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HEIGHT REDUCTION FOR LOCAL UNIFORMIZATION OF

VARIETIES AND NON-ARCHIMEDEAN SPACES

MICHAEL TEMKIN

Abstract. It is known since the works of Zariski that the essential difficulty
in the local uniformization problem is met already in the case of valuations of
height one. In this paper we prove that local uniformization of schemes and
non-archimedean analytic spaces rigorously follows from the case of valuations
of height one. For non-archimedean spaces this result reduces the problem to
studying local structure of smooth Berkovich spaces.

1. Introduction

1.1. History and motivation.

1.1.1. Global conjectures. A classical conjecture asserts that any function field K
over a perfect ground field k possesses a smooth projective model X . Later it
was strengthened to the desingularization conjecture that any model X possesses
a modification f : X ′ → X with a k-smooth X ′, in particular, the family of smooth
models is cofinal. Even more generally, modern conjectures expect that any integral
qe scheme X possesses a blowing up X ′ which is regular. Here we use qe instead of
quasi-excellent and refer to [Tem11, §2.3] for definition and basic properties. Some
other strengthenings consist in requiring that f is projective or even a blowing up,
a divisor D ⊂ X is also resolved, a canonical resolution is constructed, etc.

There is a very similar set of conjectures for schemes over a valuation ring R.
The classical semistable reduction conjecture asserts that if R is discretely valued,
then up to a finite separable ground field extension any smooth proper variety
over k = Frac(R) possesses a semistable proper model over R. Again, a stronger
semistable modification conjecture asserts that up to a finite separable ground field
extension any model can be blown up to a semistable one, and one can consider
more general classes of ground rings, at least the class of all valuation rings, at
cost of replacing semistability by log smoothness. In addition, and this is the
main goal of this paper, one can study the analytic case, when k is real valued
complete and one looks for nice formal models of smooth k-analytic spaces. The
same conjectures apply also in this case. Since they are rather folklore and hard to
find in the literature we provide a precise formulation in Conjecture 3.2.11 followed
by a discussion of what is known so far.

Key words and phrases. Local uniformization, valuation rings, local desingularization,
Berkovich analytic spaces.
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1.1.2. Local conjectures. Historically, the first relatively general approach to reso-
lution of singularities was due to Zariski and it works from local to global. Zariski
understood that a natural localization of the problem is not on a variety (or a
scheme) X we want to resolve but on the modifications of X we work with in the
resolution process. In other words, one works with the topology generated by mod-
ifications Xi → X and Zariski covers of Xi and it is equivalent to the topology of
the associated space RZ(X) = limiXi called the Riemann space by Zariski and now
called Riemann-Zariski or Zariski-Riemann space. Zariski showed that the points of
RZ(X) are valuations of k(X) centered on X and suggested first to resolve varieties
along valuations, and then patch the local solutions after an additional blowing
up. The two main results of Zariski were as follows: in characteristic zero resolu-
tion of varieties along valuations is possible, see [Zar40], for threefolds this implies
global resolution, see [Zar44]. The famous local uniformization conjecture asserts
that Zariski’s theorem also holds in positive characteristic. Again, there are various
natural stronger versions, including what we call the log uniformization conjecture.
It applies to qe schemes, uses blowings up, deals with divisors and controls the
exceptional locus, see Conjecture 2.1.10 and the subsequent discussion. The case
of dim(X) = 3 is the deepest case established so far, and global resolution of qe
threefolds was deduced from it – both works are due to Cossart-Piltant, see [CP19].

The situation with semistable/log smooth modification conjectures is similar.
Their local versions conjecture that such a modification exists locally along a semi-
valuation on the analytic spaceX . For example, such a semivaluation can be viewed
as a point on the associated adic space Xad. We refer to Conjectures 3.1.16 and
3.1.17 for precise formulations and a detailed discussion. Again, the case when the

residue field k̃ is of characteristic zero is known (though the non-discrete case is very
recent), while in general we only know this in the lowest possible dimension – in
the case of curves. Moreover, similarly to Zariski’s approach one can first establish
local uniformization and then deduce global modification results; this is the main
strategy of [Tem10]. In view of the analogy with the case of schemes it is natural to
expect that the two-dimensional case should be within reach (though very difficult)
of the concurrent methods, and it should imply global log smooth modification for
surfaces. The author plans to pursue this direction in future works, and this paper
will serve as a starting point. Our main goal here is to reduce local uniformization
of semivaluations on k-analytic spaces to the case of usual analytic points (rather
than adic ones), see Theorem 3.4.5. The local situation at such points will be
studied in further works by analytic methods.

1.2. Main results.

1.2.1. Induction on height. It is known since the works of Zariski that the main
case of local uniformization is that of valuations of height one. Deducing the gen-
eral case is usually easy, but details depend on the method, so this principle was
never formulated rigorously. Our first main result proves that, indeed, local (log)
uniformization of valuations on schemes follows from the case of height one, see The-
orem 2.3.1. Induction on height is a standard method in geometry of valuations,
but in this case it is not so simple and some machinery is needed. In particular, we
heavily exploit various properties of blowings up.
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Our second main result is Theorem 3.4.5 which reduces local uniformization of
adic points on analytic spaces to the resolution of two problems: (a) local uni-
formization of analytic points, (b) local log uniformization over the residue field.
In fact, any adic valuation is composed from an analytic valuation and a valuation
on its residue field, and our proof combines local uniformization of both to get a
local uniformization of the adic point. The argument itself is similar to the proof
of Theorem 2.3.1 but more technical.

1.2.2. Overview of the paper. Section 2 is devoted to local log uniformization of
schemes. We formulate the conjecture and reduce it to the case of height one. In
Section 3 we study local uniformization on k-analytic spaces, which is formulated in
§3.1. Our argument uses certain log smooth but not semistable formal schemes, so
we decided to use this occasion to study few basic properties of log smoothness for
admissible formal k◦-schemes and formulate the general log smooth modification
conjecture. The main result of the paper is then proved in §3.4.

1.2.3. The method. Finally, we outline the proof of Theorem 2.3.1 in the case with-
out divisors. This is enough to illustrate the main ideas. The starting observation
is that a valuation of height at least two is composed from valuations of smaller
heights which are uniformizable by induction. This allows us to easily reduce the
claim to the case when a valuation λ on X is composed from a valuation λ0 on
X with center η and a valuation λ1 on the Zariski closure Y = η with center x,
and we have that X is regular at η and Y is regular at x. By no means this suf-
fices to achieve our goal of desingularizing X at x, but we can keep all these data
and refine X as follows. Let E = V (b) be a divisor such that X is smooth along
Y \ E and let Xl be the blowing up of X along Jl = (IY , b

l). One can show that
Xl → X do not change Y much – the sequence of strict transforms Yl stabilizes,
and if we make a simple additional assumption as in Lemma 2.2.6(i), we even have
that Yl = Y . The main idea is that when l tends to infinity, the completion of Xl

along Yl∩El can be viewed as a tubular neighborhood of the completion of Yl along
Yl ∩ El. In particular, it should only depend on Y and Y ∩ E and instead of X
one could start with any regular scheme X ′ containing Y whose dimension equals
the dimension of X . In this model case it is easy to see that each Xl is regular.
This expectation is worked out in key lemma 2.2.6 by a relatively straightforward
computation of blowings up and charts. Note also that a similar idea of computing
blowing up along I + J l with a large enough l was used in [Tem08, §4] to solve
another desingularization problem.

The argument in the formal case is similar, and the main technical difference is
that a model Xl obtained by blowing up a semistable X can be only log smooth
rather than semistable, see Lemma 3.2.5.

1.3. Conventiones. Given an ideal I on a scheme X we will often use the no-
tation VX(I) = SpecX(OX/I) to denote its vanishing locus. If I is generated by
t1, . . . ,tn ∈ Γ(OX) then we will also use the notation VX(t1, . . . ,tn). The scheme X
can sometimes be omitted if no confusion is possible.

Blowing up of a scheme X along a closed subscheme V = V (I) will be denoted
BlV (X) = BlI(X) = ProjX(⊕∞

d=0I
n). Recall that BlV (X) → X is the universal

morphism such that I pullbacks to an invertible ideal. If X = Spec(A) is affine
and I ⊆ A is an ideal, then any f ∈ I defines an open subscheme X ′

f = Spec(A[ If ])

of X ′ = BlI(X), where A[ If ] denotes the A-subalgebra of Af generated by the
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elements g
f with g ∈ I. We call X ′

f the f -chart of the blowing up. Note that

X ′
f → X is the universal morphism such that I pulls back to the principal ideal

generated by f , and charts X ′
f1
, . . . ,X ′

fn
cover X ′ if and only if I = (f1, . . . ,fn).

2. Local uniformization for schemes

2.1. Local uniformization conjectures.

2.1.1. Valuations on integral schemes. Let X be a scheme. By a semivaluation on
X we mean a valuation ring R and a morphism λ : S = Spec(R) → X , and its center
is the image of the closed point of S. Furthermore, λ is a valuation if it is dominant,
in particular, X is integral and one obtains an embedding k(X) →֒ Frac(R). In
fact, we will only consider valuations in this paper. Any valuation factors uniquely
through a valuation λ0 : S0 → X inducing an isomorphism of generic points – just
take S0 = Spec(R0) with R0 = k(X) ∩ R. In all our arguments below one can
safely replace λ by λ0, which is often called a valuation of k(X) centered on X (it
is determined by the valuation ring R0 of k(X) and the center x = λ(s), and if X
is separated – only by R0). We will freely use that valuations uniquely lift to any
proper and birational X-scheme X ′ by the valuative criterion of properness.

2.1.2. Noetherian case. In the sequel we will run induction on height of valuations,
so the following simple result will be useful.

Lemma 2.1.3. If λ : Spec(R) → X is a valuation on a noetherian scheme X such
that Frac(R) = k(X), then the valuation ring R is of finite height h. In fact, h ≤ d,
where d = dim(OX,x) and x is the center of λ.

Proof. Let {Xα} be the family of all modifications of X and let xα be the center
of the lift of λ to Xα. Then R = colimαOXα,xα

and hence the approximation
theory from [Gro67, Ch. IV, §8.8] applies to S = Spec(R) = limα Spec(OXα,xα

).
In particular, the underlying topological space |S| is the limit of the noetherian
topological spaces whose dimension is bounded by d. Since |S| is a chain of length
h+1 with respect to specialization, it immediately follows that its length is bounded
by the maximal length of specializing chains in Spec(OXα,xα

), which is d+ 1. �

2.1.4. Regular pairs. Let X be a scheme and D ⊆ X a closed subscheme. We say
that (X,D) is a regular pair at a point x ∈ X if X is regular at x and D is an snc
divisor at x. This terminology is not standard, especially because we exclude non-
strict normal crossings, but this will be convenient. Also, if D is a closed subset,
then we automatically view it also as a reduced closed subscheme.

