X = Spec A, one defines X //,,G =
Proj A[2]¢ with G acting on z via —m € L. Then there is a locally finite decomposition & = [] 0¥
of the monoid ¥ C L of characters figuring in A into relative interiors of polyhedral cones, and
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X J;m G = X /5o G is constant on such interiors of cones. The replacement of X is X*%(m), the
semistable locus of X with respect to the linearization provided by the character m.

5.2 Basic properties of the quotient functor

In this section, we study the quotient map X — X /G and properties of schemes and morphisms
preserved by the quotient functor. The most subtle result is that the quotient map is finite when X
is noetherian.

5.2.1 Quotients of schemes.

THEOREM 5.2.2. Assume that a diagonalizable group G = Dy, acts trivially on a scheme S and
that an S-scheme X is provided with a relatively affine action of G.

(i) Assume that X satisfies one of the following properties: (a) reduced, (b) integral, (c) normal
with finitely many connected components, (d) locally of finite type over S, (e) of finite type over S,
(f) quasi-compact over S, (g) locally noetherian, (h) noetherian. Then X /| G satisfies the same
property.

(ii) If X is locally noetherian, then the quotient morphism X — X /| G is of finite type.

Proof. Note that X — S factors through Y = X /G because the latter is the categorical quotient
by Theorem 5.1.2. Claim (f) is obvious since X — Y is onto. Furthermore, a morphism is of
finite type if and only if it is quasi-compact and locally of finite type; hence claim (e) follows
from claims (d) and (f). It remains to prove all assertions except claims (e) and (f). As shown in
[MFK94, Chapter 0, Section 2], claims (a), (b), and (c) hold for any categorical quotient; hence
they are implied by Theorem 5.1.2(i). Note that the assertion of claim (d) is local on S; hence we
can assume that S is affine. Furthermore, all assertions of the theorem we are dealing with are
local on Y, so we can assume that Y is affine. In this case, claim (d) was proven in Lemma 4.2.4,
and claims (g) and (h) and part (ii) were proven in Proposition 4.3.1. O

5.2.3 Quotients of morphisms. We start with the following corollary of Theorem 5.2.2.

COROLLARY 5.2.4. Assume that locally noetherian schemes X and X' are provided with rela-
tively affine actions of a diagonalizable group G and that f: X' — X is a G-equivariant mor-
phism. If f is of finite type, then the quotient morphism f /| G is of finite type.

Proof. The morphism X — X // G is of finite type by Theorem 5.2.2(ii). Hence the composition
X" = X J G is of finite type, and then X' J G — X J/ G is also of finite type by Theo-
rem 5.2.2(i)(d). O

PROPOSITION 5.2.5. Let G be a diagonalizable group and f: X' — X a G-equivariant morphism
such that the actions on X and X' are relatively affine. Then:

(i) If f satisfies one of the following properties: (a) affine, (b) integral, (c) a closed embedding,
then f /| G satisfies the same property.

(ii) If X is locally noetherian and f is finite, then f /| G is finite.

Proof. The claim is local on Y = X // G; hence we can assume that X = Spec(A4) and ¥ =
Spec(Ay) are affine. Since f is affine in each case, X’ = Spec(4’) is affine, and so Y’ = Spec(A4}))
is affine. This proves claim (a). If A — A’ is onto, then Ay — A, is onto and we obtain claim (c).

If A — A is integral, then any x € A’ satisfies an integral equation x" + Z?;()l a;x’ with
coefficients in A. If x € Aj{), then replacing each a; with its component of degree zero, we obtain
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an integral equation for x with coefficients in Ag. Thus, Aj is integral over Ay and we obtain
claim (b). Finally, part (ii) follows from claim (b) and Corollary 5.2.4. O

5.2.6 Some bad examples. Basic properties of G-morphisms, including smoothness and se-
paratedness, are not preserved by the quotient functor. Here are some classical bad examples.

