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Abstract
The non-Archimedean analytic spaces are studied. We extend to the

general case notions and results defined earlier only for strictly analytic
spaces. In particular we prove that any strictly analytic space admits a
unique rigid model.

Introduction

Rigid geometry was introduced by Tate at 1960’s due to Grothendieck’s
idea of attaching generic fiber to certain formal schemes. Since then the the-
ory became classic and found various applications in algebraic geometry and
representation theory. Another approach was suggested later by Berkovich,
see [Ber1] and [Ber2], where for a non-Archimedean field k a category k-An
of k-analytic spaces was introduced. The first success of the new theory was
in constructing etale cohomology theory for k-analytic spaces (see [Ber2]).
An interesting feature of k-analytic spaces, which has no rigid counterpart,
is that one is not restricted to convergence radii from

√
|k∗|, in particular the

trivial valuation on k is allowed as well. Namely, analytic spaces are built
from spectra M(A) of k-affinoid algebras, which in their turn are defined as
quotients of the algebras k{r−1

1 T1, . . . , r
−1
n Tn} of convergent power series on

the polydisc of radii (r1, . . . , rn) ∈ Rn
+. An affinoid algebra is called strictly

affinoid if it may be represented in such a way, that all radii ri are taken
from

√
|k∗|. A strictly analytic space is an analytic space with a chosen

strictly affinoid atlas and the corresponding category modulo natural equiv-
alence of strictly affinoid atlases is denoted st-k-An. Strictly analytic spaces
are exactly the analytic spaces admitting a rigid model, but it is not clear
that this model is unique. So the question, whether the natural embedding
functor st-k-An −→ k-An is fully faithful, is a basic question of the theory.
It was one of the main motivations of this work, and the positive answer
is obtained at Sect. 4. In order to prove this result we generalize to all
k-analytic spaces the notions and constructions which were introduced in
our previous work [T] for strictly k-analytic spaces. We define notions of
reduction of a k-affinoid space and reduction of a germ of a k-analytic space
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at a point and establish analogs of results from [Ber1], 2.4, 2.5, and [T], in
particular we obtain criterions, for a space to be good at a point and for a
morphism to be closed at a point. In [T] it was shown, that in the case of
strictly analytic spaces the latter criterion implies that formal properness is
equivalent to properness due to Kiehl.

One of the basic tools in rigid geometry is the notion of reduction of
algebras and spaces. The reduction Ã1 of a strictly affinoid algebra A is
defined as the quotient of the subalgebra A◦1 = {f ∈ A| |f |sup ≤ 1} by
the ideal A◦◦1 = {f ∈ A| |f |sup < 1}. It reflects well the properties of the
algebra, for example a homomorphism of strictly affinoid algebras is finite if
and only if its reduction is finite. This notion is used in analytic geometry
only for strictly analytic spaces because, for example, the reduction of a
non-trivial affinoid algebra, which is not strictly affinoid, may coincide with
k̃1. In the present paper we propose the following modification. Define
reduction Ã of an affinoid algebra A as the R∗

+-graded algebra associated to
the spectral seminorm filtration on A (Ã1 is the trivially graded component
of Ã). The new definition is closely related to the old one in the strictly
affinoid case (cf. below) and it behaves well on the whole class of affinoid
algebras. For example, the reduction k̃ of the base field k may be a non-
noetherian ring. However, it has no non-trivial homogeneous ideals and
any non-zero homogeneous element is invertible. Thus as a graded ring it
behaves like a field. The necessary definitions are given in Sect. 1, where we
introduce graded analogs of the following notions: field, prime ideal, local
ring, valuation ring, etc. (for example the graded spectrum of a graded ring
is the set of its prime homogeneous ideals). In Sect. 3 we prove that a
homomorphism of affinoid algebras is finite if and only if its reduction is
finite. Then for an affinoid space X = M(A) the reduction map πX : X

−→ X̃ to the set X̃ of all prime homogeneous ideals of Ã is constructed and
analogs of statements from [Ber1], 2.4, 2.5, are proved. In particular, πX

is surjective and maps bijectively the Shilov boundary of X onto the set of
generic points of X̃. Note also, that in the strictly affinoid case X̃ and πX

coincide with the usual reduction on the level of sets.
In Sect. 2, we define for a graded field k a category birk analogously

to [T], Sect. 1. Its object is a local homeomorphism from a connected
quasi-compact and quasi-separated topological space to a Riemann-Zariski
space over k, while the latter space is defined in terms of graded valuation
rings analogously to the usual Riemann-Zariski space. We define notions
of affine objects of birk and separated and proper morphisms of birk. In
Sect. 4, we construct a reduction functor Xx 7→ X̃x from the category of
germs of k-analytic spaces at a point to the category birek. We prove that
the reduction functor induces a bijection between analytic subdomains of a
k-germ Xx and open quasi-compact subsets of its reduction X̃x. Another
useful result of the section states that a space X is strictly analytic at a
point x if and only if its reduction X̃x is |k∗|-strict, i.e. may be defined using
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homogeneous elements of H̃(x) graded by |k∗|. The desired full faithfulness
of the embedding functor st-k-An −→ k-An follows easily. The last section
follows closely the sections 3 and 4 of [T]. We prove that a germ Xx is good
if and only if its reduction X̃x is affine, and that a morphism f : Xx −→ Yy

of germs is closed if and only if its reduction f̃ : X̃x −→ Ỹy is proper. As a
corollary one obtains that properness is a G-local on the base property of
morphisms of analytic spaces. It follows also, that in the strictly analytic
case Kiehl’s definition of proper morphism is equivalent to the definition
from [Ber2], 1.5 (in [T] it was proved for a slightly weaker definition). The
author thanks Prof. V. Berkovich for attention to work and encouragement.
He thanks also Prof. B. Conrad for discussing his previous work [T] and
pointing out some mistakes.

§1. G-graded rings

Let G be an abelian group, we write it multiplicatively and fix until the
end of the next section. By a G-graded ring we mean a commutative ring
A with 1 endowed with a G-graduation A = ⊕g∈GAg by additive subgroups
Ag with AgAh ⊂ Agh. Note, that in a G-graded ring A one has 1 ∈ A1.
The aim of this section is to extend to G-graded rings very basic algebraic
notions (as usual it suffices to replace the word “element” by the words
“homogeneous element”). Usually we shall omit the letter G and say graded
ring, homogeneous ideal, etc.

For a non-zero homogeneous element x ∈ Ag we use notation ρ(x) = g
and say that x is of order g, we set also ρ(0) = 0. A homomorphism of
G-graded rings is a homomorphism φ: A −→ B such that φ(Ag) ⊂ Bg for any
element g of G. A kernel of such a homomorphism is a G-homogeneous
ideal (i.e. an ideal generated by homogeneous elements). If A is a G-graded
ring and I is its G-homogeneous ideal, then the quotient ring A/I has a
natural G-graduation. More generally, given a G-graded ring A, the category
of G-graded A-modules is an abelian category with tensor products, and the
forgetful functor to the category of A-modules is an exact functor commuting
with tensor products. Let B = A[T1, . . . , Tn] be the polynomial algebra over
a graded ring A and g1, . . . , gn elements of G, then B has a unique G-
graduation extending that of A such that Ti ∈ Bgi . This graded algebra
will be denoted A[g−1

1 T1, . . . , g
−1
n Tn] or simply A[g−1T ], in particular the

notation A[T1, . . . , Tn] is used in the case, when all Ti are of order 1. Given
a graded ring A and a multiplicative set S ∈ A of homogeneous elements,
the localization ring AS has a natural G-graduation (it suffices to consider
only the case of S = {1, f, f2, ...} and f ∈ Ag, but then AS = A[gT ]/(Tf −
1) as graded rings). Given a homomorphism φ: A −→ B of graded rings,
we say that φ is finite (resp. integral, resp. finitely generated) if it
is finite (resp. integral, resp. finitely generated) as a homomorphism of
usual rings. It is easily seen, that φ is finite if and only if there exists an
epimorphism An −→ B of graded A-modules, that φ is integral if and only
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if any homogeneous element of B satisfies an integral equation over A with
homogeneous coefficients, and that φ is finitely generated if and only if there
exists an epimorphism A[g−1

1 T1, . . . , g
−1
n Tn] −→ B.

We define graded field to be a graded ring A with no non-zero homoge-
neous ideals, it is equivalent to the condition that all non-zero homogeneous
elements of A are invertible. For example, starting from a trivially graded
field K, the graded ring K[g−1T, gS]/(TS−1) is a graded field for any g ∈ G
of infinite order. A graded ring A is said to be integral if the product of
any two non-zero homogeneous elements of A does not vanish. We notice,
that in an integral graded ring A any non-zero homogeneous element is not
a zero divisor (however A may have non-homogeneous zero divisors). Any
integral graded ring A may be embedded into graded field, the minimal such
field is obtained by inverting all non-zero homogeneous elements. We call
this graded field the quotient field of A and denote it Q(A). We say that
a homogeneous ideal I is prime, if the graded ring A/I is integral. Note
that I is prime if and only if the set of all homogeneous elements of A \ I is
closed under multiplication.

Let k be a G-graded field, we fix it until the end of the section.

