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FUNCTORIAL DESINGULARIZATION OVER Q: BOUNDARIES

AND THE EMBEDDED CASE

MICHAEL TEMKIN

Abstract. Our main result establishes functorial desingularization of noe-
therian quasi-excellent schemes over Q with ordered boundaries. A functorial
embedded desingularization of quasi-excellent schemes of characteristic zero is
deduced. Furthermore, a standard simple argument extends these results to
other categories, including in particular, (equivariant) embedded desingular-
ization of the following objects of characteristic zero: qe algebraic stacks, qe
schemes, qe formal schemes, complex and non-archimedean analytic spaces.
We also obtain a semistable reduction theorem for formal schemes.

1. Introduction

Very often one divides various desingularization problems into two large classes:
non-embedded desingularization and embedded desingularization. A typical exam-
ple of a problem of the first type is to associate to a scheme X a blow up sequence
f : X ′

99K X with a regular X ′ and such that f is an isomorphism over the regular
locus of X . A typical (but rather crude) example of a problem of the second type
is to associate to a regular ambient scheme X with a divisor Z →֒ X a blow up
sequence f : X ′

99K X such that f−1(Z) is an snc divisor and f blows up only
regular subschemes in the preimage of Z. In particular, X ′ is regular and f is
an isomorphism over X \ Z. Although there are much finer versions of embed-
ded desingularization, it seems that the one we have mentioned covers most of the
applications of embedded desingularization.

This work is a direct continuation of [Tem12], where functorial non-embedded
desingularization of varieties of characteristic zero was used to prove an analogous
result for all quasi-excellent schemes of characteristic zero. Our aim is to extend
the technique developed in [Tem12] to functorial embedded desingularization of
qe schemes of characteristic zero. In particular, we establish the above version of
embedded desingularization for such schemes. Note that in view of [Gro67, IV2,
§7.9], this is the most general class of schemes over Q for which the problem can
be solved. Moreover, we solve a finer problem formulated in Theorem 1.1.9, though
when compared with the case of varieties, this is still far from the strongest known
version. In particular, we do not achieve principalization and our algorithm does
not choose centers that have simple normal crossings with exceptional divisors.

Key words and phrases. Resolution, singularities, quasi-excellent, functorial embedded desin-
gularization, B-schemes, schemes with boundaries.
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As a simple corollary of functorial embedded desingularization we deduce analo-
gous embedded desingularization results for (formal) qe stacks, and complex/non-
archimedean analytic spaces. Also, one obtains equivariant embedded desingular-
ization of all these objects with respect to an action of a regular group.

1.1. Main results. Now, we are going to formulate our main results. We try to
make the formulations as self-contained as possible, though certain referencing to
the terminology introduced later is still involved. Mainly, one has to use the no-
tions of principal and complete transforms of the boundary in order to formulate
the sharpest results. Our results are concerned with desingularization of the fol-
lowing objects: a divisor on a regular scheme, a scheme with a boundary, a scheme
embedded into a regular scheme with an snc boundary. Although using the non-
embedded desingularization from [Tem12] all three results can be easily obtained
one from another, we decided to formulate them all since each of them has its own
flavor. The first and the third cases are the classical embedded desingularization
problems. The second formulation is important for us because the entire paper is
written in the language of B-schemes, i.e. schemes with boundaries. The reasons
for choosing this language is discussed in §1.2.1 and Appendix A.

1.1.1. Desingularization of divisors. In many applications of embedded desingular-
ization one wants to resolve a divisor E (or a function) on a regular ambient variety
X by finding a modification f : X ′ → X with a regular X ′ and such that the reduc-
tion of E ×X X ′ is snc (i.e. strictly normal crossings). One can also achieve that f
modifies only the non-regular locus of E, but the problem of preserving the entire
locus where E is snc is more delicate, and, probably, is not the “correct problem”
(see §A.7). In fact, the problem that makes much more sense is to find a desingu-
larization that preserves the locus where E is snc and the splitting to components
is fixed in some sense. A standard way to formulate this is to consider a divisorial
boundary E = {E1, . . . , En} where each Ei is a divisor.

Remark 1.1.2. (i) We make our life easier by considering only ordered boundaries,
as otherwise only the new boundary would be ordered accordingly to the history,
and this would require to use a heavier terminology, as one does in [CJS13]. In
particular, we will use the order whenever this shortens our arguments. As a
drawback, our desingularization procedure depends on the order of the components
and is only compatible with regular morphisms that preserve the order.

