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DESINGULARIZATION OF QUASI-EXCELLENT SCHEMES IN

CHARACTERISTIC ZERO

MICHAEL TEMKIN

Abstract. Grothendieck proved in EGA IV that if any integral scheme of fi-
nite type over a locally noetherian scheme X admits a desingularization, then
X is quasi-excellent, and conjectured that the converse is probably true. We
prove this conjecture for noetherian schemes of characteristic zero. Namely,
starting with the resolution of singularities for algebraic varieties of character-
istic zero, we prove the resolution of singularities for noetherian quasi-excellent
Q-schemes.

1. Introduction

For a noetherian scheme X , let Xreg denote the regular locus of X . The scheme
X is said to admit a resolution of singularities if there exists a blow-up X ′ →
X with center disjoint from Xreg and regular X ′. More generally, for a closed
subscheme Z ⊂ X , let (X, Z)reg denote the set of points x ∈ Xreg such that
etale-locally Z is the zero locus of an element tn1

1 · · · · · t
nd

d , where t1, . . . , td is a
regular system of parameters. (For example, (X, ∅)reg = Xreg, and (X, Z)reg = X
for any regular X with a normal crossing divisor Z.) A strict desingularization
(resp. a desingularization) of a pair (X, Z) is a blow-up f : X ′ → X with center
disjoint from (X, Z)reg (resp. from Xreg ∩Zreg and Xreg \Z) and (X ′, Z ′)reg = X ′,
where Z ′ = Z ×X X ′. If, in addition, f is a succession of blow-ups with regular
centers, it is said to be a successive desingularization. The scheme X is said to
admit an embedded (resp. successive embedded) resolution of singularities if, for
any closed subscheme Z ⊂ X , the pair (X, Z) admits a desingularization (resp.
successive desingularization). We remark that usually one does not study strict
desingularizations, but it seems to be a natural extra-condition.

In his celebrated paper [19] published in 1964, Hironaka proved that any integral
scheme of finite type over a local quasi-excellent ring of residue characteristic zero
admits a successive embedded resolution of singularities. Recall that a noetherian
ring A is said to be quasi-excellent if for any prime ideal ℘ ⊂ A the canonical

homomorphism A℘ → Â℘ is regular, and for any finitely generated A-algebra B
Spec(B)reg is open in Spec(B). (Excellent rings are those which, in addition to the
above two properties, are universally catenary.)

Key words and phrases. Resolution, singularities, quasi-excellent, desingularization.
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2 MICHAEL TEMKIN

The result of Hironaka is extremely important and has many applications, but
its proof is very difficult and long. It is therefore very natural that mathematicians
are still trying to understand and simplify the proof. Simplified proofs of successive
embedded resolution of singularities for integral schemes of finite type over a field
of characteristic zero were first given by Villamayor in [28] and Bierstone-Milman
in [10]. In addition, their desingularization is functorial with respect to smooth
morphisms (and strictness of the desingularization can also be obtained via an
additional argument communicated to the author by Bierstone and Milman, see
theorem 2.2.11). The works of Villamayor and Bierstone-Milman in their turn
served as a basis for a new generation of proofs, see, for example, [29], [21], [17].

On the other hand, Grothendieck proved in [16, 7.9.5] that if X is a locally noe-
therian scheme such that every integral scheme of finite type over X admits a reso-
lution of singularities, then X is quasi-excellent (i.e. it has a covering by open affine
subschemes which are spectra of quasi-excellent rings). Furthermore, in [16, 7.9.6]
he conjectured that the converse implication is also true, and claimed that Hiron-
aka’s proof gives also resolution of singularities for arbitrary quasi-excellent schemes
with residue fields of characteristic zero, but, as far as we know, Grothendieck’s
claim was never checked in published literature.

The purpose of the paper is to show that the existence of embedded resolution
of singularities over any quasi-excellent scheme with residue fields of characteristic
zero follows from the corresponding fact for integral schemes of finite type over
fields of characteristic zero. Together with the papers cited above, this gives a
simplified proof of resolution of singularities for arbitrary quasi-excellent schemes
with residue fields of characteristic zero.

In comparison with Hironaka’s results, we do not treat successive embedded
desingularization, although hope that this can be done using methods of this paper.
On the other hand, we show that Hironaka’s theorem for integral schemes of finite
type over a local quasi-excellent ring implies the result stated in Grothendieck’s
claim rather easily, see Proposition 2.3.4 and Theorem 2.3.6.

1.1. Overview of the paper. The following theorem is the main result of this
paper. We will deduce it from [10], and explain in the appendix how other works can
be used instead. Unfortunately, we cannot prove the general strict desingularization
(the bottleneck being proposition 4.2.1, see remark 4.2.2), so we weaken it as follows:
a desingularization f : X ′ → X of a pair (X, Z) is semi-strict if the center of f
is disjoint from the subset of (X, Z)reg in which the irreducible components of Z
have no self-intersections (it is the strictly monomial locus of Z in X in the sense
of definition 2.2.1, and it is denoted (X, Z)sreg in the paper starting with definition
2.2.3).

Theorem 1.1. Let X be a noetherian scheme of characteristic zero, then the fol-
lowing conditions are equivalent:

(i) X is quasi-excellent;
(ii) any integral scheme of finite type over X admits a desingularization;
(iii) any integral scheme of finite type over X admits a semi-strict embedded

resolution of singularities.

Since (iii) is obviously stronger than (ii), and the implication (ii)⇒(i) is due to
Grothendieck, the theorem is equivalent to proving that any integral quasi-excellent
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scheme admits semi-strict embedded resolution of singularities. Now, let us give a
more detailed description of the paper.

We study basic properties of blow ups and desingularizations in §2, and the main
result is proposition 2.3.4 which states that there is resolution of singularities over
a noetherian quasi-excellent scheme k if and only if any scheme Y isomorphic to
a blow up of a local k-scheme of essentially finite type admits a desingularization.
Thus, up to a not so difficult proposition 2.3.4, Hironaka’s theorem implies that
any noetherian quasi-excellent scheme admits a desingularization. In particular, we
obtain the equivalence of (i) and (ii) in the main theorem.

The direct implication in 2.3.4 is straightforward, and the opposite one is proved
by a simple argument which is used few more times in the paper. Therefore we
outline it here, assuming for simplicity that Z is empty. Consider a scheme X with
a subset S ⊂ X , and let X ′ → X be a blow up. Let us say that f desingularizes
X over S if f−1(S) ⊂ X ′

reg. We start with the identity morphism IdX which
desingularizes X over S0 = Xreg and construct a desingularization of X using
noetherian induction. The induction step is as follows: we start with a blow up
X ′ → X desingularizing X over an open set S ⊂ X , choose a maximal (or generic)
point x of the complement of S and note that by our assumptions, the scheme X ′

x =
Spec(OX,x) ×X X ′ (which is a blow up of Spec(OX,x)) admits a desingularization
f ′

x : X ′′
x → X ′

x. Then we extend f ′
x to a blow up f ′ : X ′′ → X ′ trivial over f−1(S)

and note that the composition f ◦ f ′ : X ′′ → X desingularizes X over an open
set S′ containing S and x. Note that the extension f ′ of f ′

x can be extremely bad
above proper specializations of x; in particular, the resulting desingularization can
be not successive even when f ′

x is a successive one.
§2 is organized as follows. In §2.1, we study extensions of ideals and blow ups,

and introduce formal blow ups. In the next section, we fix our desingularization
terminology, and we prove proposition 2.3.4 in §2.3.

In §3, we prove the equivalence (i)⇔(ii) once again, but this time using only
desingularization of integral schemes of finite type over a field of characteristic
zero. The main idea is as follows: one can construct a desingularization of a
quasi-excellent scheme X from the desingularization of its completion X along the
singular locus, and if the latter is algebraizable, i.e. is isomorphic to a completion of
a scheme X of finite type over a field, then it suffices to know how to desingularize
X . For example, one can desingularize isolated singularities because any complete
local ring with an isolated singularity is algebraizable due to Artin, see [1, 3.8].
The results of Artin were generalized by Elkik in [18], in particular, she proved
that any affine rig-smooth formal scheme of finite type over a complete ring with
a principal ideal of definition is algebraizable. Since rig-smoothness is equivalent
to rig-regularity in the characteristic zero case, Elkik’s results can be applied to
desingularize an affine quasi-excellent scheme X whose singular locus Xsing is of
finite type over a field of characteristic zero. The case of an arbitrary X is obtained
from this one by using a noetherian induction argument similarly to the proof of
proposition 2.3.4.
§3 is structured as follows. We introduce quasi-excellent formal schemes in §3.1

and define for them notions of regularity, reducedness, etc. In next section we
introduce an important class of special formal schemes which are quasi-excellent by
results of Valabrega. Then, in §3.3, we deduce from Elkik’s theorem that certain rig-
smooth special formal schemes are algebraizable, see proposition 3.3.1. It is known
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that our proposition is a form of Elkik’s theorem, but we prefer to prove it because
of lack of reference. Finally, in §3.4, we use proposition 3.3.1 to desingularize
certain rig-smooth special formal schemes, see theorem 3.4.1. Desingularization of
quasi-excellent schemes follows easily.

We cannot treat embedded desingularization in §3 because Elkik’s theorem al-
gebraizes certain formal schemes, but not pairs consisting of a formal scheme and a
divisor. Although the author expects that one can algebraize certain rig-monomial
divisors (thus generalizing Elkik’s theorem), this question is not studied in the pa-
per. We prove proposition 4.2.1 instead, and use it to monomialize strict transform
of a divisor. Combining this proposition with the results of §3, we are able to
prove theorem 1.1 in general. At the end of §4 we desingularize formal rig-regular
schemes, see theorem 4.3.3.

The paper contains an appendix where we study a connection between semi-
strict embedded desingularization and standard desingularization results in which
the entire set (X, Z)sing ∪Zsing can be modified (for example, it happens when one
applies Main Theorem II of [19]). We prove in the appendix that one can deduce
semi-strict embedded desingularization from Main Theorem II of Hironaka or its
analogs.

1.2. Terminology and notation. If X is a scheme with a closed subscheme Z,
then |Z| denotes the support of Z, i.e. the underlying set of Z considered as a
closed subset of X . The support Supp(I) of an ideal I ⊂ OX is the support
of the associated closed subscheme Z = Spec(OX/I). We will pass freely from
reduced closed subschemes to closed subsets and vice versa, but we will use different
notation: we write Z ⊂ Z ′, Z ∩ Z ′, Z \ Z ′ = Z − (Z ∩ Z ′) and f−1(Z) (where
f : X ′ → X is a morphism) when working with subsets, and we write Z →֒ Z ′,
Z×X Z ′ and Z×X X ′ when working with subschemes. By Xc, X≤c, etc., we denote
the sets of points of codimension c, of codimension at most c, etc. In particular,
X0 is the set of maximal points of X .

Recall that a noetherian ring A is called quasi-excellent if for any prime ideal

p ⊂ A, the completion morphism φ : Ap → Âp is regular (i.e. φ is flat and
has geometrically regular fibers) and for any finitely generated A-algebra B, the
regular locus of Spec(B) is open. A universally catenary quasi-excellent ring is
called excellent. A scheme X is called (quasi-) excellent if it admits an open covering
by spectra of (quasi-) excellent rings.

If A is a ring with an ideal P and an A-ring B, then by P -adic completion B̂P of
B we mean the separated completion of B in (PB)-adic topology. We say that B

is P -adic if B→̃B̂P . Similarly, if X ′ → X is a morphism of schemes and I ⊂ OX is

an ideal, then X̂ ′
I denotes the I-adic completion of X ′, i.e. the formal completion

of X ′ along Spec(OX′/IOX′).
We refer to [14, §1.10] for basic properties of formal schemes. Any formal scheme

appearing in this paper is automatically assumed to be locally noetherian. More-
over, if not said to the contrary, it is assumed to be noetherian. Given a locally
noetherian formal scheme X, its closed fiber Xs is defined as Spec(OX/P), where
P is the biggest ideal of definition. Recall that Xs is a reduced closed (formal)
subscheme of X, homeomorphic to it as a topological space. If X is a formal scheme
of finite type over a complete discrete valuation ring, then one can attach to X a
generic fiber Xrig

η (resp. Xan
η , resp. Xad

η ), which is a rigid (resp. analytic, resp. adic)
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space, see [6, Ch. 9] (resp. [2], resp. [20]). Only minimal familiarity with classical
rigid spaces is required in this paper. The author expects, however, that analytic
or adic spaces can be useful in attacking question 3.3.3. Note also that adic and
generalized rigid generic fibers are defined for arbitrary noetherian formal schemes,
see [20] or [7, §5].

2. Blow ups and desingularization

In this section, we establish some properties of blow ups of schemes and for-
mal schemes which will be used later. The main result is proposition 2.3.4 which
localizes the desingularization problem by reducing desingularization of a general
scheme to desingularization of blow ups of local schemes.

2.1. Ideals and blow ups. Let us consider the following situation which is a
particular case of the situation considered in [16, 8.2.13]. Assume that X is a
noetherian scheme and Sα is a filtered family of open subschemes such that the
transition morphisms Sβ → Sα are affine. Then there exists an X-scheme S =
proj limα Sα, the structure morphism i : S → X maps S homeomorphically onto
its image, and OS is isomorphic to the restriction of OX on i(S). It follows that
S is noetherian too. We will identify S with (i(S),OX |i(S)) and say that it is a
pro-open pro-subscheme of X . A typical example is obtained when Sα are affine
neighborhoods of a point x; then S→̃Spec(Ox). Another example is obtained from
this one by base change with respect to a morphism X ′ → X .

Lemma 2.1.1. Keep the above notation and assume that we are given an ideal
IS ⊂ OS. Let ZS denote the support of IS and Z be its Zariski closure in X. Then
there exists an ideal I ⊂ OX such that I|S = IS and the support of I is Z.

Proof. Since S is noetherian, there is a one-to-one correspondence between ideals
in OS , closed subschemes of S and closed subschemes of finite presentation. For
a scheme Y , let S(Y ) denote the set of closed subschemes of Y . Note that
inj limα S(Sα)→̃S(S) by [16, 8.6.3], and the map S(X) → S(S) is surjective
because the map S(X) → S(Sα) is surjective for any α by [14, 6.9.7]. Hence
IS = I ′|S for some I ′ ⊂ OX , and the first claim of the lemma is satisfied.

Let Z ′ be the support of I ′, then its intersection with S coincides with ZS, and
ZS is closed under generalizations in Z ′ because S is closed under generalizations
in X . It follows that the set Z ′0 of maximal points of Z ′ is a union of Z0

S and
a finite set Z ′′0 disjoint from ZS . Hence Z ′ = Z ∪ Z ′′, where Z ′′ is a closed set
disjoint from S. To finish the proof, we have to ”correct” I ′ over Z ′′. Note that
U := X \Z ′′ is a neighborhood of S, and the support of I ′|U coincides with Z ∩U .
Since Z ∩U = Z− (Z ∩Z ′′) is closed in Y := X− (Z ∩Z ′′), we can trivially extend
I ′|U to an ideal IY ⊂ OY on Y . Indeed, the sheaves of ideals I ′|U and OY \Z

on the open subschemes U and Y \ Z, respectively, agree over the intersection
U ∩ (Y \ Z) = U \ Z, hence they glue to an ideal IY on U ∪ (Y \ Z) = Y . Finally,
let I be any extension of IY to X (it exists by [14, 6.9.7]), then the support of I is
contained in (Z ∩ U) ∪ (Z ∩ Z ′′) = Z, as required. �

Next we discuss sheaves of ideals on a noetherian formal scheme X. Let I ⊂ OX

be an ideal with the associated closed formal subscheme Z. It is not clear how to
define the reduction of Z in general, so we are forced to give the following definition.
Given two ideals I, J, we say that the support of I is contained in the support of
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J if Jn ⊂ I for some n. We will not use the following side remark in our proofs,
though it will be mentioned in few more side remarks.