EXAMPLE 5.2.7. (i) Let k be a field with char k # 2, and let X = Spec(k[x, y]) be an affine plane
with pe acting by changing the sign of x and y. Then Y = X // us is the quotient singularity
Y = Spec(k[z?, zy, 3?]), and the quotient morphism X — Y is not even flat. On the other hand,
set X' = X X pg with uo acting diagonally. The projection X’ — X is a split étale covering which
is not inert above the origin O € X because O is fixed by ps and the action of po on X' is free.
Moreover, Y/ = X' /| us = X, so the quotient map f / p2 is the projection X — Y. Although
f is split étale, its quotient is not even flat.

(i)’ Similarly, it is easy to construct a G,,-action on X = A? such that the quotient Y = X /G,
is not smooth (for example, if X = Spec(A) for A = k[z,y, z] with x,y € A; and z € A_o, then
Y = Spec(k[z?z, 2yz,%?2]) is an orbifold). Then, automatically, the morphism X — Y is not
flat, and setting X’ = X x G,,, we obtain another bad example, where X’ — X is smooth but
the morphism between X’ J G,,, = X and X // G,, is not flat.

(ii) Let & be a field and G = G,,, = Dz. Consider the Z-graded k-algebra A = k[z,y, z] with z €
Ajandy,z € A_y,and set X = Spec(A4) = A}. Then Y = X //G equals Spec(k[zz, zy]) = A%, and
the orbits over the origin are the origin, the punctured (x)-axis, and all punctured lines through
the origin in the (yz)-plane. Consider the equivariant subspace X’ = Spec(k|[z,y, 2']). The open
embedding X’ < X preserves stabilizers but takes some closed orbits to non-closed orbits. For
example, the punctured (z)-axis is closed in X’. The quotient Y/ = X’ J G = Spec(k[xz,y/z]) is
not flat over Y. In fact, it is an affine chart of the blowing up of Y at the origin, and the quotient
map X' — Y’ separates all orbits of X sitting over the origin of Y and contained in X".

(ii)’” Analogous examples related to cobordisms will play a crucial role in the proof of the fac-
torization theorem: (B,);+ — B, is an open embedding preserving the stabilizers (see [AT16,
§3.4]), but (B,)+ / G — B, /) G is usually a non-trivial modification.

(iii) Let G = Gy, act on T = Spec(k[z,y]) as  +— tz and y — t "1y, and let X’ be obtained
from T by removing the origin. Then X’ / G is an affine line with doubled origin. In particular,
the morphism f: X’ — Spec(k) is separated, but its quotient is not.

5.3 Strongly equivariant morphisms

The situation improves drastically if one considers quotients of a more restrictive class of strongly
equivariant morphisms.

5.3.1 The definition. We say that a G-morphism f: X' — X is strongly equivariant if the
actions are relatively affine and f is the base change of its quotient f /G, that is, the morphism
¢: X' — X xy Y’ is an isomorphism, where Y = X / G and Y/ = X’ / G. Furthermore, we say
that f is strongly equivariant over a point y' € Y’ if ¢ is an isomorphism over 3’ in the sense that

qf)y/: X’ Xy SpeC(Oy/,y/) — X Xy Spec((’)y/y/)

is an isomorphism. Note that f is strongly equivariant if and only if it is strongly equivariant
over all points of Y’ and if Y’ is quasi-compact, then it suffices to consider only closed points.
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LEMMA 5.3.2. Let G = Dy, be a diagonalizable group.

(i) The composition of strongly G-equivariant morphisms is strongly G-equivariant.

(ii) IfY — X is a strongly G-equivariant morphism and g: Z — Y is a G-equivariant morphism
such that the composition is strongly G-equivariant, then g is strongly G-equivariant.
(i) If Y — X is strongly G-equivariant and Z — X is G-equivariant, then the base change
Y xx Z — Z is strongly G-equivariant.