(ii) At least in the case of varieties one can functorially desingularize unordered
boundaries so that the entire snc locus is preserved, see Remark A.7.1(iii). So,
almost surely all our results have “unordered” analogs, where all initial boundaries
are unordered.

We refer to §2.1 for the definitions of snc and strictly monomial boundaries, and
to §2.2 for the definition of complete and principal transforms of a boundary under
a blow up sequence. For reader’s convenience basic properties of the transforms
are collected in Lemma 2.2.9. Recall that if E = {E1, . . . , En} is a boundary then
|E| = ∪n

i=1|Ei| denotes its support and [E] =
∑n

i=1 Ei denotes its scheme-theoretic
support.

Theorem 1.1.3. For any quasi-excellent noetherian regular scheme X of char-
acteristic zero and a divisorial boundary E on X there exists a blow up sequence
f = Fdiv(X,E) : X ′

99K X such that
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(i) the centers of f are regular (and so X ′ is regular) and contained in the
preimage of the set T consisting of the points x ∈ E at which E is not snc,

(ii) the complete transform f◦(E) is snc; in particular, the strict transform
f !(|E|) is snc and the total transform [E] ×X X ′ is strictly monomial,

(iii) Fdiv is functorial with respect to strict regular morphisms; that is, given a
regular morphism g : Y → X and D = E ×X Y , the blow up sequence Fdiv(Y,D) is
obtained from g∗(Fdiv(X,E)) by omitting all empty blow ups.

Remark 1.1.4. (i) Unlike the known algorithms for varieties, we do not achieve
that the centers of f are transversal to the new boundaries.

(ii) The algorithm only modifies the bad locus T , but its blow ups Xi+1 → Xi

can modify the intermediate good loci Xi \ Ti where Ei is snc. More generally, in
all desingularization algorithms in this paper, we require that the centers lie over
the bad locus of the original scheme X (with an additional datum), but they can
intersect the intermediate good loci where Xi is already resolved.

1.1.5. Desingularization of B-schemes. One does not have to require that X is reg-
ular in the above theorem. Also, it is convenient to allow non-divisorial boundaries
B = {B1, . . . , Bn}, where each component Bi is only a locally principal closed sub-
scheme. A pair (X,B) will be called a B-scheme, and we will work within the
framework of B-schemes in this paper. In particular, the version of the main the-
orem we will deal with in the paper is given below. In this theorem, a B-scheme
(X ′, B′) is said to be semi-regular if X ′ is regular and B′ becomes snc after removing
connected components of X ′ from the boundary components B′

i ∈ B′.

Theorem 1.1.6. For any quasi-excellent noetherian B-scheme (X,B) of charac-
teristic zero there exists a blow up sequence f = F(X,B) : X ′

99K X such that
(i) (X ′, B′) is semi-regular where B′ = f◦(B),
(ii) each center of f is regular and disjoint from the preimage of the semi-regular

locus of (X,B),
(iii) F is functorial with respect to strict regular morphisms; that is, given a

regular morphism g : Y → X with D = B ×X Y , the blow up sequence F(Y,D) is
obtained from g∗(F(X,B)) by omitting all empty blow ups.

Remark 1.1.7. (i) Up to the non-embedded desingularization theorem [Tem12,
1.2.1], Theorems 1.1.3 and 1.1.6 are equivalent because one can construct F(X,B)
as the composition of the non-embedded desingularization g : X ′

99K X with the
blow up sequence Fdiv(X ′, g◦(B)div) : X ′′

99K X ′, where g◦(B)div is the divisorial
part of g◦(B).

(ii) We do not require that X is generically reduced, and the algorithm simply
blows up the non-reduced components at some stage.

1.1.8. Embedded desingularization. Here is the strongest version of embedded desin-
gularization which is achieved by our method so far, and we will see in §3.5.2 that
it follows easily from Theorem 1.1.6. The main weakness of this variant is that it
does not provide strong principalization in the sense of §1.1.10 below. In addition,
the center of the i-th blow up Xi → Xi−1 does not have to be transversal to the
boundary Ei−1, which is the complete transform of E0 = E. In particular, the
intermediate boundaries Ei can be singular, though the final boundary En is snc.