Remark 2.1.2. If one takes into account the generic fiber Xad
η , then one obtains

a reasonable set-theoretical description of support of an ideal on a formal scheme.
Indeed, if I is an ideal such that the corresponding closed subscheme Z is reduced,
then I is uniquely determined by its adic support |Zad| = |Z| ⊔ |Zad

η | ⊂ |X
ad|

(combining the usual support with the ”generic” one). Note that |Z| itself is far
too small to determine I.

In general, one cannot extend to X an ideal defined on an open formal subscheme,

and one cannot algebraize an ideal on the formal completion X = X̂Z of a scheme
X along a closed subscheme Z. The situation with open ideals is better. Any open
ideal I defines a closed formal subscheme Z = Spf(OX/I) which is a scheme (i.e.
its ideal of definition is nilpotent) supported on Xs. Actually, if P is an ideal of
definition, then Z is a closed subscheme of some Spec(X/Pn). In particular, we

can and do define the support of I as a closed subset of X. If X = X̂Z , then the
completion induces a bijective correspondence between ideals I ⊂ OX supported
on |Z| and open ideals I ⊂ OX. In other words, open ideals are algebraizable.

Lemma 2.1.3. Let X be a noetherian formal scheme with an open formal sub-
scheme Y and a closed subset Z ⊂ X. Then any open ideal I ⊂ OY with support
in Z ∩Y extends to an open ideal J ⊂ OX with support in Z.

Proof. Consider the open formal subscheme Y′ = Y ∪ (X \ Z). The ideal I can be
extended trivially to an open ideal I′ ⊂ OY′ (as in the proof of lemma 2.1.1, we
use that the support of I is closed in Y′ to glue I′ from I and OY′\Z). Now it
suffices to find an arbitrary extension of I′ to an open ideal J ⊂ OX. Choose an
ideal of definition P ⊂ OX such that P′ = P|Y′ is contained in I′, and consider
the schemes X = (Xs,OX/P), Y ′ = (Y′

s,OY′/P′) and the ideal I ′ = I′OY ′ . Then
I ′ extends to an ideal J ⊂ OX by [14, 6.9.7], and the preimage J ⊂ OX of J is a
required extension of I′. �

Next, we recall basic facts about blow ups, see [11, §1], for more details. If
X is a scheme with a finitely generated ideal I ⊂ OX , then the X-scheme X ′ =
Proj(OX ⊕ I ⊕ I2 ⊕ . . . ) is X-projective and the structure morphism X ′ → X is
an isomorphism over X \ Supp(I). The pair (X ′, I) is called the blow up of X
along I and is denoted BlI(X). The ideal IOX′ is invertible and X ′ is the final
object in the category of X-schemes such that the preimage of I is invertible. The
construction of blow ups commutes with localizations (and, more generally, with
flat base changes). If X = Spec(A) and I = I(X) ⊂ A, then X ′ is glued from
schemes X ′

g = Spec(A[ I
g ]) with g ∈ I, where A[ I

g ] is the subring of Ag generated

by I
g . Usually the schemes X ′

g are called charts of the blow up.

As usual, we will omit the ideal in the notation of a blow up, and say simply
”a blow up f : X ′ → X”, or even ”a blow up X ′ of X”, however, we will take
the ideal into account in definitions of V -admissibility and strict transforms. Note
that the X-scheme X ′ = BlI(X) can be obtained by blowing up other ideals, for
example BlIn(X)→̃BlI(X) for any n > 0. Sometimes we will say that X ′ is a blow
up of X along Y = Spec(OX/I), and Y is the center of the blow up, and write
X ′ = BlY (X). For any open subscheme V , the blow up f : X ′ → X is called
V -admissible if its center is disjoint from V . Sometimes it will be more convenient
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to express the same property in terms of the complementary closed set, so we say
that f is T -supported for a closed subscheme (or subset) T →֒ X if |Y | ⊂ |T | (i.e.
f is (X \ T )-admissible). More generally, given a morphism g : X → S, a closed
subscheme R →֒ S and an open subscheme U = S\R, we say that f is U -admissible
(or R-supported) if f is g−1(U)-admissible. We will make an intensive use of the
following well known result. A simple and natural proof of this fact given in [24,
5.1.4] is incomplete, and we refer to [11, 1.2] for a surprisingly involved full proof
due to Raynaud.

Lemma 2.1.4. If X is coherent (i.e. quasi-compact and quasi-separated), V →֒ X
is open and T = X \ V , then a composition of V -admissible (or T -supported) blow
ups is a V -admissible (or T -supported) blow up.

If V is an open subscheme of X such that a blow up f : X ′ → X is an isomor-
phism over V , then it still can happen that f is not isomorphic to a V -admissible
blow up. For example, it is the case when X = Spec(k[x, y, z, t]/(xy−zt)), V = Xreg

is the complement of the origin s and I = (x, y) defines a Weil divisor which is not
Cartier. Then X ′ = BlI(X) is a small resolution of X , and it cannot be obtained by
blowing up an ideal supported on s because the preimage of s is not a divisor, but
a curve. Nevertheless, X ′ is dominated by a V -admissible blow up. More generally,
we will need the following lemma.

Lemma 2.1.5. Let X be a coherent scheme with a schematically dense open sub-
scheme U and f : X ′ → X be a U -modification, i.e. a proper morphism such that
f−1(U) is schematically dense in X ′ and is X-isomorphic to U . Then there exists
a U -admissible blow up X ′′ → X which factors through X ′.

Proof. Apply the flattening theorem of Raynaud and Gruson, see [24, 5.2.2], to the
morphism f : X ′ → X and the sheaf OX′ (we set S = X , X = X ′ and M = OX′

in the loc.cit.). By the theorem, there exists a U -admissible blow up X → X such

that the following condition holds: let f : X
′
→ X denote the base change of f and

F denote the strict transform of OX′ , then F is OX -flat.

Note that U is a schematically dense open subscheme of X, X ′ and X , and let X ′′

be the schematic closure of the image of U under the diagonal morphism U → X
′
.

Then X ′′ is the minimal U -modification of X which dominates both X ′ and X, and
OX′′ is isomorphic to the quotient of OX

′ by the maximal submodule supported on

the preimage of X \ U , i.e. OX′′→̃F . Thus, g : X ′′ → X is a flat U -modification,
and we will prove that it is an isomorphism. It will follow then that X ′′ is a required
U -admissible blow up which dominates X ′.

To check that g is an isomorphism we may work locally on X, so assume that
X = Spec(A). Since g is flat and an isomorphism over U , the fibers of g are discrete,
i.e. g is quasi-finite. Since g is proper, it is finite, and therefore X ′′ = Spec(B).
By flatness of g, g∗(OX′′) is a locally free OX -sheaf. The rank of g∗(OX′′) is 1 at

any point of X because it is so on a dense subscheme U . We obtain that B = hA
for an element h ∈ B, hence 1 = ha for some a ∈ A. Moreover, a is invertible in A
because the map X ′′ → X is surjective, and we obtain that B = A as claimed. �

Let X be a noetherian formal scheme and I ⊂ OX be an ideal. If I is open,
then a notion of admissible formal blow up along I is defined in [7, §2]. Our last
goal in this section is to introduce formal blow ups along arbitrary ideals and study
their basic properties (in the case of an open ideal our definition is slightly different
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because we do not restrict to admissible formal schemes). However, blow ups along
not open ideals will appear in the last section of the paper, and until then the results
of [7, §2] cover our needs, so the reader can consult loc.cit. instead of reading the
rest of this section.

Remark 2.1.6. Arbitrary formal blow ups (generalizing admissible formal blow
ups) were defined independently by J. Nicaise. In a recent work [23] on a trace
formula and motivic integration, he establishes some basic properties of formal
blow ups, including our lemma 2.1.8 below (see Proposition 2.16 in loc.cit).

Assume that X = Spf(A) is affine, and let I ⊂ A be the ideal corresponding to

I and P ⊂ A be an ideal of definition. We define the formal blow up X′ = B̂lI(A)
of X along I as the P -adic completion of X ′ = BlI(Spec(A)). Since X ′ is glued
from affine charts X ′

g = Spec(A[ I
g ]) with g ∈ I, its completion is glued from affine

formal schemes X′
g = Spf(A{ I

g }), where A{ I
g } is the P -adic completion of A[ I

g ].

Let us give an explicit description of A{ I
g}. First, we note that the homomorphism

A{ I
g } → A{g} can be not injective (for example, the target is zero when P ⊂ (g)),

so it is of no use for us. From other side, it is well known that if I = (f1, . . . , fn),
then A[ I

g ] can be described as the quotient of the ring A′ = A[T1, . . . , Tn]/(gT1 −

f1, . . . , gTn − fn) by its g-torsion. Note that the completion of A′ if isomorphic

to Â′ = A{T1, . . . , Tn}/(gT1 − f1, . . . , gTn − fn). Since A[ I
g ] is noetherian, its

completion A{ I
g } is flat over it, and, in particular, A{ I

g } has no g-torsion. It

follows that A{ I
g} is isomorphic to the quotient of Â′ by its g-torsion.

Lemma 2.1.7. Let A be a noetherian ring with ideals I and P , and Â be the P -adic
completion of A. Then the P -adic completion of BlI(A) is canonically isomorphic

to B̂lI bA(Â).

Proof. Let f1, . . . , fn be generators of I and g ∈ I be an element. We have to prove

that the P -adic completion of A[ I
g ] is canonically isomorphic to Â{ I

g}. Obviously,

the P -adic completion of A′ = A[T1, . . . , Tn]/(gT1− f1, . . . , gTn− fn) is isomorphic

to Â′ = Â{T1, . . . , Tn}/(gT1− f1, . . . , gTn− fn). By the same flatness argument as

above, the P -adic completion of A′/(g)-torsion is isomorphic to Â′/(g)-torsion. �

If f ∈ A is an element, then B̂lIA{f}
(X{f}) is isomorphic to the completion

of BlIAf
(Af ). Since usual blow ups are compatible with localizations, the latter

is isomorphic to the completion of (BlI(A))f , which in its turn is isomorphic to

(B̂lI(X)){f}. We see that formal blow ups of affine formal schemes are compatible
with formal localizations, and it follows, in particular, that for any locally noether-

ian formal scheme X with ideal I ⊂ OX, one can define the formal blow up B̂lI(X)
by gluing formal blow ups of open affine formal subschemes of X. We say that a

formal blow up X ′ = B̂lI(X)→ X is J-supported if the support of I is contained in
the support of J. Furthermore, if I is open, then its support lies in a closed subset
T ⊂ Xs, and we say then that X ′ is T -supported.

Lemma 2.1.8. Let X be a noetherian scheme with two ideals I,P ⊂ OX , X be the
P-adic completion of X and I = IOX. Then the P-adic completion of BlI(X) is

canonically isomorphic to B̂lI(X).
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Proof. Both formal completion and blow up along a closed subscheme are defined
locally on X , so it suffice to consider the affine case, which was established in the
previous lemma. �

Let X be a noetherian formal scheme with a closed formal subscheme T. If T

is a scheme, then Raynaud proved that a composition of T-supported formal blow
ups is isomorphic to a T-supported formal blow up, see [7, 2.5]. The same is true
for general formal blow ups. Let I ⊂ OX be a T-supported ideal with formal blow

up f̂ : X′ = B̂lI(X) → X and J ⊂ OX′ be a T ×X X′-supported ideal with formal

blow up f̂ ′ : X′′ = B̂lJ(X′)→ X′.

Lemma 2.1.9. Keep the above notation, then X′′ is X-isomorphic to a T-supported
blow up.

Proof. Set I′ = IOX′ . Let m, n be natural numbers, then (f̂∗(I
′nJ))m is an ideal

in the OX-algebra f̂∗(OX′) and its preimage in OX is an ideal L (depending on m
and n). We will prove that X′′ → X is isomorphic to the blow up of X along LI for
n > n0 and m > m0(n).

The latter statement can be checked locally on X because X is quasi-compact.
So, we can assume that X = Spf(A) for a P -adic ring A. Let I ⊂ A denote the
ideal corresponding to I, X = Spec(A), X ′ = BlI(X) and f : X ′ → X be the blow
up morphism. Since X ′ is X-proper and X′ is isomorphic to the P -adic completion
of X, we can apply Grothendieck’s existence theorem, see [15], theorem 5.1.4 and
corollary 5.1.8, to find an algebraization J ⊂ OX′ of J. Set T = Spec(A/m), where
m is such that T = Spf(A/m), then I is supported on T and J is supported on
the preimage of T in X ′. By lemma 2.1.4, X ′′ = BlJ (X ′) is X-isomorphic to a
T -supported blow up of X . Since X′′ is isomorphic to the P -adic completion of X ′′,
we already obtain that X′′ is isomorphic to a T-supported blow up of X. However,
as we mentioned above, we have to describe the blow up explicitly, and this will
require a closer look on the proof of [11, 1.2].

Set I ′ = IOX′ . The proof in loc.cit. starts with an observation that for suffi-
ciently large n and ideal M = I ′nJ , the map f∗f∗(M) →M is surjective. Then
a sufficiently large submodule K ⊂ f∗(M) of finite type is chosen (X can be non-
noetherian in loc.cit.). Since f∗(M) is coherent in our situation, one can actually
choose K = f∗(M). Finally, one defines L ⊂ OX in loc.cit. as the preimage of Km

under the homomorphism OX → f∗(OX′), and proves that for sufficiently large m,
X ′′→̃BlIL(X).

By lemma 2.1.8, X′′→̃B̂lIL(X), so we have only to prove that L = L (as an ideal

in A). Note that f̂∗(OX′) is isomorphic to the P -adic completion of f∗(OX′) by
Grothendieck’s theorem on formal functions, see [15, 4.1.5], but f∗(OX′) coincides

with its completion because it is a finite A-algebra. By the same argument, f̂∗(I
′nJ)

and f∗(I ′nJ ) define the same ideal in f∗(OX′), and therefore L = L. �

2.2. Desingularization of a pair. Let X be a locally noetherian scheme and Z
be a closed subscheme. We say that Z is a Cartier divisor if it is locally given by
a single regular element, i.e. for any point z ∈ Z, there exists a not zero divisor
fz ∈ OX,z with OX,z/fzOX,z→̃OZ,z . This condition is equivalent to requiring that
the ideal I ⊂ OX defining Z is invertible.

Definition 2.2.1. We say that Z is a strictly monomial divisor if X is regular in
a neighborhood of Z and for any point x ∈ Z there exists a regular sequence of
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parameters u1, . . . , ud ∈ OX,x such that Z is given by an equation
∏d

i=1 uni

i = 0
locally at x (ni’s are natural numbers). More generally, we say that Z is a monomial
divisor if etale-locally it is a strictly monomial divisor.