2.1.5. Resolution along a valuation. Since Zariski it is well understood that reso-
lution along a valuation is the local part of the global desingularization problem.
Classically, the former is called local uniformization of valuations, but we prefer to
change the terminology slightly.

Definition 2.1.6. Let X be an integral scheme and λ : S → X a valuation on it.
(i) By a desingularization of X along λ we mean a blowing upX ′ = BlV (X) → X

such that X ′ is regular at the center x′ of the lift λ′ : S → X ′ of λ.
(ii) LetD ( X be a closed subset. By a log desingularization of (X,D) along λ we

mean a blowing up f : X ′ = BlV (X) → X such that the pair (X ′, D′ = f−1(D∪V ))
is regular at the center x′ of the lift λ′ : S → X ′ of λ.
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Remark 2.1.7. In global resolution, it suffices for many applications to only
achieve that the pair (X ′, f−1(D)) is regular. However, there are enough appli-
cations in which one needs the stronger version, when the exceptional divisor is
added to the new boundary (or log structure) and the whole f−1(D ∪ V ) is snc.
Also, such a control on the exceptional divisor is important for induction hypothesis
in constructions of some desingularization methods. In this paper, as well, using
the strong version of log desingularization along a valuation will turn out to be
critical for local uniformization of non-archimedean spaces.

2.1.8. Local uniformizability. Now we can introduce the central notion of this paper:

Definition 2.1.9. Let X be an integral scheme and λ : S → X a valuation.

(1) The valuation λ is uniformizable if there exists a cofinal family of blowings
up fi : Xi → X such that each fi is a desingularization of X along λ.

(2) The valuation λ is log uniformizable if for any closed set D ( X there exists
a cofinal family of blowings up fi : Xi = BlVi

(X) → X such that each fi is
a log desingularization of (X,D) along λ.

Here is the general local uniformization conjecture.

Conjecture 2.1.10. Any valuation on a quasi-excellent integral scheme X is log
uniformizable.

Remark 2.1.11. (i) Usually, one considers modifications or projective modifica-
tions in the definition of local uniformization. However, the class of blowings up is
more convenient to work with in birational geometry and it is almost as general as
the class of projective modifications. So, we prefer to work with it and the reader
will see that this is quit beneficial.

(ii) If one establishes (log) uniformizability of valuations on a class S of schemes
which is closed under modifications, then it suffices to prove that any X ∈ S

possesses a single (log) desingularization along any valuation λ : S → X .
(iii) Usually, it is the uniformizability property which is really useful. Origi-

nally, by local uniformization of a valuation Zariski meant only existence of a single
desingularization along the valuation, but in [Zar44, Theorem U1] he proved that
valuations on varieties of characteristic zero are unformizable in our sense. Also, in
the introduction Zariski provided a somewhat analogous but more concrete moti-
vation for proving this slightly stronger statement.

(iv) Log uniformizability of valuations is known for qe schemes of characteristic
zero. For example, it can be deduced from the global resolution (though this is
not the only way to prove it). In addition, log uniformizability was established
in [CP19] by Cossart and Piltant for all qe schemes of dimension bounded by 3
(and then they used it to prove strong global resolution). The standard resolution
conjectures imply that it should hold for the class of all qe schemes, but already
uniformizability of valuations on fourfolds over a perfect fields is wide open.

2.2. Induction on height.

2.2.1. Reduced irreducible components. We start with a lemma which studies the
situation when an integral closed subscheme Spec(C/J) of an affine scheme Spec(C)
is generically an open subscheme.

Lemma 2.2.2. Assume that C is a ring, J is a finitely generated prime ideal with
quotient B = C/J and 0 6= b ∈ B is an element such that the induced morphism
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Spec(Bb) →֒ Spec(C) is an open immersion. Then there exists n > 0 and a lift
c ∈ C of bn such that J = Ann(c).

Proof. To start with choose an arbitrary lift s ∈ C of b. Since Spec(Bb) is open and
closed in Spec(Cs), there exists a splitting Cs = Bb × B′. Choose a presentation
(1, 0) = t/sm ∈ Cs with t ∈ C. Since B is integral and b 6= 0, we have that
B ⊆ Bb and hence t is mapped to bm in B. Thus, ts is a lift of bm+1 and Cts =
(Bb ×B′)(1,0) = Bb.

The localization C → Cts factorizes as C → B →֒ Bb, so has kernel J . Hence
J consists precisely of those elements that are killed by a power of ts. Using that
J is finitely generated we can find a single element (ts)l which annihilates J . So,
c = (ts)l and n = l(m+ 1) are as required. �

2.2.3. Strict transform. Recall that the strict transform of a closed subscheme Z →֒
X under the blowing up X ′ = BlV (X) → X is the schematic closure of Z \ V in
X ′ and it easily follows from the universal property of blowings up that Z ′ =
BlW (Z), where W = V ×X Z. In the affine case this is compatible with charts:

if X = Spec(A), Z = Spec(Ã), a ∈ A vanishes on V and ã ∈ Ã is the image
of a, then Z ′

ã = X ′
a ×X′ Z ′ (recall that by our conventions X ′

a denotes the chart
where a generates IV OX′ , and similarly for Z ′

ã). We will also need the following
computation with strict transforms.

Lemma 2.2.4. Assume that X = Spec(A) is an affine scheme with a closed sub-
scheme Z = Spec(C), where C = A/I. Assume that a ∈ A is an element and
X ′ → X is the blowing up along the ideal = I + (a), and let X ′

a = Spec(A′) be the
a-chart of X ′. Then,

(0) A′ = A[ Ia ] ⊆ Aa is the A-subalgebra of Aa generated by the elements t/a with
t ∈ I.

(i) The strict transform of Z is contained in the a-chart X ′
a and is isomorphic

to the closed subscheme Z ′ = Spec(C/J), where J = ∪nAnn(c
n) and c is the image

of a in C.
(ii) If a′ ∈ A is another element whose image in C equals c, then a′ = au for an

element u ∈ A′ which is invertible in a neighborhood of Z ′ in X ′.
(iii) If J = Ann(c) in (i), then Z ′ is the vanishing locus of the ideal I ′ = a−1I

on X ′
a, namely, Z ′ = Spec(A′/I ′).

Proof. (0) This is the classical chart description of blowings up.
(i) The strict transform Z ′ → Z is the blowing up along the ideal IC+aC = (c).

Therefore Z ′ = Spec(C′), where C′ is the image of C in Cc. Clearly, C
′ = C/J . In

addition, X ′ is covered by X ′
a and the charts X ′

t with t ∈ I, and Z ′ is disjoint from
each X ′

t because X ′
t ×X′ Z ′ is the chart of the blowing up Z ′ → Z corresponding

to the image t̃ ∈ C of t, but t̃ = 0.
(ii) We have that a′ = a+ t with t ∈ I. Therefore, in A′ we have that a′ = au,

where u = 1 + a−1t. We claim that it is invertible in a neighborhood of Z ′ = Z ′
c

because a−1t vanishes on Z ′. Indeed, a−1t vanishes on Za = Z ×X Spec(Aa) in the
localization Xa = Spec(Aa), but Z

′
c is by definition the schematic closure of Za in

X ′
a, hence a

−1t vanishes on the whole Z ′
c.

(iii) The homomorphism φ : A′ → C′ is onto and we should prove that Ker(φ) =
I ′. We showed in the proof of (ii) that for each t ∈ I the element t′ = a−1t ∈ I ′

vanishes on Z ′
c, and hence I ′ ⊆ Ker(φ).
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Conversely, A′ = A + I ′, hence it suffices to show that any x ∈ A ∩ Ker(φ) lies
in I ′. Since x is mapped to 0 in C′, its image in C is contained in J and hence is
annihilated by c. This implies that ax ∈ I and we obtain that x ∈ I ′. �

2.2.5. The key lemma. When running induction on height of valuations in the local
uniformization problem one naturally arrives at the situation, when a scheme X is
regular at a point η and the Zariski closure Y of η is regular at a point x. The
basic obstacle for an induction step is that X does not have to be regular at x
(the simplest example is obtained by taking x the usual cone singularity and Y a
line passing through the origin). This forces us to look for a modification which
partially resolves x, and, fortunately, it suffices to do this along the strict transform
of Y . Slightly surprisingly, this turns out to be a simple task, at least, under a mild
technical assumption.

Lemma 2.2.6. (i) Let X be a noetherian scheme, Y →֒ X an integral closed
subscheme with generic point η and x ∈ Y a point. Assume that X and Y are
regular at η and x, respectively, and there exist elements t = (t1, . . . ,tn) in OX,x

whose images form a regular family of parameters of OX,η. In particular, D =
V (t1 . . . tn) is snc at η. Then there exists a blowing up f : X ′ = BlV (X) → X such
that the strict transform g : Y ′ → Y is an isomorphism over x and X ′ is regular at
x′ = g−1(x).

(ii) Assume, in addition, that there exists a divisor E ⊂ Y which is snc at x and
such that the pair (X,D) is regular at any point of Y \E which generizes x. Then in
addition to the assertion of (i) one can achieve that the closed set D′ = f−1(D∪V )
provided with the reduced scheme structure is an snc divisor at x′.

Proof. First, we observe that it suffices to establish the local case when X coincides
with the localization Xx = Spec(OX,x). Indeed, all assumptions of the lemma and
conditions the blowing up f should satisfy are local at x, and once an appropriate
blowing up BlW (Xx) → Xx is constructed we can extend it to a blowing up of the
whole X just by blowing up the schematic closure V of W in X (we use the simple
fact that V ×X Xx =W and blowings up are compatible with flat morphisms).

Thus, we assume in the sequel that X is a local scheme: X = Spec(A) where
A = OX,x. In particular, Y is a regular local scheme and in the case of (ii) E is an
snc divisor on Y . Let I be the ideal defining Y , so Y = Spec(B) with B = A/I,
and in case (ii) let b ∈ B be an element such that E = VY (b). We will argue in
both cases simultaneously, so when dealing with (i) just fix a large enough divisor
E = VY (b) on Y , not necessarily snc, such that the pair (X,D) is regular at any
point of Y \ E. Now, the idea is very simple: take a ∈ A to be a lift of bℓ with a
large enough ℓ and blow up X along V (t, a). Let us work this plan out.

Set C = A/(t) and Z = Spec(C). In particular, Y is a closed subscheme of
Z and B = C/J for the prime ideal J = IC. Note that Yb = Spec(Bb) is open
in Z. Indeed, Z contains an irreducible component with generic point η, hence
Y →֒ Z is a closed immersion of codimension 0. Moreover, D is snc and Z is its
stratum of maximal multiplicity at any point z ∈ Yb. Therefore Z is integral at z
and necessarily Y →֒ Z is an open immersion at z. By Lemma 2.2.2 there exists
ℓ > 0 and a lift c ∈ C of bℓ such that J = Ann(c). Choose any lift a ∈ A of c and
consider the blowing up f : X ′ → X along V = V (t, a).