1.1. Lemma. Let A be a graded k-algebra, such that ρ(A) = ρ(k), then:
(i) A→̃A1 ⊗k1 k,
(ii) I 7→ I∩A1 defines a one-to-one correspondence between homogeneous

ideals (resp. prime homogeneous ideals) of A and ideals (resp. prime ideals)
of A1. ¤

1.2. Lemma. Any graded k-module M is free.
Proof. By k(g) we denote the module k with graduation shifted by g (i.e.

ρk(g) = gρk). Let {fi}i∈I be a maximal set of non-zero homogeneous ele-
ments of M such that the corresponding homomorphism F = ⊕i∈Ik(ρ(fi))
−→ M is injective. If f ∈ M/F is a non-zero homogeneous element, then
we obtain a homomorphism φ: k(ρ(f)) −→ M/F . Since the modules k(g)
have no non-trivial graded submodules, φ is injective. But then the set
{fi}i∈I may be enlarged by any preimage of f . The contradiction shows
that M/F = 0 and we are done. ¤

1.3. Corollary. Let C be a graded k-algebra, then a homomorphism
f : A −→ B of graded k-algebras is finite (resp. finitely generated) if and
only if the homomorphism fC = f ⊗k C is.

Proof. Choose elements
∑ni

j=1 bij ⊗ cij ∈ B⊗k C generating B⊗k C over
A ⊗k C as a module (resp. as an algebra) and such that the elements bij

are homogeneous, set rij = ρ(bij). The elements bij define a homomorphism
f ′: ⊕i,j A(rij) −→ B (resp. f ′: A[r−1

ij Tij ] −→ B) of graded k-modules which
is an epimorphism because f ′ ⊗ C is an epimorphism and C is a free k-
module. ¤

A graded ring A is a local graded ring if it has a unique maximal homo-
geneous ideal m, equivalently, all non-invertible homogeneous elements of A
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are contained in a proper homogeneous ideal. For any prime homogeneous
ideal p ⊂ A let Ap denote the localization of A by homogeneous elements
of A \ p. We call Ap the localization of A at p, it is obviously a local
graded ring. Let K be a graded field, we say that a graded subring A ⊂ K
(we require, that the embedding is a graded homomorphism) is a graded
valuation ring, if it is a local graded ring whose graded quotient field co-
incides with K and for any homogeneous element f ∈ K, at least one of the
two elements f and f−1 belongs to A. Any local graded subring B ⊂ K
is dominated by a graded valuation subring of K (by usual argument using
the Zorn’s lemma).

1.4. Lemma. Let K be a graded field over k and A ⊂ B its graded
k-subalgebras, then:

(i) B is integral over A if and only if there exists no graded valuation
subring of K containing A and not containing B;

(ii) if A and B are finitely generated k-algebras, then B is integral over
A if and only if it is finite over A.

Proof. The proof of (i) is absolutely analogous to the classical case. Let
x ∈ B be a homogeneous element integral over A and O ⊃ A a graded
valuation subring of K. If x does not belong to O, then its inverse belongs
to the maximal homogeneous ideal m of O. Since x satisfies an equality
xn +

∑n−1
i=0 aix

i = 0 with homogeneous coefficients ai ∈ A, we obtain 1 =
−1/x

∑n−1
i=0 ai(1/x)n−i−1 ∈ m. The contradiction shows, that actually x ∈

O. Conversely, suppose x ∈ B is not integral over A. By [Bou], ch. VI, Sect.
1, Lemma 1, 1/x is not invertible in C = A[1/x], hence there exists a prime
homogeneous ideal p ⊂ C containing 1/x. Let O be any graded valuation
ring dominating the local graded ring Cp, then 1/x ∈ mO and hence x /∈ O
and B 6⊂ O.

(ii) Only direct implication is not obvious, so suppose B is integral over A.
Let k′ be a graded field over k, such that ρ(B) ⊂ ρ(k′), and set A′ = A⊗k k′
and B′ = B ⊗k k′. Then A′ and B′ are finitely generated k′ algebras and
by Lemmas 1.1 (i) and 1.3, A′1 and B′

1 are finitely generated k′1 algebras.
Obviously, B′ is integral over A′, and it follows, that B′

1 is integral over A′1.
Since B′

1 and A′1 are usual algebras finitely generated over the field k1, we
obtain that B′

1 is finite over A′1. Therefore B′ is finite over A′ and it remains
to use Lemma 1.3. ¤

Finally, we define the spectrum SpecG(A) of a graded ring A as the set
X of prime homogeneous ideals of A provided with topology whose basis
consists of sets of the form D(f) = {p ∈ X| f /∈ p}, where f is a homoge-
neous element of A. As in usual scheme theory one proves, that SpecG(A)
is quasi-compact.

1.5. Lemma. If A is a graded ring finitely generated over k, then the
set of generic points of SpecG(A) is finite.
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Proof. Again, let k′ be a graded field over k, such that ρ(A) ⊂ ρ(k′),
and set A′ = A⊗k k′. Lemma 1.1 implies, that the statement of the Lemma
holds for A′, but it is easily seen, that the set of generic points of SpecG(A′)
is mapped surjectively to that of SpecG(A). ¤

1.6. Remark. The spectrum of a graded ring can be provided with a
(structure) sheaf of graded rings. Then one can define a notion of a graded
scheme as a locally graded ringed space locally isomorphic to affine graded
scheme. The theory of such objects seems to be parallel to the usual scheme
theory. In the case of finitely generated group G, these objects may be
identified also with usual schemes provided with an action of a commutative
algebraic group of multiplicative type. For example, the category of Z-
graded affine schemes is equivalent to the category of affine schemes provided
with a Gm-action, and on the level of topological spaces SpecZ(A) coincides
with the set of scheme orbits of the corresponding action of Gm on Spec(A).

§2. The category birk

Throughout this section k is a fixed G-graded field. Given a G-graded field
K over k, let PK = PK/k denote the set of all graded valuation subrings O
of K such that K = Q(O) and k ⊂ O. One endows PK with the weakest
topology with respect to which the set {O ∈ PK

∣∣f ∈ O} is open for any
homogeneous element f of K. Given subsets X ⊂ PK and A ⊂ K we set
X{A} = {O ∈ X

∣∣f ∈ O for all homogeneous f ∈ A}.
Lemma 2.1. Let A be a subset of K, then the set X = PK{A} is

quasi-compact.
Proof. (Compare [Mat], 10.5.) We can replace A by the graded subring

of K generated by 1 and the homogeneous elements of A. Given a subsets
X ⊂ PK and F ⊂ K, set X{{F}} = {O ∈ X

∣∣f ∈ mO for all homogeneous
f ∈ F}. The topology on X is given by the condition that any subset X{f}
is open, or that is equivalent, any subset X{{f−1}} is closed. Therefore it
suffices to check, that if X{{F}} = ∅ for some set F ⊂ K then X{{F0}} = ∅
already for some finite subset F0 of F . Let B be the graded subring of K
generated by A and the homogeneous elements of F and m ⊂ B the graded
ideal generated by the homogeneous elements of F , then X{{F}} = ∅ if
and only if m = B (otherwise we can enlarge it to a prime homogeneous
ideal p of B and find a graded valuation ring O ∈ PK which dominates p,
then obviously O ∈ X{{F}}). But obviously one uses only finitely many
elements of F to represent 1 as an element of m, so F may be replaced by
its finite subset. ¤

The particular case of the Lemma concerning trivial graduations was used
in [T], §1. However the proof given there has a gap pointed out by Brian
Conrad, the reason is that projective limit of topological spaces does not
preserve quasi-compactness in general. So, this proof (or referencing to



ON LOCAL PROPERTIES OF NON-ARCHIMEDEAN ANALYTIC SPACES II 7

[Mat]) should be used instead. Subsets of PK of the form PK{f1, . . . , fn}
are said to be affine. By Lemma 1.4 the following statement holds.

2.2. Lemma. Given graded algebras A ⊂ B ⊂ K finitely generated over
k, one has PK{A} = PK{B} if and only if B is finite over A. ¤

Let now birk be the category whose objects are triples X = (X, K, φ),
where X is a connected quasi-compact and quasi-separated topological space,
K is a graded field over k, and φ is a local homeomorphism X −→ PK . A
morphism X = (X,K, φ) −→ Y = (Y, L, ψ) is a pair (h, i), where h is a
continuous map X −→ Y and i: L ↪→ K is an embedding of graded fields,
such that ψ ◦ h = i# ◦ φ, where i#: PK −→ PL is the induced map. A mor-
phism (h, i): X −→ Y is said to be separated (resp. proper) if the map
X −→ Y ×PL

PK is injective (resp. bijective). In this case the above map
is an open embedding (resp. a homeomorphism). An object X = (X, K, φ)
of birk is said to be affine if φ induces a homeomorphism of X with an
affine subset of PK . If X = (X, K, φ) ∈ Ob(birk), then for any open quasi-
compact subset X ′ ⊂ X the triple (X ′,K, φ

∣∣
X′) is an object of birk. If the

latter object is affine, X ′ is said to be an affine subset of X.
2.3. Remark. Exactly as in [T], 1.4., one can define also a category

V ark of irreducible graded schemes with a fixed morphism from spectrum
of a graded field to its generic point. It may be shown then, that birk is
equivalent to V ark localized by some system of proper morphisms.