(iv) If f: Y — X is strongly equivariant, then the diagonal Ay: Y — Y xx Y is strongly
equivariant and Ay /| G is the diagonal of f | G.

Proof. The proof of parts (i), (ii), and (iv) is a simple diagram chase of the relevant cartesian
squares, so we omit it. Let us prove part (iii). The claim is local on X /G, Y /G, and Z J/ G; hence
we can assume X = Spec(A),Y = Spec(B), and Z = Spec(A’) for L-graded rings A, B, A’. We are
given that B = A®4, By, and we should prove that B’ = A'® 4 B satisfies B’ = A'® 4, By. Clearly,
B'= A" ®4, By and so B], = Al, ®4, By for any n € L. Therefore, B], = A}, ®ar Al ®a, Bo =
A}, ® 41 By, as required. O

5.3.3 Strongly satisfied properties. Let P be a property of morphisms preserved by base
changes. As in Section 4.6, we say that an equivariant morphism f: X’ — X strongly satisfies P
if it is strongly equivariant and the quotient f / G satisfies P. In particular, f itself satisfies P.

Remark 5.3.4. (i) In the case of strongly étale morphisms, we recover the definition from Ap-
pendix 1.D of [MFK94]. Such morphisms play an important role in [AKMWO02], and we will use
strongly regular morphisms in [AT16] for analogous purposes.

(ii) Let U be an open subscheme of X. The morphism U < X is a strongly open immersion if
and only if U is a strongly equivariant open subscheme.

(iii) For various properties P, it is true that a morphism strongly satisfies P if and only if it
satisfies P and is strongly equivariant. In fact, one should only check that if f satisfies P and
is strongly equivariant, then f / G satisfies P. However, such descent results may be difficult
to prove because the morphisms X — X / G are not always flat; in particular, flat descent is
unapplicable. For the strong étale property, such a descent claim is a part of Luna’s fundamental
lemma.

5.3.5 Some descent results. Here is a (rather incomplete) list of properties for which the
descent is easy.

PROPOSITION 5.3.6. Let G be a diagonalizable group and f: X' — X a G-equivariant morphism
of schemes with relatively affine G-actions. Then:

(i) Let P be any of the following properties: (a) has finite fibers, (b) a monomorphism, (c) sep-
arated, (d) universally closed. Then f strongly satisfies P if and only if it satisfies P and is
strongly equivariant.

(ii) Assume that X is locally noetherian, and let P be one of the following properties: (e) quasi-
finite, (f) proper. Then f strongly satisfies P if and only if it satisfies P and is strongly equivariant.

Proof. In all claims, we assume that f is strongly equivariant and satisfies P, and we should
prove that ¢ = f / G satisfies P. Assertion (a) follows from the surjectivity of X — X / G.
Note that a morphism is a monomorphism if and only if its diagonal is an isomorphism. Hence

105



D. ABRAMOVICH AND M. TEMKIN

assertion (b) follows from Lemma 5.3.2(iv). Similarly, assertion (c) follows from Lemma 5.3.2(iv)
and Proposition 5.2.5(i)(c).

(d) First, assume only that f is closed. Then for any closed set T C X’ J G, the preimage
of g(T) in X is closed. Since the quotient morphism X — X // G is submersive, g(T) is closed.
Thus ¢ is closed. Part (ii) follows from this and the fact that the base change of f by a strongly
equivariant morphism is strongly equivariant by Lemma 5.3.2(iii).

Finally, assertion (e) follows from assertion (a) and Corollary 5.2.4, and assertion (f) follows
from assertion (d) and Corollary 5.2.4. O

5.3.7 The case of G,,. Assume that X and Y are provided with a relatively affine action of
G = Gy,. We refer to Section 5.1.17 for the definitions of X4 and Y;.

LEMMA 5.3.8. If f: X — Y is strongly equivariant, then X1 =Yy xy X.