Let h : Z ′ → Z be the strict transform with respect to f . By Lemma 2.2.4(i),
Z ′ is contained in the a-chart X ′

a = Spec(A′), where A′ = A[t′] with t′i = ti/a,
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and, Z ′ = Spec(C/J) = Y . In particular, x′ = h−1(x) is a single point, and Y ′ is
a closed subscheme containing the generic point η of the integral scheme Z ′ and
hence Y ′ = Z ′ = Y . In addition, note that J = Ann(cm) for any m > 0 because
J = Ann(c) is prime, and hence Z ′ is the vanishing locus of t′ by part (iii) of the
same lemma. Thus, A′/(t′) = B.

Let s = (s1, . . . ,sm) be a set of elements of A′ whose image s1, . . . ,sm ∈ B is a
family of regular parameters of the regular local ring B. Then (t′, s) is a regular
family of parameters of OX′,x′ because this set generates mx′ in the obvious way
and dim(OX′,x′) ≥ dim(OX′,η) + dim(OY ′,x′) = n + m. This proves that X ′ is
regular at x′, finishing the proof of (i).

In case (ii) we choose the parameters si ∈ A′ more specifically, namely we choose
them so that E = V (s1 . . . sr) for r ≤ m and b =

∏r
i=1 si. Establishing (ii) we

should also care for the preimage of D ∪ V . We are only interested in studying the
chart fa : X

′
a → X , so set D′ = f−1

a (D ∪ V ). First, let us see what can go wrong.
Since V ⊂ D we have that on the level of sets

D′ = f−1
a (D) = V (t1 . . . tn) = V (ant′1 . . . t

′
n) = V (t′1 . . . t

′
n) ∪ V (a).

The component V (t′1 . . . t
′
n) (which is, in fact, the strict transform of D) is snc at x′

because t′ is a partial family of regular parameters, but concerning the exceptional
component E′ = V (a) we only know that its restriction onto Z ′ = Y is given by
the vanishing of the image bℓ ∈ B of a, namely, E′ ×X′ Y = Spec(B/(bℓ)). The
divisor D′ (and the component E′) can be very singular, so we should improve X ′

further.
Next, we outline the idea without proofs (though the interested reader can easily

check our assertion). It turns out that it suffices just to replace X ′ by its blow up
X ′′ along the intersection E′×X′ Y . In fact, one blows up the center which is given
at x′ by (t′, a) obtaining the new coordinates t′′i = a−1t′i = a−2ti. This also suggests
the argument which we use below – instead of the sequence of two blowings up we
will just blow up (t, a2) at once. So, consider the blowing up g : X ′′ → X along
(t, a2) and let us prove that it satisfies all assertions of the lemma.

Consider the a2-chart ga2 : X ′′
a2 = Spec(A′′) → X , where A′′ = A[t′′] with t′′i =

ti/a
2. The same argument as was used to study f shows that the strict transform

Z ′′ of Z is isomorphic to Y , it is given by the vanishing of t′′ and lies in X ′′
a2 , and

one has that

D′′ = g−1
a2 (D ∪ V ) = g−1

a2 (D) = V (t′′1 . . . t
′′
n) ∪ V (a).

We claim that D′′ is snc at the preimage x′′ ∈ Z ′′ of x. Recall that a is a lift of
bℓ ∈ B to A, hence the same is true for its image in A′, which we denote by the
same letter a. As we remarked above VX′

a
(a) can be very singular. On the other

hand, a′ =
∏r

i=1 s
ℓ
i is another lift of bℓ =

∏r
i=1 s

ℓ
i to A′ and VX′

a
(a′) is snc at x′.

The point is that after the blowing up X ′′ → X ′ the strict transforms of VX′

a
(a)

and VX′

a
(a′) coincide locally at x′′ by Lemma 2.2.4(ii). Indeed, A′′ = A′[t′/a], hence

X ′′
a is also the a-chart of the blowing up of X ′ along (t′, a), and by Lemma 2.2.4(ii)

we obtain that a = va′ for a unit v ∈ OX′′,x′′ . In particular, in a neighborhood of
x′′ we have that VX′′

a
(a) = VX′′

a
(a′) = ∪r

i=1VX′′

A
(si). The tuple (t′′, s) is a regular

family of parameters at OX′′,x′′ (by the same argument as was used for (t′, s) and
OX′,x′), hence D′′ is indeed an snc divisor at x′′. �
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Remark 2.2.7. It looks tempting to simplify the above proof by carefully choosing
a from the beginning. Namely, the homomorphism A → B is surjective, hence
instead of the lifts si ∈ A′ of si we can even take si ∈ A. At first glance, it seems
that in such a case simply taking a =

∏r
i=1 s

l
i one guarantees that it is already

split into a product, and hence a single blowing up of (t, a) suffices. However, the
problem is that our choice of the lift a ∈ A went through a choice of the lift c ∈ C
of b =

∏r
i=1 si such that J = Ann(c). We used Lemma 2.2.2 to find it, and this

imposes some restrictions. We do not know if a tricky choice of a can remedy this
problem, but it is not important for our goals.

2.3. The main theorem for schemes. Here is the main result of this paper for
local uniformization of schemes. In particular, it reduces Conjecture 3.1.16 to the
case of valuations of height one, but we prefer a more general formulation, which
can be applied to various classes of schemes. For example, it applies to the class of
algebraic varieties, or varieties of dimension bounded by some number.jdjhdj

Theorem 2.3.1. Let S be a class of qe schemes closed under modifications and
closed immersions. If any valuation of height one on an integral scheme from S

is uniformizable or log uniformizable, then the same is true for any valuation on
integral schemes from S.

Proof. For clarity we will consider the logarithmic case, as the argument in the
non-logarithmic case is obtained by omitting some parts of the construction. We
will indicate the required changes at the end of the proof.

By Remark 2.1.11(ii) it suffices to prove that if X ∈ S is an integral scheme,
D ( X a closed subset and λ : S = Spec(R) → X a valuation, then there exists
a desingularization f : X ′ = BlV (X) → X of (X,D) along λ. Replacing R by
R ∩ k(X) we can assume that k(S) = k(R). If R is of height 1, then f exists by
our assumption, so assume that it is of height h ≥ 2. Recall that h is finite by
Lemma 2.1.3. Choose a non-zero and non-maximal prime ideal p ⊂ R and consider
the valuation rings R0 = Rp and R = R/p. Then S is covered by (in fact, pushed

out from) valuation subschemes of smaller height S0 = Spec(R0) and S = Spec(R),
which are open and closed, respectively. In particular, valuations of S0 and S on
schemes from S are log uniformizable by the induction assumption. Let η ∈ X be
the center of the induced valuation λ0 : S0 → X and let Y be the Zariski closure of
η, then λ induces a valuation λ : S → Y (here k(Y ) ⊆ k(S) does not have to be an
equality).

A desingularization along λ will be constructed by composing a tower of blowings
up which gradually improve the properties of X and D at the center of λ. To
simplify notation, we will replace X by the modification constructed so far. So at
each step we will construct a blowing up f : X ′ = BlW (X) → X , and then simplify
notation by replacing X by X ′ and D by D′ = f−1(D ∪ W ). This makes sense
because composition of blowings up is a blowing up. By η and x we will always
denote the centers of the lifts of λ0 and λ, respectively, to the current X . Finally,
by Y and λ : S → Y we denote the Zariski closure of η and the lift of λ to Y (of

course, λ is the restriction of λ).
Step 1. Replacing X by its blowing up we can assume that (X,D) is regular at

η. Indeed, just by the induction assumption applied to λ0, there exists a blowing
up f : X ′ = BlV (X) → X such that (X ′, D′) is regular at η.
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Step 2. In addition to the condition of step 1, one can achieve that there exist
elements t1, . . . ,tn ∈ OX,x whose images form a regular family of parameters of
OX,η and such that D = V (t1 . . . tn) locally at η. Since D is snc at η, locally
at η it is of the form V (t1 . . . tm) where, t1, . . . ,tm ∈ OX,η form a partial family
of regular parameters. Complete this family to a regular family of parameters
t1, . . . ,tn ∈ OX,η and let Di be the schematic closure of Spec(OX,η/(ti)) in X .
Loosely speaking we will simply blow up the Weil divisors Di making them Cartier
and hence achieve that up to a unit each ti extends to OX,x. This will not modify
X at η, but will increase D.

Consider the ideals Ii = IDi
⊂ OX corresponding to Di, their product I =∏n

i=1 Ii and the corresponding closed subscheme W = VX(I). The blowing up
g : X ′ = BlW (X) → X makes the pullback of each Ii an invertible ideal, that is,
each D′

i = Di ×X X ′ is a Cartier divisor. Therefore we can choose ti ∈ OX′,x′ such
that D′

i = V (ti) locally at x′.
Each Ii is principal at η, hence X ′ → X is an isomorphism over η. Locally

at η we have that D is a subset of W = ∪n
i=1Di, hence locally at η′ the set D′

is the preimage of W . Using that W = V (t1 . . . tn) locally at η, we obtain that
D′ = V (t1 . . . tn) locally at η′, completing the step.

Step 3. Let Di be the schematic closure of Spec(OX,x/tiOX,x). Then there exists
a divisor E ⊂ Y such that (X,∪n

i=1Di) is a regular pair at any point of Y \E. This
is clear since ∪n

i=1Di is snc at η.
Step 4. In addition to the conditions of steps 1–3 we can achieve that (Y,E)

is a regular pair at x. Applying the induction assumption we can find a blowing
up h : Y ′ = BlW (Y ) → Y , which desingularizes (Y,E) along λ. Thus, (Y ′, E′ =

h−1(E ∪W )) is regular at the center x′ of the lift λ
′
: S → Y ′ of λ. Using the same

center W we obtain a blowing up g : X ′ = BlW (X) → X such that Y ′ →֒ X ′ is

the strict transform of Y and the lift λ′ : S → X ′ of λ restricts to the valuation λ
′

on Y ′. In particular, x′ is the center of λ′. Thus, the new condition of the step
is satisfied, but we also have to check that the conditions of steps 1-3 were not
destroyed.

Let D′
i denote the Zariski closure of Spec(OX′,x′/tiOX′,x′). For any point z′ ∈

Y ′ \E′ we have that X ′ → X is a local isomorphism at z′ and takes it to z ∈ Y \E.
Since (X,∪n

i=1Di) is a regular pair at z we obtain that (X ′,∪n
i=1D

′
i) is a regular

pair at z′. Thus, x′ satisfies conditions of step 3. Conditions of steps 1 and 2 are
satisfied because η /∈ W , and hence locally at η′ and η the pairs (X ′,∪n

i=1D
′
i) and

(X,∪n
i=1Di) are isomorphic.

Step 5. End of proof: one can achieve that X ′ → X provides a desingularization
of (X,D) along λ. To complete the argument we apply Lemma 2.2.6(ii) to x ∈
Y ⊂ X , E and t1, . . . ,tn ∈ OX,x, obtaining a blowing up f : X ′ = BlW (X) → X
such that the strict transform Y ′ of Y is isomorphic to Y , the preimage x′ ∈ Y ′ of
x is a regular point of X ′, and D′ = f−1(D ∪W ) is snc at x′. Clearly, x′ is the
center of the lift λ′ : S → X ′ of λ, hence X ′ → X is as required.