Let K be a graded field over k and X an open subset of PK . A Laurent
covering of X is a covering of the form {X{fε1

1 , . . . , fεn
n }}(ε1,...,εn)∈{±1}n ,

where f1, . . . , fn are non-zero homogeneous elements of K. The proof of the
following lemma is a word by word repetition of the proof of [T], 1.5.

2.4. Lemma. Any finite covering of X by opens of the form X{f1, . . . , fn}
has a Laurent refinement. ¤

Let H be a subgroup of G such that H ⊃ ρ(k∗). For a graded field K
over k set KH = ⊕h∈HKh (it is a graded field over k too) and let ψK : PK

−→ PKH
be the natural map. A separated object X ↪→ PK of birk is

called H-strict if it is the preimage under ψK of an open quasi-compact
subset XH of PKH

. It is equivalent to the condition that X has a covering
{PK{fi1, . . . , fini}}1≤i≤m, where fij are homogeneous elements of KH . Let
H ′ be a subgroup of G containing H such that H ′/H is a torsion group (we
denote the maximal such subgroup as

√
H). Since PK{f} = PK{fn}, the

notions of H and H ′-strictness coincide.

2.5. Proposition.
(i) An affine set PK{f1, . . . , fn} is H-strict if and only if ρ(fi) ∈

√
H∪{0}

for any 1 ≤ i ≤ n.
(ii) The map ψK is open.
(iii) The fibers of ψK are connected.
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Proof. Let A ⊃ k be a graded subalgebra of K, prove that ψK(PK{A}) =
PKH

{AH}, where AH = ⊕h∈HAh. The direct inclusion is obvious. Con-
versely, let O ⊃ AH be a graded valuation subring of KH . Since the
graded subring B = AO of K generated by A and O may be expressed as
⊕g∈G/HAgHO, we obtain that B∩KH = O and mOB∩O = mO. Therefore
there exists a prime homogeneous ideal p ⊂ B such that p ∩ O = mO, and
then a graded valuation ring O′ ∈ PK dominating Bp satisfies O′∩KH = O.
In particular, O′ ⊂ PK{A} and ψK(O′) = O.

The above observation immediately implies (ii). Moreover, it follows that
given a graded k-subalgebra A ⊂ K the set PK{A} is H-strict if and only
if it coincides with PK{AH}. But by Lemma 2.2, it happens if and only if
A is finite over AH and (i) follows.

It remains to establish (iii). Let O ∈ PKH
be a graded valuation ring, set

X = ψ−1
K (O). Suppose oppositely that X is disconnected, say X = U t V ,

where U and V are open and non-empty. Let Y (resp. XY ) denote the set of
all graded valuation subrings of KH (resp. K) that contain O. The spaces
Y and XY are quasi-compact by Lemma 2.1. Furthermore, O is the closed
point of Y and XY = ψ−1

K (Y ). Hence X is a closed subset of XY and in
particular X is quasi-compact. Then U and V are quasi-compact too and
therefore admit finite coverings by sets of the form X{f1, . . . , fn}. Since U
and V are determined by finite number of elements of K, decreasing K we
can assume, that N = ρ(K∗)/H is finitely generated. We can also replace
H by

√
H, because PKH

→̃PK√H
, and then N is a lattice of a finite rank n.

We shall prove by induction on n, that our assumption on X can not hold.
In the case of n = 1 we have K = KH [g−1T, gT−1], where g /∈ √

H.
Note that O induces a preorder on KH , namely a ≥ b if a/b ∈ O (then
a > b if a/b ∈ mO and a ∼ b if a/b ∈ O∗). Since X{cT l} = X{cmT lm},
for any elements a, b ∈ KH and integral numbers i, j of the same sign
we have X{aT i, bT j} = X{min(bi, aj)T ij}. Thus, open sets of the form
X{aT i, bT−j} form a basis of topology of X. Since X is quasi-compact,
U and V admit finite coverings by sets W1, . . . , Wl and Wl+1, . . . , Wm, re-
spectively, such that Wi = X{aiT

k, biT
−k} for some natural k. Since U

and V are contained in X{max(ai)T k}, at least one of the elements ai is
zero, say a1 = 0. If Wi ∩ W1 6= ∅, then aib1 ∈ O and it follows, that
W ′

1 = W1 ∪ Wi = X{max(b1, bi)T−k}. Remove Wi, replace W1 by W ′
1,

decrease m by one and continue this process until W1 is disjoint with all
other Wi’s, by our assumption it happens for some m > 1. Then W1 is
closed and does not coincide with X, in particular b1 6= 0. However a set
W = X{bT−k} with non-zero b is not closed by the following reason. Con-
sider the graded valuation subrings O′1 = {O[xT k, yT−k]| y > b, x ≥ b−1}
and O′2 = {O[xT k, yT−k]| y ≥ b, x ≥ b−1} of KH [g−kT k, gkT−k], and let O1

and O2 be their continuations to K. Then O1 /∈ W and O2 ∈ W , but O1

belongs to the closure of O2 in PK , because O2 ⊃ O1. The contradiction
proves, that X is connected for n = 1.



ON LOCAL PROPERTIES OF NON-ARCHIMEDEAN ANALYTIC SPACES II 9

Consider now the case of an arbitrary n, assuming that the case of smaller
n is already established. Choose a subgroup L of ρ(K∗) such that L ⊃ H
and ρ(K∗)/L→̃Z, and let KL be the corresponding graded subfield of K.
By the previous case, the fibers of the map φ: PK −→ PKL

are connected,
hence U = φ−1(UL) and V = φ−1(VL) for some disjoint sets UL, VL ⊂ PKL

and the union XL = UL ∪ VL coincides with the preimage of O in PKL
. Let

U0 be an open subset of PK whose intersection with X is U . Its image in
PKL

is open by (ii) and obviously φ(U0) ∩XL = UL. We obtain, that UL is
open in XL, and the same reasoning applies to VL. Thus XL is disconnected,
but it contradicts the induction assumption. ¤

Given an object X = (X, K, φ) of birk, by an H-strict structure on X we
mean a morphism ψX : X −→ XH = (XH ,KH , φH) such that X→̃XH ×PKH

PK . An object which admits such a structure is called H-strict.

2.6. Proposition. If ψX : X −→ XH and ψY : Y −→ Y H are H-strict
structures on objects X and Y of birk, then any morphism f : X −→ Y
is induced from a morphism fH : XH −→ Y H . In particular all H-strict
structures on an H-strict object X of birk are isomorphic.

Proof. Our aim is to find a continuous map fH : XH −→ YH making the
following diagram commutative

Y YH
-

X XH
-

? ?
PLH

-

PKH
-

?

Let Z ⊂ X be a fiber of ψX , by Proposition 2.5 (iii), Z is connected. The
image of Z in PLH

consists of one point, hence its image in YH is contained
in a discrete set. Since Z is connected, its image in YH is actually a single
point. It follows, that there exists a map fH : XH −→ YH making the diagram
commutative. Finally, since by Proposition 2.5 (ii), ψX is a surjective open
map, the map fH is continuous. ¤

2.7. Corollary. Let f : X −→ Y be a morphism of H-strict objects and
let U, V be H-strict subobjects of Y , then:

(i) the union U ∪ V and the intersection U ∩ V are H-strict;
(ii) the preimage f−1(U) is H-strict. ¤
It may be proved using 2.6 and 1.1, that the category of ρ(k∗)-strict ob-

jects of birk is equivalent to birk1 . On the other side, “absolutely” non-strict
objects admit a combinatorial interpretation very close to toric geometry.
Consider for example the graded field K = k[g−1

1 T, g1T
−1, . . . , g−1

n T, gnT−1],
where the elements g1, . . . , gn are linearly independent over ρ(k∗), in partic-
ular Λ = ρ(K∗)/ρ(k∗)→̃Zn. The space PK has no non-trivial ρ(k∗)-strict
subspaces, its points may be interpreted as saturated semigroups M ⊂ Λ
such that the intersection of M with any non-trivial subgroup of Λ is not
trivial. Inclusion relation induces a partial order on the set of such semi-
groups. The maximal semigroup M = Λ corresponds to the trivial valuation
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on K (height is zero). A semigroup M dominated only by Λ corresponds to a
valuation of height one, it is defined uniquely by an element x ∈ Rn = Λ⊗R
such that (x, x) = 1 and M = {y ∈ Λ| (x, y) ≥ 0} with respect to the stan-
dard scalar product. Thus, the subset S of PK consisting of the elements of
height 1 is homeomorphic to an n− 1-dimensional sphere Sn−1 ⊂ Rn. It is
easily seen also, that if X is a good subspace of PK , then X ∩S corresponds
to a subset of Sn−1 cutoff by a convex polyhedral cone defined over Q.

§3. Reduction of affinoid algebras and spaces

Starting from this section, we denote by k a non-Archimedean field (may
be with trivial valuation). Our aim in this section is to generalize the notion
of reduction to arbitrary affinoid algebras and spaces. We establish analogs
of [BGR], 6.3.5/1, [Ber1], 2.4 and 2.5, and prove the Gerritzen-Grauert
theorem for arbitrary affinoid spaces.