Proof. The claim is local on Y /G and X /G, so we can assume Y = Spec B, Y / G = Spec By,
X = Spec A, and X /G = Spec Ay. By strong equivariance, A = B®p, Ao. Hence A,, = B,®p, Ao
for any n, and we obtain equalities of ideals B_A = A_ and B; A = A,. O

Remark 5.3.9. For a general G = Dy, we similarly have X**(m) = (Y**(m)) xy X.

5.4 Free actions

In Section 4.4, we studied the quotients when the stabilizers are maximal. This section is devoted
to the other extreme case when the stabilizers are trivial. We will show in Corollary 5.4.5 that
any quotient of a relatively affine action of G = Dy, can be described in terms of these two cases.

5.4.1 Definitions. We say that an action of G on X is regular or split free if there is an
equivariant isomorphism X = G x Y, where Y = X / G. If such an isomorphism only exists
locally on Y for a topology 7 (for example flat, étale, or Zariski), then we say that the action is
7-split free. Finally, if there exist a 7-open morphism ¢: Y/ — Y and an equivariant isomorphism
X xy Y = G x Y/, then for any point y € g(Y'), we say that the action is 7-split free over y.

Remark 5.4.2. Recall that an action of G on X is semi-regular or free if the morphism G x
X — X x X is a closed embedding, and this condition is equivalent to the condition that
¥: G x X — X Xy X is an isomorphism; in other words, X is a pseudo G-torsor over Y; see
[SP17, tag/0498]. This pseudo-torsor is a 7-torsor of G if and only if the action is 7-split free.
In fact, any semi-regular action has free orbits; hence it follows from Lemma 5.4.4 below that it
is flat-split free over the quotient Y. In particular, we will not distinguish free and flat-split free
actions.

5.4.3 A criterion for splitting. The flat-split freeness of an action can be tested very easily:
the stabilizers of the points should be trivial.

LEMMA 5.4.4. Given a relatively affine action of a diagonalizable group G = D[, on a scheme X,
let f: X - Y = X J/ G be the quotient morphism and y € Y a point. Then the following
conditions are equivalent:

(i) The action is flat-split free over y.
(ii) The scheme-theoretic fiber X, = y xy X coincides with a single free orbit O = Spec(k[L]).
(iii) The set-theoretic fiber f~1(y) is a single free orbit.

106



LUNA’S FUNDAMENTAL LEMMA FOR DIAGONALIZABLE GROUPS

(iv) All points of the fiber f~1(y) have trivial stabilizer.

Moreover, if the degree of the torsion of L is invertible on Y (respectively, L is torsion free), then
one may replace the flat topology in part (i) with the étale (respectively, Zariski) topology.

Proof. The implications (i) = (ii) == (iii) == (iv) are obvious. In the opposite direction, if
part (iv) holds, then all orbits in f~!(y) are free and closed, hence the fiber is a single orbit by
Theorem 5.1.2(ii), and we obtain part (iii).

If part (iii) holds, then X, = Spec(A4) with A such that Ay = k and k[L] is the reduction
of A. This implies that each A,, contains a unit and hence is an invertible k-module. Therefore,
the reduction A — k[L] is an isomorphism, and we obtain part (ii).

Finally, assume X, = Spec(k[L]). Let L = @®}_;L; be a decomposition of L into cyclic
groups, and choose a generator m; of L;. Shrinking Y around y, we can assume X = Spec(A)
and Y = Spec(Ap), and that each m; € k[L] lifts to a unit u; € A,,, with respect to the
homomorphism A — k[L]. For each m; of a finite order d;, we have u?" = a; € Ag. Obviously, X

is a principal G-torsor over Y which is trivialized by adjoining the roots ai/ 4o Ag. The latter
defines a flat covering of Y, which is étale (respectively, an isomorphism) if the d; are invertible
on Y (respectively, L is torsion free). O

The following corollary shows that, locally, one can construct quotients in two steps: first by
dividing by the stabilizer and then by dividing by a free action.