Finally we discuss the simplifications in the non-logarithmic case. They are as
follows: one does not consider D and E, one only worries for regularity of schemes
and not pairs, and step 3 is not needed. For example, step 4 achieves that Y is
regular at x. However, one does introduce t1, . . . ,tn ∈ OX,x in step 2, and in step
5 one uses only part (i) of Lemma 2.2.6 with x ∈ Y ⊂ X and t1, . . . ,tn being the
inputs. �
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3. Local uniformization for non-archimedean spaces

In this section we fix a complete non-trivially valued real-valued field k and

denote by k◦, k◦◦ and k̃ = k◦/k◦◦ the ring of integers, the maximal ideal of k◦

and the residue field. By π or ̟ we denote any quasi-unifrormizer of k, that is, an
element π ∈ k◦◦ \ {0}. By k-analytic spaces we always mean Berkovich k-analytic
spaces introduced in [Ber93, Chpater 1]. We will only consider strictly k-analytic
spaces, so the word “strictly” will usually be omitted. For any extension of complete
real valued fields l/k we set Xl = X⊗̂kl.

3.1. The local uniformization conjecture. We start with recalling some termi-
nology and introducing the local uniformization conjecture.

3.1.1. G-topology. Each strictly k-analytic space is provided with the G-topology
of strictly analytic domains. It is finer than the usual topology and it is used to
define coherent sheaves on X , especially, when X is not good. The site XG is
equivalent to a topological space |XG| of all its points, and this space possesses
a very natural interpretation. First, |XG| = Xad, where Xad is the Huber’s adic
space corresponding to X . Furthermore, X ⊆ Xad and X is the maximal locally
Hausdorff quotient of Xad with r : Xad → X being the maximal generization map.

Finally, the fiber of Xad → X over x ∈ X is the germ reduction X̃x from [Tem00].
All in all, points of Xad are interpreted as semivaluations and y ∈ r−1(x) can be

interpreted as a valuation on H̃(x) which is trivial on k̃ and is centered on formal
models of X .

3.1.2. Formal models. By an admissible formal k◦-scheme we mean a flat topo-

logically finitely presented formal k◦-scheme and by Xs = X ⊗k◦ k̃ we denote the
(not necessarily reduced) closed fiber of X. There is a natural generic fiber functor
which associates to each admissible formal k◦-scheme a compact k-analytic space
Xη. Locally it is defined by Spf(A)η = M(A ⊗k◦ k) and the global construction
is obtained by patching. A formal model of an analytic space X is an admissible
formal k◦-scheme X provided with an isomorphism X = Xη. It admits natural
specialization maps X →֒ Xad → X from the analytic and adic generic fibers. For
any complete extension l/k we have that Xl◦ := X⊗̂k◦ l◦ is a formal model of Xl.
An admissible blowing up of X is a formal blowing up along an open ideal I ⊆ OX,
it does not modify the generic fiber (equivalently, it induces a blowing up of the
trivial ideal IOX = OX).

Remark 3.1.3. A famous theorem of Raynaud states that the generic fiber functor
induces an equivalence between the category of admissible formal schemes localized
by the class of all admissible blowings up and the category of compact strictly k-
analytic spaces. Loosely speaking, it asserts that any compact strictly k-analytic
space possesses a formal model which is unique up to an admissible blowing up, and
every morphism between compact strictly analytic spaces arises from a morphism
between suitable formal models. In particular,Xad is nothing else but the projective
limit of all formal models of X .

3.1.4. Smooth morphisms. Recall that a morphism X → Y of admissible formal
schemes is smooth (resp. étale, resp. flat, resp. unramified), if for any ideal of def-
inition J ⊂ OY the morphism of schemes (X,OX/J ) → (Y,OY/JOY) is smooth
(resp. étale, resp. flat, resp. unramified). In fact, it suffices to test a single ideal of
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definition and, as we show below, one can even work with the closed fiber, which
does not correspond to an ideal of definition, but has the advantage of being a

morphism of k̃-varieties.

Lemma 3.1.5. Let X and Y be admissible formal k◦-schemes. A k◦-morphism
f : X → Y is smooth (resp. étale, resp. flat, resp. unramified) if and only if its
special fiber fs : Xs → Ys is smooth (resp. étale, resp. flat, resp. unramified).

Proof. Since ideals of the form πOX with a pseudo-uniformizer π are cofinal among
all ideals of definitions, it suffices to show that fπ = f ⊗k◦ k◦/πk◦ is smooth (resp.

étale, resp. flat, resp. unramified) if and only if fs = fπ ⊗ k̃ satisfies the same
property. This follows from an appropriate fiberwise criterion, see [Gro67, IV4

Propositions 17.8.1 and 17.8.2] and [Gro67, IV3 Propositions 11.3.10] �

3.1.6. Semistable formal schemes. For any d ≥ 0 and a quasi-uniformizer π set

Sπ,d = Spf (k◦{t0, . . . ,td}/(t0 . . . td − π)) .

These are the standard (or model) semistable formal schemes, and in general one
says that an admissible formal scheme X is semistable at a point x (or x is a semi-
stable point) if for some étale neighborhood U of x there exists a smooth morphism
f : U → Sπ,d called a semistable chart at x. If one can choose U to be a usual
neighborhood, then X is strictly semistable at x.

Remark 3.1.7. Usually one requires f to be étale, but this leads to an equivalent
definition because a smooth chart factors through an étale morphism U → Sπ,d ×
An

k◦ and it is easy to see that the target locally admits étale morphisms to Sπ,d+n.
This observation is (more or less) a particular case of Kato’s observation that the
chart criterion of log smoothness can use only étale charts.

3.1.8. Semistable parameters. It will be convenient to work with charts that take a
given point to the origin O = V (t0, . . . ,td) ∈ Sπ,d, and this motivates the following
terminology. Let X be an admissible formal k◦-scheme and x ∈ X a point. We
say that t0, . . . ,tm ∈ OX,x are twisted semistable parameters at x if t0 . . . tm = uπ,

where π is a pseudo-uniformizer, u ∈ O×
X,x is a unit, and the subscheme V =

VXs
(t0, . . . ,tm) is smooth and of codimension m at x. If u = 1 then we say that

t0, . . . ,tm are semistable parameters. Naturally, we will usually work with semistable
parameters, but the twisted notion will be occasionally used for technical reasons.
Here are few simple but useful observations.

Remark 3.1.9. (i) If t0, . . . ,tm are semistable parameters and u0, . . . ,um ∈ O×
X,x

are such that u0 . . . um = 1, then t′i = uiti form another family of semistable
parameters.

(ii) If t0, . . . ,tm are twisted semistable parameters, then replacing t0 by t0/u one
obtains a semistable family of parameters.

(iii) Assume that X → Sπ,d is smooth at x and given by t′0, . . . ,t
′
d ordered in

such a way that t′i(x) = 0 if and only if i ≤ m for some 0 ≤ m ≤ d. Then locally
at x the elements t0 = t′0/(t

′
m+1 . . . t

′
d) and ti = t′i for 1 ≤ i ≤ m form a semistable

family and the induced morphism U → Sπ,m is smooth at x. Indeed, we have just
described a projection Sπ,d \ V (tm+1 . . . td) → Sπ,m whose smoothness is easily
verified on the level of closed fibers.
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In fact, the last observation of part (iii) above is a general property which char-
acterizes semistable parameters, but the proof is not completely obvious. We will
prove it later as a particular case of Theorem 3.3.9, but prefer to formulate it now
for expositional reasons. This does not cause to a circular reasoning because this
lemma and its corollary will only be used in §3.4.

Lemma 3.1.10. Let X be a formal admissible k◦-scheme with a point x ∈ X. Then
t0, . . . ,tm ∈ OX,x is a family of semistable parameters at x if and only if locally at
x they induce a semistable chart f : U → Sπ,m which takes x to the origin.

Proof. The definition of semistable parameters just says that a morphism f exists
and the fiber V over the origin is smooth at x and of correct codimension. This
immediately implies the inverse implication, but proving that f is smooth at x re-
quires an additional argument (in particular, taking the codimension into account).
This implication is a particular case of Theorem 3.3.9. �

Corollary 3.1.11. Let X be an admissible formal k◦-scheme, K = k̂a and fK◦ : X′
K◦ →

XK◦ an admissible blowing up. Then there exists a finite separable extension l/k
and an admissible formal blowing up fl◦ : X

′
l◦ → Xl◦ such that fK◦ is the pullback

of fl◦ . Furthermore, X′
K◦ is strictly semistable at a point xK if and only if for a

large enough finite separable l′/l the formal model X′
l′◦ is strictly semistable at the

image xl′ of xK .

Proof. The center IK ⊆ OXK◦
= OX⊗̂k◦K◦ of fK◦ is open, hence it is locally

generated by a family of the form π, t1, . . . ,tn with 0 6= π ∈ k◦, and replacing each
ti by ti+aiπ we can assume that they are contained in OX⊗k◦ (ka)◦, and hence also
in some OX ⊗k◦ l◦ = OXl◦

with a large enough finite separable extension l/k. This
proves that IK descends to an ideal Il ⊆ OXl◦

and the blowing up fl◦ : X
′
l◦ → Xl◦

along Il pulls back to fK◦ . Moreover, this is true for any larger extension of k.
In the second part only the direct implication needs a proof, so assume that

X′
K◦ is strictly semistable at xK and choose a family of semistable parameters

t0, . . . ,tm at xK . Each ti divides π and it follows that for any t′i close enough to
ti we have that t′i = uiti with ui ∈ 1 + K◦◦OX′

K◦
,xK

a principal unit (in fact, it

suffices that ti − t′i ∈ πK◦◦OX′

K◦
,xK

). In particular, we can choose t′1, . . . ,t
′
m as

above so that t′i ∈ OX′

l′◦
= OX′

l◦
⊗l◦ l

′◦ for an appropriate l′/l. By Remark 3.1.9(i),

t′0 = π/(t′1 . . . t
′
m) and t′1, . . . ,t

′
m form another family of semistable parameters at

xK , and we will show that they also form such a family at xl′ and hence the latter
is a strictly semistable point by Lemma 3.1.10.