Let D be a Banach k-algebra, following [Ber1], by ρD : D −→ R+ we
denote the spectral seminorm of D. Given a positive real number r, set
D◦r = {x ∈ D| ρD(x) ≤ r}, D◦◦r = {x ∈ D| ρD(x) < r} and D̃r = D◦r/D◦◦r .
Let D̃ = ⊕r∈ρD(D)\{0}D̃r be the R∗

+-graded ring associated to the filtration
on D induced by the spectral seminorm ρD. We call D̃ the reduction ring
of D (usually one uses these notion and notation for D̃1). Any bounded
homomorphism φ : D −→ D′ of Banach k-algebras induces a homomorphism
φ̃ : D̃ −→ D̃′ of R∗

+-graded k̃-algebras. Note also, that if D is a field, then
the ring D̃ is an R∗

+-graded field (as a ring however it may be even non-
noetherian).

In the sequel, we consider only R∗
+-graduation and omit as a rule the group

R∗
+ in all notations. Given a set r1, . . . , rn of positive numbers, consider the

quotient field of k{r−1T} provided with the valuation extending the spectral
norm of k{r−1T}, and let Kr be its completion (Kr is a non-Archimedean
field and its definition generalizes the one of [Ber1], 2.1).

3.1. Proposition. The reduction functor satisfies the following proper-
ties:

(i) for a k-affinoid algebra A and a set r1, . . . , rn of positive numbers the

natural isomorphisms Ã[r−1T ]→̃ ˜A{r−1T} and Ã ⊗ek K̃r→̃Ã⊗̂kKr hold;
(ii) for a k-affinoid algebra A and an element f ∈ A with r = ρ(f) > 0

one has Ã ef→̃ ˜A{rf−1};
(iii) a bounded homomorphism φ : A −→ B of k-affinoid algebras is finite

and admissible if and only if the homomorphism φ̃ : Ã −→ B̃ is finite;
(iv) given a k-affinoid algebra A and A-affinoid algebras B and C, the

natural homomorphism B̃ ⊗ eA C̃ −→ B̃⊗̂AC is finite;
(v) for a k-affinoid algebra A and a non-Archimedean field K over k the

natural homomorphism φ̃ : Ã ⊗ K̃ −→ Ã⊗̂K is finite.
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Recall, that a homomorphism f : A −→ B of Banach algebras is called
admissible, if the residue norm on Im(A) is equivalent to the restriction of the
norm of B ([Ber1], 1.1). Note, that if the valuation on k is non-trivial, then
Banach open map theorem implies easily, that any finite homomorphism is
admissible. Conversely, if the valuation is trivial, then there exist finite (and
even bijective) non-admissible homomorphisms, for example φ : k{r−1T}
−→ k{s−1T}, where 0 < s < r < 1. Such a homomorphism may become not
finite after taking reduction or completed tensor product.

Proof. Note, that for an element f =
∑

i fiT
i ∈ A{r−1T} one has

ρ(f) = maxi ρ(fi)ri, where ri denotes the product ri1
1 . . . rin

n . Therefore for
any positive number s we obtain

( ˜A{r−1T})s→̃ ⊕i∈Nn Ãs·r−i

It establishes the first isomorphism of (i). The second isomorphism follows
from the first one and (ii). Our proof of (ii) follows closely [BGR], 7.2.6,
and consists of two steps.

Step 1. Let A be a k-affinoid algebra, f ∈ A an element with r =
ρ(f) > 0 and B = A{rf−1}. Given an element a ∈ A, one has ρB(a) =
limn r−nρA(fna). If ρB(a) > 0, then for n ≥ n0 one has ρB(a) = r−nρA(fna)
and ρB(fna) = ρA(fna).

Since ρB(f) = r and ρB(f−1) = r−1, one has ρB(f ib) = riρB(b) for any
i ∈ Z and b ∈ B. Thus the last two statements are equivalent. Pick up a
field Kr for which the algebras A′ = A⊗̂Kr and B′ = B⊗̂Kr are strictly
k-affinoid. Since the embeddings A −→ A′ and B −→ B′ preserve the spectral
seminorm and A′{rf−1}→̃B′, we are reduced to the case of strictly affinoid
algebras which is proved in [BGR], 7.2.6/2.

Step 2. The end of the proof .

Set B = A{rf−1} and consider the natural homomorphisms φ̃ : Ã −→ Ã ef
and ψ̃ : Ã ef −→ B̃. Let ã ∈ Ã be a non-zero element such that ψ̃(φ̃(ã)) =
0, then for its lifting a ∈ A we have ρB(a) < ρA(a). By the first step,
ρA(fna) < rnρA(a) for some n, i.e. f̃nã = 0 in Ã. Thus already φ̃(ã)
vanishes, and therefore ψ̃ is injective. Furthermore, given a non-zero element
b̃ ∈ B̃ we can lift it to an element b ∈ B of the form f−na where a ∈ A. By
the first step, enlarging n we can assume that ρB(a) = ρA(a). It follows,
that the element ã = f̃nb̃ ∈ B̃ has a preimage in Ã, and therefore b̃ comes
already from Ã ef .

(iii) Pick up r for which the algebras A′ = A⊗̂Kr and B′ = B⊗̂Kr satisfy
the following condition, ρ(A′) = ρ(B′) = |Kr| (in particular the algebras A′
and B′ are strictly Kr-affinoid).

3.2. Lemma. Let φ : A −→ B be a bounded homomorphism of k-affinoid
algebras and r1, . . . , rn positive numbers, then φ is finite and admissible if
and only if φr = φ⊗̂Kr is finite and admissible.
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Proof. The direct implication is obvious. It is easily seen also, that φ
is admissible if and only if φr is. It remains to prove, that φ is finite if
φr is finite (we do not need admissibility in this direction). Since Kr is the
completed tensor product of Kri , we can assume n = 1. Now the case of r not
belonging to

√
|k∗| follows from [Ber1], 2.1.11. Since for a positive number

r ∈
√
|k∗| the field Kr is finite over a subfield isomorphic to K1, we can

restrict ourselves to the case of r = 1. Set K = K1, one has K = ̂Q(k{T})
and K̃1 = k̃1(T ). Let {f̃i(T )}i∈I be the set of irreducible monic polynomials
of k̃1[T ] and fi some monic liftings to k◦[T ] ⊂ K. It is easily seen then,
that given an affinoid algebra A, any element a ∈ AK = A⊗̂K admits a
unique representation a =

∑∞
n=0 anTn +

∑
i,j,k aijk

T k

fj
i

, where i ∈ I, 1 ≤ j,

0 ≤ k < deg(fi(T )) and the set of coefficients {an, aijk} ⊂ A is such that
for any positive ε only finitely many coefficients have norm larger than ε.
Now, if BK is finite over AK , then any element b ∈ B satisfies an equality
bm+

∑m−1
0 alb

l = 0, where al ∈ AK . But obviously replacing al by their free
coefficients (al)0 preserves the equality, hence B is finite over A as well. ¤

By Lemma 3.2, the homomorphism φ is finite and admissible if and only
if the induced homomorphism φ′ : A′ −→ B′ is finite and admissible. Since
the algebras A′ and B′ are strictly affinoid, it is the same as to require that
φ′ is finite. By [BGR], 6.3.5/1, the homomorphism φ′ is finite if and only if
the homomorphism φ̃′1 : Ã′1 −→ B̃′1 is finite and by Lemmas 1.1 (i) and 1.3,
it is equivalent to finiteness of the homomorphism φ̃′ : Ã′ −→ B̃′. Finally
we note, that by the second isomorphism of (i), φ̃′ is obtained from φ̃ by
tensoring with K̃r. So, by Lemma 1.3, φ̃′ is finite if and only if φ̃ is finite.

The last two parts of the proposition are proved in the same way, so we re-
strict ourselves to (v). Fix an admissible epimorphism f : k{r−1

1 T1, . . . , r
−1
n Tn}

−→ A and set fK : K{r−1
1 T1, . . . , r

−1
n Tn} −→ A⊗̂K. Obviously fK is epimor-

phic and by part (iii) of the proposition, its reduction f̃K : K̃[r−1T ] −→ Ã⊗̂K

is finite. Note, that f̃K(Ti) 6= 0 if and only if ρ(fK(Ti)) = ri, the latter im-
plies that ρ(f(Ti)) = ri and therefore f̃K(Ti) ∈ φ̃(Ã). We see, that φ̃(Ã)
contains f̃K(Ti) and obviously φ̃(K̃) = f̃K(K̃). So, Im(φ̃) ⊃ Im(f̃K) and φ̃
is finite. ¤

Note, that one can not expect to have an isomorphism at (v), as the
following simple example shows: take k = Qp and let A and K be its
ramified extensions of degree p which do not coincide.

