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Introduction

The Gerritzen-Grauert theorem ([GG], [BGR, 7.3.5/1]) is one of the most
important foundational results of rigid analytic geometry. It describes so
called locally closed immersions between affinoid varieties, and this descrip-
tion implies the fact that any affinoid subdomain of an affinoid variety is
a finite union of rational domains. In its turn, the latter fact allowed one
to extend Tate’s theorem (see [Tate], [BGR, 8.2.1/1]) on acyclicity of the
Čech complex associated to a finite rational covering of an affinoid variety
to finite covering by arbitrary affinoid domains. The same fact also plays an
important role in foundations of non-Archimedean analytic geometry devel-
oped by V. Berkovich in [Ber1] and [Ber2]. Recall that building blocks of the
latter are affinoid spaces associated to a class of affinoid algebras broader
than that considered in rigid analytic geometry (the latter were called in
[Ber1] strictly affinoid) and, besides, the valuation on the ground field is not
assumed to be nontrivial. In the recent papers by A. Ducros [Duc, 2.4] and
the author [Tem, 3.5], the above fact on the structure of affinoid domains
was extended to arbitrary affinoid spaces, but its proof was based on the
case of strictly affinoid ones (i.e., affinoid varieties).

The original proof of the Gerritzen-Grauert theorem is not easy, and since
then the only different proof was found by M. Raynaud in the framework
of his approach to rigid analytic geometry (see [Ray], [BL]). Although that
proof is more conceptual, it is based on a complicated algebraic technics.

The purpose of this paper is to give a new proof of the Gerritzen-Grauert
theorem which uses basic properties of affinoid algebras in a standard way.
The only novelty is in using the whole spectrum M(A) of an affinoid al-
gebra A, introduced in [Ber1], instead of the maximal spectrum Max(A),
considered in rigid analytic geometry. The use of the whole spectrum allows
one to apply additional but standard compactness arguments.

In §§1-2, we work in the setting of rigid analytic geometry, i.e., the valu-
ation on the ground field is assumed to be nontrivial and only the class of
strictly affinoid algebras is considered. In §1, we recall basic definitions of an
affinoid algebra, an affinoid domain, all notions necessary for the formula-
tion of the Gerritzen-Grauert theorem, and formulate it (Theorem 1.1). The
only new fact is Proposition 1.2 which establishes the simple fact that a mor-
phism of affinoid varieties is a locally closed immersion if and only if it is a
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monomorphism in the category of affinoid varieties. It is only the latter prop-
erty of locally closed immersions which is used in our proof of Theorem 1.1.
In §2, before giving the proof we recall the definition and basic properties
of the spectrum M(A) and establish a property of monomorphisms (whose
particular case was proven in [Ber1] with the use of the Gerritzen-Grauert
theorem). We also recall basic properties of affinoid algebras which are used
in our proof. The most important of them is the fact that a homomorphism
of affinoid algebras A → B is finite if and only if the induced homomorphism
between their reductions Ã → B̃ is also finite ([BGR, 6.3.5/1]). In §3, we
work in the general setting, i.e., the valuation on the ground field is not
assumed to be nontrivial and the whole class of affinoid algebras is consid-
ered. We give a definition of an affinoid domain in an affinoid space which is
slightly different from that given in [Ber1, 2.2] but whose equivalence to it is
established as a consequence of the generalized Gerritzen-Grauert theorem
(Theorem 3.1). In the formulation of the latter one uses the notion of a
monomorphism (instead of that of a locally closed immersion which does
not work in the general setting). The proof of Theorem 3.1 is the same as
that of Theorem 1.1 with the only difference that one should use the notion
of the reduction Ãgr of an affinoid algebra A, introduced in [Tem], instead of
the usual reduction Ã (which does not work for arbitrary affinoid algebras).

1. Formulation of the Gerritzen-Grauert theorem

Let k be a non-Archimedean field with a nontrivial valuation. Recall that
a k-affinoid algebra is a commutative Banach k-algebra isomorphic to a quo-
tient of the algebra of convergent power series (on the closed unit polydisc)
k{T1, . . . , Tn}, n ≥ 1. (Such an algebra is called in [Ber1] and will be called
in §3 strictly k-affinoid.) Recall also that any k-algebra homomorphism be-
tween affinoid algebras is bounded, as a map of Banach spaces (see [BGR,
6.1.3/1]). The category of affinoid varieties is, by definition, the category
opposite to that of affinoid algebras (see [BGR, 7.1.4]). For brevity, the affi-
noid variety that corresponds to an affinoid algebra A will be mentioned by
its maximal spectrum X0 = Max(A), and the morphism that corresponds
to a homomorphism of affinoid algebras A → B will be mentioned by the
induced map of maximal spectra Y0 = Max(B) → X0 = Max(A). (The
letters X and Y without subscript 0 will be reserved for the whole spectra
M(A) and M(B).) The category of affinoid varieties admits fiber products
(which correspond to complete tensor products of affinoid algebras).