Theorem 1.1.9. For any quasi-excellent regular noetherian scheme X of charac-
teristic zero with an snc boundary E and a closed subscheme Z →֒ X there exists
a blow up sequence f = Femb(X,E,Z) : X ′

99K X such that
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(i) X ′ is regular, E′ = f◦(E) is snc and Z ′ = f !(Z) is regular and has simple
normal crossings with E′,

(ii) each center of f is regular and contained in the preimage of the set T con-
sisting of points x ∈ Z such that Z has not simple normal crossings with E at x
(e.g. Z is not regular at x),

(iii) Femb is functorial with respect to strict regular morphisms; that is, given a
regular morphism g : Y → X with D = E ×X Y and W = Z ×X Y , the blow up
sequence Femb(Y,D,W ) is obtained from g∗(Femb(X,E,Z)) by omitting all empty
blow ups.

1.1.10. Principalization. In the case of varieties, one can strengthen the above the-
orem by adding the condition that the principal transform f⊲(Z) equals to the
strict transform Z ′ = f !(Z). In particular, this implies that Z ×X X ′ = Z ′ + EZ

where EZ is a strictly monomial exceptional divisor, and after composing with the
blow up along Z ′ one obtains a strong principalization of Z by a blow up sequence
X ′′

99K X . Namely, Z ′′ = Z×XX ′′ is a divisor with support on the snc divisor E′′,
and hence Z ′′ is strictly monomial. In this paper we only establish a weaker prin-
cipalization for qe schemes over Q, which obviously follows from our other results
and suffices for many applications.

Theorem 1.1.11. For any quasi-excellent noetherian scheme X of characteristic
zero with a closed subscheme Z →֒ X there exists a (Z ∪ Xsing)-supported blow
up sequence Fprinc(X,Z) : X ′

99K X such that X ′ is regular, Z ×X X ′ is strictly
monomial and Fprinc is functorial with respect to strict regular morphisms.

Proof. Let f : X ′ → X be the blow up along Z and Z ′ = Z ×X X ′. Note
that B′ = {Z ′} is a boundary on X ′ and consider the desingularization g =
F(X ′, B′) : (X ′′, B′′) 99K (X ′, B′) of the B-scheme (X ′, B′) as in Theorem 1.1.6.
Note that g is Z-supported because the bad locus of (X ′, B′) sits over Z. Also,
Z ×X X ′′ is a divisor with support contained in the snc boundary B′′ and hence it
is strictly monomial. We define Fprinc(X,B) to be the composition X ′′

99K X . �

1.1.12. Other categories. Using the same argument as in [Tem12, §5] one can use the
main desingularization theorems for noetherian qe schemes to prove their analogs
for other (quasi-compact or not) geometric objects of characteristic zero. Also, it
follows from the functoriality that the obtained desingularizations are equivariant.

Theorem 1.1.13. (i) The functors F , Fdiv, Femb and Fprinc induce analogous
functors for quasi-compact (formal) qe stacks and complex/non-archimedean ana-
lytic spaces of characteristic zero.

(ii) All these functors extend to non-quasi-compact objects at cost of replacing
blow up sequences with blow up hyper-sequences, or simply with a proper desingu-
larization morphism X ′ → X without a blow up sequence structure.

(iii) All these desingularizations are equivariant with respect to any action of a
regular group.

1.1.14. Compactification of a regular scheme with an snc divisor. One often uses
embedded resolution of singularities to compactify a smooth variety by adding an
snc divisor. One may also want to compactify a variety containing an snc divisor.
For example, this might be the case when one considers a partial compactification
(e.g. by a horizontal divisor) that one wants to extend to a full compactification.
Here is the corresponding result in the context of general qe schemes.
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Theorem 1.1.15. Assume that S is a noetherian qe scheme of characteristic zero,
Y is a regular scheme provided with a separated morphism Y → S of finite type, and
Y0 →֒ Y is an open subscheme such that D = Y \ Y0 is an snc divisor. Then there
exists a regular scheme Y , a proper morphism Y → S, and an open immersion
Y →֒ Y over S such that D = Y \ Y0 is an snc divisor.

Remark 1.1.16. (i) Theorem 1.1.15 looks very natural or even typical, and we
will see that it is an easy corollary of Theorem 1.1.9. In a private correspondence,
the author suggested to N. Solomon to use this result in his thesis in order to
construct certain compactifications. To our surprise, we could not find this result
in the existing literature, even when Y is a k-variety and S = Spec(k).