Given an affinoid k-space X = M(A), we define its reduction as X̃ =
SpecR∗+(Ã). Let x ∈ X be a point, consider the character A −→ H(x). It

induces a homomorphism Ã −→ H̃(x) of graded rings. Since H̃(x) is a graded
field, we obtain a point x̃ ∈ X̃. Thus, the reduction map πX : X −→ X̃ is
defined. Moreover, any morphism f : Y −→ X of affinoid k-spaces gives rise



ON LOCAL PROPERTIES OF NON-ARCHIMEDEAN ANALYTIC SPACES II 13

to the commutative square

Ỹ X̃-
f̃

Y X-f

?
πY ?

πX

(1)

Note, that πX is ”anticontinuous”, i.e. the preimage of an open set is closed
and vice versa.

3.3. Proposition. Let X = M(A) be a k-affinoid space and X̃gen the
set of generic points of its reduction.

(i) The reduction map πX : X −→ X̃ is surjective.

(ii) Any point x̃ ∈ X̃gen has a unique preimage in X.

(iii) The set π−1
X (X̃gen) is the Shilov boundary of X.

Proof. We deduce (i) from [Ber1], 2.4.4, while the proof of (ii) and (iii)
follows the loc. cit. closely. Pick up a field Kr such that ρ(A⊗̂Kr) = |Kr|.
Set B = A⊗̂Kr and Y = M(B) and let f denote the natural morphism
Y −→ X, then the diagram (1) holds. By Lemma 1.1 (ii), on the level of
sets Ỹ = SpecR∗+(B̃) is isomorphic to the reduction of Y in the sense of

[Ber1] (i.e. Spec(B̃1)). It is a trivial check, that our reduction map and the
reduction map from [Ber1] are compatible due to this isomorphism. Thus,
by [Ber1], 2.4.4, the space Y satisfies (i). By 3.1 (v), Ỹ = X̃ ⊗ek K̃r, since
the map X̃ ⊗ek K̃r −→ X̃ is surjective, we obtain (i).

Next we prove (ii). Suppose, first that the space X̃ is irreducible, and let
η denote its generic point. Note, that the induced character Ã −→ k̃(η) is
injective (Ã has no non-trivial homogeneous nilpotents, because ρA is power
multiplicative). Hence for any point x ∈ π−1

X (η) one has |f(x)| ≥ ρA(f) for
any f ∈ A. It means that actually the equality holds, and ρA defines the
only point of π−1

X (η). In the general case we choose a point η ∈ X̃gen and
use Lemma 1.5, to find an element f̃ ∈ Ã vanishing on all generic points
of X̃ except η. Let f be a lifting of f̃ , r = ρ(f̃) and B = A{r−1f}, then
π−1

X (η) ⊂ X{r−1f} = M(B) and by Proposition 3.1 (ii), B̃ = Ã ef . Since the
statement holds for X{r−1f} it holds also for X.

Finally, let f ∈ A be an element with ρ(f) = r > 0. Its reduction
f̃ ∈ Ã does not vanish on some point x̃ ∈ X̃gen, hence for the point
x = π−1

X (x̃) we have |f(x)| = r. Thus any element of A takes its maximum
on Γ = π−1

X (X̃gen). Conversely, let x ∈ Γ be a point and U its open neigh-
borhood. Since x = ∩ ef(ex)6=0

π−1
X (D(f̃)), for some f ∈ A we have f̃(x̃) 6= 0

and X{rf−1} ⊂ U , where r = ρ(f). Therefore already for some ε > 0 we
have X{(r − ε)f−1} ⊂ U . It follows, that x belongs to any boundary of X,
as claimed. ¤
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In the following proposition we generalize [Ber1], 2.5.2 (d). See [Ber1],
2.5, for the definition of inner homomorphisms.

3.4. Proposition. Let A be a k-affinoid algebra and φ : B −→ D
a bounded A-homomorphism from an A-affinoid algebra to a Banach A-

algebra, then φ is inner with respect to A if and only if φ̃(B̃) is finite over

φ̃(Ã).
Proof. Suppose φ is inner, and let π : A{r−1

1 T1, . . . , r
−1
n Tn} −→ B be an

admissible epimorphism such that ρ(φ(π(T ))) < r. By Proposition 3.1 (iii),
the induced homomorphism Ã[r−1T ] −→ B̃ is finite. Since φ̃(π̃(T )) = 0, we
obtain that φ̃(B̃) is finite over φ̃(Ã). Conversely, suppose φ̃(B̃) is finite over
φ̃(Ã). Let ψ : A{r−1T} −→ B be a bounded A-homomorphism, such that
ρ(ψ(T )) = r. Consider its reduction ψ̃ : Ã[r−1T ] −→ B̃ and set b̃ = ψ̃(T ).
Find an element b̃′ =

∑n
i=0 ãib̃

n−i, where ãi ∈ Ã and ã0 = 1, such that
φ̃(̃b′) = 0. We can assume, that ãib̃

n−i ∈ B̃rn , or equivalently ãi ∈ B̃ri . Then
for liftings an ∈ A◦rn , . . . , a1 ∈ A◦r, a0 = 1 and the element P =

∑n
i=0 aiT

n−i

we have ρ(φ(ψ(P ))) < rn. Now, by [Ber1], 2.5.2 (c), φ is inner. ¤
At the end of the section we prove an analog of the Gerritzen-Grauert

theorem.

3.5. Proposition. Given an affinoid space X = M(A), any its affi-
noid domain Y = M(B) may be represented as a finite union of rational
subdomains.

Proof. Since Y is compact, it suffices to prove, that any point y ∈ Y has
a neighborhood Y ′ which is a rational subdomain of X. In order to find such
a neighborhood we can replace Y by a neighborhood of y in Y and X by
a rational subdomain containing Y . Consider the natural homomorphism
ψ̃ : B̃ −→ H̃(y). Let f̃1, . . . , f̃n be homogeneous generators of C̃ = ψ̃(B̃) over
k̃ and ri = ρ(f̃i). Choose liftings fi = gi

hi
∈ H(y) of f̃i, such that gi and

hi come from A. The rational domain X ′ = X{r−1
1 f1, . . . , r

−1
n fn} contains

an affinoid neighborhood Y ′ of y in Y . Let X ′ = M(A′) and Y ′ = M(B′),
consider the induced characters φ̃′ : Ã′ −→ H̃(y) and ψ̃′ : B̃′ −→ H̃(y). By
[Ber1], 2.5.13 (ii), y ∈ Int(Y ′/Y ), hence by Proposition 3.4, ψ̃′(B̃′) is finite
over C̃. But by our construction φ̃′(Ã′) contains C̃. Therefore ψ̃′(B̃′) is finite
over φ̃′(Ã′), and using Proposition 3.4 again we obtain that y ∈ Int(Y ′/X ′).
By [Ber1], 2.5.13 (ii), Y ′ is a neighborhood of y in X ′ and shrinking Y ′ we
can make it rational (and even Laurent) in X ′. ¤

3.6. Remark. We do not define reduction of a non-affinoid space X.
However, the notion of a formal affinoid covering U due to Bosch (see [Bo]
or [Ber1], 4.3) may be generalized straightforwardly to non-strictly analytic
spaces. Then the reduction map πU : X −→ X̃U arises (it is glued from
affinoid reduction maps), where X̃U is an R∗

+-graded scheme (see Remark
1.6). The author conjectures, that some part of Raynaud’s theory may be
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done in such a framework, for example that any compact analytic space
admits a formal covering.

§4. The reduction functor

By Germs we denote the category of germs of k-analytic spaces at a point
(see [T], §2). The germ corresponding to a punctual k-analytic space (X, x)
will be denoted by Xx. A germ Xx is said to be good if the point x has an
affinoid neighborhood in X. A morphism of germs ϕ: Xx −→ Yy is said to
be separated (resp. closed) if it is induced by a separated (resp. closed)
morphism X ′ −→ Y , where X ′ is an open neighborhood of x in X. By a
subdomain X ′

x of Xx we mean an equivalence class of subdomains X ′ of
X, whose germs at x are isomorphic. Furthermore, if Xx is a good germ,
f = (f1, . . . , fn) ⊂ OX,x is a family of elements and r = (r1, . . . , rn) are
positive numbers, then one defines a germ Xx{r−1f} in a natural way (see
[T], §2, for details).

Our next purpose is to define a functor Red: Germs −→ birek. In the
case of a good germ one can proceed analogously to [T] (§2 and Lemma
2.2). Namely, given an affinoid space X = M(A), its point x ∈ X and

the corresponding character χx: A −→ H(x), set (̃X, x) = P]H(x)
{χ̃x(Ã)}.

In this way we obtain a functor from punctual affinoid spaces to birek. Let
X = M(A) be an affinoid space, Y = M(B) its affinoid subdomain and
x ∈ Y a point such that Y is its neighborhood in X, then the natural
homomorphism A −→ B is inner with respect to H(x) and by Proposition

3.4, χ̃x(B̃) is finite over χ̃x(Ã). Therefore the induced morphism (̃Y, x)

−→ (̃X, x) is an isomorphism and we obtain a functor Red from the category
of good germs to birek, which will be denoted Xx 7→ X̃x. For a good germ Xx

and its subdomain Yx the reduction Ỹx −→ X̃x of the inclusion morphism is
an open embedding, we identify Ỹx with its image in X̃x. Since we did not
develop the notion of reduction for non-affinoid spaces (see Remark 3.6),
we can not extend the above definition of the reduction functor to non-
good germs. Therefore we propose a more straightforward and technical
construction than in [T], §2. Its main advantage is that it makes no use of
the Raynaud’s theory.