COROLLARY 5.4.5. Assume that a scheme X is provided with a relatively affine action of a diag-
onalizable group G = Dy, that y is a point of Y = X /| G, that G’ is the stabilizer of the closed
orbit of the fiber X, that Z = X |/G’, and that G” = G/G'. Then Z | G" =Y and the G"-action
on Z is flat-split free over y. Moreover, if the torsion of L is invertible on Y (respectively, L is
torsion free), then the action is étale-split (respectively, Zariski-split) free over y.

Proof. By universality, quotients are compatible with taking fibers. So, in view of Lemma 5.4.4,
it suffices to show that X, / G’ is a single free G”-orbit. Note that X, = Spec(A), where (A4, m)
is an L-local ring with Ay = k. Let 0 — L” — L — L' — 0 be the exact sequence corresponding
tol -G — G — G" — 1. Since A/m = k[L"], each A,, with n € L” contains a unit, and we
obtain A = @,cpnk = k[L"]. Thus, X, / G’ = Spec(k[L"]), and we are done. O

5.4.6 Descent of reqularity. We show below that dividing by a free action is a nice functor
that preserves various properties of equivariant morphisms. In fact, the following lemma reduces
this to the usual flat descent.

LEMMA 5.4.7. Assume that a diagonalizable group G acts on a scheme X and the action is
flat-split free over a point y € Y = X // G. Then the quotient morphism f: X — Y is flat along
the fiber f~1(y). In particular, if X is regular at a point x € f~(y), then Y is regular at y.

Proof. By definition, there exist a flat morphism Y’ — Y whose image contains y and an iso-
morphism X xy Y’ =% G xY’. Then the flat base change X xy Y’ — Y’ of f is flat, and hence f
is flat over y. If X is regular at a point z, then Y is regular at y by [SP17, tag/000F]. O

COROLLARY 5.4.8. Assume that schemes X and X' are provided with relatively affine actions of
a diagonalizable group G = Dy, and that f: X' — X is a G-equivariant morphism with quotient
g=1f/)G:Y' =Y. Suppose that y € Y’ is a point such that the actions on X' and X are
flat-split free over y' and g(y'), respectively. Then f is strongly equivariant over y'. In particular,
if f is regular or Ici at a point 2’ € X;,, then g is regular or Ici at v/, respectively.
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Proof. The statement is local at ' and 1. So, we can assume that Y and Y’ are local, and the
claim reduces to showing that ¢: X’ — X xy Y is an isomorphism. By flat descent, this can be
checked flat-locally on Y, so by Lemma 5.4.7 we can assume X = GG X Y. By the same lemma,
there exists a flat covering Y” — Y such that X’ xy+Y” = G x Y"”. The base change of ¢ with
respect to the morphism Y” — Y” is the isomorphism X’ xy/ Y” = G xY"” = X xy Y”. Thus,
¢ is an isomorphism by flat descent.

Suppose that f is regular. To check that g: Y’ — Y is regular or lci, it suffices to check that
its pullback by a flat surjective morphism is regular or Ici, respectively; but X — Y is flat and
surjective by Lemma 5.4.7, and we have shown that the pullback is f: X' — X. O

5.5 Inert morphisms

The main disadvantage in the definition of strong equivariance (Section 5.3.1) is that it involves
the quotient morphism. It is desirable to have an explicit criterion of strong equivariance in terms
of the morphism itself. This leads to the notion of inert morphisms.

5.5.1 Inertia-preserving morphisms. Recall that a G-equivariant morphism f: X’ — X is
called fized-point reflecting if for any 2/ € X' and x = f(2'), the inclusion of the stabilizers
G, — G is an equality (see, for example, [Knu71, IV.1.8]). We propose the following scheme-
theoretic strengthening of this notion: a G-equivariant morphism f: X’ — X is inertia preserving
if the closed immersion Iy < Ix X x X' is an equality.