Recall ([BGR, 7.2.2]) that an affinoid subdomain of a k-affinoid variety
X0 = Max(A) is a subset V0 ⊂ X0 such that there is a morphism ϕ :
Max(AV ) → X0 with Im(ϕ) ⊂ V0 and, for any morphism ψ : Max(B) → X0

with Im(ψ) ⊂ V0, there exists a unique morphism Max(B) → Max(AV )
whose composition with ϕ is ψ. One shows that, for such a subset V0, the
morphism ϕ is unique up to a unique isomorphism and the induced map
Max(AV ) → V0 is a bijection. In what follows, we identify V0 with the
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k-affinoid variety Max(AV ) and call the morphism ϕ an affinoid domain
embedding. The class of such morphisms is preserved by compositions and
any base change.

For example, let f1, . . . , fn, g be elements of A without common zeros in
X0 = Max(A). Then the subset X{f

g } = {x ∈ X0

∣∣|fi(x)| ≤ |g(x)|} is an
affinoid subdomain, called rational, that corresponds to the homomorphism
A → A{f

g } = A{T1, . . . , Tn}/(gTi − fi). If g = 1, the affinoid subdomain
is called Weierstrass and denoted by X {f}. Another particular example
of a rational subdomain is a Laurent one X{f, g−1} = {x ∈ X0

∣∣|fi(x)| ≤
1, |gj(x)| ≥ 1} defined by elements f1, . . . , fn, g1, . . . , gm ∈ A and the homo-
morphism A → A{f, g−1} = A{T1, . . . , Tn, S1, . . . , Sm}/(Ti − fi, Sjgj − 1).
The above three classes of affinoid subdomains are preserved by intersection
and any base change, and the property to be Weierstrass or rational is a
transitive one.

For a point x ∈ X0 = M(A), the inductive limit lim−→AV , taken over all

affinoid subdomains V0 that contain x, is a local Noetherian ring (see [BGR,
7.3.2]). This ring is denoted by OX,x. Its residue field, denoted by κ(x), is a
finite extension of k, and it coincides with the quotient of A by the maximal
ideal that corresponds to x.

A morphism of affinoid varieties ϕ : Y0 → X0 is said to be a locally
closed immersion if it is injective and, for every point y ∈ Y0, the induced
homomorphism OX,ϕ(y) → OY,y is surjective (see [BGR, 7.3.3]). Locally
closed immersions are evidently preserved by compositions. An example of
such a morphism is a Runge immersion which is defined as a composition of a
closed immersion and a Weierstrass domain embedding ([BGR, 7.3.4]). Any
Runge immersion which is an affinoid domain embedding is a Weierstrass
domain embedding ([BGR, 7.3.4/6]).

Theorem 1.1 (Gerritzen-Grauert). Let ϕ : Y0 → X0 be a locally closed
immersion of affinoid varieties. Then there is a finite covering of X by
rational subdomains Xi

0 such that all of the morphisms ϕi : ϕ−1(Xi
0) → Xi

0

are Runge immersions.

A simple proof of Theorem 1.1 will be given in §2. We finish this section
with a category theoretical characterization of locally closed immersions.

Recall that a morphism ϕ : Y → X in a category C is called a monomor-
phism if, for all objects Z of C, the induced maps Hom(Z, Y ) → Hom(Z, X)
are injective. Assume that C admits fiber products. Then a morphism
ϕ : Y → X is a monomorphism if and only if the diagonal morphism
∆ : Y → Y ×X Y is an isomorphism (see [EGAI, 5.3.8]).

Proposition 1.2. A morphism of affinoid varieties ϕ : Y0 → X0 is a
locally closed immersion if and only if it is a monomorphism in the category
of affinoid varieties.
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Proof. Let X0 = Max(A) and Y0 = Max(B). Assume first that ϕ is a
locally closed immersion. Then for each point y ∈ Y0 the induced homo-
morphism OX,ϕ(y) → OY,y is surjective. Since the canonical homomorphism
from B to the product of all OY,y is injective ([BGR, 7.3.2/4]), it follows
that ϕ is a monomorphism.