(ii) Another surprise with Theorem 1.1.15 is that a similar statement fails when
D is only assumed to be a normal crossings divisor, see Example A.8.1(ii). Perhaps
this explains why Theorem 1.1.15 is, probably, new.

1.1.17. Semistable reduction for formal varieties. Let R be a discrete valuation ring
of residue characteristic zero. Hironaka’s theorem provides desingularization of R-
schemes of finite type, and by purely combinatorial tools one deduces from it the
semistable reduction theorem for generically smooth R-schemes of finite type, see
[KKMSD73, p.198]. As an application of resolution of formal schemes, we will prove
an analogous theorem for formal R-schemes. We refer to [Tem08, Section 2.1] and
[Tem12, §§2.4.9-2.4.11] for the terminology on formal schemes and their blow ups
and singular loci. See also Section 4.1 for the definition of semistability. By the
union of closed formal subschemes we mean the closed formal subscheme given by
the intersection of the corresponding ideals.

Theorem 1.1.18. Assume that R is a complete discrete valuation ring containing
Q and X is a reduced formal scheme, flat and of topologically finite type over S =
Spf(R). Let k be the residue field of R and Z = X ⊗R k. Then there exists a

(Xsing ∪ Z)-supported blow up f : X̃ → X and a finite extension of discrete valuation

rings R′/R with S′ = Spf(R′) such that the normalization X′ of X̃×SS′ is regular
and strictly semistable over S′.

Remark 1.1.19. (i) Similarly to [Ber15a, Theorem 2.1.2(ii)], we do not restrict
semistable reduction to formal schemes of finite type over S. Our result is stronger
than the cited one due to the condition that X′ is regular.

(ii) Note that Z is a closed formal subscheme of X that contains the closed fiber
Xs and is called in [Ber15b] the special fiber of X over S. If X is rig-regular then
Z contains Xsing and therefore f is Z-supported.

1.2. Overview. Now, let us briefly discuss the structure of the paper.

1.2.1. B-schemes. We devote §2 to defining and basic study of B-schemes, B-blow
ups, desingularization of B-schemes, etc. In particular, we define boundaries and
their transforms under blow up sequences. Such objects naturally arise in the
desingularization theory, though they were introduced only very recently in [CJS13].
Actually, if one simply restricts an snc boundary E on a regular scheme X onto a
closed subscheme Z →֒ X , then the restriction E|Z is a (not necessarily divisorial)
boundary. We make one further step with respect to [CJS13] by linking schemes
and boundaries into a single object, a B-scheme.

A partial justification for introducing this new notion is that, up to the order of
the boundary, B-schemes admit a nice interpretation as Zariski log schemes (X,M)
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such that all stalks Mx are free monoids Nk(x). This observation is not really used
in the paper but might be instructive.

Remark 1.2.2. (i) Classical embedded desingularization operates with a datum
(X,E,Z). The B-scheme (Z,E|Z) provides a more economical but essentially
equivalent desingularization datum. Our method of extending desingularization
algorithms from varieties to qe schemes passes through formal varieties and in-
volves algebraization of rig-regular formal varieties Z via Elkik’s theorem. Recently
Trushin extended this theorem to couples (Z,D), where D is a rig-smooth closed
formal subvariety of Z, see [Tru12, Theorem 51]. Perhaps, this can be extended
further to rig-snc divisors, triples of subschemes, etc., but this is not known. Cur-
rent algebraization results do not allow to work with formal triples (X,E,Z), but
we manage to apply them to certain formal B-varieties. This is the main reason to
use B-schemes in this paper. Some other motivaiton is discussed in the appendix.

(ii) The final decision to adopt the language of B-schemes was obtained when I
saw [CJS13] and its technique of working with general boundaries. In particular,
the notions of principal and complete transforms are borrowed from [CJS13].

1.2.3. Desingularization functors. In §3 we prove our main results on desingular-
ization of B-schemes. This is done in four steps worked out in §§3.1–3.4. In §3.1 we
establish the case of B-varieties by constructing a functor FBVar. The general idea
is to simply apply the non-embedded desingularization to X and then to apply the
embedded desingularization to the boundary. However, one must be slightly more
careful in order not to destroy the entire snc locus of B, and for this we add an
intermediate step in which we separate the old boundary from the singular locus.