LEMMA 5.5.2. Assume that locally noetherian schemes X and X' are provided with relatively
affine actions of a diagonalizable group G = Dy, and that f: X' — X is a G-equivariant mor-
phism. Consider the following conditions:

(i) The morphism f is inertia preserving.

(ii) For each subgroup H C G, the closed immersion X"H — Xt xx X' is an equality.

(iii) For each point x € X, the stabilizer G, acts trivially on the fiber X' x x x.

(iv) The morphism f is fixed-point reflecting and for any point ' € X' with x = f(2'), the
action of G, on Qx//x ® k(x') is trivial.

(v) The morphism f is fixed-point reflecting.

Then conditions (ii), (iii), (iv) are equivalent, each condition is implied by condition (i), and all
conditions imply condition (v). In addition, if f has reduced fibers, then condition (v) implies
the conditions (ii)—(iv).

Proof. The implications (i) = (ii) = (iii) and (iv) == (v) are obvious, and the equivalence
(iii)<=>(iv) follows from Lemma 4.6.4 since Qx//x ® k(2') = Qy, /, @ k(2') for the fiber Z, =
X' Xx T.

We show (iii)==-(ii). Assume that (ii) fails, that is, there exists a subgroup H = Dy C G
which acts non-trivially on X x x X'. It suffices to prove that in this case H acts non-trivially
already on the fiber Z, over a point 2 € X*. Choose an open affine subscheme Spec(A) — X
such that the action of H on Spec(B) = Spec(A) X x X’ is non-trivial. The morphism Spec(B) —
Spec(A) corresponds to an L'-homogeneous homomorphism A — B such that A = Ag and B; # 0
for some [ # 0. Note that B; is finitely generated over By since B is noetherian; hence there
exists a point x € Spec(A) such that B; ®4 k(x) # 0. Then the action on the fiber over z is
non-trivial.
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Finally, assume that the fibers of f are reduced, and let us show that in this case, condition (v)
implies condition (iii). Both conditions are fiberwise, so replacing f and G with the fiber over
a point = and the stabilizer G,, we can assume that X = Spec(k) is G-invariant and that for
any point y € Y = Spec(A), one has G, = G. Fix 0 # n € L; then the latter condition implies
that A, is contained in all L-prime ideals of A. By Lemma 4.4.8, the module A,, lies in the
nilpotent radical, and since A is reduced by the assumption, A = Ay, as claimed. O

5.5.3 Inert morphisms. Consider a G-equivariant morphism f: X’ — X and assume that it
takes special orbits (Section 5.1.8) to special orbits. We say that

(i) the morphism f is pointwise inert if condition (v) of Lemma 5.5.2 holds, namely it is fixed-
point reflecting;

(ii) the morphism f is fiberwise inert if any of the conditions (ii), (iii), and (iv) of Lemma 5.5.2
hold, namely, for each point x € X, the stabilizer G, acts trivially on the fiber X’ x x x;

(iii) the morphism is inert if condition (i) of Lemma 5.5.2 holds, namely, it is inertia preserving.

Remark 5.5.4. (i) One can easily construct a morphism with non-reduced fibers which is point-
wise inert but not fiberwise inert. We have not studied the difference (if any!) between inert
morphisms and morphisms which are fiberwise inert.

(i) It follows directly from the definition (Section 5.3.1) that any strongly equivariant morphism
is inert and, conversely, pointwise inertness will play a role in our criteria of strong equivariance.

(iii) If any of the conditions of inertness are violated, then the quotient functor might behave
rather badly. For example, the morphism is not inertia preserving in Example 5.2.7(i) and (i),
and it takes special orbits to non-special orbits in Example 5.2.7(ii) and (ii)’.