Since t′1 . . . t
′
m divides π in OX′

K◦
,xK

and X′
K◦ → Xl′◦ is faithfully flat, t′1 . . . t

′
m

also divides π in OX′

l′◦
,xl′

. The ratio coincides with t′0 because by the admissibility

assumption OX′

K◦
,xK

has no π-torsion. Hence t′0, . . . ,t
′
m are defined at xl′ , and the

morphism they define to Spf(l′◦{t′0, . . . ,t
′
m}/(t′0 . . . t

′
m−π)) is smooth at xl′ because

its base change is smooth at xK . Thus, X′
l′◦ is strictly semistable at xl′ . �

3.1.12. Uniformizability. We say that a k-analytic space is rig-smooth if it is smooth
at any Zariski closed (or rigid) point. Note that the usual notion of smoothness
in Berkovich geometry assumes also that X is boundaryless, but there is a notion
of quasi-smoothness which does not make this assumption. For strictly analytic
spaces it is equivalent to rig-smoothness.
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Definition 3.1.13. Assume thatX is a rig-smooth analytic space. A point y ∈ Xad

is uniformizable if for any formal model X there exists a finite separable extension
l/k and an admissible blowing up X′ → Xl such that a preimage of y in Xad

l

specializes to a semistable point of X′.

Remark 3.1.14. (i) It is known since the semistable reduction of Deligne-Mumford
that even for curves in the general case one has to extend the ground field and one
cannot expect smooth specializations to exist, so such uniformizability is the best
one can hope for.

(ii) As in the case of varieties, we chose the formulation where a cofinal family
of good models exists and local resolution is achieved by a blow up. The former is
absolutely critical to have a reasonable notion. The later is a convenient in appli-
cations property establishing which should not cause serious additional difficulties.

3.1.15. Local uniformization conjecture. Now we can formulate the analytic ana-
logue of Zariski local uniformization.

Conjecture 3.1.16. Assume that X is a rig-smooth k-analytic space. Then any
point x ∈ Xad is uniformizable.

This is the version of local uniformization one usually tries to attack by studying
the situation locally. Since for a finite Galois l/k all preimages of a point of Xad

in Xad
l are conjugate, the conjecture immediately implies the following less local

version, which is formulated in terms of analytic spaces only.

Conjecture 3.1.17. Assume that X is a rig-smooth compact k-analytic space.
Then there exists a finite extension l/k and a finite covering Xl = ∪n

i=1Xi such
that each Xi possesses a semistable formal model Xi over l.

This is the finiteness (or admissibility) of the covering condition which replaces
uniformization of adic non-analytic points in the local version of the conjecture.

It is important to consider arbitrary ground fields k in the applications, so the
conjectures are formulated up to a ground filed extension. However, it immediately
follows from Corollary 3.1.11 that it suffices to prove them over an algebraically
closed k, when no ground field extension is needed. In fact we even have the
following slightly more precise property.

Lemma 3.1.18. Assume that X is a rig-smooth compact k-analytic space, x ∈ Xad

a point and y a preimage in Xad

k̂a
. Then x is uniformizable if and only if y is

uniformizable.

Remark 3.1.19. (0) The conjecture is known in characteristic zero, because (using
Elkik’s theorem) it can be deduced from the global resolution provided by [ATW20,
Theorem 1.2.19(2)]. In addition, it can be proved much easier along the lines of
[Tem17], but this was never worked out in detail.

(1) The conjecture is wide open when d = dim(X) > 1 and char(k̃) > 0. It
seems plausible that the difficulty of proving this conjecture for some d is the same
or a bit easier than the difficulty of proving the local uniformization conjecture of
varieties in dimension d+ 1.

(2) For d = 1 local uniformization implies semistable reduction of curves rather
straightforwardly. Probably, the case of d = 2 will lead to a proof of the global
resolution of admissible formal surfaces, though the reduction will be difficult.
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(3) So far, the only known result in any dimension is the weaker version, which
only asserts existence of an étale coverX ′ → Xl such that X ′ possesses a semistable
model over l, see [Tem17, Theorem 3.4.1]. To some extent this weakening is analo-
gous to de Jong’s resolution by a separable alteration.

3.2. Log smooth formal k◦-schemes. In the sequel, we will need to work with
certain log smooth formal schemes which are not semistable. Since this does not
make the arguments essentially more difficult, we decided to consider general log
smooth formal schemes and use this occasion to also formulate the global counter-
part of the local uniformization conjecture.

3.2.1. On log structures on admissible formal schemes. There are two natural ap-
proaches to provide admissible formal schemes with log structures. The first one
is to work with fine or fs log structures, as in the classical algebraic setting. It is
technically easier, but depends on some choices, including the choice of a sufficiently
large fine log structure on S = Spf(k◦). This is the approach we choose in this
paper. In particular, our model blocks will be of the form SP {Q} := Spf(k◦P {Q})
with fine P ⊆ Q.

Remark 3.2.2. For the sake of completeness we indicate that another approach
consists in providing an admissible formal scheme X with the canonical log structure
MX which associates to an open U the monoid of all functions f ∈ Γ(OU) such that
the ideal fOU is open. In other words, MX is the monoid of functions which
become units on the generic fiber Xη, so informally MX = i∗(O

×
Xη

) ∩ OX, where

i is the “embedding” Xη →֒ X (this does make a formal sense in adic geometry).
Moreover, one can also consider log structures which are finitely generated over the
canonical ones, thus allowing non-trivial fine log structures on the generic fibers.
The canonical log structure is not fine even for S (unless k◦ is a DVR) and the
building blocks are completions of toric k◦-schemes defined in [GS15]. In fact,
many questions about canonical log structures can be reduced to the fine case by
approximating by fine substructures, but instead of working this out we prefer to
work with fine log structures right ahead.

3.2.3. Model formal schemes. Assume that λ : P →֒ Q is an injective local homo-
morphism of fine monoids and π : P →֒ k◦ \{0} an embedding which will be written
exponentially: p 7→ πp. For example, giving such a homomorphism with P = N is
equivalent to choosing a pseudo-uniformizer π. In this situation we use the usual
notation k◦P [Q] = k◦ ⊗Z[P ] Z[Q] and also denote its ̟-adic completion (where ̟ is
a pseudo-uniformizer) by k◦P {Q}. The homomorphism Q→ k◦P {Q} will be denoted
q 7→ uq.

In this paper, a model formal scheme is SP {Q} := Spf(k◦P {Q}), where λ : P →֒
Q, π : P →֒ k◦ are as above and, in addition, the torsion of Qgp/P gp is of order

invertible in k̃ and λ does not factor through a facet of Q. The latter condition is
equivalent to the following ones: a) The image of PR contains a point in the interior
of QR, b) inverting the elements of P one inverts Q, that is, Q+P gp = Qgp, c) for
any q ∈ Q there exists q′ ∈ Q such that q+ q′ ∈ λ(P ). This condition is satisfied if
and only if each q ∈ Q gives rise to an open ideal uqOSP {Q}.

3.2.4. Examples. The most standard example of a model formal scheme is Sπ,m –
the semistable one. It corresponds to the embedding π : P = N →֒ k◦, the monoid
Q = Nm+1 with generators ei mapped by u to ti and the homomorphism given by
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λ(1) = e0 + · · ·+ em. More general semistable charts Sπ,m × Gn
m are obtained for

Q = Nm+1 ⊕Zn and the same relation with P . They are needed to construct étale
charts rather than smooth ones, but we will not use them in the paper.

More generally, a standard polystable model S =
∏r

i=1 Si, which is a product of
standard semistable models with monoids Qi and Pi, corresponds to the monoids
Q = ⊕r

i=1Qi and P =
∑r

i=1 Pi ⊂ k◦. A formal k◦-scheme X is strictly polystable
(resp. polystable) at x if locally (resp. étale locally) at x it possess a smooth
morphism to a standard polystable model.

Finally, we will also need the case of certain specific monoids that arise when
one blows up semistable models. Consider the semistable scheme

X = Spf (k◦{t0, . . . ,tm, v1, . . . ,vr}/(t0 . . . tm − π)) ,

let v = vl1 . . . v
l
r for some l > 0 and let Tπ,m,r,l be the v-chart of the blowing up of X

along (t0, . . . ,tm, v). We refer to [BL93, Section 2] for basics on admissible blowings
up (a generalization to arbitrary formal blowings up can be found in [Tem08, p.
495]).

Lemma 3.2.5. Keep the above notation. Then

Tπ,m,r,l = Spf(k◦{t′0, . . . ,t
′
m, v1, . . . ,vr}/(t

′
0 . . . t

′
mv

d
1 . . . v

d
r − π)),

where d = (m + 1)l. In particular, Tπ,m,r,l = SP {Q}, where P = N is embedded
into k◦ via π, Q = Nm+r+1 with generators e0, . . . ,em+r mapped by u to t′, v and
λ is given by λ(1) = e0 + · · ·+ em + d(em+n+1 + · · ·+ em+r).

Proof. The formal blowing up is obtained by completing the usual blowing up of
the corresponding affine scheme X = Spec(A), where

A = k◦[t0, . . . ,tm, v1, . . . ,vr]/(t0 . . . tm − π),

hence it suffices to prove the analogous claim for the blowing up of X along
(t0, . . . ,tm, v). The usual description of blowings up implies that the v-chart equals
Spec(A′), where A′ is the quotient of

A′′ := A[t′0, . . . ,t
′
m]/(vt′0 − t0, . . . ,vt

′
m − tm)

by the v-torsion. Set f = t′0 . . . t
′
mu

d
1 . . . u

d
r − π, then

A′′ = k◦[t′0, . . . ,t
′
m, v1, . . . ,vr]/(f)

and the presence of the free term π in f implies that if vg ∈ (f), then g ∈ (f).
Therefore the v-torsion is trivial and the chart is Spec(A′′) as asserted. �

3.2.6. Semistable modification. The (non-normal) toric formal k◦-schemes Tπ,m,r,l

can be modified to semistable ones by usual combinatorial tools.

Lemma 3.2.7. Let T = SP {Q} be a model formal k◦-scheme and assume that
P = N is mapped to k◦ via a pseudo-uniformizer π and Qgp/P gp is torsion free.
Then there exists an extension l = k(π1/d) and a blowing up T′ → T ⊗k◦ l◦ such
that T′ is strictly semistable over l◦.

Proof. Replacing T by its finite modification Spf(k◦P {Q
sat}) (which is automatically

an admissible blowing up) we reduce the claim to the classical case when Q is a toric
monoid, and then the argument is standard: first we solve an analogous problem
for the Z[π]-scheme Spec(Z[Q]) and then pull back this solution to a modification
of T⊗k◦ l◦ for an appropriate d. The main result of [KKMS73] provides a solution
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of the later problem over a field, but the solution over Z is the same: consider the
polyhedral cone σ = (QR)v, cut it with the hyperplane π = 1 obtaining a polytope
with vertexes in the lattice (Qgp)v, find d and a unimodular projective subdivision of
σ in the lattice d−1(Qgp)v via the main combinatorial result of [KKMS73], consider
the corresponding toric modification of Spec(Z[Q]⊗Z[π] Z[π

1/d]). �

Remark 3.2.8. If P is of a larger rank, then a semistable subdivision of SP {Q}
in general does not exist, but one can find a polystable subdivision. Essentially,
this is the main result of [ALPT18].