Then, we extend in §3.2 the functor FBVar to a functor F̂BVar on formal B-
varieties whose boundary and singular locus are supported on the closed fiber. An
analogous step in [Tem12] is the most technical and subtle one. Fortunately, the
argument from [Tem12] extends verbatim to our more general situation.

In §3.3 we desingularize a B-scheme (X,B) with a fixed divisor Z →֒ X which
contains the bad locus (X,B)ssing and is a disjoint union of varieties. The first and
main step is to separate the old boundary from the bad locus, and this is done in
the same way as in the case of varieties. After that the formal completion of (X,B)

along Z can be desingularized by F̂BVar. Moreover, the latter desingularization
blows up only open ideals and hence algebraizes to a desingularization of (X,B).

Finally, in §3.4 we construct a desingularization F(X,B) of general qe B-schemes
(X,B) of characteristic zero. This is based on the desingularization of B-schemes
with small bad locus and is done by induction on codimension similarly to the proof
of [Tem12, Theorem 1.2.1] in [Tem12, §4.3].

1.2.4. Semistable reduction. In Section 4 we deduce semistable reduction for formal
schemes, see Theorem 1.1.18, from desingularization of formal varieties with divi-
sors, see Theorem 1.1.13. As in the case of schemes, such a reduction can be done
by combinatorial methods of [KKMSD73]. Usually this phrase is the only argument
one provides in analogous situations, and it is not easy to find details in the existing
literature. Section 4 aims to fill in this gap. In addition, we use the language of
Kato’s fans and log regular schemes, that were developed after [KKMSD73], and
we show how log regularity extends to qe formal schemes.

In fact, we reduce the semistable reduction to what we call a d-regularization
problem, see Theorem 4.1.6. It is a more general absolute statement, that makes
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sense for any qe formal scheme with a divisor. Applying Theorem 1.1.13, the latter
result reduces to the particular case of log regular formal log schemes with monoidal
divisors, see Theorem 4.5.1. Finally, we use Kato’s fans to reduce d-regularization
on log regular (formal) log schemes to the main combinatorial result of [KKMSD73].

1.2.5. The appendix. One could write this paper without using the notion of B-
schemes and even without using not snc boundaries; of course, this would require
to formulate the main results in another but equivalent way. Nevertheless, the
language of B-schemes seems to be very natural for our task and we discuss the
reasons for this in the appendix. It is not used in the paper, but can be instructive.
In particular, we explain in §A.7 why a naive boundary, which is a single divisor,
would not work as fine as our notion, and also correct a mistake in [Tem08] which
was caused by a confusion between these two.

1.2.6. Our method and future research. The bottleneck of the method used in this
paper and in [Tem12] is the passage from varieties to formal varieties. It makes
use of Elkik’s algebraization theorem, which does not apply to complicated desin-
gularization data. Trushin’s theorem [Tru12, Theorem 51] improves the situation
slightly. In fact, using it one could strengthen the results of this paper in few as-
pects. In particular, one could establish B-strong desingularization of generically
reduced B-schemes (see Remarks 3.1.1 and 3.3.4). This strengthening is not used in
most of applications but would require a substantial additional work, so we decided
not to work it out in the paper.

Furthermore, currently it seems that a simpler approach to desingularization of
qe schemes is to directly show that the algorithm of Bierstone-Milman applies to
arbitrary qe schemes of characteristic zero that possess enough derivations. This
would cover the case of formal varieties and would make the algebraization step
unnecessary. I plan to study this approach elsewhere.

1.2.7. Conventiones. All (formal) schemes are assumed to be locally noetherian.
A variety means a scheme of finite type over a field. We keep the conventiones of
[Tem12, §2]; in particular, a blow up sequence “remembers” the centers of all blow
ups, and a blow up is called trivial or empty if its center is empty.

By a component of a scheme X we mean a disjoint union of a few connected
components of X . Assume that X is a scheme with a closed subscheme Z. Then
by |Z| we denote the support of Z, which is the underlying closed set, and by
IZ ⊆ OX we denote the ideal of Z. So, Z = SpecX(OX/IZ). We say that Z is
locally principal (resp. a Cartier divisor) if IZ is locally principal (resp. invertible).
If D →֒ X is a Cartier divisor then for any n ∈ N we define Z+nD to be the closed
subscheme corresponding to IZI

n
D. Note also that the fractional ideal IZI

−n
D is

an ideal if and only if nD →֒ Z, and in this case we denote the corresponding
subscheme as Z − nD.