5.5.5 Comparison with the literature. In the case of a reductive group G and a G-equivariant
étale morphism of varieties, the fixed-point reflecting condition was used by Luna. Although not
formulated separately, it is contained in [Lun73, Lemme fondamental]. For finite groups, fixed-
point reflecting morphisms were called inert in [ILO14, Section VIII.5.3.6]. In both cases, the
condition on special orbits was not required since it was automatically satisfied. An analogue of
our version of inert morphisms was called “schematically inert” in [ILO14, Remark VIIL.5.6.2].

An analogue of inertness and pointwise inertness is used by Alper in a much more general
context of good and adequate moduli spaces; see [Alpl0, §2.1,2.2].

5.6 Main results about the quotient functor

In this section, we will prove that pointwise inert regular morphisms are strongly regular. In
the case of diagonalizable groups, this extends the classical Luna’s fundamental lemma, which
deals with inert étale morphisms of varieties, to regular morphisms of schemes. Moreover, we
will obtain general criteria for equivariant morphisms to be strongly equivariant and establish
descent for syntomic and lci morphisms.

5.6.1 Local case. We start with the following extension of Theorem 4.8.1 to the case of local
actions that do not have to be strictly local.

LEMMA 5.6.2. Assume that locally noetherian schemes X and X' are provided with relatively
affine actions of a diagonalizable group G = Dy, and that f: X' — X is a G-equivariant morphism
with quotient g = f ) G: Y’ — Y. Let 2/ € X’ be a point with images © = f(2') € X,y € Y/,
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and y € Y. Assume that
(a) x lies in a special orbit;
(b) the inclusion of the stabilizers G,» C G, is an equality;

(¢c) for G, =Dy, the L,-grading on the vector spaces Qx//x ® k(z') and Hy(Lx:/x ®" k(z'))
are trivial.

Then:

(i) The morphism f is strongly equivariant over y'.

(ii) The morphism f is formally smooth at x' if and only if g is formally smooth at y'.
(iii) If f is Ici at 2/, then g is Ici at y'. Conversely, if g is Ici at y' and the homomorphisms
Oyy — Oyry and Oy, — Ox, are Tor-independent, then f is Ici at x’. In particular, f is
syntomic at x’ if and only if g is syntomic at y'.

Proof. The claim is local at 3’ and y, so we can assume Y’ = Spec Oy~ ,» and Y = Spec Oy,,. Then
the actions on X’ and X are local (Section 5.1.9), and x lies in the closed orbit by assumption (a).
The inverse implications in parts (ii) and (iii) easily follow from part (i). So we need to prove
that f is strongly equivariant and that if f is formally smooth or lci, then g has the same property.
Let us recall two cases of the lemma that were already established earlier.

Case 1: The lemma holds true when G, = G. Indeed, in this case the closed orbits are x
and 2/, so X = Spec(A4) and X' = Spec(4’), where A and A’ are strictly L-local rings by
assumption (b). So case 1 is covered by Theorem 4.8.1.

Case 2. The lemma holds true when G, = {1}. Indeed, in this case the actions are free by
Lemma 5.4.4; hence case 2 is covered by Corollary 5.4.8.

Now, assume that G, is arbitrary. Recall that the actions of G’ := G/G, on Z = X |/ G, and
7' = X' | G, are free by Corollary 5.4.5. Consider the G’-equivariant morphism h = f J/ G,. By
case 1 above, f is strongly equivariant over the image 2’ € Z’ of 2/, and if f is formally smooth
or lci at 2/, then h is formally smooth or Ici at z’. By the freeness of the action, Z, consists of a
single orbit, so G’, h, and 2’ satisfy all assumptions of the lemma. Therefore case 2 applies, and
we obtain that h is strongly equivariant over g/, and if f is formally smooth or Ici at z’, then
g =h J/ G’ is formally smooth or lci at 3/, respectively. The lemma follows. O

5.6.3 Luna’s fundamental lemma.

THEOREM 5.6.4. Let X and X' be locally noetherian schemes provided with relatively affine
actions of a diagonalizable group G, and let f: X' — X be a G-equivariant morphism.