4.1. Proposition. The functor Red may be extended in a unique way
to a functor Red: Germs −→ birek, such that the following conditions are
satisfied:

(i) if φ: Yx −→ Xx is an embedding of a subdomain, then φ̃ is an open
embedding;

(ii) given subdomains Yx and Zx of a germ Xx, one has ˜Yx ∩ Zx = Ỹx∩ Z̃x

and ˜Yx ∪ Zx = Ỹx ∪ Z̃x;
(iii) given a morphism of germs φ: Yy −→ Xx, a subdomain X ′

x of Xx and

its preimage Y ′
y in Yy, one has Ỹ ′

y = φ̃−1(X̃ ′
x).
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Proof. First we check, that the needed properties are satisfied on good
germs.

4.2. Lemma.
(i) Let Xx be a good germ and X1

x, . . . , Xm
x a covering of X by good

subdomains, then ∪X̃i
x = X̃x.

(ii) Let φ: Yy −→ Xx be a morphism of good germs, X ′
x a good subdomain

of Xx and Y ′
y = φ−1(X ′

x), then Ỹ ′
y = φ̃−1(X̃ ′

x).

4.3. Lemma. Given a good germ Xx, any its subdomain Yx may be
covered by finite number of subdomains of the form Xx{r−1

1 f1, . . . , r
−1
n fn},

where |fi(x)| = ri.
Proof. Choose an affinoid representative X of Xx. By Proposition 3.5, we

can assume that Y is a rational subdomain of X, i.e. Y = X{r−1
1

g1

h , . . . , r−1
n

gn

h }.
Since x ∈ Y , we can assume also that h does not vanish on X, and thus
Y = X{r−1

1 f1, . . . , r
−1
n fn}. Finally, shrinking X we can remove all fi’s with

|fi(x)| < ri. ¤

4.4. Lemma. Given a good germ Xx and a family f = (f1, . . . , fn) ⊂
OX,x of elements, one has ˜Xx{r−1f} = X̃x{f̃}, where ri = |fi(x)| and f̃i is

the image of fi in H̃(x).
Proof. We may assume, that X = M(A) and n = 1. Applying Proposi-

tion 3.1 (iii) to the admissible epimorphismA{r−1T} −→ A{r−1f} that takes

T to f , we obtain that the induced homomorphism Ã[r−1T ] −→ ˜A{r−1f} is

finite. Therefore the graded algebra χ̃x( ˜A{r−1f}) is finite over the graded
subalgebra χ̃x(Ã)[f̃ ] of H̃(x) generated by χ̃x(Ã) and f̃ . The lemma fol-
lows. ¤

Proof of Lemma 4.2.
(i) In order to prove the lemma we can replace the covering {Xi

x}1≤i≤m

by any of its refinements. By Lemma 4.3, we can assume, that Xi =
X{r−1

i1 fi1, . . . , r
−1
ini

fini} and |fij(x)| = rij . Shrink X so that fij have no
zeros on X. Adding ones we can achieve n = n1 = · · · = nm and fin = 1.
Let J be the set of all sequences j = (j1, . . . , jm) such that 1 ≤ ji ≤ n for
all 1 ≤ i ≤ m and max

1≤i≤m
{ji} = n. For any j ∈ J set fj = f1j1 . . . fmjm

and rj = r1j1 . . . rmjm , then analogously to [T], 1.5, one proves, that the ra-
tional covering {X{( rj′

rj
)−1 fj′

fj
}j′∈J}j∈J refines the covering {Xi}1≤i≤m. By

Lemma 4.4, applying functor Red to the elements of the last covering, we

obtain the open subsets X̃x{
efj′efj
}j′∈J of X̃x which form a rational covering

of X̃x.
(ii) By Lemma 4.3, X ′

x = ∪iX{r−1
i1 gi1, . . . , r

−1
ini

gini} and then obviously
Y ′

x = ∪iY {r−1
i1 g′i1, . . . , r

−1
ini

g′ini
}, where g′ij are the images of gij . By Lemmas
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4.4 and 4.2 (i), X̃ ′
x = ∪iX̃x{g̃i1, . . . , g̃ini} and the same representation may

be written for Ỹ ′
y , thus Ỹ ′

y = φ̃−1(X̃ ′
x) as claimed. ¤

We deal first with the extension of Red to the category Gsep of all sepa-
rated germs. For an arbitrary separated germ Xx the following construction
may be applied. Fix a finite good covering V = {V i

x}i∈I of Xx, then the
germs V ij

x = V i
x∩V j

x are good and we get a gluing data {Ṽ i
x}I , {Ṽ ij

x −→ Ṽ i
x}I2

for the category birek (the data is consistent, because by Lemma 4.2 (ii),
Ṽ ij

x ∩ Ṽ ik
x = Ṽ ijk

x , where V ijk
x = V i

x ∩V j
x ∩V k

x ). Let X̃V,x be the correspond-
ing element of birek. For any functor Red: Gsep −→ birek satisfying conditions
(i) and (ii) of the proposition, one necessarily has Red(Xx)→̃X̃V,x, it proves
uniqueness. To prove existence one should show, that X̃V,x does not de-
pend on the covering V. The latter reduces to the case of a covering and
its refinement and then may be deduced from Lemma 4.2 (i). The needed
properties of the functor are obtained from the good case (intersection is a
particular case of the preimage). An arbitrary germ Xx may be covered by
separated germs Xi

x and the intersections Xi
x ∩Xj

x are obviously separated.
Using gluing procedure again we can extend Red to a functor Red: Germs
−→ birek which satisfies (i), (ii) and (iii). ¤

4.5. Theorem. Given a germ Xx, the reduction functor establishes
a one-to-one correspondence between subdomains of Xx and open quasi-

compact subsets of X̃x.
Proof. In Steps 1-3 we assume that the germ Xx is good, and prove the

theorem in this case. The general case is deduced from the particular one
in Step 4.

Step 1. Let f = (f1, . . . , fl) and g = (g1, . . . , gm) be two families of

elements of OX,x, ri = |fi(x)|, sj = |gj(x)| and suppose, that X̃x{f̃} ⊂
X̃x{g̃}, then Xx{r−1f} ⊂ Xx{s−1g}. We can assume, that X = M(A)
is k-affinoid and fi, gj ∈ A. Let χx: A −→ H(x) be the character of x

and set B = χ̃x(Ã) ⊂ H̃(x), then Lemma 4.4 implies, that X̃x→̃P]H(x)
{B},

X̃x{f}→̃P]H(x)
{B[f̃ ]} and X̃x{g}→̃P]H(x)

{B[g̃]}. Since X̃x{f̃} = X̃x{f̃ , g̃},
Lemma 2.2 implies, that B[f̃ , g̃] is finite over B[f̃ ]. Therefore, each element
g̃j satisfies an equation of the form g̃n

j +
∑n−1

k=0 ãn−kg̃
k
j = 0, where ãk ∈ B[f̃ ].

We can assume also, that ãk ∈ B[f̃ ]sk
j
. The coefficients ãk may be lifted to

elements ak ∈ (A{r−1f})◦
sk
j

and obviously |(gn
j +

∑n−1
k=0 an−kg

k
j )(x)| < sn

j .

The last inequality holds also in a neighborhood V of x in X{r−1f} and
|ak| ≤ sk

j in X{r−1f}, therefore |gj | ≤ sj in V , i.e. Xx{r−1f} ⊂ Xx{s−1g}.
Step 2. Let Yx be a subdomain of Xx such that Ỹx→̃X̃x, then Yx = Xx.

By Lemma 4.3, Yx has a finite covering of the form {Xx{r−1
i fi}}1≤i≤m

(where |fi(x)| = ri), say Yx = ∪m
i=1Vi. Our assumption implies, that
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{Ṽi}1≤i≤m is a covering of X̃x. By Lemma 2.4, this covering has a Lau-
rent refinement {Ũj}j∈{±1}l = {X̃x{g̃j1

1 , . . . , g̃jl
l }}j (i.e. for any j ∈ {±1}l,

Ũj ⊂ Ṽi(j)). Let sq = ρ(g̃q) and gq ∈ OX,x are liftings of g̃q, then the
sets Uj = Xx{s−j1

1 gj1
1 , . . . , s−jl

l gjl
l }, j ∈ {±1}l, form a Laurent covering of

Xx, whose reduction coincides with {Ũj}j . By the previous step, for any
j ∈ {±1}l we have Uj ⊂ Vi(j), hence {Vi}i is also a covering of Xx, i.e.
Xx = Yx.

Step 3. The theorem holds if the germ Xx is good. It suffices to prove the
following two statements: (1) any open quasi-compact subset Ỹx of X̃x is a
reduction of some subdomain of Xx, (2) if the reductions of two subdomains
Yx and Zx of Xx coincide, then the subdomains are equal. To prove the first
statement, find a representation Ỹx = ∪iX̃x{f̃i1, . . . , f̃ini} and let fij ∈ OX,x

be some liftings and rij = |fij(x)|, then ∪iXx{r−1
i1 fi1, . . . , r

−1
ini

fini} is a lifting
of Ỹx. Suppose now, that Ỹx = Z̃x. Find representations Yx = ∪p

i=1Y
i
x

and Zx = ∪q
j=1Z

j
x, where Y i

x and Zj
x are good, then Ỹx = ∪iỸ

i
x = ∪jZ̃

j
x.