Given a morphism f : X ′ → X , it will be convenient to use the notation f∗(Z) :=
Z ×X X ′ for the pullback of Z, and when f is an immersion, we will often call to
f∗(Z) the restriction of Z onto X ′ and will denote it as Z|X′ . Also, in this case for
any morphism g : Y → X (e.g. a blow up) we will write g|X′ = g ×X X ′.

2. Boundaries and desingularization

2.1. Schemes with boundaries.
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2.1.1. Boundary. In this paper we will only work with ordered boundaries so by
a boundary on a scheme X we mean a tuple B = {Bi}i∈I indexed by a finite
ordered set I in which each Bi is a locally principal subscheme of X . It can freely
happen that Bi = Bj for i 6= j. Each Bi is called a component of B or a boundary
component. We say that B is divisorial if all its components are Cartier divisors.

We will ignore empty components and will be only interested in the equivalence
class of the ordered index set I. So, any boundary can be uniquely represented in
its reduced form as B = {B1, . . . , Bn}, where all Bi’s are non-empty. We say that
two boundaries on X are equal if their reduced forms are equal. Nevertheless, it
is convenient to also consider boundaries in non-reduced form because they can be
produced by natural operations. For example, some components can vanish when
restricting onto a closed subscheme X ′ of X .

We define the ordered disjoint union of boundaries as

B
∐

ord

B′ = {B1, . . . , Bn, B
′
1, . . . , B

′
n′}.

The support of B is the closed subset |B| = ∪i∈I |Bi| of X , and we also define a finer
schematical support of B as [B] =

∑
i∈I Bi. It is well defined even for non-divisorial

boundaries.

Remark 2.1.2. (i) An analogous definition of boundaries is given in [CJS13], where
one prefers the non-ordered variant of the definition.

(ii) We do not require that the elements that locally define Bi’s are not zero
divisors, so Bi’s do not have to be Cartier divisors. This is convenient because we
can then restrict a boundary onto any closed subscheme.

2.1.3. The stratification induced by B. For each point x ∈ X by I(x) (resp. Ĩ(X))
we denote the set of all i ∈ I such that x ∈ Bi (resp. x ∈ Bi and Bi is not the
whole X in a neighborhood of x, i.e. the element defining Bi does not vanish in
OX,x). Also, for any subset J = {j1, . . . , jm} ⊆ I we set BJ := Bj1 ×X · · · ×X Bjm

and define the J-th stratum BJ of B as the open subscheme of BJ obtained by
removing each BJ′ with J ( J ′. In particular, B∅ = X and x ∈ BI(x).

Remark 2.1.4. Although we will not need the following observation in this paper,
it can give an alternative point of view on the nature of B. Giving an unordered
boundary on X is equivalent to giving a Zariski log structure M on X such that
for each point x ∈ X the monoid Mx is free. Actually, under this correspondence
one has that Mx

∼
−→NI(x) and the images of the generators of Mx in OX , which are

well defined up to units, define the subschemes Bi locally at x.

2.1.5. Pullback and restriction. Given a morphism f : Y → X and a boundary
B = {Bi}i∈I on X , the pullbacks f∗(Bi) := Bi ×X Y are locally principal and
we define the pullback boundary f∗(B) = {f∗(Bi)}i∈I . In the case when f is an
immersion we will also call f∗(B) the restriction of B on Y and denote it B|Y .

2.1.6. B-schemes. A scheme with boundary or simply a B-scheme is a pair (X,B)
consisting of a scheme X with a boundary B. We will say that (X,B) is qe, of
characteristic zero, generically reduced, etc. if the scheme X is so. Note, however,
that the notion of regular B-schemes will be defined below in a different way.
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2.1.7. Morphisms of B-schemes. A morphism of B-schemes F : (X ′, B′) → (X,B)
is a morphism of the corresponding log schemes (X ′,MX′) → (X,MX). Locally,
giving such a morphism is equivalent to giving a morphism f : X ′ → X and a
matrix g ∈ NI×I′

such that f∗(Bi) = gB′ =
∑

i′∈I′ g(i, i′)B′
i′ for each i ∈ I. In

fact, if Bi are connected then g is also defined globally. We say that F is regular if
f is regular.