(i) The morphism f is strongly equivariant if and only if f is fiberwise inert and any special
orbit in X' contains a point x' such that the action of G, on Hy(Ly//x ®" k(a')) is trivial.

(ii) Let P be one of the following properties: (a) regular, (b) smooth, (c) étale, (d) an open
embedding. Then the following conditions are equivalent: (1) f is pointwise inert and satisfies P,
(2) f is inert and satisfies P, (3) f is strongly equivariant and satisfies P, (4) f strongly satisfies P.
(iii) The morphism f is strongly syntomic if and only if it is syntomic and strongly equivariant.
Moreover, if f is strongly equivariant, then the following claims hold: (a) if f is Ici, then f | G
is Ici, (b) if f J/ G is lci and Tor-independent with the morphism X — X /| G, then f is Ici.

Part (iii) refers to Avramov’s definition of lci morphisms and the resulting notion of syntomic
morphisms described in Section 4.7.9.
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Proof. (i) The direct implication is clear, so let us prove the inverse implication. Let ¢’ € X' | G
be a point, and choose a point 2’ in the special orbit over 3’ such that the action of G, on
Hi(Ly//x ®" k(a')) is trivial. We assume that f is fiberwise inert, so (a) = f(2/) lies in a
special orbit, (b) G = Gy, and (c) by Lemma 5.5.2, the action of G, on Hy(Lx//x @" k(z')) =
Qx1/x ® k(x') is trivial as well. Thus we may apply Lemma 5.6.2 at 2, obtaining that f is
strongly equivariant over y’ and proving part (i). Moreover, this argument shows that if f is
regular, then g = f / G is formally smooth at all point of X / G and hence is itself a regular
morphism.

Part (iii) follows from Lemma 5.6.2 similarly.

(ii) The implications (4) = (3) = (2) == (1) are obvious, so let us prove (1) = (4).
Regardless of the choice of P, the morphism f is regular. Since f has reduced fibers, it is
fiberwise inert by Lemma 5.5.2, and as we have proved above, it is then strongly regular. This
covers property (a). A morphism is smooth if and only if it is regular and of finite type. Hence
property (b) follows from property (a) and Corollary 5.2.4. A smooth morphism is étale or an
open embedding if and only if it has finite fibers or is a monomorphism, respectively. Hence
properties (c¢) and (d) follow from property (a) and Proposition 5.3.6(a),(b). O

5.7 Groups of multiplicative type

Assume that S is a scheme and Gg is an S-group. We say that Gg is of multiplicative type if
it is of finite type and G = Gg Xg S’ is isomorphic to a diagonalizable S’-group Dy x S’
for a surjective, flat, finitely presented morphism h: S’ — S. For example, this includes the
case when S = Spec(Z[1/N]) and Gg = Z/NZ. Our definition is more restrictive than that in
[SGA3-2, IX.1.1] because we use the fppf topology instead of the quasi-compact, faithfully flat
(fpqc) topology and consider only groups of finite type. Recall that by [SGA3-2, X.4.5], any such
group Gg is quasi-isotrivial; that is, it can be split by an étale surjective morphism h: S’ — S.

We claim that all results of Section 5 extend to the case when an S-scheme X is provided
with a relatively affine action of an S-group Gg of multiplicative type. The only exception
is part (ii) of Lemma 5.1.10, which makes no sense for non-diagonalizable group. The proofs
we provided of the equivalence of parts (i) and (iii) in Lemma 5.1.10 and parts (a), (b) and
(c) of Theorem 5.2.2(i) apply to groups of multiplicative type without change. All remaining
results, including Luna’s fundamental lemma, can be extended to Gg of multiplicative type
with L denoting the abelian group Cartier dual to Gg by use of étale descent with respect to
h. Namely, Xg» | Ggr = (X JJ Gs) x5 S, so the result for Xg J Gg extends to X J G by
descent. In fact, already flat descent suffices in almost all cases, with the main exception being
Proposition 5.1.16.
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