Conversely, assume that ϕ is a monomorphism. Then the co-diagonal
homomorphism B⊗̂AB → B is an isomorphism and, therefore, for every
point x ∈ X0 from the image of ϕ one has Bx⊗̂κ(x)Bx→̃Bx, where Bx =
B⊗Aκ(x). Since the canonical map from a tensor product of Banach spaces
over a non-Archimedean field to their complete tensor product is injective
(see [Gru, 3.2.1(4)]), it follows that κ(x)→̃Bx. The latter implies that ϕ is
injective and, by [BGR, 7.2.5/2], ϕ is a locally closed immersion.

2. Proof of Theorem 1.1

Recall ([Ber1, Ch. 1]) that the spectrum M(A) of a commutative Banach
ring A is the space of all non-zero bounded multiplicative semi-norms | | :
A → R+. Every point x ∈ M(A), defines a norm on the quotient ring of
A/Ker(| |x) and, therefore, it extends to a norm on its fraction field. The
completion of the latter is denoted by H(x), the character A → H(x) is
denoted by χx, and the image of an element f ∈ A under χx is denoted by
f(x). The space M(A) is provided with the weakest topology with respect
to which all real functions of the form x 7→ |f(x)| with f ∈ A are continuous,
and it is always a non-empty compact space.

In what follows, the k-affinoid variety corresponding to a k-affinoid al-
gebra A will be mentioned by its spectrum X = M(A). The maximal
spectrum X0 = Max(A) coincides with the set of all points x ∈ X with
[H(x) : k] < ∞ (for such a point H(x) = κ(x)), and X0 is dense in X
([Ber1, 2.1.15]). Notice that every point of X has a fundamental system of
neighborhoods consisting of Laurent domains.

Proposition 2.1. Let ϕ : Y → X be a monomorphism of affinoid vari-
eties. Then for every point y ∈ Y with x = ϕ(y) one has ϕ−1(x) = {y} and
H(x)→̃H(y).

Proof. Let X = M(A) and Y = M(B). It suffices to show that the
canonical map H(x) → B⊗̂AH(x) is an isomorphism. By the assumption,
the co-diagonal homomorphism B⊗̂AB → B is an isomorphism. It follows
that its base change BK⊗̂KBK → BK = B⊗̂AK with respect to the homo-
morphism A → K = H(x) is also an isomorphism. The same fact, used
in the proof of Proposition 1.3, implies that the canonical homomorphism
BK⊗KBK → BK⊗̂KBK → BK is injective and, therefore, H(x)→̃B⊗̂AH(x).

For an affinoid algebra A, one sets Ã = A◦/A◦◦, where A◦ = {f ∈
A∣∣ρ(f) ≤ 1}, A◦◦ = {f ∈ A∣∣ρ(f) < 1} and ρ(f) = max{|f(x)|∣∣x ∈ M(A)}
(the spectral seminorm of f), and one denotes by g̃ the image of an element
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g ∈ A◦ in Ã. By [BGR, 6.3.4/3], Ã is a finitely generated k̃-algebra. Every
point x ∈ X = M(A) defines a character χ̃x : Ã → H̃(x) whose kernel is a
prime ideal of Ã, and the correspondence x 7→ Ker(χ̃x) defines a reduction
map π : X → X̃ = Spec(Ã), which is anti-continuous in the sense that the
preimage of an open subset is closed (see [Ber1, §2.4]). It is very easy to
show (see [Ber1, 2.4.3]) that the image of π contains all of the generic points
of irreducible components of X̃. (By [Ber1, 2.4.4], the reduction map is even
surjective.)

Lemma 2.2. Let X ′ = M(A′) be a Laurent subdomain of X = M(A) of
the form X{f, g−1} with f1, . . . , fn, g1, . . . , gm ∈ A. Then

(i) the algebra Ã′ is finite over the subalgebra generated by the elements
f̃1, . . . , f̃n, g̃−1

1 , . . . , g̃−1
m over the image of Ã;

(ii) if X ′ is a neighborhood of a point x ∈ X, then χ̃x(Ã′) is finite over
χ̃x(Ã) (i.e., it is finitely generated as a χ̃x(Ã)-module).

Proof. (i) Consider the surjective homomorphism A{T, S} → A′ that
takes Ti to fi and Sj to g−1

j . By [BGR, 6.3.5/1], it gives rise to a finite
homomorphism Ã[T, S] → Ã′, and the required fact follows.