3.2.9. Log smoothness. An admissible formal k◦-scheme is log smooth (resp. Zariski
log smooth) if étale locally (resp. locally) it possesses a smooth morphism f : U →
SP {Q} to a model formal scheme. One can require that f is étale, but this leads
to the same notion. Note that giving a morphism f is equivalent to giving a P -
homomorphism of monoids Q → OU, and we call the latter a monoidal chart.
It induces a log structure on U which makes U into a log scheme which is log
smooth over S provided with the log structure induced by P . Our assumption that
Qgp = Q + P gp just means that the induced log structure on Xη is trivial (or the
log structure is vertical).

3.2.10. Log smooth modification conjecture. Now we can formulate the main global
conjecture about existence of nice formal models.

Conjecture 3.2.11. Assume k is a complete real-valued field and X is an admis-
sible formal k◦-scheme whose generic fiber Xη is rig-smooth. Then there exists a
finite extension l/k and an admissible blowing up X′ → Xl such that X′ is polystable.

Remark 3.2.12. (0) Classically one formulates a weaker conjecture about exis-
tence of a single semistable (or log smooth) model of a rig-smooth X = Xη, and
it is called a semistable (or log smooth) reduction conjecture. The modification
conjecture essentially asserts that such models form a cofinal family.

(i) It suffices to prove that after a ground field extension l/k there exists a
blowing up X′ of Xl which is log smooth, because by the main result of [ALPT18]
such X′ can be refined by a log blowing up to a polystable X′′. If |k×| is of rank
one, then X′ even admits a semistable log blowing up.

(ii) Assume that char(k̃) = 0. If the valuation is discrete, then the semistable
reduction theorem is the famous classical result proved in [KKMS73]. The log
smooth modification theorem without restrictions on k was established very recently
in [ATW20, Theorem 1.2.19] by new resolution techniques.

(iii) If dim(Xη) = 1, then the analytic semistable reduction theorem is due
to Bosch-Lütkebohmert, see [BL93] and the semistable modification follows easily
(an alternative proof of semistable modification can be found in [Tem10]). Nearly

nothing is known when char(k̃) > 0 and dim(Xη) > 1.

3.3. A local criterion of log smoothness.

3.3.1. Strictly unramified morphisms. We say that a morphism of schemes f : Y →
X is strictly unramified (resp. strictly étale) at y ∈ Y if it is unramified (resp.
étale) at y and k(f(y)) = k(y). This is a relatively standard terminology for étale
morphisms, but perhaps not for the unramified ones. A local homomorphism of
local rings is called strictly unramified (resp. strictly étale) if the induced morphism
of spectra is strictly unramified (resp. strictly étale) at the closed point of the
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source. Also, we say that a ring A is generalized Artin if Spec(A) is a point.
Clearly, this happens if and only if A is a local ring and mA is the nilradical of A.

Lemma 3.3.2. Let φ : A→ B be a homomorphism of generalized Artin rings, then
(i) φ is finite if and only if B is a finitely generated A-algebra.
(ii) φ is strictly unramified (resp. strictly étale) if and only if φ is surjective

(resp. an isomorphism).

Proof. Let kA and kB denote the residue fields.
(i) Only the inverse implication needs a proof. If B is finitely generated over

A, then kB is a finitely generated kA-algebra and hence kB/kA is finite by Hilbert
Nullstellensatz. Therefore for any b ∈ B there exists a monic polynomial f ∈ A[t]
such that the image of f(b) in kB vanishes. Thus, f(b) is nilpotent, and fn with a
large enough n is a monic polynomial which annihilates b. So, A → B is integral,
and hence finite.

(ii) Only the direct implications need a proof. If φ is strictly unramified, then φ
is finite by (i), mAB = mB and the homomorphism kA = A/mA → B/mAB = kB
is surjective. Therefore φ is surjective by Nakayama’s lemma. If, moreover, φ is
strictly étale, then it is also flat, and hence injective. �

3.3.3. Formal completions. Given a closed point x ∈ X we provide the local ring
OX,x with the adic topology such that a finitely generated ideal I ⊂ OX,x is an ideal
of definition if and only if I is π-adically open (i.e. contains a power of π) and the
radical of I/k◦◦I in OXs,x coincides with mXs,x. For example, a finitely generated
open ideal I ⊂ OX induces an ideal of definition at x if and only if VX(I) = x. It
is easy to see that, indeed, all such ideals define the same adic topology and we

denote the completion by ÔX,x. Note that ÔX,x ⊗ k̃ = ÔXs,x.

Theorem 3.3.4. Let f : Y → X be a morphism of admissible formal k◦-schemes,
y ∈ Y and x = f(y). Then f is strictly unramified (resp. strictly étale) at y if

and only if the induced homomorphism φ : ÔX,x → ÔY,y is surjective (resp. an
isomorphism).

Proof. If φ is surjective (resp. an isomorphism), then tensoring with k̃ we obtain

that the homomorphism of completed local rings of k̃-varieties ÔXs,x → ÔYs,y is
surjective (resp. an isomorphism). By the classical theory of varieties, this implies
that the closed fiber fs : Ys → Xs is strictly unramified (resp. étale) at y, hence f
is strictly unramified (resp. étale) at y by Lemma 3.1.5.

Conversely, assume that f is strictly unramified (resp. étale) at y. Then
mXs,xOYs,y = mXs,y and hence for an ideal of definition J of OX,x one also has
that JOY,y is an ideal of definition of OY,y. Since J is open it contains an ideal
I = (π) with a uniformizer π. By definition, φI : OX,x/I → OY,y/IOY,y is a
strictly unramified (resp. étale) homomorphism of rings, hence also the base change
φJ : OX,x/J → OY,y/JOY,y is strictly unramified (resp. étale). By Lemma 3.3.2
φJ is surjective (resp. an isomorphism), and passing to the limit over the set of
ideals of definition we obtain that φ is also surjective (resp. an isomorphism). �

3.3.5. Analytic fibers. We will also use a relation between the completed local rings
of X and domains in the generic fiber. For a closed point x ∈ X let Xη,x denote the
preimage of x under the reduction (or specialization) map Xη → X; it is an open
subspace of Xη. In the framework of rigid geometry the spaces Xη,x were called
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formal fibers, and their various properties were established by Bosch in [Bos77].
However, we prefer to change the terminology and call Xη,x the analytic fiber over
x.

Lemma 3.3.6. Let f : Y → X be a morphism of admissible formal k◦-schemes with
generic fiber f = fη : Y → X, and let y ∈ Y be a closed point and x = f(y). Then the

analytic fiber fy : Yy → Xx depends only on the homomorphism φ : ÔX,x → ÔY,y

induced by f, and if φ is surjective (resp. bijective), then fy is a closed immersion
(resp. an isomorphism).

Proof. One can assume that X = Spf(A) and Y = Spf(B). First, let us show how

to reconstruct Xx from ÔX,x (see also the proof of [Ber99, Lemma 4.4]). Fix any
h = (h1, . . . ,hr) ⊂ A such that x = VX(h) and 0 6= π ∈ k◦◦. In particular, (h, π) is

an ideal of definition of ÔX,x and the latter is the completion Â = Â(h,π). Note that
Xx is given by the inequalities |hi| < 1, hence it is the union of rational domains

Xn = X{
hn
1

π , . . . ,
hn
r

π }. Note that Xn is the generic fiber of the π-chart Xn of the
admissible blowing up of X along (hn1 , . . . ,h

n
r , π). In particular, it possesses the

standard description Xn = Spf(An), where An is the quotient of

A{T1, . . . ,Tr}/(h
n
1 − πT1, . . . ,h

n
r − πTr)

by the π-torsion. The key observation now is that Xn is also the chart of the blowing

up of Spf(ÔX,x) along the same ideal. Indeed, the homomorphism A→ An factors

through Â = AJS1, . . . ,SrK/(h1 − S1, . . . ,hr − Sr) and it follows easily that An is
also the quotient of

Â{T1, . . . ,Tr}/(h
n
1 − πT1, . . . ,h

n
r − πTr)

by the π-torsion. This provides a description of Xx = ∪nXn in terms of Â and h, π
only. Moreover, a posteriori we know that Xx (but not Xn’s) is independent of the

choice of h and π, so it is determined by Â only.

In the same way one reconstructs fy from the homomorphism φ : Â→ B̂ = ÔY,y.
Choose h, π as above and let g = (g1, . . . ,gs) ⊂ B be any family containing φ(h)

and such that VY(g) = y. Then Yy = ∪nYn, where Yn = Y {
gn
1

π , . . . ,
gn
s

π } is the
generic fiber of Yn = Spf(Bn) with Bn the quotient of

B̂{T1, . . . ,Ts}/(g
n
1 − πT1, . . . ,g

n
s − πTs)

by the π-torsion, and f induces morphisms fn : Xn → Yn whose generic fibers
Xn → Yn after passing to the union give rise to the morphism Xx → Yy. In
particular, if φ is an isomorphism, then fy is.

Finally, if φ is surjective, then we simply take g = φ(h) and the induced ho-
momorphisms An → Bn are easily seen to be surjective. Therefore, fn are closed
immersions, their generic fibers Xn → Yn are closed immersions, and hence also
Xx → Yy is a closed immersion. �

As a side remark we discuss a more subtle property, which will not be used.

Remark 3.3.7. A converse of Lemma 3.3.6 holds for η-normal formal schemes, i.e.
in the case when X is covered by open affines Spf(A) such that A = (A ⊗k◦ k)◦.
Indeed, by [Bos77, Theorem 5.8] the formal completion can be reconstructed from

Xη,x as ÔX,x = O◦
Xη

(Xη,x). Clearly, this construction is functorial, that is, φ is
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reconstructed from fy, and if fy is a closed immersion (resp. an isomorphism),
then φ is surjective (resp. bijective).

3.3.8. Fiber criterion of log-smoothness. A classical criterion of log smoothness at a
point x of a log variety X over a perfect field k is that the log stratum through x is
regular of codimension equal to the rank of Mx. Furthermore, this is the condition
used to define log regularity in general. The following result is its direct analogue
for admissible formal schemes. We will only use it when the model is Tπ,m,n,l, but
the proof in the almost general case is the same. For a monoid Q by Q+ = Q \Q×

we denote its maximal ideal.

Theorem 3.3.9. Let X be an admissible formal k◦-scheme, P ⊆ Q fine sharp
monoids with a torsion free Qgp/P gp and π : P →֒ k◦, u : Q →֒ Γ(OX) compatible

homomorphisms. Assume that the closed subscheme Z = VXs
(uQ+) is k̃-smooth at

a point x and

codimx(Z,Xs) ≥ rk(Qgp/P gp).

Then the induced morphism φ : X → T = Spf(k◦P {Q}) is smooth at x, the above
inequality is an equality and uQ ∩ k◦ = πP .

Proof. The last two claims are clear. Indeed, choose R ⊆ Q such that uR = uQ∩k◦,
then

codimx(Z,Xs) ≤ rk(Qgp/Rgp) ≤ rk(Qgp/P gp),

and hence all inequalities are equalities. Since Qgp/P gp is torsion free this also
implies that P = R. It remains to prove the main assertion that φ is smooth at x.