Note that if each exponent ni is either 1 or 0 in the above definition, then one
obtains the usual definition of (strictly) normal crossing divisor. So, a reduced
(strictly) monomial divisor is the same as a (strictly) normal crossing divisor. Fur-
thermore, the following result holds.

Lemma 2.2.2. Assume that X is a regular scheme and Z is a closed subscheme,
then Z is a (strictly) monomial divisor if and only if Z is a Cartier divisor and the
reduction of Z is a (strictly) normal crossing divisor in X.

Proof. Assume that Z is a Cartier divisor at x given by an element f ∈ OX,x. Since

the regular ring OX,x is factorial, f =
∏d

i=1 fni

i where each fi defines an irreducible

component of the reduction of Z. Thus the reduction of Z is defined by
∏d

i=1 fi

and then it is obvious that Z is (strictly) monomial if and only if its reduction is
(strictly) normal crossing. �

Definition 2.2.3. (i) Let X and Z be as in the previous definition. The regular
locus (X, Z)reg of the pair (X, Z) is the set of points x ∈ X such that OX,x is a
regular ring and Z×X Spec(OX,x) is a monomial divisor. The singular locus of the
pair (X, Z) is defined as (X, Z)sing = X \ (X, Z)reg.

(ii) The strictly regular locus (X, Z)sreg is defined similarly, but with Z ×X

Spec(OX,x) being strictly monomial; its complement will be denoted (X, Z)ssing

(one could call it the semi-singular locus, but we prefer not to multiply entities
beyond necessity).

(iii) If Z is a closed subset, then we set (X, Z)sing = (X,Z)sing and (X, Z)ssing =
(X,Z)ssing, where Z is the reduced closed subscheme corresponding to Z.

We remark that if Z ′ ⊆ Z are two Cartier divisors in X then (X, Z ′)sing ⊆
(X, Z)sing, but such inclusion is false for general closed subschemes or (even) subsets
Z ′ ⊂ Z.

Lemma 2.2.4. If X is a quasi-excellent scheme with a closed subscheme Z, then
(X, Z)reg is open. If, furthermore, X is integral and Z 6= X, then (X, Z)sreg is
non-empty.

Proof. We assume that X is integral and Z 6= X , the general case is proved similarly.
We may replace X with any neighborhood X ′ of (X, Z)reg because (X ′, Z ×X

X ′)reg = (X, Z)reg (we identify X ′ with a subset of X). So, first of all, replace X
with Xreg. Next, removing from X all embedded components of Z and irreducible
components of Z of codimension larger than 1 (these components lie in (X, Z)sing),
we achieve that Z is a Cartier divisor. By the previous lemma, we can now replace
Z with its reduction.

It now suffices to show that if Z is normal crossing at x, then it is normal crossing
in a neighborhood of x. Let us first assume that Z is snc at x (as usually, snc stands
for strictly normal crossing), and Z1, . . . , Zm are the irreducible components of Z
containing x. Then, the scheme-theoretic intersection T = ∩m

i=1Zi is regular at x
and has codimension m, hence x possesses a neighborhood U such that Z1, . . . , Zm

are the only components of Z which intersect U and T ∩ U is regular and has
codimension m. It is well known that Z ∩ U is snc then. If Z is a normal crossing
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at x, then there exists an etale neighborhood f : U → X of x such that f−1(Z) is
snc. Since the etale morphism f is an open map, f(U) is a neighborhood of x such
that Z ∩ f(U) is normal crossing. �

We see that if X is quasi-excellent, then (X, Z)sing is a closed subset. Sometimes
it will be convenient to consider it as a reduced closed subscheme.

Lemma 2.2.5. Let X be a quasi-excellent scheme with a closed subscheme Z and
f : X ′ → X be a regular morphism. Then (X ′, Z ′)sing→̃(X, Z)sing ×X X ′, where
Z ′ = Z ×X X ′.

Proof. Since f is regular and the singular loci are reduced, it suffices to check
that f−1((X, Z)sing) = (X ′, Z ′)sing set-theoretically. By [22, 23.7], f−1(Xsing) =
X ′

sing, hence we can replace X with Xreg and shrink the other schemes accordingly.
Obviously, if T is either an embedded component of Z or an irreducible component
of codimension larger than one, then T ′ = f−1(T ) is an analogous component of Z ′,
hence T ⊂ (X, Z)sing and T ′ ⊂ (X ′, Z ′)sing. So, we can remove all such components
from X , and then Z becomes a Cartier divisor and using lemma 2.2.2 we can replace
Z with its reduction.

Let x ∈ Z be a point and x′ ∈ Z ′ be its preimage. It suffices to prove that Z
is normal crossing at x if and only if Z ′ is normal crossing at x′. Find an etale
neighborhood g : U → X of x such that u ∈ U is the only preimage of x and all
irreducible components of ZU = g−1(Z) are unibranch at u. Then ZU is normal
crossing at u if and only if it is strictly so, hence ZU is snc at u if and only if X
is normal crossing at x. Since the induced morphism Z ′

U = ZU ×X X ′ → ZU is
regular and ZU is snc at u if and only if the scheme-theoretic intersection of relevant
irreducible components of Z is regular and of correct codimension, we obtain that
ZU is snc at u if and only if Z ′

U is snc at the preimage of u which sits over x′. It
follows that Z is normal crossing at x if and only if Z ′ is so at x′, as stated. �

Note that the above lemma fails for strictly regular loci (and their complements
(X, Z)ssing). This fact forces us to define desingularizations using arbitrary mono-
mial divisors instead of strictly monomial ones. Next we introduce a notion of
desingularization.

Definition 2.2.6. (i) Given a locally noetherian scheme X with a closed sub-
scheme Z and a blow up f : X ′ → X with support in Xsing ∪ Zsing, we say that f
desingularizes the pair (X, Z) over a subset S ⊂ X if f−1(S) ⊂ (X ′, Z ×X X ′)reg.
If S = X (resp. S = X<d), then we say that f desingularizes the pair (X, Z)
(resp. up to codimension < d), or that f is a desingularization of the pair. By a
desingularization of X we mean a desingularization of the pair (X, ∅).

(ii) If Z ⊂ X is a closed subset, then by a desingularization of the pair (X, Z) we
mean an (X, Z)reg-admissible blow up f : X ′ → X such that (X ′, f−1(Z))reg = X ′.
We define desingularizations up to codimension < d similarly.

For example, if (X, Z)reg is empty (e.g. Z = X , or X is not reduced at its
maximal points), then BlX(X) = ∅ is a desingularization of the pair (X, Z).

Remark 2.2.7. We require f to be a blow up for the following reason. On one
hand, blow ups form a sufficiently generic class of modifications, including, for ex-
ample, any projective modification of a schemes with an ample sheaf. In particular,
usually it does not cost a serious extra-work to achieve this extra-condition. On
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the other hand, working with blow ups one enjoys even more flexibility than when
working with a wider class of arbitrary projective modifications. For example, any
blow up of an open subscheme U →֒ X easily extends to a blow up of X (while to
extend a general modification one would have to invoke Nagata compactification
theorem).

Remark 2.2.8. Usually, by embedded desingularization of Z in X one understands
a desingularization of a pair (X, Z) with a regular ambient scheme X . However,
it is convenient for our purposes to extend this notion to arbitrary pairs (X, Z)
(for example, we will make some use of reducible X ’s). In classical terminology,
desingularization of such a pair can be obtained from a desingularization of X and
a subsequent embedded desingularization of the preimage of Z. Note also that
unlike the case of algebraic varieties, there exist singular quasi-excellent schemes
that even locally cannot be embedded into regular ones.

Remark 2.2.9. Note that desingularization in our sense provides a control on the
exceptional set. For example, a desingularization f : X ′ → X of a pair (X, Xsing)
provides a desingularization of X whose exceptional set E is a normal crossing
divisor (recall that E is the minimal closed set such that f is an open immersion
on X ′ \ E, hence E = f−1(Xsing) in our situation). On the other hand, by a
weak desingularization one usually means a modification f : X ′ → X such that
(X ′, f−1(Z))sing = ∅. Perhaps the lack of control on the exceptional set is the main
weakness of weak desingularization.

Since, usually one imposes more restrictive conditions in the definition of a desin-
gularization, we suggest the following terminology. See, also remark 2.3.2, for the
definition of functorial resolution of singularities.

Definition 2.2.10. Let a blow up f : X ′ → X be a desingularization of a pair
(X, Z), then we say that

(i) f is successive if it is a composition of blow ups along regular centers.
(ii) f is strict if it is (X, Z)sing-supported;
(iii) f is semi-strict if it is (X, Z)ssing-supported;

Note that the (semi-) strictness condition is essential only in the embedded case
(i.e. when Z is non-empty). Usually, this extra-condition is not established in
desingularization theorems, but it looks a very natural condition in view of our
definition 2.2.6. The author is indebted to E. Bierstone and P. Milman for commu-
nicating the proof of the following theorem, which establishes functorial successive
strict embedded desingularization.

Theorem 2.2.11 (Bierstone-Milman). Let k be a field of characteristic zero. Then
for any k-smooth scheme X with a reduced closed subscheme Z there exists a canon-
ical succession Xn → Xn−1 → · · · → X0 = X of blow ups along smooth centers
Ci →֒ Xi such that each Ci lies over (X, Z)sing and one has (Xn, Z×X Xn)sing = ∅.

Proof. Let Z(k) denote the set of points x ∈ Z such that the formal completion of
Z along x contains exactly k irreducible components. Then for a point x ∈ Z(k)
the following properties are easily verified: (i) x possesses a neighborhood U such
that the set of points y ∈ U with ordyZ ≥ ordxZ is contained in U ∩ Z(k), and
(ii) invZ(x) = (k, 0, 1, 0, . . . , 0, 1, 0,∞) with exactly k− 1 pairs 1, 0 if and only if Z
is a normal crossing divisor at x (where inv is the desingularization invariant from
[10]).
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Given a sequence of blow ups Xi → Xi−1 → · · · → X0 = X , we denote the
composite blow up by fi : Xi → X and define Zi ⊂ Xi to be the strict trans-
form of Z. If r is the maximal number such that the set Z(r) ∩ (X, Z)sing is
not empty, then applying the desingularization algorithm of [10] to the hypersur-
face corresponding to Z, we can successively blow up along smooth centers with
invZ(·) > (r, 0, 1, 0, . . . , 1, 0,∞) (where the number of pairs (1, 0) is r − 1), until
either Zn(r) = ∅ or invZ(·) = (r, 0, 1, 0, . . . , 1, 0,∞) on Zn(r) for some n. In the
latter case, f−1

n (Z) is normal crossing at all points of Zn(r), hence in a neighbor-
hood of Zn(r). All in all, (Xn, Zn)sing is disjoint from Zn(r), and iterating the same
process for smaller values of r we can achieve that (Xn, Zn)sing is disjoint from Zn.
It follows that f−1

n (Zn) is normal crossing, as required, and by the construction
all centers of successive blow ups lie over (X, Z)sing. So, the total blow up fn is
(X, Z)sing-supported by lemma 2.1.4. �

2.3. Resolution of singularities over a scheme.

Definition 2.3.1. Let k be a locally noetherian scheme. We say that there is
resolution of singularities over k (up to dimension < d) if any integral k-scheme X
of finite type admits a desingularization (up to codimension < d). If, moreover, for
any closed subscheme Z, the pair (X, Z) admits a desingularization f : X ′ → X (up
to codimension < d), then we say that there is embedded resolution of singularities
over k (up to dimension < d). We say that resolution of singularities over k is strict
(resp. semi-strict) if one can choose f to be (X, Z)sing-supported (resp. (X, Z)ssing-
supported).

Note that if there exists resolution of singularities over k up to dimension < d
then any k-scheme of finite type of dimension strictly less than d admits a desin-
gularization. We will not need the following definitions, so we put them into a
remark.

Remark 2.3.2. One can define successive resolution over k in a similar way. Fur-
thermore, we say that there is functorial resolution over k (resp. functorial suc-
cessive resolution over k, etc.) if the resolutions f(X,Z) : X ′ → X can be given in
a functorial with respect to smooth (or all regular) morphisms way). For exam-
ple, minimal resolution of two-dimensional schemes is functorial but not successive,
and modern desingularization theorems provide functorial resolution of algebraic
varieties (see [21, 3.106] for an example regarding successiveness).

The following statement will often be used implicitly.

Lemma 2.3.3. Let X be a locally noetherian integral scheme with a closed sub-
scheme Z and V = (X, Z)reg (resp. V = (X, Z)sreg), f : X ′ → X be a V -admissible
blow up, Z ′ = Z ×X X ′ and d be a number. If f ′ : X ′′ → X ′ strictly (resp. semi-
strictly) desingularizes (X ′, Z ′) up to codimension < d, then f ′′ = f ◦ f ′ : X ′′ → X
strictly (resp. semi-strictly) desingularizes (X, Z) up to codimension < d.

Proof. The two cases are proved in the same way, so we consider only the strict case.
Note that V ←̃f−1(V ) ⊂ (X ′, Z ′)reg, therefore f ′ is V -admissible. By lemma 2.1.4,
the composition f ◦ f ′ is V -admissible. Obviously Z ′ ×X′ X ′′→̃Z ×X X ′′, hence
f ′−1(X ′<d) ⊂ (X ′′, Z×X X ′′)reg. It remains to note that f−1(X<d) ⊂ X ′<d by the
dimension inequality [16, 5.5.8]. Indeed, for any point x′ ∈ X ′ with x = f(x′), we
have that dim(OX′,x′) ≤ dim(OX,x) because tr.deg.K(L) = 0 for K = Frac(OX,x)
and L = Frac(OX′,x′). �
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The following proposition allows us to build a global desingularization from local
ones. We say that a local scheme S is of essentially finite type over a scheme k if it
is k-isomorphic to Spec(OX,x) for a finite type k-scheme X with a point x ∈ X .

Proposition 2.3.4. Let k be a noetherian quasi-excellent scheme and d be either
a natural number or infinity, then the following conditions are equivalent.

(i) For any integral k-scheme X of finite type with a closed subset Z, the pair
(X, Z) admits a strict desingularization up to codimension < d.

(ii) There is strict embedded resolution of singularities over k up to dimension
< d, i.e. for any integral k-scheme X of finite type with a closed subscheme Z, the
pair (X, Z) admits a strict desingularization up to codimension < d.

(iii) If S is an integral local k-scheme of essentially finite type, dim(S) < d, s ∈ S
is the closed point, f : S′ → S is a blow up and Z ′ →֒ S′ is a closed subscheme with
(S′, Z ′)sing ⊂ f−1(s), then the pair (S′, Z ′) admits a strict desingularization.

(iv) If S is an integral local k-scheme of essentially finite type, dim(S) < d,
s ∈ S is the closed point, f : S′ → S is a blow up and Z ′ ⊂ S′ is a closed subset
with (S′, Z ′)sing ⊂ f−1(s), then the pair (S′, Z ′) admits a strict desingularization.

Similar conditions are equivalent when: (1) the resolution is not embedded and
Z = Z ′ = ∅, (2) the resolution is embedded, (3) the resolution is embedded and
semi-strict.

Proof. We consider only the strict embedded case because it is slightly more in-
volved.