(ii) We can replace X ′ by a smaller Laurent neighborhood of x which is
represented in the same form but with other elements fi and gj such that
|fi(x)| < 1 and |gj(x)| > 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. In this case the
required fact follows from (i).

We are now ready to prove Theorem 1.1. Let X = M(A) and Y =
M(B). We claim that it suffices to show that, for every point y ∈ Y , there
is a rational domain U which contains the point x = ϕ(y) and such that
V = ϕ−1(U) is a neighborhood of y in Y and the induced morphism V → U

is a closed immersion. Indeed, assume this is true, and let U = X{f
g } for

some f1, . . . , fn, g ∈ A. Since g is invertible on U , we can find a sufficiently
small rational neighborhood W of x in X such that g is invertible on W
and ϕ−1(W ) ⊂ ϕ−1(U). Then U ∩W is a Weierstrass subdomain of W and,
therefore, the induced morphism ϕ−1(W ) → W is a Runge immersion. Since
Y is compact, we can find in this way rational subdomains X1, . . . , Xm of
X such that each morphism ϕ−1(Xi) → Xi is a Runge immersion and X1 ∪
· · ·∪Xm contains an open neighborhood U of ϕ(Y ). Since X is compact, we
can find rational subdomains Xm+1, . . . , Xn which do not intersect ϕ(Y ) and
such that X\U ⊂ ∪n

i=m+1Xi. Then {Xi}1≤i≤n is a finite covering of X by
rational domains and the morphisms ϕ−1(Xi) → Xi are Runge immersions
for all 1 ≤ i ≤ n.

A construction of U as above is done as follows by shrinking X, i.e.,
replacing it by a rational domain X ′ that contains x and such that Y ′ =
ϕ−1(X ′) is a neighborhood of y in Y . (Notice that the induced morphism
Y ′ → X ′ is a base change of ϕ and, therefore, it is also a monomorphism.)
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Step 1. Shrinking X, one may assume that χ̃y(B̃) is finite over χ̃x(Ã).
Indeed, let h1, . . . , hn be elements of B◦ such that χ̃y(B̃) is finite over the
χ̃x(Ã)-subalgebra generated by h̃1, . . . , h̃n. By Proposition 2.1, H(x)→̃H(y)
and, therefore, we can find elements f1, . . . , fn, g ∈ A with |g(x)| = 1 and
|(fi

g − hi)(y)| < 1 for all 1 ≤ i ≤ n. Let X ′ = X{a
g} and Y ′ = ϕ−1(X ′) for

some a ∈ k∗ with |a| < 1. By Lemma 2.2(ii), χ̃y(B̃′) is finite over χ̃y(B̃)
and, therefore, we can replace X and Y by X ′ and Y ′, respectively, and
assume that g is invertible in A. Replacing each fi by fi

g , we may assume
that g = 1. Furthermore, if X ′ = X{f1, . . . , fn}, then Y ′ = ϕ−1(X ′) is a
neighborhood of y and, therefore, we can replace X and Y by X ′ and Y ′,
respectively, and assume that fi ∈ A◦ for all 1 ≤ i ≤ n. But in this case
h̃i = f̃i and, therefore, χ̃y(B̃) is finite over χ̃x(Ã).

Step 2. Shrinking X, one may assume that χ̃y′(B̃) is finite over χ̃x′(Ã)
for all points y′ ∈ Y , where x′ = ϕ(y′). Indeed, if Y denotes the Zariski
closure of the point π(y) in Ỹ , then for every point y′ ∈ Y with π(y′) ∈ Y
one has Ker(χ̃y) ⊂ Ker(χ̃y′) and, therefore, χ̃y′(B̃) is finite over χ̃x′(Ã).
Since the set π−1(Y) is open in Y , we can find a Laurent neighborhood
X ′ = X{f, g−1} of x with Y ′ = ϕ−1(X ′) ⊂ π−1(Y). Let X ′ = M(A′) and
Y ′ = M(B′). Then, for every point y′ ∈ Y ′, χy′(B̃′) is finite over χx′(Ã′).
Indeed, by Lemma 2.2(i), χy′(B̃′) and χx′(Ã′) are finite over the subalgebras
generated by the elements f̃1, . . . , f̃n, g̃−1

1 , . . . , g̃−1
m over χy′(B̃) and χx′(Ã),

respectively. Since χ̃y′(B̃) is finite over χ̃x′(Ã), the required claim follows.