We will use two simple facts about T: 1) Ts is equidimensional of dimension r :=
rk(Qgp/P gp), 2) the analytic fiber Tη,O over the origin O = VTs

(Q+) is reduced and
irreducible. For example, both claims can be obtained by appropriate base changes
from the fact that the morphism Spec(Z[Q]) → Spec(Z[P ]) has equidimensional
fibers of dimension r and its fibers over Spec(Z[P gp]) are geometrically integral
because Qgp/P gp is torsion free.

Let l/k be the completed maximal unramified extension. All assumptions of the
theorem are satisfied for Xl = X⊗̂k◦ l◦ and a preimage xl of x. By Lemma 3.1.5
smoothness of φ at x is equivalent to smoothness of the closed fiber φs at x. By

flat decent φs is smooth at x if and only if φs ⊗k̃ k̃
s = (φ⊗̂k◦ l◦)s is smooth at xl.

Therefore it suffices to prove the theorem for Xl and xl, and replacing l by k for

shortness, we can assume in the sequel that k̃ is separably closed.
The assertion of the theorem is local at x. Furthermore, let y be any closed point

belonging to the closure of x and such that Z is k̃-smooth at y and codimx(Z,Xs) =
codimy(Z,Xs). Then y satisfies all assumptions of the theorem, and it suffices to
prove that φ is smooth at y. Thus, replacing x by y we can assume in the sequel
that x is a closed point.

Set d = dim(OZ,x) and choose elements t̃1, . . . ,t̃d ∈ OZ,x such that the morphism

t̃ : Z0 → Ad
k̃
they induce on a neighborhood Z0 ⊆ Z of x is étale at x. Shrinking

X around x we can assume that these elements are images of global functions
t1, . . . ,td ∈ Γ(OX), and hence a morphism ψ = (φ, t) : X → U = T×Ad

k◦ arises. We
claim that ψ is étale at x. Since φ is obtained by composing ψ with the projection
onto T, this will immediately imply the assertion of the theorem.

We start with studying the closed ψs. Note that u := ψ(x) = (O, u0), where

O = VTs
(uQ+) is the origin of Ts and u0 = t̃(x). In addition, k(O) = k̃ and since
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k(u0) is finite over the separably closed field k̃ and k(x)/k(u0) is separable, we also
have that k(x) = k(u0) = k(u). We claim that ψs is strictly unramified at x, that
is, x = Spec(k(x)) is an isolated component of the fiber of ψs : Xs → Us over u. To
describe this fiber we can replace ψs by its base change with respect to the closed
immersion O×Ad

k̃
→֒ Us, but the latter base change coincides with t̃, so it is strictly

étale at x and the fiber is as claimed.
Since ψs is strictly unramified at x, Lemma 3.3.2 implies that the corresponding

homomorphism of noetherian complete local rings h : ÔUs,u → ÔXs,x is surjective.
To complete the proof it suffices to show that h is also injective, because then
Xs → Us is étale at x by the classical theory and we can conclude by Lemma 3.1.5.
However, the involved rings are not domains, hence the dimension considerations
alone are insufficient. Instead of this we will now lift this homomorphism to a
homomorphism of domains.

By Theorem 3.3.4 the surjectivity of h implies that the homomorphism h′ : ÔX,x →

ÔU,u is also surjective and hence the associated morphism of analytic fibers Xη,x →
Uη,u is a closed immersion by Lemma 3.3.6. The source and the target are k-analytic
spaces of dimension d + r and the target is reduced and irreducible because it is
the product of reduced and irreducible spaces Tη,O and (Ad

k◦)η,u0
. Therefore this

closed immersion is an isomorphism, and hence does not factor through the vanish-

ing locus of any non-zero element of ÔX,x. Thus, Ker(h′) = 0 and we obtain that h′

is an isomorphism. Therefore its closed fiber h is an isomorphism too, concluding
the proof. �

3.3.10. Reduction to the case of an algebraically closed ground field. Using the above
theorem we can now descend log smoothness from X

(k̂a)◦
. This result will not be

used so the reader can skip it. The proof is nearly the same as in the semistable
case.

Theorem 3.3.11. Let X be an admissible formal k◦-scheme, K = k̂a and XK◦ =
X⊗̂k◦K◦. Assume that fK◦ : X′

K◦ → XK◦ is an admissible formal blowing up such
that X′

K◦ is Zariski log smooth at a point xK . Then there exists a finite separable
extension l/k and an admissible formal blowing up fl◦ : X

′
l◦ → Xl◦ such that fK◦ is

the pullback of fl◦ and X′
l◦ is Zariski log smooth at the image xl ∈ X′

l◦ of xK .

Proof. Fix a smooth morphism gK◦ : UK◦ → Spf(K◦
P {Q}) from a small enough

affine neighborhood UK◦ = Spf(AK◦) of xK in X′
K◦ and let φK◦ : Q→ OUK◦

be the
associated monoidal chart. The same argument as in the proof of Corollary 3.1.11
shows that for a large enough l the blowing up fK◦ is obtained from a blowing
up fl◦ : X

′
l◦ → Xl◦ and UK◦ is the preimeage of a neighborhood Ul◦ = Spf(Al◦) of

xl. We claim that enlarging l if needed one can find a monoidal chart φ′l◦ : Q →
OUl◦

such that for any q ∈ Q we have that φK◦(q) = uqφ
′
l◦(q) in OUK◦

with an
invertible uq. This will finish the proof because then φ′l◦ induces a chart g′l◦ : Ul◦ →
Spf(l◦P {Q}) whose base change g′K◦ : UK◦ → Spf(K◦

P {Q}) is smooth at xK by
Theorem 3.3.9, since g′K◦ and gK◦ have the same fiber over the origin.

To construct φ′l◦ choose q1, . . . ,qd ∈ Q whose images form a basis of Qgp/P gp.
Each qi divides some element of P , hence they all divide some p ∈ P and then each
uqi divides πp in K◦

P {Q}. The same argument as in the proof of Corollary 3.1.11
shows that enlarging l we can find units ui ∈ 1+K◦◦AK◦ such that ai = uiφ(qi) ∈
Al◦ . We claim that there exists a unique P -homomorphism φ′ : Q → Al◦ such

that φ′(qi) = ai. Each q ∈ Q can be presented as q = p +
∑d

i=1 liqi with li ∈ Z
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and p ∈ P gp ⊂ k×, so using that φ(q) = πp
∏d

i=1 φ(qi)
li , we obtain that the rule

φ′(q) = φ(q)
∏d

i=1 u
li
i ∈ AK◦ defines a P -homomorphism φ′ : Q→ AK◦ . It remains

to show that the image is actually in Al◦ . Choose a representation q = q′ − q′′,
where

q′ = p′ +

d∑

i=1

l′iqi, q
′′ = p′′ +

d∑

i=1

l′′i qi, p, p
′ ∈ P, l′i, l

′′
i ∈ N.

Then φ′(q′) = πp′ ∏d
i=1 a

l′i
i ∈ Al◦ , in the same way φ(q′′) ∈ Al◦ , and we have that

φ′(q) = φ′(q′)/φ′(q′′) in AK◦ . Then the same argument as in Corollary 3.1.11 shows
that a quotient exists already in Al◦ and hence φ′(q) ∈ Al◦ . �

As an immediate corollary we obtain that it suffices to verify the log smooth
modification conjectures in the case, when the ground field k is algebraically closed.
We already observed the similar fact for the local uniformization, but include it in
the following formulation too:

Corollary 3.3.12. If Conjectures 3.1.16 and 3.2.11 hold true when the ground field
k is algebraically closed, then they hold in general.

3.4. Reduction to analytic points.

3.4.1. Full family of parameters. Assume that x is a strictly semistable point of an
admissible formal k◦-scheme X. By a (twisted) family of parameters (t, s) at x we
mean (twisted) semistable parameters t = (t0, . . . ,tm) at x and a tuple of elements
s = (s1, . . . ,sn) ∈ OX,x such that if V = VXs

(t0, . . . ,tm), then the image of s in the
regular ring OV,x is a family of regular parameters. If s is only a partial family of
regular parameters, then we say that (t, s) is a (twisted) partial family.

3.4.2. Key lemma. The following analogue of Lemma 2.2.6 will be our key lemma
in the study of analytic local uniformization. Our argument is a modification of
the proof of that lemma, though it gets more complicated when X is not smooth
but only semistable at x, as some log geometry is naturally involved. In particular,
we will use the log smooth models T introduced in §3.2.4.

Lemma 3.4.3. Assume that k̃ is perfect, X is an admissible formal k◦-scheme and
Y →֒ Xs an integral closed subscheme with generic point η. Assume that x ∈ Y
is a point and E ⊂ Y a divisor such that (Y,E) is a regular pair at x and X is
strictly semistable at any point of Y \E. Finally, assume that there exist elements
t = (t0, . . . ,tm), s = (s1, . . . ,sn) of OX,x such that their images form a partial
twisted family of parameters at any point y ∈ Y \E and a full family of parameters
at η. Then there exists an admissible blowing up f : X′ → X such that the strict
transform g : Y ′ → Y is an isomorphism over x and there exist a neighborhood
U ⊆ X′ of x′ = g−1(x) and a smooth morphism ψ : U → Tπ,m,r,l for r = dim(OY,x),
a pseudo-uniformizer π and some l > 0.

Proof. Enlarging E we can assume that the number of its irreducible components
at x equals r. Recall that admissible blowings up can be extended from an open
formal subscheme by [BL93, Lemma 2.6(a)]. Therefore the assertion of the lemma
is local at x, and shrinking X we can assume that X = Spf(A) and Y = Spec(B) are
affine, t, s ⊂ A, the pair (Y,E) is regular, and there exist elements v = (v1, . . . ,vr) in
A with v = v1 . . . vr and images w = (w1, . . . ,wr) and w = w1 . . . wr in B such that
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E = VY (w). In particular, the image of v in OY,x is a family of regular parameters
and X is semistable away from VX(v).

Set C = A/(k◦◦, t, s) and Z = Spec(C). Then B = C/J for a prime ideal J and
Y \ E →֒ Z is an open immersion because it is of codimension 0 and Z is integral
(even regular) at any point of Y \ E. Therefore we obtain by Lemma 2.2.2 that
J = Ann(c), where c is a lift of wℓ to C and ℓ is large enough. Let a ∈ A be a lift
of c and let f : X′ → X be the blowing up along (t, s, a2). We will see that f is as
required.

The a2-chart X′
a2 = Spf(A′) is the π-adic completion of the analogous chart

of the blowing up of Spec(A), so A′ is the completion of A[t′, s′] ⊆ Aa, where
t′i = ti/a

2 and s′j = sj/a
2. We will use the notation A′ = A{t′, s′} to denote that

A′ is topologically generated by t′, s′. Applying claims (i) and (iii) of Lemma 2.2.4
to the blowing up of Spec(A) along (t, s, a2) and passing to the formal completion
(which does not modify the closed fiber) we obtain the same conclusions for X′: the
strict transform Z ′ →֒ X′ of Z is isomorphic to Y , contained in X′

a2 and given by
vanishing of the ideal (k◦◦, t′, s′).