Therefore for any fixed i ∈ {1, . . . , p}, the sets ˜
Y i

x ∩ Zj
x (1 ≤ j ≤ q) form a

covering of Ỹ i
x . By the previous step, the sets Y i

x ∩ Zj
x cover Y i

x . It follows,
that Yx ⊂ Zx, and by the symmetry the converse inclusion is also satisfied.

Step 4. The general case. Let {Xi
x}i∈I be a good covering of Xx. Again, it

suffices to check the conditions (1) and (2) from the previous step. Let Ỹx be
an open quasi-compact subset of X̃x. By the previous step we can lift all sets
Ỹx ∩ X̃i

x to subdomains Y i
x , then the union of all Y i

x ’s is the required lifting
of Ỹx. Suppose now, that for subdomains Yx and Zx of Xx we have Ỹx = Z̃x.
Then for any i ∈ I we have ˜Yx ∩Xi

x = Ỹx ∩ X̃i
x = Z̃x ∩ X̃i

x = ˜Zx ∩Xi
x. By

the case of a good germ, the liftings Yx∩Xi
x and Zx∩Xi

x coincide, and since
Xi

x cover Xx, we obtain, that Yx = Zx. ¤

4.6. Proposition. Let Y −→ X and Z −→ X be morphisms of k-analytic
spaces, T = Y ×X Z and t ∈ T a point whose images in Z, Y and X

are z, y and x, respectively. Set Z0 = Z̃z ×P]H(z)
PgH(t)

and define Y0 and

X0 analogously, then the induced map ε: T0 = Z0 ×X0 Y0 −→ PgH(t)
is a

local homeomorphism and the corresponding object (T0, H̃(t), ε) of birk̃ is

isomorphic to T̃t.
Proof. The general case reduces to the case of k-affinoid spaces X, Y

and Z by considering affinoid coverings X = {Xi}, Y = {Yj} and Z = {Zk}
of X, Y and Z, respectively, such that Y (resp. Z) refine the preimage
of X . So we can assume that X = M(A), Y = M(B) and Z = M(C).
Let Ã0 denote the image of Ã in H̃(t) (we have the homomorphisms of
reductions Ã −→ H̃(x) and H̃(x) −→ H̃(t)) and define B̃0 and C̃0 analogously,
then X0→̃PgH(t)

{Ã0}, Y0→̃PgH(t)
{B̃0} and Z0→̃PgH(t)

{C̃0}. It follows that
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T0→̃Y0 ∩ Z0→̃PgH(t)
{B̃0, C̃0}. From other side, consider a homomorphism

φ: B̃ ⊗ eA C̃ −→ H̃(t) induced by ψ: B̃ ⊗ eA C̃ −→ B̃⊗̂AC. Since ψ is finite by 3.1
(iv), we obtain that T̃t→̃PgH(t)

{Im(φ)}. But obviously Im(φ) is generated

by B̃0 and C̃0, hence T̃t→̃PgH(t)
{B̃0, C̃0}→̃T0 as claimed. ¤

4.7. Corollary. Under assumptions of the previous proposition suppose

also, that the morphism Ỹy −→ X̃x is proper. Then the morphism T̃t −→ Z̃z

is proper too.

Proof. By our assumption Ỹy→̃X̃x×P]H(x)
P]H(y)

, hence the induced map
Y0 −→ X0 is also bijective. It follows, that the map T0 −→ Z0 is a bijection,
or that is equivalent, the morphism T̃t −→ Z̃z is proper. ¤

4.8. Proposition. Let f : Y −→ X be a morphism of k-analytic spaces,
y ∈ Y a point and x = f(y).

(i) If f is a closed embedding at y, then the reduction morphism Ỹy −→ X̃x

is an isomorphism.
(ii) Suppose that f is a G-locally closed embedding, then f is a closed

embedding at y if and only if the reduction morphism Ỹy −→ X̃x is an
isomorphism.

(iii) The morphism f is separated at y if and only if the reduction mor-

phism Ỹy −→ X̃x is separated.
Proof. The first statement reduces easily to the case, when f is a closed

embedding of k-affinoid spaces, but the latter is obvious. Suppose next, that
f is a G-locally closed embedding, then there exists an analytic subdomain
X ′ of X containing the image of a neighborhood Y ′ of y and such that the
restriction morphism Y ′ −→ X ′ is a closed embedding. Furthermore, f is
locally closed at y if and only if X ′

x→̃Xx, that is equivalent by Theorem
4.5 to X̃x→̃X̃ ′

x. From the other side, X̃ ′
x→̃Ỹ ′

y by the first statement of the
proposition and obviously Ỹ ′

y→̃Ỹy.
Finally we prove (iii). By the definition (see [Ber2], 1.4) the morphism f

is separated at y if and only if the diagonal morphism ∆Y/X : Y −→ Y ×X

Y = Z is locally closed at y. By loc. cit., ∆ = ∆Y/X is a G-locally
closed embedding, hence it is closed at y if and only if ∆̃: Ỹy −→ Z̃z is an
isomorphism, where z = ∆(y). Proposition 4.6 implies, that Z̃z→̃Ỹy×X′ Ỹy,
where X ′ = X̃x ×P]H(x)

P]H(y)
. So ∆̃ is an isomorphism if and only if the

natural map Ỹy −→ X ′ is injective, but the last condition means that the
morphism Ỹy −→ X̃x is separated. ¤

At the end of the section we assume, that the valuation on k is non-trivial.
We shall use the reduction functor to prove that the natural functor st-k-An
−→ k-An is fully faithful. In particular, an analytic space cannot have two
non-isomorphic structures of strictly analytic space. Let X be a strictly
analytic space and x ∈ X a point. A subdomain Yx ⊂ Xx is called strictly
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analytic if it has a representative Y which is a strictly analytic domain in
X.

4.9. Lemma. Let X be a strictly analytic space and x ∈ X a point.

A subdomain Yx ⊂ Xx is strictly analytic if and only if its reduction Ỹx is
|k∗|-strict.

Proof. Reduction of a good strictly analytic germ is |k∗|-strict, hence
reduction of an arbitrary strictly analytic germ can be glued from |k∗|-strict
objects along |k∗|-strict subobjects, so it is |k∗|-strict too. Conversely, sup-
pose Ỹx is |k∗|-strict. We assume first, that Xx is good. Let {Ỹ j

x }1≤j≤m be
a |k∗|-strict affine covering of Ỹx and Y j

x the liftings of Ỹ j
x . Find represen-

tations Ỹ j
x = X̃x{f̃j1, . . . , f̃jnj}, then Y j

x = Xx{r−1
j1 fj1, . . . , r

−1
jnj

fjnj}, where

fjk ∈ OX,x are some liftings of f̃jk and rjk = ρ(f̃jk). By Proposition 2.5 (i),
rjk ∈

√
|k∗|, hence Y j

x are strictly analytic. So, the subdomain Yx is strictly
analytic as well.

In the general case, let Xi
x be a covering of Xx by good strictly analytic

domains. The objects Ỹx ∩ X̃i
x of bir]H(x)

are |k∗|-strict by Corollary 2.7 (i),

hence by the case of a good germ proved above, the subdomains Yx ∩ Xi
x

are strictly analytic. It finishes the proof. ¤
4.10. Corollary. The functor st-k-An −→ k-An is fully faithful.
Proof. Let f : Y −→ X be a morphism of analytic spaces and suppose,

that X and Y are strictly analytic. In order to prove that f is a morphism of
st-k-An it suffices to show, that for a strictly analytic subdomain X ′ of X its
preimage Y ′ in Y is strictly analytic too. Given a point y ∈ Y ′, let x = f(y)
and let f̃ : Ỹy −→ X̃x be the reduction morphism, then Ỹ ′

y = f̃−1(X̃ ′
x). Since

X̃x, Ỹy and X̃ ′
x are |k∗|-strict, we can apply Corollary 2.7 (ii) to obtain that

Ỹ ′
y is |k∗|-strict too. Now, the lemma implies, that Y ′

y is strictly analytic
and the corollary follows. ¤

§5. Good germs and closed morphisms

The following Theorem is proved exactly as its analog in [T] (see [T], 3.1),
the only difference is that one should allow arbitrary radii of convergence.
That is why in this paper we only formulate the main steps of the proof,
while concrete technical details may be found in [T].

5.1. Theorem. A germ Xx is good if and only if its reduction X̃x is
affine.

Proof (sketch). The direct implication is obvious, prove the inverse one.
Step 1. One can assume, that X is a union of two affinoid subdomains

Y = M(B) and Z = M(C), such that x ∈ Y ∩ Z, Ỹx = X̃x{λ} and Z̃x =
X̃x{λ−1} for a non-zero homogeneous element λ ∈ H̃(x).