(i)⇒(ii) Let X be an integral k-scheme of finite type with a closed subscheme
Z →֒ X . The blow up BlZ(X)→ X is an isomorphism over V = (X, Z)reg because
Z ×X V is a Cartier divisor in V . By lemma 2.1.5, BlZ(X) is dominated by a
V -admissible blow up X ′ → X . Then Z ′ = Z ×X X ′ is a Cartier divisor in X ′

because already Z×X BlZ(X) is a Cartier divisor in BlZ(X). Let g : X ′′ → X ′ be a
strict desingularization of (X ′, |Z ′|) up to codimension < d. Since Z ′′ = Z ′×X′ X ′′

is a Cartier divisor, (X ′′, Z ′′)sing = (X ′′, |Z ′′|)sing by lemma 2.2.2. It follows that
g strictly desingularizes (X ′, Z ′) up to codimension < d, and by lemma 2.3.3, the
morphism X ′′ → X strictly desingularizes (X, Z) up to codimension < d.

(ii)⇒(iii) Let S, S′, Z ′ be as in (iii). Find a k-scheme X of finite type with a point
x ∈ X such that Spec(OX,x)→̃S, in particular, S is a pro-open pro-subscheme of
X . Replacing X with a neighborhood of x we can make it integral. Furthermore, it
follows from [16, 8.6.3] that shrinking X further, we can achieve that f is induced
from a blow up X ′ → X , and Z ′→̃Y ′×X′ S′ for a closed subscheme Y ′ →֒ X ′. Then
S′→̃S×XX ′ can be identified with a pro-open pro-subscheme of X ′ and Z ′ = Y ′∩S′

as sets. For any point x′ ∈ S′ we have that dim(OX′,x′) = dim(OS′,x′) ≤ dim(S′)
and dim(S′) ≤ dim(S) by the dimension inequality, [16, 5.5.8]. Since dim(S) < d,
we obtain that S′ ⊂ (X ′)<d. By (ii), the pair (X ′, Y ′) can be strictly desingularized
up to codimension < d by a blow up g : X ′′ → X ′. Then the pro-open pro-
subscheme S′′ = S′×X′ X ′′ of X ′′ is regular and its closed subscheme Z ′′ = Z ′×S′

S′′→̃(Y ′×X′ X ′′)×X′′ S′′ is a monomial divisor. Since g is an (X ′, Y ′)reg-admissible
blow up and (S′, Z ′)reg = (X ′, Y ′)reg ∩ S′ as sets, the morphism S′′ → S′ is an
(S′, Z ′)reg-admissible blow up. Therefore, (S′′, Z ′′) is a strict desingularization of
(S′, Z ′), and we obtain (ii).

(iv) follows obviously from (iii), so, it remains to establish the implication
(iv)⇒(i). Until the end of the proof we consider only desingularizations of (scheme,
subset) pairs. Set V = (X, Z)reg, and let f : X ′ → X be a V -admissible blow up
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which desingularizes the pair (X, Z) over an open subscheme U →֒ X . Assume that
U does not contain X<d. If we were able to prove that there exists a V -admissible
blow up X ′′ → X , which desingularizes X over an open subscheme W with U  W ,
then the statement of (i) would follow by noetherian induction (we can start the
induction with f = IdX and U = V ).

Let x ∈ X<d be a maximal point of X \ U . Set S = Spec(OX,x), Z ′ = f−1(Z),
S′ = S ×X X ′, ZS = Z ∩ S, Z ′

S = f−1(ZS). Then the set T ′ = (S′, Z ′
S)sing

equals to (X ′, Z ′)sing ∩ S′ because S′ is a pro-open pro-subscheme of X ′. Note
that T ′ ⊂ f−1(x) because f−1(S \ {x}) ⊂ f−1(U) ⊂ (X ′, Z ′)reg. Since dim(S′) ≤
dim(S) < d, we can apply (iv) to find a morphism g : S′′ → S′ which strictly
desingularizes (S′, Z ′

S). The scheme S′′ is obtained from S′ by blowing up an ideal
I ⊂ OS′ supported on T ′. Applying lemma 2.1.1 to X ′ and S′, we can extend
I to an ideal J ⊂ OX′ supported on the Zariski closure of T ′. It follows that
f ′ : X ′′ = BlJ (X ′) → X ′ is a U -admissible blow up, which induces the blow up
g : S′′ → S′. Therefore, f ′′ = f ◦ f ′ is a V -admissible blow up which coincides with
f over U and desingularizes (X, Z) over x, i.e. R = f ′′((X ′′, Z ′′)sing) is disjoint
from the set U ∪ {x}. By properness of f ′′, the set R is closed, hence W = X \ R
is as required. �

Combining the implication (i)⇒(ii) from the proposition with theorem 2.2.11,
we obtain the following corollary from the results of [10].

Corollary 2.3.5. There is strict embedded resolution of singularities over any field
of characteristic zero.

In a more general context, Hironaka proved in [19] that there is embedded res-
olution of singularities over a local quasi-excellent scheme k of characteristic zero:
Main Theorem 1 establishes non-embedded desingularization for schemes of finite
type over k, and Corollary 3 to the Main Theorem 2 desingularizes pairs (X, Z)
with a regular X of finite type over k. Accordingly to proposition 2.3.4, Hironaka’s
result implies the following theorem.

Theorem 2.3.6. Any pair of quasi-excellent schemes (X, Z) of characteristic zero
with an integral X admits a desingularization.

Note that one could also deduce semi-strict embedded desingularization, but
then one would have to apply proposition A.2 from the appendix. We finish the
section with the following easy lemma.

Lemma 2.3.7. Assume that there is (semi-) strict embedded resolution of singular-
ities over k. Then for any k-scheme X of finite type over k with a closed subscheme
Z, the pair (X, Z) admits a (semi-) strict desingularization.

Proof. As usually, we consider only the strict case. Blowing up the ideal generated
by all non-zero nilpotent elements we achieve that X becomes reduced. If X is a
disjoint union of integral schemes, then the lemma is trivial. Assume this is not
the case, and let X1 be an irreducible component of X and X2 be the union of all
other components. Then S = X1 ×X X2 is supported on Xsing, and the blow up
of X along S separates the preimages of Xi’s. Applying induction on the number
of irreducible components, we obtain that there exists an Xreg-admissible blow up
X ′ → X such that X ′ is a disjoint union of integral schemes. Then, it suffices to
desingularize the pair (X ′, Z ×X X ′), and we are done. �
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Remark 2.3.8. The lemma shows that desingularization of pairs (X, Z) reduces
to the case of an integral X . However, it is a stupid desingularization: it brutally
separates irreducible components and kills non-reduced and embedded ones. If one
wants to study not integral X ’s deeper, then the regular locus (X, Z)reg should be
replaced with a finer notion. For example, it seems natural to weaken the notion of
regularity so that X”reg” = X when X is either a reduced strictly normal crossing
scheme, or an irreducible scheme normally flat along Xred.

3. Desingularization of special formal schemes

Our next and main aim is to prove theorem 1.1 using only resolution of singular-
ities over fields as proved in [10] (we will refer only to corollary 2.3.5 which is based
on theorem 2.2.11). Alternatively, one could use any modern desingularization
theorem and the result of the appendix.

3.1. Quasi-excellent formal schemes and regularity conditions. If A is a
quasi-excellent adic ring, then any formal localization homomorphism φf : A →
A{f} is regular. Indeed, φf is a composition of the localization homomorphism
A→ Af and the completion homomorphism Af → A{f}, but regularity is preserved
by compositions, the first homomorphism is obviously regular and the second one is
regular by [16, 7.8.3(v)] because Af is quasi-excellent. Since there is no published
proof in the literature of the fact that the rings A{f} are quasi-excellent, we are
forced to give the following definition: a formal scheme X is called absolutely (quasi)
excellent if for any open affine subscheme Spf(A) →֒ X the ring A is (quasi) excellent.
We say that X is (quasi) excellent if it admits an open covering by absolutely (quasi)
excellent subschemes.

Remark 3.1.1. (i) Since the notion of excellent schemes was defined in [16, §7],
it was an important open question whether (quasi-) excellence of A implies that
of A[[T ]] (see loc.cit. 7.8.1.A). In particular, it was not clear whether completed
localization A{f} must inherit (quasi-) excellence.

(ii) The author thanks the referee for informing him that recently a (much
stronger) ultimate result on quasi-excellence of adic rings was proved by Offer Gab-
ber: a noetherian complete I-adic ring A is quasi-excellent if and only if A/I is
so.

(iii) Gabber’s result implies that any quasi-excellent formal scheme is absolutely
and universally (see §4.3) so. Unfortunately, no printed proof is currently available,
so we prefer to make use of these (superfluous) notions in our paper.

Many properties of quasi-excellent formal schemes can be defined and studied via
their scheme analogs (compare to [12, §1.2]; see also [2, §2.2], where one similarly
studies k-analytic spaces). Consider an absolutely quasi-excellent affine formal
scheme X = Spf(A) and a closed formal subscheme Z given by an ideal I, and set
X = Spec(A) and Z = Spec(A/I). We define the singular locus (X, Z)sing of the
pair to be the closed formal subscheme attached to the ideal J ⊂ A which defines
the closed subscheme (X, Z)sing →֒ X . As we noted in remark 2.1.2, such singular
locus is more informative than the subset of Xs it defines. The following lemma
shows that singular loci are compatible with formal localizations of absolutely quasi-
excellent formal schemes.

Lemma 3.1.2. If f ∈ A is an element, X{f} = Spf(A{f}) and Z{f} = Z×X X{f},
then (X{f}, Z{f})sing→̃(X, Z)sing ×X X{f}.
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Proof. The homomorphism A→ A{f} is regular because A is quasi-excellent. It re-
mains to note that Z{f} = Spf(A/I⊗A A{f}), hence (X{f}, Z{f})sing = Spf(A/J⊗A

A{f}) by lemma 2.2.5. �

The lemma allows to globalize the definition of singular locus of a formal pair
(X, Z) with quasi-excellent X. Indeed, for any open affine absolutely quasi-excellent
X′ →֒ X with Z′ = Z ×X X′ we defined a closed subscheme (X′, Z′)sing →֒ X′,
and the lemma implies that these subschemes agree on the intersections of affine
open formal subschemes. So, the local singular loci glue to a single closed formal
subscheme (X, Z)sing →֒ X. We say that X is regular (resp. rig-regular) if Xsing

is empty (resp. a closed subscheme of Xs). We say that Z is a monomial divisor
(resp. a rig-monomial divisor) if the formal scheme Z×X (X, Z)sing is empty (resp.
a closed subscheme of Xs). In the following remark we compare the definition of
singular locus to the definition from [12, §1.2], and take Z = 0 for simplicity. We
will not use the following side remark (so we skip the argument), but we hope that
it might be instructive for the reader.

Remark 3.1.3. (i) The underlying set of Xsing coincides with the set of points
x ∈ X with not regular local ring OX,x. Thus X is regular in our sense if and only
if it is regular as a locally ringed space.

(ii) If X is as in [12, 1.2.1] then its singular locus in loc.cit. is defined to be the
set |Xsing|. As we saw, this definition leads to the same notion of regularity, but
such singular locus is less informative. For example, it is always contained in Xs

by its definition, so it cannot be used to define rig-regularity. On the other hand,
the support of the closed subscheme Xsing does not have to be contained in that of
Xs, so rig-regularity is a non-trivial condition.

(iii) We noted in remark 2.1.2 that Xsing is determined set-theoretically by
|(Xsing)

ad|. It seems very probable (and can be proved for X of finite type over
a DVR) that the latter set coincides with the singularity locus of Xad viewed as a
locally ringed space (Xad,OXad).

(iv) At least for X of finite type over a DVR, rig-regularity means that a formal
scheme X is regular outside of its closed fiber Xs in the sense that its (rigid, analytic
or adic) generic fiber Xη is regular.

The following lemma shows that singular loci are compatible with completions.

Lemma 3.1.4. Let X be a quasi-excellent scheme with closed subschemes Z and
T = (X, Z)sing, P ⊂ OX be an ideal and X, Z, T be the P-adic completions of X,
Z, T . Assume that X is quasi-excellent, then T→̃(X, Z)sing.

Proof. Since completions and singular loci are compatible with (formal) localiza-
tions, the claim of the lemma is local on X . So, we can assume that X = Spec(A)
is affine with an absolutely quasi-excellent completion X, P corresponds to an
ideal P ⊂ A, Z = Spec(A/I) and T = Spec(A/J) for ideals I, J ⊂ A. Obvi-

ously, X = Spf(Â), where Â is the P -adic completion of A. Since A is quasi-

excellent, the homomorphism A → Â is regular by [16, 7.8.3(v)]. By lemma

2.2.5, (Spec(Â), Spec(Â/IÂ))sing is isomorphic to Spec(Â/JÂ), hence we obtain

that (X, Z)sing→̃Spf(Â/JÂ)→̃T. �

The lemma provides an easy way to construct examples of singular loci of formal
schemes. For example, if we take a scheme X and complete it along Y →֒ Xreg,
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then we obtain a regular formal scheme X = X̂Y . On the other hand, if Y ⊃ Xsing

then X is rig-regular, and if Xsing contains an irreducible component Z with Z ( Y
and Y ∩ Z 6= ∅, then X is not even rig-regular.

Corollary 3.1.5. Keep the notation of the lemma and consider the closed sub-
scheme Y = Spec(OX/P) of X, then:

(i) X is regular and Z is a monomial divisor if and only if there exists a regular
neighborhood U of Y such that Z ×X U is a monomial divisor;

(ii) X is rig-regular if and only if there exists a neighborhood U of Y such that
U \ Y is regular.

Proof. Clearly X is regular and Z is a monomial divisor iff (X, Z)sing = ∅, and the
latter is equivalent to (X, Z)sing ∩ Y = ∅ by the lemma. Since (X, Z)sing is closed,
the last equality holds if and only if (U, Z ×X U)sing = ∅ for a neighborhood U of
Y . This proves (i). To prove (ii) we use the following chain of equivalences: X is
rig-regular iff Xsing is a subscheme in Xs iff each irreducible component of Xsing is
either contained in Y or disjoint from Y iff Using ⊂ Y for a neighborhood U of Y
iff U \ Y is regular. �

Similarly to regularity, one can define reducedness of quasi-excellent formal
schemes and prove analogs of lemmas 3.1.2 and 3.1.4. We will need reducedness
later. A further generalization, which will not be used, is given in the remark.

Remark 3.1.6. Similarly to regularity, if X is a quasi-excellent formal scheme and
P is one of the following standard properties: Rn, CI, Gor, Sn (or their combina-
tions like Reg, Nor, CM, Red), then one can define the non-P locus Xnon−P as a
closed subscheme of X. These loci satisfy analogs of lemmas 3.1.2 and 3.1.4, and
everything noted in remark 3.1.3 is valid for them.

3.2. Special formal schemes. Throughout this section k denotes a field with
p = char(k), and X is a formal scheme such that Xs is a k-scheme. We say that X

is equicharacteristic if pOX = 0. If p is positive, then a discrete valuation ring K◦

is called a p-ring if p generates the maximal ideal of K◦. It is shown in [22, Ch.
29] that up to an isomorphism, there exists a unique complete p-ring with residue
field k; it will be denoted Zp(k).

Let A be a P -adically complete noetherian ring and S = Spf(A). Recall that a
formal S-scheme X is of finite type if it admits a finite covering by formal schemes
of the form Spf(A{T1, . . . , Tn}/I). More generally, by an A-special ring we mean a
topological ring A{T1, . . . , Tn}[[R1, . . . , Rm]]/I provided with the Q-adic topology,
where Q is generated by the images of P and R1, . . . , Rm. A formal S-scheme X

is called S-special if it admits a finite open covering by formal spectra of A-special
rings (a definition in [4] is slightly different). A noetherian formal scheme is called
special if its closed fiber is a scheme of finite type over a field.