Step 3. In the situation of Step 2 the morphism ϕ is a closed immersion.
Indeed, for every minimal prime ideal ℘ of B̃ there exists a point y′ ∈
Y with Ker(χy′) = ℘ and, by the assumption, B̃/℘ is finite over Ã. If
℘1, . . . , ℘n is the set of minimal prime ideals of B̃, the homomorphism B̃ →
C = ⊕n

i=1B̃/℘i is injective because B̃ has no nilpotent elements. Since Ã is
Noetherian and C is a finite Ã-module, its submodule B̃ is also finite. By
[BGR,6.3.5/1], B is finite over A and, in particular, B ⊗A B→̃B⊗̂AB. Since
ϕ is a monomorphism, it follows that B ⊗A B→̃B, i.e., the finite morphism
of affine schemes Spec(B) → Spec(A) is a monomorphism. Thus, it remains
to prove the following simple fact: given a ring A and a finite A-algebra B
such that B ⊗A B→̃B, the canonical homomorphism A → B is surjective.
Indeed, replacing A by the localization of a prime ideal, we may assume
that A is a local ring. By the Nakayama Lemma, we may replace A by its
quotient by the maximal ideal, and so we may assume that A is a field. In
that case the required fact is trivial.
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3. A Gerritzen-Grauert theorem for affinoid spaces

In this section k is a non-Archimedean field whose valuation is not as-
sumed to be nontrivial, and the class of k-affinoid algebras is that intro-
duced in [Ber1]. Namely, let k{r−1

1 T1, . . . , r
−1
n Tn} be the commutative Ba-

nach k-algebra of convergent power series on the closed polydisc of radii
r1, . . . , rn > 0. (It consists of formal power series f =

∑
ν aνT

ν with
|aν |rν → 0 as |ν| → ∞} and is provided with the norm ||f || = max |aν |rν).
A k-affinoid algebra is a commutative Banach k-algebra A isomorphic to a
quotient Banach algebra of some k{r−1

1 T1, . . . , r
−1
n Tn}. (The algebras which

are affinoid in the usual sense as in §1-2, i.e., for which such a representation
can be found with ri = 1, 1 ≤ i ≤ n, are called strictly k-affinoid.)

The category of k-affinoid spaces k-Aff is, by definition, the category
opposite to that of k-affinoid algebras with bounded homomorphisms be-
tween them. The k-affinoid space corresponding to a k-affinoid algebra A
is mentioned by the spectrum X = M(A). If A is strictly k-affinoid, X is
also called strictly k-affinoid. The full subcategory of the latter is denoted
by st-k-Aff . If the valuation on k is nontrivial, st-k-Aff is equivalent to
the category of k-affinoid varieties (considered in §§1-2).

An affinoid domain in a k-affinoid space X = M(A) is a subset V ⊂ X
such that there is a morphism M(AV ) → X with Im(ϕ) = V and, for
any morphism ψ : M(B) → X with Im(ψ) ⊂ V , there exists a unique
morphism M(B) →M(AV ) whose composition with ϕ is ψ. This definition
is different from that of [Ber1, §2.2] in which instead of the first equality one
only required the inclusion Im(ϕ) ⊂ V but the second condition was required
to hold for K-affinoid algebras B, where K is an arbitrary non-Archimedean
field over k. (The equivalence of both definitions is shown in Corollary 3.2.)
Furthermore, our definition, applied to the category st-k-Aff , gives rise to
the notion of a strictly affinoid domain. If the valuation on k is nontrivial,
the latter is equivalent to the notion of an affinoid domain in the category
of k-affinoid varieties (because the maximal spectrum of a strictly k-affinoid
algebra is dense in its whole spectrum). It follows easily from Theorem 1.1
that any strictly affinoid domain (in a strictly k-affinoid space) is an affinoid
domain (cf. [Ber1, 2.2.3(i)] or the proof of Corollary 3.2).