In addition, we claim that a = uvℓ for an element u ∈ A′ which is a unit in a
neighborhood of x′. Consider the blowing up X′′ → X along (t, s, a) with the a-chart
X′′

a = Spf(A′′), where A′′ = A{t′′, s′′}. By the same application of Lemma 2.2.4
as above, the strict transform of Z is isomorphic to Y and given by the vanishing
of (t′′, s′′). Since the images of a and vℓ in A′′/(t′′, s′′) = B coincide and X′

a is
the a-chart of the blowing up of X′′

a along (t′′, s′′, a), Lemma 2.2.4(ii) implies that,
indeed, a = uvℓ in A′ and u is invertible along Z ′.

Since ti = a2t′i, we have that adt′0 . . . t
′
m = t0 . . . tm = π, where d = 2l(m + 1).

Setting y0 = udt′0 and yi = t′i for 1 ≤ i ≤ m, we achieve that y0 . . . ymv
d = π. Set

Q = Nm+r+1 and let λ : P = N → Q be the homomorphism defined by

λ(1) = e0 + · · ·+ em + d(em+1 + · · ·+ er).

Then the exponential homomorphism u : Q = Nm+r+1 → A sending the basis
elements to y0, . . . ,ym, v1, . . . ,vr and the homomorphism π : P →֒ k◦ induced by
the pseudo-uniformizer π are compatible, and hence give rise to a morphism ψ : U :=
X′

a2 → SP {Q} = Tπ,m,r,l (see Lemma 3.2.5). We will complete the proof by proving
that ψ is smooth at x′. Furthermore, in view of Theorem 3.3.9 it suffices to prove

the following two claims: (i) the closed subscheme W ′ = VX′

s
(uQ+) is k̃-smooth at

x′, (ii) codimx′(W ′,X′
s) = rk(Qgp/P gp) = m+ r.

The closed subscheme T ′ = VX′

s
(uQ+ , s) = VX′

s
(t′, s′, v) coincides with VZ′ (v).

Since the image of v is a regular family of parameters of OZ′,x′ and k̃ is perfect,

we obtain that x′ is a generic and k̃-smooth point of T ′ and codimx′(T ′, Z ′) = r.
Since codimx′(Z ′,X′

s) = m + n, we obtain that codim(T ′,X′
s) = m + n + r. Since

W ′ = VX′

s
(t′, v) is of codimension at most m + r at x′ and T ′ = VW ′(s′) is of

codimension at most n in W ′, both estimates are equalities, yielding (ii). Since

T ′ = VW ′ (s′) is k̃-smooth at x′ and of codimension n in W ′, we automatically

obtain that W ′ is k̃-smooth at x′, as claimed by (i). �

3.4.4. The main theorem. Finally, we are in a position to prove our main result
about local uniformization of analytic spaces. It reduces proving the analytic lo-
cal uniformization conjecture to the case of Berkovich points and the local log
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uniformization of valuations on k̃-varieties. The proof is somewhat similar to the
proof of its algebraic analogue – Theorem 2.3.1.

Theorem 3.4.5. Assume that X is a smooth strictly k-analytic space of dimen-
sion d such that any point of X is uniformizable. Assume also that the local log

uniformization conjecture holds for k̃a-varieties of dimension at most d. Then any
point of Xad is uniformizable.

Proof. First we note that any point of X
k̂a is also uniformizable, hence the assump-

tions are also satisfied for X
k̂a . Moreover, proving the theorem for the latter will

imply the theorem for X by Lemma 3.1.18. Thus, in the sequel we can assume
that k is algebraically closed. Fix a formal model X of X and let z ∈ Xad be a
point. We will construct a blowing up of X which uniformizes z by composing a
sequence of blowings up which gradually improve the situation at the specialization
of z. For simplicity of notation, we will replace X with the intermediate blowings
up and only record the properties achieved so far. Each next blowing up will be
denoted X′ → X.

We will use the following notation: y ∈ X is the generization of z of height 1,
η ∈ X is the specialization of y, Y →֒ Xs is the Zariski closure of η and λ is the
valuation on k(Y ) induced by z. In particular, the center x ∈ Y ⊂ Xs of λ is the
specialization of z.

Step 1. One can achieve that η is a strictly semistable point. Indeed, by assump-
tions of the theorem blowing up X one can achieve that y specializes to a strictly
semistable point η.

In the sequel we will only use admissible blowings up which induce isomorphisms
over η, so the situation in its neighborhood will stay unchanged and we denote its
preimages in any X′ by the same letter. Our next goal is to choose parameters at
η which extend to x. Naturally, we will start with any set of parameters and use
blowings up to extend them.

Step 2. In addition to condition of step 1 one can achieve that there exist ele-
ments t0, . . . ,tm ∈ OX,x whose images in OX,η are twisted semistable parameters at
η. By Lemma 3.1.10 there exists a smooth morphism U → Sπ,m from a neighbor-
hood of η which sends η to the origin. Let t′0, . . . ,t

′
m ∈ Γ(OU) be the corresponding

semistable parameters. Each t′i induces an open invertible ideal IU,i on U and we
choose any its extension to a finitely generated open ideal Ii on X by the argument
from the proof of [BL93, Lemma 2.6(a)] (in fact, one reduces the problem to the
case of qcqs schemes established in [GD71, Théorème 6.9.7]). Replacing X by the
blowing up along

∏m
i=0 Ii we do not change the situation above η and achieve that

each Ii is invertible, hence we can choose a generator ti ∈ IiOX,x at x. Since ti
and t′i define the same ideal at η, the elements t0, . . . ,tm are as required. Note that
at this stage we cannot get rid of the twist because even though t0 . . . tm = uπ and
u is invertible at η, it does not have to be invertible at x.

Step 3. In addition to conditions of steps 1 and 2 one can achieve that there
exists a tuple s = (s1, . . . ,sn) ⊂ OX,x such that the image of (t, s) form a twisted
family of parameters at η. Choose s′ = (s′1, . . . ,s

′
n) such that (t, s′) is a twisted

family of parameters at η. Set W = VXs
(t), then the images (s′1, . . . ,s

′
n) ⊂ OW,η

form a regular family of parameters. To extend them to x we use the trick from
step 2: choose ideals I1, . . . ,In ⊂ OW such that Ii = (s′i) locally at η and let
g′ : W ′′ → W be the blowing up along I = I1 . . . In. Note that g′ makes the
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pullbacks of each Ii invertible. In addition, VW (I) is a Cartier divisor at η, hence
g′ is an isomorphism over η.

It will be crucial in the sequel to refine g′ by another blowing up so that η
is not contained in the center. Fortunately, this is possible by a strong Chow
lemma asserting that blowings up with centers at a closed subset V ⊂ W are
cofinal among all modifications of W which are isomorphism outside of V . In
particular, there exists an ideal J ⊂ OW trivial at η and such that the blowing up
g : W ′ = BlJ (W ) → W factors through W ′′. We still have that g is trivial over
η and principalizes each Ii. In particular, if x′ is the center of λ on the closure
Y ′ of η in W ′, then choosing generators si of IiOW ′,x′ we obtain that si = uis

′
i

in OW ′,η = OW,η where ui are units, and hence s1, . . . ,sn form a family of regular
parameters of OW,η.

Now let us lift this to X. Find any extension of J to an open finitely generated
ideal on X which is trivial at η and let f : X′ → X be the blowing up of this ideal.
Then W ′ → W is the strict transform of f , hence W ′ is a closed subscheme of X′

s

and clearly x′ is the specialization of z on X′. Thus we can take any lift si ∈ OX′,x′

of si ∈ OW ′,x′ and it remains to replace X by X′. The condition of step 2 is satisfied
because we can just pull back t0, . . . ,tm to OX′,x′ .

Step 4. In addition to conditions of steps 1,2,3 one can achieve that there exists
a divisor E ⊂ Y such that (a) (Y,E) is a regular pair at x, (b) for any point
w ∈ Y \E one has that X is strictly semistable at w and (t, s) form a twisted partial
family of parameters at w. The second condition is satisfied at η, hence we can
choose a large enough divisor E ⊂ Y such that this condition is also satisfied at
any point of Y \E. In particular, Y is regular at any point of Y \E. It remains to
achieve that also a) is satisfied without destroying b).

Since dim(Y ) ≤ dim(Xs) ≤ d the valuation λ is log uniformizable by assumptions
of the theorem. Therefore there exists a blowing up g : Y ′ = BlV (Y ) → Y such
that the pair (Y ′, E′ = g−1(V ∪ E)) is regular at the center x′ ∈ Y ′ of λ. Choose
any lift of the ideal IV ⊆ OY to an open finitely generated ideal of X and let
g : X′ → X be the corresponding blowing up. Then Y ′ → Y is the strict transform
of g, condition (a) is satisfied because (Y ′, E′) is a regular pair, and condition (b) is
satisfied because for any point w ∈ Y ′ \ E′ the morphism g is a local isomorphism
at u and maps it to Y \E. Thus, replacing X, E and t, s by X′, E′ and the pullbacks
of these tuples to OX′,x′ we accomplish the step.

Step 5. End of proof. The conditions achieved in steps 1,2,3,4 allow us to use
the formal key lemma 3.4.3, thereby obtaining a blowing up X′ → X such that the
strict transform g : Y ′ → Y is an isomorphism over x and the preimage x′ = g−1(x)
has a neighborhood U which admits a smooth morphism to a log smooth scheme
T = Tπ,m,r,l. Note that x′ is the center of λ and hence also the specialization of
y. Finally, by Lemma 3.2.7 there exists an admissible (even monomial) blowing up
T′ → T with a semistable source. Pulling it back we obtain an admissible blowing
up h : U′ → U such that U′ is smooth over T′ and hence semistable. Clearly, y
specializes to a point of U′, and it remains to arbitrarily extend h to an admissible
blowing up X′ → X. �

References

[ALPT18] K. Adiprasito, G. Liu, I. Pak, and M. Temkin, Log smoothness and polystability over

valuation rings, June 2018, http://arxiv.org/abs/1810.09618 .

http://arxiv.org/abs/1810.09618


26 MICHAEL TEMKIN

[ATW20] Dan Abramovich, Michael Temkin, and Jaros law W lodarczyk, Relative desingulariza-

tion and principalization of ideals, arXiv e-prints (2020), arXiv:2003.03659.

[Ber93] Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst.

Hautes Études Sci. Publ. Math. (1993), no. 78, 5–161 (1994). MR 1259429 (95c:14017)
[Ber99] , Smooth p-adic analytic spaces are locally contractible, Invent. Math. 137

(1999), no. 1, 1–84. MR 1702143 (2000i:14028)
[BL93] Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. I. Rigid spaces,

Math. Ann. 295 (1993), no. 2, 291–317. MR 1202394 (94a:11090)
[Bos77] Siegfried Bosch, Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider
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