Proposition 3.2.1. Assume that X is an affine special formal scheme such that
Xs is of finite type over k.

(i) If X is equicharacteristic, then it is isomorphic to a k-special formal scheme.
(ii) If p > 0, then X is isomorphic to a Zp(k)-special formal scheme.

Proof. Let X = Spf(B) and P be the biggest ideal of definition, so B/P is a finitely
generated k-algebra. If B is equicharacteristic (in particular, it is automatically
the case when p = 0), then we set K◦ = k and L◦ = Fp (if p = 0 then L◦ = Q).
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Otherwise we set K◦ = Zp(k) and L◦ = Zp. We have natural homomorphisms
K◦ → k → B/P and L◦ → B, and the same argument as in the proof of Cohen’s
structure theorem given in [22, 29.2] shows that there is a lifting K◦ → B. Indeed,
it is shown in the proof of loc.cit. that K◦ is formally smooth over L◦, hence the
L◦-homomorphism K◦ → B/P lifts to B/P 2, B/P 3, etc. Since B is P -adically
complete, we obtain a lifting K◦ → B.

Let r1, . . . , rm be generators of P and t1, . . . , tn ∈ B be such that their im-
ages in B/P generate it over k. Then there exists a continuous homomorphism
φ : C = K◦{T1, . . . , Tn}[[R1, . . . , Rm]] → B, which takes Ti and Rj to ti and
rj . The maximal ideal of definition Q ⊂ C is generated by p and Rj ’s, hence
C/Q→̃k[T1, . . . , Tn] and the induced homomorphism C/Q → B/P is surjective.
The image of Q in B generates P , hence B is topologically finitely generated over
C by [14, 0.7.5.5(a)]. Moreover, the same argument as in the proof of loc.cit. im-
plies that the homomorphism C → B is actually surjective because C/Q → B/P
is onto. So, X is K◦-special, as required. �

Any K◦-special formal scheme is absolutely excellent by results of Valabrega,
see [26, Prop. 7] and [27, Th. 9]. We obtain the following corollary, which allows
to apply results of the previous section to special formal schemes.

Corollary 3.2.2. Any special formal scheme is excellent.

The following statement is proved exactly as its analog 3.2.1.

Proposition 3.2.3. Assume that X = Spf(B), Xs is of finite type over k, B
possesses a principal ideal of definition πB, and either B is equicharacteristic or
π = p. Set K◦ = k if π is nilpotent, set K◦ = k[[π]] if π is not nilpotent and B
is equicharacteristic, and set K◦ = Zp(k) otherwise. Then X is isomorphic to a
formal K◦-scheme of finite type.

Remark 3.2.4. There exist special formal schemes with principal ideal of definition
not covered by the proposition. For example, if B equals to Zp{T }[[R]]/(RT − p),
then RB is an ideal of definition, but pB is not.

3.3. Rig-smoothness and algebraization in characteristic zero. Let O be a
ring. We say that a formal scheme X is O-algebraizable if it is isomorphic to the
formal completion of an O-scheme of finite type along a closed subscheme. We say
that X is locally O-algebraizable if it can be covered by open O-algebraizable formal
subschemes.

Fix the following notation: K is a complete discretely valued field with ring of
integers K◦, residue field k and maximal ideal (π), S = Spf(K◦), X is a K◦-special
formal scheme, L ⊂ K is a dense subfield and O = L ∩K◦.

Proposition 3.3.1. Assume that char(K) = 0. If X is rig-regular, affine and of
finite type over S, then it is O-algebraizable.

Proof. We have that X = Spf(C) with C topologically finitely generated over K◦.
Set X = Spec(C), then X \Xs is regular by the definition of rig-regularity, and the
K-affinoid algebra CK = C ⊗K◦ K is regular because Spec(CK) = X \ Xs. The
regular K-affinoid space Xrig = Sp(CK) is Sp(K)-smooth because K is perfect, see
[9, 2.8(b)], or an explanation in the proof of [12, 3.3.1]. It is well known (and will be
proved in proposition 3.3.2 below because of lack of an appropriate reference) that
Xrig is K-smooth iff X is formally K◦-smooth outside of V (π) in the sense of [18, Th.
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7]. Thus, we can apply this theorem of Elkik to X and we thereby obtain that C is
isomorphic to the π-adic completion of a finitely generatedOh-algebra A, where Oh

is the henselization of O. Since Oh is a union of etale O-algebras, A is isomorphic
to an algebra A′ ⊗O′ Oh, where O′ is O-etale and A′ is a finitely generated O′-
algebra. Since the completions of A and A′ are canonically isomorphic, we obtain
that Spec(A′) is an O-algebraization of X. �

Let A be a noetherian P -adic ring with P -adic topologically finitely generated
A-rings B = A{T1, . . . , Tn} and C = B/(f1, . . . , fl). Let us define a topological
Jacobian ideal HC/A similarly to its algebraic analog from [18, 0.2]. Set ∆ =(

∂fi

∂Tj

)
1≤i≤l,1≤j≤n

. For any subset L ⊂ {1, . . . , l} with |L| = r, let HL ⊂ B be the

ideal generated by the determinants of r× r-minors of ∆ whose rows are numbered
by the elements of L. Also, let JL be the ideal generated by fi’s with i ∈ L and let
J = (f1, . . . , fl). Then we set

HC/A =

√ ∑

L⊂{1,...,l}

(JL : J)HLC,

where (JL : J) = {x ∈ B|xJ ⊂ JL}.
Note that a priori HC/A depends on the choices of B and fi’s. A standard argu-

ment using the Jacobian criterion of smoothness shows that in the algebraic case
(i.e. P is nilpotent) HC/A defines the not A-smooth locus of Spec(C); in partic-
ular, it is independent of all choices. We refer to [25, 2.13] for details. A similar

argument involving modules Ω̂1
B/A→̃ ⊕ BdTj and Ω̂1

C/A of continuous differentials

shows that Spf(C) is Spf(A)-smooth iff HC/A = C (a definition of smooth mor-
phisms of formal schemes can be found in [8, 1.1]). In [18, Th. 7], Spf(C) is said
to be formally A-smooth outside of V (π) if the Jacobian ideal HC/A is open. Using
the Jacobian criterion of rig-smoothness, see [9, 3.5], one can show that it happens
iff Spf(C) is rig-smooth over A. For the sake of simplicity, we consider only the
classical rigid case which was used in the previous proposition. Our proof is an
affinoid adjustment of the proof of [25, 2.13].

Proposition 3.3.2. Keep the above notation, assume that A is topologically finitely
generated over K◦, and set A = A⊗K◦ K and C = C ⊗K◦ K. Then the morphism
Sp(C) → Sp(A) of rigid affinoid spaces is smooth if and only if the Jacobian ideal
HC/A is open.

Proof. Obviously, B/(f1, . . . , fl)→̃C, where B = A{T1, . . . , Tn}. Use this represen-
tation of C to define the Jacobian ideal HC/A of affinoid algebras analogously to
its adic analog HC/A. Note that the definition of the Jacobian ideal is compatible
with localization by π, hence HC/A = HC/AC, and we obtain that HC/A is open iff
HC/A = C.

It remains to prove that HC/A defines the not A-smooth locus of X = Sp(C).
Recall that modules of differentials of rigid spaces are defined by use of modules

of continuous differentials of affinoid algebras, see [9, §1]. For example, Ω̂B/A =
⊕n

i=1BdTi, though ΩB/A can be huge. Let J ⊂ B be the ideal generated by fi’s,
then by [9, 1.2], there is a natural sequence of finite C-modules (perhaps not exact
on the left)

0→ J/J2dA/B/C
→ Ω̂B/A ⊗B C → Ω̂C/A → 0
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Set d = dA/B/C for shortness. Let x ∈ X be a point and m ⊂ C be the corresponding
ideal. By the Jacobian criterion of smoothness, see [9, 2.5], X is A-smooth at x
iff the above sequence becomes split exact after tensoring with OX,x, or, that is

equivalent, the map d ⊗C OX,x has left inverse. Since OX,x is local and Ω̂B/A is
free, the latter can happen iff the tensored sequence is an exact sequence of free
OX,x-modules.

Suppose that X is A-smooth at x, then there exists a subset L ⊂ {1, . . . , l}
such that: (i) J/J2 ⊗B OX,x is freely generated by the images of the elements of
fL = {fi}i∈L, and (ii) the elements of dfL are linearly independent modulo m.
Identify X with the closed subspace of Y = Sp(B), then (i) implies that the image
of fL generates J/J2 ⊗B K(x)→̃JOY,x/mY,xJOY,x, where K(x) = OY,x/mY,x is
the residue field of x. Therefore, fL generates the OY,x-module JOY,x by lemma of
Nakayama, i.e. JLOY,x = JOY,x. Note that the operation : is compatible with flat
base changes (use that (I : J) = Ann(J/I)), in particular, (JL : J)D = (JLD : JD)
for any flat B-algebra D. Thus, (JL : J)OY,x = (JLOY,x : JOY,x) = OY,x, and we
obtain that x is not contained in V ((JL : J)) ⊂ Spec(B) (recall that set-theoretically

Y coincides with the set of closed points of Spec(B)). Since dfi =
∑

j
∂fi

∂Tj
dTj, (ii)

implies that the rank of
(

∂fi

∂Tj
(x)

)
i∈L,1≤j≤n

equals to |L|. It follows that x /∈ V (HL),

hence x /∈ V ((JL : J)HL), and, finally, x /∈ V (HC/A).
Conversely, suppose that x /∈ V (HC/A). Then there exists L ⊂ {1, . . . , l} such

that x /∈ V ((JL : J)HLC). Therefore (JL : J)HLOX,x = OX,x, and we obtain that
(JL : J)HLOY,x = OY,x because OX,x is a quotient of the local ring OY,x. Then
the set fL generates JOY,x because OY,x = (JL : J)OY,x ⊆ (JLOY,x : JOY,x).
Hence the images of the elements of fL generate J/J2 ⊗C OX,x, and, moreover,

they generate it freely because their images in Ω̂B/A ⊗B C/m→̃ ⊕n
i=1 K(x)dTi are

linearly independent (by the assumption on HL). It follows that d⊗C OX,x has left
inverse, hence X is A-smooth at x. �

Although we do not use that in the sequel, we remark that the Jacobian ideals
depend only on the corresponding homomorphism A → C or A → C. Indeed, a
reduced closed subspace Z ⊂ X is uniquely defined by the set of its points, hence
it follows from the above proof that the ideal HC/A depends only on the A-affinoid
algebra C. Moreover, since a reduced closed formal subscheme Z ⊂ Spf(C) is
uniquely defined by the sets Zs and Zrig

η , the Jacobian ideal HC/A depends only on
the homomorphism A→ C.

Question 3.3.3. Assume that X is special rig-regular and admits a locally principal
ideal of definition, and set T = Xsing. Set O = k[π] if X is equicharacteristic, and
let O be a p-ring with residue field k otherwise. Does there exist a T-supported blow
up X′ → X with locally O-algebraizable X′?

The positive answer to the above question would allow to reduce desingular-
ization of an arbitrary quasi-excellent scheme X of characteristic p (resp. mixed
characteristic) to the particular case of k(x)-schemes of finite type for points x ∈ X
(resp. O-schemes of finite type, where O is a p-ring with residue field k(x)).

3.4. Formal desingularization and applications to schemes. Given a quasi-
excellent formal scheme X with a closed formal subscheme Z and T = (X, Z)sing,
we say that a T-supported blow up f : X′ → X strictly desingularizes the pair
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(X, Z) over a subset S ⊂ X if f−1(S) is disjoint from the underlying topological
space of (X′, Z′)sing, where Z′ = Z ×X X′. If S = X, then we say that f is a strict
desingularization of the pair, it happens iff X′ is regular and Z′ is a monomial
divisor. In the following theorem we prove that certain special formal schemes of
characteristic zero admit a desingularization. The theorem will be used in the proof
of a more general theorem 4.3.3.

Theorem 3.4.1. Let X be a reduced rig-regular special formal scheme of charac-
teristic zero with a locally principal non-zero ideal of definition and Z be a closed
Xs-supported subscheme. Then the pair (X, Z) admits a strict desingularization.

Proof. Note that T is a reduced closed subscheme of Xs, so we can and will identify

it with a closed subset of Xs. For any T-supported formal blow up f̂ : X′ → X,
the singular locus T′ = (X′, Z′)sing is T-supported (it suffices to check this claim
locally on X, but if X is affine, then the statement follows from its analog for
schemes). Thus, we can identify T′ with a closed subset of X′

s. Assume that

f̂ strictly desingularizes the pair (X, Z) over an open formal subscheme U with

X \ T ⊆ U  X, for example f̂ = IdX and U = X \ T. By noetherian induction,
it suffices to prove that there exists a T-supported formal blow up X′′ → X, which
desingularizes X over an open formal subscheme W with U  W.

Choose a field k such that Xs is of finite type over k and set K◦ = k[[π]] and
O = k[π]. Find an open affine subscheme X0 which possesses a principal ideal of
definition and has a non-empty intersection with the set S = X \ U. Set X′

0 =

X0 ×X X′, Z0 = Z ×X X0, U0 = U ×X X0 and S0 = S ∩ X0, and let f̂0 : X′
0 →

X0 be the induced formal blow up. By proposition 3.2.3, X0 is isomorphic to a
formal K◦-scheme of finite type, hence X0 is O-algebraizable by proposition 3.3.1.

Say, X0→̃X̂Π where X is an O-scheme of finite type and Π ⊂ X is the divisor
defined by π. The closed subscheme Z0 →֒ X0 is supported on the closed fiber of
X0, so it is given by an open ideal in OX0

(in particular, its ideal of definition is
nilpotent, so Z0 is a usual scheme). Therefore Z0 algebraizes to a closed subscheme

Z →֒ X supported on Π, i.e. Z0→̃ẐΠ→̃Z. By corollary 3.1.5, replacing X with
a neighborhood of Π we achieve that X is reduced and X \ Π is regular. Then
T = (X, Z)sing lies in Π and T is isomorphic to T0 = (X0, Z0)sing by lemma 3.1.4.
Let S ⊂ Π be the preimage of S0 under the homeomorphism Π→ X0 and U = X\S,
then U0 is isomorphic to the formal completion of U along U ∩Π.

The formal scheme X′
0 is obtained from X0 by blowing up an open ideal I sup-

ported on T0 = T ∩X0, hence I is the completion of a T -supported ideal I ⊂ OX .

If f : X ′ → X denotes the blowing up along I and Π′ = Π×X X ′, then X̂ ′
Π′→̃X′

0

and f̂0 is the completion of f by lemma 2.1.8. Since f̂0 strictly desingularizes the
pair (X0, Z0) over U0, f strictly desingularizes the pair (X, Z) over U by 3.1.5.