If V is an affinoid domain in X = M(A), the corresponding morphism ϕ :
M(AV ) → X is called an affinoid domain embedding. It follows immediately
from the definition, that any affinoid domain embedding is a monomorphism.
The proof of Proposition 2.1 is applicable to arbitrary monomorphism of
affinoid spaces and, in particular it gives rise to a bijection M(AV )→̃V ,
which allows us to identify V with the k-affinoid space M(AV ). Notice
also that, if for an affinoid subdomain Y ⊂ X the canonical morphism
Y → X is a closed immersion, then Y is identified with a union of connected
components of X and, in particular, Y is a Weierstrass domain in X (see
the following paragraph).
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The classes of rational, Weierstrass and Laurent affinoid domains in a k-
affinoid space X = M(A) are broader than those considered in §1. Namely,
a rational domain is the set X{p−1 f

g } = {x ∈ X
∣∣|fi(x)| ≤ pi|g(x)|} associ-

ated to elements f1, . . . , fn, g ∈ A without common zeros in X and a tuple
of positive numbers p = (p1, . . . , pn) (it corresponds to the homomorphism
A → A{p−1 f

g } = A{p−1
1 T1, . . . , p

−1
n Tn}/(gTi − fi)). If g = 1, the affinoid

subdomain is called Weierstrass and denoted by X{p−1f}. Also, a Laurent
domain is the set X{p−1f, qg−1} = {x ∈ X

∣∣|fi(x)| ≤ pi, |gj(x)| ≥ qj} asso-
ciated to tuples f = (f1, . . . , fn) and g = (g1, . . . , gm) of elements of A and
tuples of positive numbers p = (p1, . . . , pn) and q = (q1, . . . , qm). It is easy
to see that every point of X has a fundamental system of neighborhoods
formed by Laurent domains. Finally, a Runge immersion is defined in the
same way as in §1, namely, as a composition of a closed immersion with a
Weierstrass domain embedding. The definition of a locally closed immer-
sion is not applicable in the general case, and we work with monomorphisms
instead.

Theorem 3.1. Let ϕ : Y → X be a monomorphism of affinoid spaces.
Then there is a finite covering of X by rational subdomains Xi such that all
of the morphisms ϕi : ϕ−1(Xi) → Xi are Runge immersions.

The proof follows the proof of Theorem 1.1 word for word with the only
modification that instead of the reduction Ã of a strictly k-affinoid algebra A
one uses the reduction Ãgr of an arbitrary k-affinoid algebra A as introduced
in [Tem]. Recall that Ãgr is the R∗

+-graded algebra ⊕Ã◦r/Ã◦◦r , where Ã◦r =
{f ∈ A∣∣ρ(f) ≤ r} and Ã◦◦r = {f ∈ A∣∣ρ(f) < r}. (Notice that the usual
reduction Ã coincides with Ã1.) One shows in [Tem,§3] that Ãgr is a finitely
generated graded k̃gr-algebra, and a bounded homomorphism of k-affinoid
algebras A → B is finite if and only if the homomorphism Ãgr → B̃gr is
finite. Furthermore, one denotes by X̃gr the graded spectrum of Ãgr, i.e.,
the space of all homogeneous ideals ℘ with the property that, if ab ∈ ℘
for homogeneous elements a and b, then one of them is contained in ℘.
Every point x ∈ X defines a graded character χ̃x : Ãgr → H̃(x)gr, and
the correspondence x 7→ Ker(χ̃x) defines a surjective anti-continuous map
π : X → X̃gr. The formulation and proof of Lemma 2.2 take place with the
reduction map A → Ãgr : f 7→ f̃ , where f̃ is the image of f in Ã◦r/Ã◦◦r with
r = ρ(f), and the remaining part of the proof of Theorem 1.1 works in the
general situation without any changes.

Theorem 3.1 straightforwardly implies that any affinoid domain in an
affinoid space is a finite union of rational domains.

3.2. Corollary. A subset Y of a k-affinoid space X is an affinoid domain
in the sense of [Ber1, §2.2] if and only if it is an affinoid domain (in the sense
of the above definition).
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Proof. The direct implication is trivial. Assume that Y is an affinoid
domain, and let X = M(A) and Y = M(B). We have to show that any
bounded homomorphism A → C, such that the image of Z = M(C) in X
is contained in Y with C a K-affinoid algebra for a non-Archimedean field
K over k, can be extended in a unique way to a bounded homomorphism
B → C. This is obviously true if Y is a rational domain. In the general
case, we take a finite covering of Y by rational subdomains Yi = M(Bi)
of X and use the exact admissible sequences 0 → B → ∏

i Bi →
∏

i,j Bi,j

and 0 → C → ∏
i Ci →

∏
i,j Ci,j provided by the Tate acyclicity theorem

for rational coverings, where Ci and Ci,j are the K-affinoid algebras of the
preimages of Yi and Yi ∩ Yj in Z, respectively.
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