Step 2. Let t = ρ(λ). One can assume, that Y ∩ Z = M(A), A =
B{tf−1} = C{t−1g}, ρA(f − g) < t and λ = f̃(x).
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Step 3. One can shrink X so that the following is true. There exist
admissible epimorphisms

k{r−1
1 T1, . . . , r

−1
n Tn, t−1S1, pS2} −→ B : Ti 7→ fi, S1 7→ f, S2 7→ f−1

k{r−1
1 T1, . . . , r

−1
n Tn, q−1S1, tS2} −→ C : Ti 7→ gi, S1 7→ g, S2 7→ g−1

such that p < t < q, ||fi − gi|| < ri and ||f − g|| < t, where || || denotes
the quotient norm on A induced from the canonical norm of the algebra
k{r−1

1 T1, . . . , r
−1
n Tn, t−1S1, tS2} with respect to the admissible epimorphism

k{r−1
1 T1, . . . , r

−1
n Tn, t−1S1, tS2} −→ A : Ti 7→ fi, S1 7→ f , S2 7→ f−1.

Step 4. An analytic space X satisfying conditions of the previous step is
affinoid. ¤

As a by-product one can construct simple examples of not good separated
analityc space. The first such example is due to Huber, see [H], 8.3.8. We
generalize it to a family containing also not strictly analytic examples. Let
E = M(k{r−1T1, s

−1T2}) be a closed two dimensional disc of radii r and s,
x its maximal point, D an open two dimensional disc of the same radii and
X = E \ D. The reduction X̃x = P]H(x)

{T̃1, T̃2, T̃
−1
2 } ∪ P]H(x)

{T̃1, T̃
−1
1 , T̃2}

is easily seen to be not affine, and hence X is not good at x. If r and s

are linearly independent over |k∗|, then one has also a toric picture of X̃x

as explained at the end of Sect. 2. The corresponding polyhedral cone is
a union of two rays (t1 = 0, t2 ≥ 0) and (t1 ≥ 0, t2 = 0), in particular it is
not convex. The second main result is the following theorem, whose proof
occupies the rest of the section.

5.2. Theorem. A morphism of germs φy: Yy −→ Xx is closed if and only

if the induced morphism between their reductions φ̃y: Ỹy −→ X̃x is proper.

For arbitrary R∗
+-graded fields l ⊂ L let birl(L) denote the subcategory

of birl formed by objects of the form (X, L, φ). Given an extension m of l
and an epimorphism ψ: m ⊗l L −→ M onto a graded field, one has a map
PM/m −→ PL/l (for a graded valuation m-subring O of M , the graded ring
O ∩ Im(L) is a graded valuation l-subring of L). Now the correspondence
X 7→ X ×PL/l

PM/m gives rise to a functor Eψ: birl(L) −→ birm(M). (This
definition corrects the analogous one at [T], §4.) The application of Eψ to
affine objects can be described also as follows. Given a graded l-subalgebra
A of L, we have Eψ(PL/l{A}) = PM/m{B}, where B denotes the image of
A⊗l m in M .

5.3. Lemma. Let X be a k-analytic space, K a non-Archimedean field

over k, y ∈ Y = X⊗̂K a point whose image in X is x and ψ: H̃(x) ⊗ K̃

−→ H̃(y) the induced homomorphism. Then Ỹy→̃Eψ(X̃x).
Proof. It suffices to check the case of an affinoid space X, which follows

from Proposition 3.1 (v). ¤
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5.4. Lemma. Given a Cartesian diagram of morphisms of k-analytic
spaces X and Y and K-analytic spaces X ′ and Y ′ (where K ⊃ k)

X ′ X-

Y ′ Y-

? ?

and a point y′ ∈ Y ′ whose images in X ′, Y and X are x′, y and x, respec-

tively, assume that the morphism Ỹy −→ X̃x is proper. Then the morphism

Ỹ ′
y′ −→ X̃ ′

x′ is also proper.
Proof. The diagram appearing in the statement may be factored as

follows

X ′ X⊗̂K-

Y ′ Y ⊗̂K-

? ?
X-

Y-

?

(left and right squares are Cartesian). Thus we should prove the lemma in
the two particular cases: (1) all spaces X, Y , X ′ and Y ′ are defined over
the same field, (2) the diagram is the natural diagram

X⊗̂K X-

Y ⊗̂K Y-

? ?

The second case follows from the previous lemma, while the first case was
proven in Corollary 4.7. ¤

5.5. Lemma. Let φ: Y −→ X be a morphism of k-analytic spaces, y ∈ Y

a point and x = f(y). Suppose, that the morphism φ̃y: Ỹy −→ X̃x is proper,
then there exists an open neighborhood Z of y, such that for any point

y′ ∈ Z and x′ = φ(y′) the morphism φ̃y′ : Ỹy′ −→ X̃x′ is proper.
Proof. Suppose first, that X = M(A) and Y = M(B) are affinoid.

Note, that φ is closed at a point y′ ∈ Y if and only if the induced morphism
φ̃y′ : Ỹy′ −→ X̃x′ is proper. Really, φ̃y′ is proper if and only if P]H(y)

{χ̃y(B̃)} =

P]H(y)
{χ̃x(Ã)}, where χx: A −→ H(x) ⊂ H(y) and χy: B −→ H(y) are the

characters corresponding to the points x and y, respectively. By Lemma
2.2, it is equivalent to finiteness of χ̃y(B̃) over χ̃x(Ã), and by Proposition
3.4, the latter is equivalent to φ being close at the point y. It remains to
notice, that the points of Y , where φ is closed, form an open set.

Consider now the general case. Let X1, . . . , Xn be affinoid subdomains
of X containing x and such that their union is a neighborhood of x, set
Y i = φ−1(Xi). The induced morphisms φ̃i

y: Ỹ i
y −→ X̃i

x are proper and the
objects X̃i

x are affine, therefore the objects Ỹ i
y are affine too. By Theorem

5.1, the germs Y i
y are good, and shrinking Y i we can assume that they are

affinoid. Using the first part of the proof we can find open neighborhoods
Zi of y in Y i such that for any point y′ ∈ Zi the morphism φ̃y′ : Z̃i

y′ −→ X̃i
x′

is proper. Let Z be an open neighborhood of y in Y such that for any i
one has Z ∩ Y i ⊂ Zi. Then for any point y′ ∈ Z and its image x′ in X
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the morphism Ỹy′ −→ X̃x′ is glued from proper morphisms Ỹ i
y′ −→ X̃i

x′ and
therefore is proper itself (we set Ỹ i

y′ = ∅ if y′ /∈ Y i). ¤
Proof of Theorem 5.2. Assume first that the two germs are good. In

this case the morphism of germs is induced by a morphism of affinoid spaces
φ: Y = M(B) −→ X = M(A) and, as we saw in the proof of Lemma 5.5,
the morphism φ̃y is proper if and only if φ is closed at y.

Consider now the general case. The direct implication is easily reduced
to the case of good germs. Assume that the morphism φ̃y is proper. Let
φ: Y −→ X be a morphism of k-analytic spaces that induces φy. By Lemma
5.5, shrinking Y we can assume that for each point y′ ∈ Y the induced
morphism φ̃y′ : Ỹy′ −→ X̃x′ is proper. We shall prove that in this case the
morphism φ is closed. Let X ′ −→ X be a morphism from a good K-analytic
space X ′, where K is a non-Archimedean field over k. We have to show
that the K-analytic space Y ′ = Y ×X X ′ is also good and that the induced
morphism φ′: Y ′ −→ X ′ is closed. Let y′ be a point in Y ′, and let x′, y and
x be its images in X ′, Y and X, respectively. (The points y and x here are
not necessarily the original y and x.) The morphism Ỹy −→ X̃x is proper
and therefore, by Lemma 5.4, the morphism Ỹ ′

y′ −→ X̃ ′
x′ is also proper. Since

X̃ ′
x′ is affine, it follows that Ỹ ′

y′ is affine too and, by Theorem 5.1, the germ
Y ′

y′ is good. Thus, the required claim follows from the case of good germs.

5.6. Corollary. A morphism f : Y −→ X is closed (resp. proper) if and
only if there exists a covering {Xi} of X by analytic subdomains, such that
the induced morphisms f−1(Xi) −→ Xi are closed (resp. proper). ¤

In particular, the definition of properness from [T], §4, which uses only
strictly analytic spaces is equivalent to the definition we worked with here.
One can also generalize the Kiehl’s definition of properness to non-strictly
analytic spaces and it is easily seen that it is equivalent too.

5.7. Corollary. Given two morphisms Z
ψ−→ Y

ϕ−→ X, assume that ϕ is
locally separated. Then Int(Z/X) = Int(Z/Y ) ∩ ψ−1(Int(Y/X)). ¤

5.8. Remark. Using language of formal coverings (see Remark 3.6) and
graded schemes (see Remark 1.6) one can also generalize Corollary 4.4 of
[T]. Namely, if f : Y −→ X is a morphism of analytic spaces, X = {Xi} and
Y = {Yj} are formal coverings of X and Y , respectively, such that Y refines
f−1(X ) and f̃ : ỸY −→ X̃X is the corresponding reduction morphism, then f

is closed (resp. proper) if and only if f̃ is locally proper (resp. proper).
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