Note that X ′ is reduced because X is. If X ′ is integral, then the pair (X ′, Z ×X

X ′) admits a strict desingularization f ′ : X ′′ → X ′ by corollary 2.3.5. Moreover, by
lemma 2.3.7, the integrality assumption is redundant and f ′ exists unconditionally.
Note that f ′ is an S-supported blow up, hence the induced morphism X ′′ → X
is a strict desingularization of (X, Z) which is isomorphic to f over U . Passing

to completions, we obtain an S0-supported formal blow up f̂ ′
0 : X′′

0 → X′
0. The

composition X′′
0 → X0 strictly desingularizes (X0, Z0) by corollary 3.1.5 and coin-

cides with f̂0 over U0. Using 2.1.3, we can extend f̂ ′
0 to an S-supported formal

blow up f̂ ′ : X′′ → X′, in particular, f̂ ′ is T-supported. Then f̂ ′ is an isomorphism



DESINGULARIZATION OF QUASI-EXCELLENT Q-SCHEMES 23

over U×X X′ and induces the formal blow up X′′
0 → X′

0. Therefore, f̂ ◦ f̂ ′ strictly
desingularizes X over W = U ∪ X0. �

Corollary 3.4.2. Let X be an integral noetherian quasi-excellent scheme of char-
acteristic zero with a closed subscheme Z such that Xsing ⊂ Z and Z is isomorphic
to a k-scheme of finite type. Then the pair (X, Z) admits a strict desingularization.

Proof. The blow up BlZ(X) → X is an isomorphism over V = (X, Z)reg because
Z ×X V is a Cartier divisor in V . By lemma 2.1.5, BlZ(X) is dominated by a
V -admissible blow up X ′ → X , and then Z ′ = Z ×X X ′ is a Cartier divisor in X ′.
Replacing X and Z with X ′ and Z ′, we achieve that Z is a Cartier divisor.

Let X be the formal completion of X along Z, it is reduced and rig-regular by
corollary 3.1.5 (i). Thus, X satisfies the assumptions of the theorem. The closed
subschemes Z and T = (X, Z)sing can be identified with closed subschemes of X

because they are supported on Zred→̃Xs. Then T = (X, Z)sing by lemma 3.1.4.
By the previous theorem, there exists an open ideal I ⊂ OX supported on T

such that X′ = BlI(X) is regular and Z ×X X′ is a monomial divisor. Since I is
open, it is the completion of an ideal I ⊂ OX supported on T . Let X ′ be the
blow up of X along I and Z ′ = Z ×X X ′. By lemma 2.1.8, X′ is isomorphic to
the formal completion of X ′ along Z ′, hence Z ′ is a monomial divisor by 3.1.5 (ii).
Since X ′ \ Z ′→̃X \ Z is regular, X ′ → X is a required desingularization. �

Now, we obtain a new proof of the not embedded case of theorem 1.1 (it was
earlier deduced from [19] in theorem 2.3.6).

Theorem 3.4.3. Let k be a noetherian scheme of characteristic zero. Then k is
quasi-excellent if and only if there is resolution of singularities over k.

Proof. The converse implication is due to Grothendieck, see [16, 7.9.5]. Conversely,
by proposition 2.3.4, it suffices to prove that if S is an integral local k-scheme of
essentially finite type, s ∈ S is a closed point, and f : S′ → S is a blow up with
S′

sing ⊂ f−1(s), then S′ admits a desingularization. Note that S′
sing is of finite type

over k(s), hence the pair (S′, S′
sing) admits a desingularization g : S′′ → S′ by the

previous corollary. Then it is clear that g is a required desingularization of S′. �

4. Strict transforms and main results

The first two sections of §4 are devoted to the proof of proposition 4.2.1 which
desingularizes strict transforms and is of independent interest. In particular, the
proposition is valid for any ambient scheme X (no restriction on the characteristic)
and is used in the appendix. Its proof makes no use of the results of §3. Then we
combine the proposition with the results of §3 to prove theorem 1.1.

4.1. Principalization of strict transform. Let f : X ′ = BlT (X)→ X be a blow
up and Y be a closed subscheme of X . We refer to [11, §1] for an explicit definition

of the strict transform Ỹ of Y in X ′, but we recall the following property of Ỹ

which can be taken as an alternative definition: Ỹ coincides with the schematic
closure of (Y \ T ) ×X X ′→̃Y \ T in X ′ by [11, 1.1] (in particular, the schematic

closure exists). Furthermore, Ỹ is canonically isomorphic to the blow up of Y along
T ×X Y , see [11, §1] for details. If Y = Spec(OX/I) and Z = Spec(OX/J ) are
two closed subschemes and T = Y ×X Z→̃Spec(OX/(I + J )) is their intersection,
then it is well known that blowing up X along T separates the strict transforms of
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Y and Z, see [11], lemma 1.4 and the consequent remark. We will also need the
following slightly more specific result.

Lemma 4.1.1. Keep the above notation and let Y ′ be the strict transform of Y in
X ′ = BlT (X). Then Z ×X X ′ is a Cartier divisor in a neighborhood of Y ′.

Proof. Following the proof of [11, 1.4], we assume that X = Spec(A) and I,J
correspond to ideals I, J ⊂ A. It is shown in loc.cit. that Y ′ is covered by the
charts Spec(A[ I+J

f ]) with f ∈ J , so it remains to note that the ideal JA[ I+J
f ] is

principal because it coincides with fA[ I+J
f ]. �

Proposition 4.1.2. Let X be a noetherian scheme with closed subschemes T →֒ Y
corresponding to OX -ideals J ⊃ I. Assume that Y is a Cartier divisor. Given a
positive integer n, let Xn denote the blow up of X along Jn = I + J n and let Yn

denote the strict transform of Y in Xn. Then the following statements hold true.
(i) Yn is canonically isomorphic to the blow up of Y along the ideal J /I ⊂ OY .
(ii) Yn is a Cartier divisor for any sufficiently large n.

(iii) Assume that Y \ T is a disjoint union of its closed subschemes Ỹ ′ and Ỹ ′′,

and T →̃Y ′ ×X Y ′′, where Y ′ and Y ′′ are the schematic closures of Ỹ ′ and Ỹ ′′ in
X. Then the strict transforms Y ′

n and Y ′′
n of Y ′ and Y ′′ in Xn are Cartier divisors

for any sufficiently large n.

Proof. Recall that Yn is canonically isomorphic to the blow up of Y along Jn/I,
which equals to the n-th power of J /I. Since blow ups along an ideal and its powers
are canonically isomorphic, we obtain (i). Let us prove the statement of (ii). It
suffices to find a finite covering U of X by open subschemes such that for any X ′ ∈ U
the triple (X ′, I|X′ ,J |X′) satisfies (ii). So, we can assume that X = Spec(A) is
affine and I corresponds to a principal ideal I = fA. Let J, Jn ⊂ A denote the
ideals corresponding to J ,Jn. Applying Artin-Rees lemma to the ideal J and the
inclusion of A-modules I ⊂ A, we find a positive n0 such that for any n ≥ n0 and
m ≥ 0, Jn+m ∩ I = Jm(Jn ∩ I). Obviously Jm+n ∩ I ⊂ fJm then. Fix n ≥ n0, we
will prove that it is as required. Let us first check that Jk

n∩I = fJk−1
n for any k > 0.

Obviously, only the direct inclusion needs a proof. From the equality Jn = I + Jn

we obtain that Jk
n = fJk−1

n +Jnk, hence it remains to use that Jnk ∩ I ⊂ fJn(k−1)

(take m = n(k − 1) in the above inclusion).
Consider an affine chart Ug = Spec(B) of Xn, where B = A[Jn

g ] for some g ∈ Jn.

It suffices to prove that Yn ∩Ug coincides with the closed subscheme Vg = V (f
g ) of

Ug. Note that the intersection of any of these two schemes with Spec(Ag) coincides
with Yg = Spec(Ag/fAg), and Yn ∩ Ug is the scheme-theoretical closure of Yg.
Therefore, we have only to prove that Yg is schematically dense in Vg, or, that is

equivalent, that the homomorphism φ : B/ f
g B → Ag/fAg has no kernel. Suppose,

conversely, that φ is not injective, then there exists an element x ∈ B \ f
g B such

that x is divided by f in Ag. Obviously, x =
∑l

i=0
xi

gi for some elements xi ∈ J i
n,

and gl+mx ∈ fA for sufficiently large m. The element gl+mx = gm
∑l

i=0 xig
l−i

is contained in J l+m
n and is divided by f , therefore it is contained in fJ l+m−1

n by
the previous paragraph, i.e. gl+mx = fh for some h ∈ J l+m−1

n . It follows that

x = h
gl+m−1

f
g ∈

f
g B, contradicting our assumptions.

It remains to prove (iii). We know from (ii) that Yn is a Cartier divisor. Note

that Yn is the schematic closure of Ỹ = Y \T in Xn. Since Ỹ = Ỹ ′ ⊔ Ỹ ′′, we obtain
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that Yn = Y ′
n ∪ Y ′′

n . Therefore, it suffices to prove that Y ′
n and Y ′′

n are disjoint.
By part (i), Yn is isomorphic to the blow up of Y along T →̃Y ′ ×X Y ′′→̃Y ′ ×Y Y ′′,
but blowing up of Y along Y ′ ×Y Y ′′ separates strict transforms of Y ′ and Y ′′, as
stated. �

4.2. Regularization of strict transform. In this section we assume that X
is an integral noetherian scheme of dimension d and Y is a reduced closed sub-
scheme whose maximal points are regular points of X of codimension 1. Note that
(X, Y )sing does not contain maximal points of Y . Our aim is to prove the following
statement.

Proposition 4.2.1. Assume that there is semi-strict embedded resolution of sin-
gularities over X up to dimension < d. Then there exists a blow up f : X ′ → X
supported on T = (X, Y )ssing such that the strict transform of Y is disjoint from
(X ′, f−1(Y ))ssing.

Remark 4.2.2. It seems that the statement of proposition 4.2.1 should hold true
for strict desingularizations and singular loci (X, Y )sing. Having such a result would
allow to replace semi-strictness with strictness in theorems 1.1 and 4.3.3, and propo-
sition A.2.

We need to track the behavior of both strict and total transforms of Y (recall
that the latter is the entire preimage of Y ) with respect to blow ups, so it will
be more convenient to consider a more general situation. In the sequel, Z will
be a scheme which remembers the history of total transforms and T will denote a
closed set which we are allowed to modify. So, let X and Y be as above and Z be
a closed subscheme of X which contains Y ∩ (X, Y )ssing and is disjoint from Y 0.
Note that Y ∩ Z is nowhere dense in Y , Y \ Z is a strictly monomial divisor in
X \ Z, and Y ∩ (X, S)ssing ⊂ Z for the closed set S = Y ∪ Z. Let T be a closed
set with Y ∩ (X, S)ssing ⊆ T ⊆ Y ∩ Z. For any T -supported blow up f : X ′ → X
we use the following notation: Y ′ is the strict transform of Y in X ′ (note that the
morphism Y ′ → Y is birational), Z ′ = Z ×X X ′ and S′ = f−1(S) = Y ′ ∪Z ′. Then
the proposition follows from the following more general lemma (take Z = T in the
proposition).

Lemma 4.2.3. Keep the above notation and assume that there is semi-strict em-
bedded resolution of singularities over X up to dimension < d. Then there exists a
T -supported blow up f : X ′ → X such that Y ′ ⊂ (X ′, S′)sreg.

Proof. A required blow up will be obtained as a composition of few blow ups,
which will gradually improve the strict transform of Y . Note that while proving
the lemma, we can replace X with a neighborhood X0 of Y and shrink Z accordingly
(i.e. replace Z with Z ∩X0). Indeed, if a T -supported blow up f0 : BlR(X0)→ X0

satisfies the assertion of the lemma for X0, Y and Z0, then f : BlR(X) → X is a
blow up of X which extends f0 trivially, and hence satisfies the assertion of the
lemma (we use here that R is closed in T →֒ X0, hence R is closed in X).

Step 0. Given a T -supported blow up f : X ′ → X , we can replace X, Y, Z and

T with X ′, Y ′, Z ′ and any T ′ with Y ′ ∩ (X ′, S′)ssing ⊆ T ′ ⊆ Y ′ ∩ f−1(T ). First of
all, we note that Y ′ \ Z ′→̃Y \ Z is a strictly monomial divisor in X ′ \ Z ′→̃X \ Z,
hence X ′, Y ′, Z ′ and T ′ satisfy the assumptions of the lemma. Suppose that the
proposition holds for X ′, Y ′, Z ′ and T ′, and let f ′ : X ′′ → X ′ be a T ′-supported
blow up with Y ′′ ⊂ (X ′′, S′′)sreg, where Y ′′ is the strict transform of Y ′ and S′′ =
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f ′−1(S′). The morphism f ′′ = f ◦ f ′ is a composition of T -supported blow ups,
hence it is a T -supported blow up by lemma 2.1.4. Obviously, Y ′′ is the strict
transform of Y in X ′′ and S′′ is the preimage of S. Hence f ′′ solves our problem
for X, Y, Z and T .

Step 1. We can assume that Y is irreducible. Let m be the number of irreducible
components of Y . By induction we can assume that m > 1 and the lemma holds
when Y has less than m irreducible components. Let Y = Y1 ∪ Y2, where Y1 is
an irreducible component of Y and Y2 is the union of the others. The idea is
to construct a required blow up X ′ → X in two steps: achieve first that Y1 ⊂
(X, S)sreg, then apply the induction assumption to Y2. Let us check the details.
Find a blow up f : X ′ → X which solves our problem for Y1, Z1 = Y2 ∪ Z and
T1 = Y1∩(X, S)ssing. Obviously, f is T -supported, so it suffices to solve our problem
for X ′, Y ′, Z ′ and T ′ = Y ′ ∩ (X ′, S′)ssing.

Let Y ′
i denote the strict transforms of Yi, then S′ is a strictly monomial divisor

in a neighborhood of Y ′
1 and S′ = Y ′

1 ∪Y ′
2 ∪Z ′, in particular, T ′ = Y ′

2 ∩ (X ′, S′)ssing

is disjoint from Y ′
1 . Since Y ′ \ Z ′ is a strictly monomial divisor in X ′ \ Z ′, we

obtain that Y ′
2 \ Z ′ is a strictly monomial divisor as well. Thus, X ′, Y ′

2 , Y ′
1 ∪ Z ′

and T ′ satisfy the assumptions the lemma. Since Y ′
2 contains m − 1 irreducible

components, there is a T ′-supported blow up f ′ : X ′′ → X ′, which solves our
problem for X ′, Y ′

2 , Y ′
1 ∪ Z ′ and T ′. Let us check that f ′ solves our problem for

X ′, Y ′, Z ′ and T ′ too. Indeed, f ′ does not modify Y ′
1 because T ′ is disjoint from Y ′

1 .
So, S′′ = f ′−1(S′) is a strictly monomial divisors in neighborhoods of both Y ′′

1 →̃Y ′
1

and Y ′′
2 , and we obtain that it is a strictly monomial divisor in a neighborhood of

Y ′′ = Y ′′
1 ∪ Y ′′

2 .
We finished the only stage where a playing with T is required. In the sequel, we

automatically set T ′ = Y ′ ∩ f−1(T ) for any T -supported blow up f : X ′ → X (i.e.
T ′ is chosen as large as possible).

Step 2. We can assume in addition to Step 1 that there exists a Cartier divisor

Y2 and a closed subscheme Y1 →֒ X such that Y2 \T = (Y \T )⊔(Y1 \T ). Note that
Y ∩ Xreg is a Cartier divisor in Xreg, hence BlY (X) → X is an isomorphism over
X \ (Y ∩ Xsing) ⊃ X \ T . Using lemma 2.1.5 we can find a T -supported blow up
f : X ′ → X dominating BlY (X), then Y ′

2 = Y ×X X ′ is a Cartier divisor. Define
Y ′

1 to be the schematic closure of Y ′
2 \ Y ′. Since Y ′ \ f−1(T )→̃Y ′

2 \ f−1(T ) and
T ′ = Y ′ ∩ f−1(T ), we obtain that Y ′

2 \T ′ = (Y ′ \T ′)⊔ (Y ′
1 \T ′). Replacing X, Y, Z

and T with X ′, Y ′, Z ′ and T ′, we achieve the condition of the step.
Step 3. We can strengthen the condition of Step 2 by achieving that Y itself is a

Cartier divisor. Let I and J be the OX -ideals of Y2 and Y ×X Y1, respectively. By
proposition 4.1.2 (iii), choosing sufficiently large n and blowing up the ideal I+J n,
we obtain a T -supported blow up f : X ′ → X such that the strict transform of Y
is a Cartier divisor. Replace X, Y, Z and T with X ′, Y ′, Z ′ and T ′, as earlier. In
the sequel, I is the invertible ideal defining Y .

Step 4. We can assume in addition to Step 3 that Y is regular, and T and

W = Z ×X Y are strictly monomial divisors in Y . For any point x ∈ Y \ T ,
there exists a neighborhood Ux such that the intersection of S = Y ∪ Z with Ux

is a strictly monomial divisor. Then W ×X Ux is a strictly monomial divisor in
Y ×X Ux, and we therefore obtain that (Y, W )ssing ⊂ T . Since dim(Y ) ≤ d − 1
and, by the assumption of the lemma, there is embedded resolution of singularities
over X in dimensions smaller than d, there exists a closed T -supported subscheme
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R →֒ Y such that Y ′ = BlR(Y ) is regular, W ′ = W ×Y Y ′ is a monomial divisor
in Y ′ and T ′ = T ×Y Y ′ is a Cartier divisor. Furthermore, by the following lemma
blowing up self-intersections of W ′ (which lie above T ) we can achieve that W ′ is
strictly monomial. Note that this operation does not destroy the other properties
we have established.

Lemma 4.2.4. Given a regular scheme X = X0 with a normal crossing divisor

Z, there exists a sequence of blow ups Xn
fn
→ · · ·

f2
→ X1

f1
→ X0 such that each Xi

is regular, each Zi = f−1
i (Zi−1) is normal crossing, Zn is strictly normal crossing,

and the center of each fi is a regular subscheme which is a self-intersection of Zi−1

of maximal multiplicity. In particular, the composite blow up Xn → X is supported
over (X, Z)ssing.

Proof. Let Z1, . . . , Z l be the irreducible components of Z, and choose any Z = Zi

with non-empty self-intersection. Let T be the self-intersection of Z of maximal
multiplicity n(Z) (i.e. each point of T has n(Z) preimages in the normalization of
Z). Then similarly to [13, 7.2] one checks that T is a regular closed subscheme of Z
which is transversal to all other components of Z. Blowing up X along T we obtain
a regular scheme X1 such that Z1 is normal crossing and the preimage of Z consists

of two components: a regular exceptional component, and the strict transform Z
′
of

Z. Since Z
′
is isomorphic to the blow up of Z along T , we obtain that n(Z

′
) < n(Z).

Now it is clear, that we can iterate the same process by picking up any irreducible
component of Z1 with non-empty self-intersection, and the process will stop after

n ≤
∑l

i=1 n(Zi) steps. Then Xn → X is as required, and clearly we only modified
Xi’s over the set (X, Z)ssing where the normal crossing divisor Z is not strict. �

Consider R as a closed subscheme of X , and let J be its OX -ideal. By proposi-
tion 4.1.2 (ii), there exists n such that the strict transform of Y in X ′ = BlI+Jn(X)
is a Cartier divisor. Define Y ′, Z ′ and T ′ as usual, then Y ′→̃Y ′ by 4.1.2 (i). In
particular, T ′→̃(T ×X X ′) ×X′ Y ′ and we obtain that |T ′| = T ′. To check that
X ′, Y ′, Z ′ and T ′ satisfy the conditions of the step, we note that Z ′×X′ Y ′→̃Z ×X

Y ′→̃W ×X Y ′→̃W ′ is a strictly monomial divisor in Y ′. Finally, T ′ is a divisor
supported on W ′, hence it is a strictly monomial divisor too.

Step 5. We can achieve in addition to Step 4 that X is regular. Note that X is
regular in a neighborhood of Y because Y is a regular Cartier divisor. So, we can
simply shrink X .

Step 6. We can achieve in addition to Step 5 that Z is a Cartier divisor. Let
D be the divisorial part of Z, i.e. the schematic closure of ⊔z∈Z∩X1Spec(OZ,z) in
X . Also, let IZ ⊂ ID ⊂ OX be the ideals of D and Z. Since X is regular, ID

is invertible and we obtain a splitting IZ = IDIeZ where IeZ is an ideal supported

in codimension at least two. The support of the scheme Z̃ = Spec(OX/IeZ) is the
locus of Z where it is not a divisor (large codimension or embedded components),

hence Z̃ ∩ Y ⊂ T . Now, blowing up X along Z̃ ×X Y we obtain a T -supported
blow up X ′ → X such that the ideal IeZOX′ is principal in a neighborhood of
Y ′ by lemma 4.1.1. Then it is clear that the closed subscheme given by the ideal
IDIeZOX′ is principal in that neighborhood of Y ′ as well. Thus, we can achieve
that Z is a Cartier divisor at cost of possible destroying the conditions of Steps 2–5.
Since the property of Z being a Cartier divisor is preserved by any modification of
X , we should simply rerun Steps 2–5 once again.
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The remaining part of the proof is more or less standard: it will suffice only to
blow up some components of T (which are regular subschemes of codimension 2
in a regular scheme X). We prefer to give a detailed proof mainly for the sake of
completeness.

Step 7. Let T1, . . . , Tn be the irreducible components of T , then we can achieve

in addition to Step 6 that each Ti belongs to a unique irreducible component Zi

of Z, Ti = Zi ∩ Y and Zi ∪ Y is a strictly monomial divisor. Consider T1 as a
reduced closed subscheme, and let J ⊂ OX be its ideal and m be its multiplicity
in W . Set X ′ = BlI+Jm(X) and define Y ′,Z ′, T ′ as usual, then Y ′→̃BlT1

(Y )→̃Y .
Note that W ′ = Y ′ ×X′ Z ′→̃Y ′ ×X Z→̃Y ′ ×Y W is isomorphic to W , hence the
conditions of Step 4 are still satisfied. It follows from the next lemma that only
one component of Z ′, say Z1, contains T1, T1 = Z1 ∩ Y ′ and Z1 ∪ Y ′ is strictly
monomial in a neighborhood of Y ′. Hence shrinking X ′ (i.e. replacing it with
X1 in the notation of the lemma) and replacing X, Y, Z, T with X ′, Y ′, Z ′, T ′, we
achieve that T1 satisfies the conditions of Steps 5–7. It remains then to repeat this
procedure for other Ti’s and to note that blowing up T2 preserves monomiality of
Z1 ∪ Y by part (iii) of the lemma, similarly for T3, etc.

Lemma 4.2.5. Assume that X is a regular scheme, Y = Spec(OX/I) →֒ X is a
regular divisor, T = Spec(OX/J ) →֒ Y is a regular divisor in Y and m is a positive
natural number. Consider the blow up f : X ′ = BlI+Jm → X and let Y ′ be the
strict transform of Y , then

(i) in a neighborhood of Y ′, Y ×X X ′ is a strictly monomial divisor which factors

as Y ′∪mT̃ , where T̃ is the preimage of T with the induced reduced scheme structure;
(ii) if Z is a Cartier divisor in X with Y ×X Z = mT , then Z ×X X ′ coincides

with Y ′ ∪mT̃ in a neighborhood of Y ′;

(iii) if Z̃ is a divisor in X such that Y ∪Z̃ is strictly monomial and (Y ×X Z̃)∪T is

strictly monomial in Y , then Y ′∪(Z̃×X X ′) is strictly monomial in a neighborhood
of Y ′.

Proof. The statement is local on X , so we can assume that X = Spec(A), I =
I(X) = (x) and J = J = (x, y). Then I+Jm corresponds to the ideal L = (x, ym)
and X ′ is pasted from the charts X1 = Spec(A[ L

ym ]) and X2 = Spec(A[L
x ]). The

strict transform of Y is disjoint from X2, hence we can restrict our study to X1,
and we will actually show that it is a required neighborhood of Y ′. Note that the
A-algebra B = A[S]/(ymS − x) defines a regular subscheme in A1

X , in particular,

B has no ym-torsion and therefore the surjection B → A[ L
ym ] is an isomorphism.

It follows that X1→̃Spec(B) is regular and Y ×X X1 is isomorphic to the strictly
monomial subscheme of Spec(B) given by the condition ymS = 0, as stated in (i).

Since the divisor Y ×X X1 in X1 is defined by ymS = 0, it coincides with

Y ′ ∪mT̃ , where T̃ is given by y = 0 (i.e. T̃ is the set-theoretical preimage of T in

X1). In particular, T ′ := Y ′×X1
T̃ is the zero locus of (S, y), hence it coincides with

the preimage of T in Y ′. Let, now, Z be as in (ii) and Z1 = Z ×X X1. Note that
Y ′→̃BlJ m(Y ′)→̃Y ′ and hence T ′→̃T . Therefore, Y ′×X1

Z1→̃Y ×X Z = mT →̃mT ′.

Since mT̃ is an irreducible component of Z1 and its intersection with Y ′ is mT ′,

we obtain that Y ′ and mT̃ are the only irreducible components of Z1 that are not
disjoint from Y ′, so we obtain (ii). Finally, (iii) is proved by an explicit computation
similar to the proof of (i), so we omit the details. �



DESINGULARIZATION OF QUASI-EXCELLENT Q-SCHEMES 29

Step 8. We can achieve in addition to Step 7 that for any irreducible component

Z̃ of Z the divisor Z̃ ∪ Y is strictly monomial. Let us prove first that any two

irreducible components W̃ , W̃ ′ of Z̃ ∩Y are disjoint. Assume, on the contrary, that

V = W̃ ∩ W̃ ′ is non-empty. Since W is a strictly monomial divisor, we obtain

that V is of codimension 2 in Y and W̃ , W̃ ′ are the only components of W which

contain V . Note that W̃ is not contained in T because otherwise Step 7 would

imply that W̃ = Z̃ ∩Y . By the same reason, W̃ ′ is not in T and, since T is a union
of components of W by Step 4, we obtain that V \ T is not empty, say contains a
point y. But the latter is an absurd because Z ∪ Y is strictly monomial at y, but y

belongs to two different irreducible components of Z̃ ∩ Y . The contradiction shows
that V is actually empty.

Now, we are ready to check that Z̃ ∪ Y is a strictly monomial divisor in a
neighborhood of Y . Since Y itself is strictly monomial it is enough to check that

Z̃ ∪Y is a strictly monomial divisor in a neighborhood of any point y ∈ Z̃ ∩Y . Let

W̃ be the unique irreducible component of Z̃ ∩ Y that contains y. We can assume

that W̃ is not contained in T as the latter case was dealt with in Step 7. Shrinking

X (and Y ) we can assume that Z̃ ×X Y = W̃ . The irreducible divisor Z̃ is of the

form mZ̃ ′ where Z̃ ′ is reduced. Note that Z̃ ∪ Y is a strictly monomial divisor in

a neighborhood of the generic point η ∈ W̃ because W̃ is not contained in T . It

follows that W̃ ′ = Z̃ ′ ×X Y , which is an irreducible divisor in Y , is reduced at η.

Therefore, W̃ ′ is an integral divisor in Y , and actually W̃ ′ = W̃red = 1
mW̃ .

It suffices to show that Z̃ ′ ∪ Y is strictly monomial, so we can replace Z̃ with its

reduction achieving that W̃ becomes reduced. We can check monomiality locally at

each point x ∈ W̃ . There exists a regular sequence of parameters x1, . . . , xn ∈ OX,x

such that Y = V (x1) and W̃ = V (x1, x2) locally at x (we use that X is regular, Y

is a regular divisor in X and W is a regular divisor in Y ). Since Z̃ is a divisor, it
is of the form V (f), and then the image f ′ ∈ OX,x/(x1) of f is of the form u′x2

with a unit u′ ∈ OX,x/(x1) because locally at x f ′ defines the closed subscheme

Z̃ ×X Y = W in Y . Lifting u′ to a unit u ∈ OX,x and replacing f with f/u we can
get rid of u and u′, and then f = x2 + x1y for some y ∈ OX,x. In particular, it

becomes clear that Z̃ ∪ Y = V (x1(x2 + yx1)) is a strictly monomial divisor locally

at x. By compactness of Y , Z̃ ∪ Y is strictly monomial in a neighborhood of Y ,
hence it suffices simply to shrink X .

Step 9. If the conditions of Step 8 are satisfied, then S is a strictly monomial

divisor in a neighborhood of Y . Let Z1, . . . , Zn be the irreducible components of
Z which have non-empty intersection with Y . By the previous step, Y ∪ Zi is a
strictly monomial divisor for any i. Since ∪i(Y ∩Zi) is a strictly monomial divisor
in Y , it follows that Y ∪ (∪iZi) is a strictly monomial divisor in a neighborhood
of Y (replace Z with its reduction, then for any point y ∈ Y the claim reduces to
linear algebra in the tangent space Ty). It finishes the proof of Step 9 and concludes
the proof of the theorem. �

4.3. Main results.

Lemma 4.3.1. Let X be an integral quasi-excellent scheme of characteristic zero
with a closed subset Z such that T = (X, Z)ssing is of finite type over a field k.
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Assume that dim(X) = d and there is semi-strict embedded resolution of singu-
larities over X up to dimension < d. Then the pair (X, Z) admits a semi-strict
desingularization.

Proof. Note that for any T -supported blow up f : X ′ → X with Z ′ = Z×X X ′, the
scheme T ′ = (X ′, Z ′)ssing is of finite type over k because it sits over T , and hence is
of finite type over T . In particular, while proving the lemma we will freely replace
X, Z and T with X ′, Z ′ and T ′ as above. Let f : X ′ → X be a T -supported blow
up dominating BlZ(X) → X ; it exists by lemma 2.1.5. Then Z ′ = f−1(Z) is the
support of the Cartier divisor Z ×X X ′. Replace X and Z with X ′ and Z ′. By
corollary 3.4.2 applied to X and T ⊃ Xsing, there exists a strict desingularization
f : X ′ → X of X . Replacing X and Z with X ′ and f−1(Z), we achieve in addition
that X is regular. Now, X and Y = Z satisfy assumptions of proposition 4.2.1,
hence there exists a T -supported blow up f : X ′ → X such that the strict transform
Y ′ of Z is disjoint from T ′ = (X ′, S′)ssing for S′ = f−1(Z).

The Zariski closure Z ′ of S′ \ Y ′ is of finite type over k because Z ′ ⊂ f−1(T ).
Note that (X ′, Z ′)ssing ⊂ T ′ ⊂ Z ′, hence we can apply corollary 3.4.2 to find a
strict desingularization g : X ′′ → X ′ of the pair (X ′, Z ′). Let Y ′′, Z ′′ and S′′ be
the preimages of Y ′, Z ′ and S′. Since g is T ′-supported, T ′ ∩ Y ′ = ∅ and S′ is a
monomial divisor in a neighborhood of Y ′, we obtain that S′′ is a monomial divisor
in a neighborhood of Y ′′→̃Y ′. Also, S′′ = Y ′′ ∪ Z ′′ and Z ′′ is a monomial divisor,
hence the S′′ is a monomial divisor. The induced morphism f ′ : X ′′ → X is a T -
supported blow up because T ′ ⊂ Z ′ ⊂ f−1(T ). Therefore f ′ provides a semi-strict
desingularization of (X, Z). �

Now, we are prepared to prove theorem 1.1.

Proof of theorem 1.1. As was mentioned in the introduction, it suffices to prove
that there is semi-strict embedded resolution of singularities over a quasi-excellent
noetherian scheme k of characteristic zero. We will prove by induction on d that
there is semi-strict embedded resolution of singularities over k up to dimension
< d. The case d = 0 is trivial because X<0 = ∅. Assume that there is semi-strict
embedded resolution of singularities over k up to dimension < d−1. By proposition
2.3.4, it suffices to prove that, if S is a local integral k-scheme of essentially finite
type over k and dimension d, s ∈ S is the closed point, f : S′ → S is a modification
and Z ′ ⊂ S′ is a closed subset such that T ′ = (S′, Z ′)sing is contained in f−1(s),
then (S′, Z ′) admits a semi-strict desingularization.

Set R = (S′, Z ′)ssing. We claim that there exists an R-supported blow up g :
S′′ → S′ with Z ′′ = g−1(Z ′) such that (S′′, Z ′′)ssing is contained in the preimage of

s. Indeed, by lemma 4.2.4, there exists a blow up g̃ : S̃′′ → S̃′ := (S′, Z ′)reg which

is supported on (S̃′, Z̃ ′)ssing, where Z̃ ′ = Z ′ ∩ S̃′, and such that S̃′′ is regular and

the preimage g̃−1(Z̃ ′) of the monomial divisor Z̃ ′ is strictly monomial (we use that

the latter happens iff the preimage of the closed set |Z̃ ′| is a strictly normal crossing
divisor). Extending g̃ to a blow up g : S′′ → S′ we obtain an R-supported blow
up g : S′′ → S′ with Z ′′ = g−1(Z ′) such that (S′′, Z ′′)sreg contains the preimage of
(S′, Z ′)reg. It follows that (S′′, Z ′′)ssing is contained in the preimage of s, which is
a k(s)-variety.

It suffices to find a semi-strict desingularization of the pair (S′′, Z ′′) because
any such desingularization is also a semi-strict desingularization of the original
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pair (S′, Z ′). By proposition 2.3.4, there is semi-strict embedded resolution of
singularities over S up to dimension < d because any local S-scheme of essentially
finite type is also a k-scheme of essentially finite type. In particular, there is semi-
strict embedded resolution of singularities over S′′ up to dimension < d, hence the
pair (S′′, Z ′′) admits a semi-strict desingularization by lemma 4.3.1. �

We will deduce desingularization of formal schemes. By a desingularization of a
formal pair (X, Z) we mean a formal blow X′ → X supported on Xsing ∪ Zsing and
such that X′ = (X′, Z′)reg, where Z′ = Z×X X′. We have already seen in §3.1 that it
is not so easy to define quasi-excellent formal schemes, and now we have to introduce
one more notion. We say that X is a universally quasi-excellent formal scheme if
any formal X-scheme of finite type is quasi-excellent. Obviously, any special formal
scheme is universally quasi-excellent (and, as we noted in remark 3.1.1, Gabber
proved that any quasi-excellent formal scheme is universally so). Consider such a
formal scheme X with a closed subscheme Z.

Corollary 4.3.2. Assume that X = B̂lJ (X0) and Z = Z0×X0
X, where X0 = Spf(A)

is a reduced universally quasi-excellent formal scheme of characteristic zero, I, J ⊂
A are ideals and Z0 = Spf(A/I). Then the pair (X, Z) admits a desingularization.

Proof. Set X0 = Spec(A), X = BlJ(X0) and Z = Spec(A/I) ×X0
X , then the

pair (X, Z) is isomorphic to the P -adic completion of the pair (X, Z), where P is
an ideal of definition of A. By the previous theorem, the pair (X, Z) admits a
desingularization X ′ → X (use lemma 2.3.7 if X is not integral). Using lemma
3.1.4, one checks that the P -adic completion X′ → X of the blow up X ′ → X is a
required desingularization of the pair (X, Z). �

One could expect that the corollary allows to desingularize an arbitrary univer-
sally quasi-excellent formal scheme of characteristic zero by patching local desin-
gularizations (proposition 2.3.4 does such patching job in the case of schemes).
Unfortunately, it cannot be done in general because not open ideals does not have
to extend from an open formal subscheme. For this reason we are forced to consider
the case when blowing up an open ideal suffices for desingularization, i.e. the case
then X is rig-regular and Z is rig-monomial.

Recall that a (formal) scheme X is called quasi-paracompact if it admits a cov-
ering {Xi}i∈I of finite type (i.e. each Xi intersects only finitely many Xj ’s) with
open quasi-compact Xi’s. Any irreducible quasi-paracompact locally noetherian
scheme is actually noetherian, but quasi-paracompactness is a much more inter-
esting property in the case of formal schemes. For example, Drinfeld’s upper half
plane, non-Archimedean Stein spaces and analytifications of varieties over a non-
Archimedean field admit quasi-paracompact formal models, which can be chosen
to be irreducible if the corresponding non-Archimedean space is irreducible. (Irre-
ducibility is understood here in the sense of [12]; it is a rather subtle notion because
it is not preserved by localizations, unlike the scheme case.)

Note that Berkovich considered in [3] (and later works) quasi-paracompact formal
schemes of locally finite presentation over the ring of integers of a non-Archimedean
field (they are simply called formal schemes of locally finite presentation in loc.cit.).
One can define analytic generic fiber for such formal schemes. Recently, Bosch
extended Raynaud’s theory to quasi-paracompact formal schemes and rigid spaces,
see [5, 2.8.3]. Let us say that a (formal) scheme is para-noetherian if it is quasi-
paracompact and locally noetherian.
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Theorem 4.3.3. Let X be a reduced universally quasi-excellent para-Noetherian
formal scheme of characteristic zero and Z be a closed formal subscheme. Assume
that X is rig-regular and Z is a rig-regular divisor, then the pair (X, Z) admits a
desingularization.

Proof. The proof exploits the same reasoning as was used in the proofs of proposi-
tion 2.3.4 and theorem 3.4.1. Since there are mild complications due to lack of quasi-
compactness, we give the full argument. By our rig-assumptions, T = Xsing ∪ Zsing

is a reduced closed subscheme of Xs. It follows that (X′, Z ×X X′)sing is an Xs-

supported scheme for any formal blow up X′ = B̂lI(X) with open I.
Each connected component can be desingularized separately, so assume that X is

connected. Choose a locally finite open affine covering {Xi}i∈I . By connectedness
of X, I is at most countable. We assume that I = N because the case of finite I
is similar and easier. By Ui we denote the open set (X \ T) ∪ (∪j≤iXj). Let us say
that an ideal I ⊂ OX has a quasi-compact support if it is trivial outside of a quasi-
compact formal open subscheme. We will use induction whose step is the following
statement. Let I be a T-supported open ideal with a quasi-compact support such

that the blow up f : X′ = B̂lI(X) → X desingularizes the pair (X, Z) over Ui−1.

Then there exists an open T-supported ideal L ⊂ I with a quasi-compact support

such that L|Ui−1
= I|Ui−1

and B̂lL(X)→ X desingularizes (X, Z) over Ui.

Assume the induction step for now. Then by induction we can find a sequence
of ideals OX = I0 ⊃ I1 ⊃ . . . such that the sequence stabilizes on each Xi starting
with Ii, and each morphism BlIi(X)→ X desingularizes (X, Z) over Ui. Now, it is
clear that one can desingularize (X, Z) by blowing up the ideal I = ∩Ii.

It remains to establish the induction step. Recall that Xi is affine and set
U′

i−1 = Ui−1 ×X X′, X′
i = Xi ×X X′ and Z′

i = Z ×X X′
i. The pair (X′

i, Z
′
i) admits a

desingularization B̂lJ0
(X′

i)→ X′
i by corollary 4.3.2. Note that (X′

i)sing ∪ (Z′
i)sing is

a closed subscheme of (X′
i)s disjoint from U′

i−1, hence the ideal J0 is T′
i-supported

for the closed subset T′
i = X′

i \U
′
i−1 of X′

i, in particular, J0 is an open ideal. Choose

a quasi-compact neighborhood X
′
of the Zariski closure T

′

i of T′
i. By lemma 2.1.3,

J0 extends to a T
′

i-supported ideal J ⊂ O
X

′ . Since the support of J is closed in X′,

it can be extended trivially to a T
′

i-supported ideal J ⊂ OX′ . In particular, J is an
open T-supported ideal with a quasi-compact support.

By lemma 2.1.9, the morphism f ′ : X′′ = BlJ(X′) → X is isomorphic to a T-

supported blow up B̂lL(X) with a quasi-compact support (the lemma is formulated
for noetherian formal schemes, but the same proof works for para-noetherian formal
schemes and T-supported blow ups with a quasi-compact support). Replacing L

with LI we achieve that L is contained in I (note that B̂lLI(X)→̃X′′ because X′′

dominates X′ = B̂lI(X)). It remains to check that L is as required. The ideal L is
open because it is T-supported. Next, f ′ desingularizes (X, Z) over Ui−1 because

it is isomorphic to f over it (the blow up X′′ → X′ is T
′

i-supported, hence it
is an isomorphism over U′

i−1). Finally, f ′ desingularizes (X, Z) over Xi because

X′′ ×X Xi→̃B̂lJ0
(X′

i). �

It seems natural to expect that the rig-assumptions in the above theorem can
be removed, but perhaps one has to use stronger methods to prove such a general-
ization. Some kind of canonical desingularization should be used because a badly
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chosen desingularization of an open formal subscheme can have no extension to the
entire formal scheme.

Appendix A. Standard desingularization

The aim of this appendix is to prove that embedded desingularization in our
sense can be deduced from a desingularization result of Hironaka’s type.

Definition A.1. We say that there is standard resolution of singularities up to di-
mension < d over a locally noetherian scheme k if there is resolution of singularities
up to dimension < d over k, and for any regular scheme X of finite type over k,
if dim(X) < d, E ⊂ X is a normal crossing divisor and Z ⊂ X is a closed subset,
then there exists a Z-supported blow up f : X ′ → X such that f−1(E ∪ Z) is a
normal crossing divisor.

The definition is motivated by an observation that the work of Hironaka and
all recent desingularization works imply standard desingularization. We refer the
reader to [29], §§1, 2.1 and 2.3 for an excellent exposition of the general strategy
shared by all known desingularization proofs, and give here only a very brief ex-
planation. Recall that the order or multiplicity µx of an ideal I ⊂ OX (or the
corresponding closed subscheme) at x ∈ X is the maximal number n for which
Ix ⊆ mn

x . If n is the maximal multiplicity of I at a point, f : X ′ → X is a blow
up of X along a regular subvariety lying in the multiplicity n locus of I and E′ is
the exceptional divisor, then IOX′(nE′) is an ideal in OX′ of maximal multiplicity
n, which is called the weak (or controlled) transform of I under f . (Actually, we
take the full transform IOX′ and factor out an obvious divisorial part. So, the
weak transform lies somewhere on the way from the full to the strict transform,
but unlike the strict transform it can be easily described.)

The main ingredient of desingularization proofs is the following statement: let
X, E, Z be as above, and assume that the multiplicity of Z at the points of X is
at most µ, then there is a composition g : X ′ = Yn → Yn−1 → · · · → Y0 = X of
blow ups with regular centers which are contained in the maximal multiplicity loci
of the weak transforms of Z and such that the union of the exceptional divisor Eg

with g−1(E) is a normal crossing divisor and the multiplicity of the weak transform
of Z at the points of X ′ is at most µ − 1. For example, the above statement is
Main Theorem II in [19], or resolution of marked ideals in [29, 2.1.3]. Applying this
procedure µ times, we obtain a composition of Z-supported blow ups f : X0 →
X1 → · · · → Xµ = X such that the union of the exceptional divisor Ef with
f−1(E) is a normal crossing divisor and the weak transform of Z is empty. Then
Ef contains the preimage of Z and, therefore, f−1(E ∪ Z) is a normal crossing
divisor. Thus, standard desingularization of algebraic varieties of characteristic
zero follows from [19], [28], [10], [29] and other desingularization works.

Proposition A.2. Let k be a noetherian scheme. If there is standard resolution
of singularities over k up to dimension < d, then there is semi-strict embedded
resolution of singularities over k up to dimension < d.

Proof. Using induction on d we can assume that there is semi-strict resolution of
singularities over k up to dimension < d − 1. By proposition 2.3.4, it suffices to
show that if X is a blow up of a local k-scheme of dimension d − 1, in particular,
dim(X) ≤ d− 1, and Z →֒ X is a closed subscheme, then the pair (X, Z) admits a
semi-strict desingularization.
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Step 1. We can assume that X is regular and Z is a reduced Cartier divisor.

Set V = (X, Z)sreg. As we saw in the beginning of the proof of 2.3.4, the blow
up BlZ(X) → X is dominated by a V -admissible blow up X ′ → X , and replacing
(X, Z) with (X ′, Z×X X ′), we achieve that Z is a Cartier divisor. Since we assume
standard resolution of singularities over k up to dimension < d, there exists an Xreg-
admissible blow up X ′ → X with regular X ′. Replacing (X, Z) with (X ′, Z×X X ′),
we can assume that X is regular. In particular, it is now harmless to replace Z
with its reduction.

In the sequel, we will desingularize (X, Z) by a sequence of blow ups. Let T
denote the set we are allowed to modify. Clearly, we have to start with T =
(X, Z)ssing, but it will not be so in the sequel.

Step 2. We can assume in addition to Step 1 that Z = Y ∪ T , where Y is a

divisor disjoint from (X, Z)ssing. (We warn the reader that Y = ∅ does not have
to work fine because T can be strictly smaller than Z.) By proposition 4.2.1, there
exists a T -supported blow up f : X ′ → X with the following property: if Y ′ is
the strict transform of Z and Z ′ = f−1(Z), then Y ′ ⊂ (X ′, Z ′)sreg. Note that
Z ′ = Y ′ ∪ T ′, where T ′ = f−1(T ), therefore X ′, Y ′, Z ′ and T ′ satisfy the claim
of the step with the only possible exception: it can happen that X ′ is singular.
Find a desingularization f ′ : X ′′ → X ′ and set Y ′′ = f ′−1(Y ′), Z ′′ = f ′−1(Z ′)
and T ′′ = f ′−1(T ′). Note that f ′ is a T -supported blow up because X ′

sing ⊂ T ′.

Also, f ′ is an isomorphism over a neighborhood of Y ′ because Y ′ ⊂ X ′
reg. Hence

Y ′′ ⊂ (X ′′, Z ′′)sreg, and we can replace X ′, Y ′, Z ′ and T ′ with X ′′, Y ′′, Z ′′ and T ′′,
which are as claimed.

The rest is obvious. By the definition of standard desingularization, there exists
a T -supported blow up f : X ′ → X with monomial f−1(Z). �
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