If g is induced by an ordered isomorphism I → I ′ then we say that F is strict.
Thus, strict morphisms of B-schemes correspond to strict morphisms of log schemes
that also respect the order of components. Given a B-scheme (X,B), any morphism
f : X ′ → X extends to a strict morphism F in a unique way by taking B′ = f∗(B).

Remark 2.1.8. The reader can ignore the definition involving log geometry. In
this paper we will only be interested in strict regular morphisms and B-blow up
sequences, see §2.2. The latter can (and will) be introduced in a simple ad hoc
manner; they are almost never strict.

2.1.9. Snc and monomial boundaries. A boundary B on X is called snc at x if
BI(x) is regular and of codimension at least |I(x)| at x. We say that B is snc if it
is snc at any point of X , in particular, our definition is not local at |B|. Similarly,
we say that B is strictly monomial if X is regular and |B| is an snc divisor. Snc
boundaries satisfy the following nice properties, that are often used to define snc
divisors.

Lemma 2.1.10. If B is snc at x then each Bi is divisorial at x and for any J ⊆ I(x)
the closed stratum BJ is regular and of codimension |J | at x. In particular, B is snc
if and only if each non-empty BJ , including B∅ = X, is regular of pure codimension
|J |.

Proof. The codimension of a locally principal subscheme does not exceed one, hence
the codimension of BI(x) at x is precisely |I(x)|, and it follows that for each J ⊆ I(x)

the codimension of BJ at x is precisely |J |. Now, the regularity of BJ at x follows
from the following simple observation: if A is a local noetherian ring with an
element x ∈ A such that Spec(A/xA) is regular of codimension 1 in Spec(A) then
A is regular and x is not a zero divisor in A. �

For completeness we also discuss a connection between different notions. This
simple result will not be used, so the proof is omitted.

Lemma 2.1.11. For a boundary B the following conditions are equivalent:
(i) B is snc,
(ii) [B] is an snc divisor and all components Bi are regular,
(iii) B is strictly monomial, each Bi is a regular divisor (not necessarily con-

nected) and no pair Bi, Bj with i 6= j has a common irreducible component.

2.1.12. Regular and semi-regular B-schemes. A B-scheme (X,B) is regular if B is
snc. Also, we will often use a slight weakening of the regularity condition. Namely,
we say that a B-scheme (X,B) is semi-regular if locally at each point x ∈ X the

stratum BĨ(x) is regular and of codimension |Ĩ(x)|. Semi-regularity at x means that

for a neighborhood U of x we can split B|U as unordered disjoint union B′
∐

B′′

so that B′ is snc and B′′ consists of a few copies of U .
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2.1.13. Regular and singular locus. For a qe B-scheme (X,B) the set of points x at
which (X,B) is semi-regular form an open subset which will be denoted (X,B)sreg.
Its complement will be denoted (X,B)ssing and will often be simply called the bad
locus of (X,B). (Another option might be the “strongly singular” locus.) We will
not make use of other regular/singular loci of (X,B).

Lemma 2.1.14. Assume that X is a scheme, B = {B1, . . . , Bn} is a divisorial

boundary, and 1 ≤ l ≤ n. Set X̃ = Bl, B−Bl = {B1, . . . , Bl−1, Bl+1, . . . , Bn}, and

B̃ = (B −Bl)|X̃ . Then (X,B)ssing ∩ X̃ = (X̃, B̃)ssing.

Proof. We should prove that (X,B) is regular at a point x ∈ X̃ if and only if (X̃, B̃)

is regular at x. The direct implication is clear. Conversely, assume that (X̃, B̃) is
regular at x. Localizing we can assume that X is local with closed point x. Since

X̃ is a divisor in X and X̃ is regular by Lemma 2.1.10, X is also regular and hence

catenary. Set I = I(x) and Ĩ = I \ {l} and observe that BI = B̃Ĩ is regular of

codimension |Ĩ| in X̃. Since X̃ is a divisor and X is catenary, BI is of codimension

|Ĩ| + 1 = |I|, as required. �

2.2. Blow up sequences and basic operations. In §2.2 we will study transforms
of the boundaries under blow up sequences. One easily sees that the strict transform
of a locally principal subscheme does not have to be locally principal, so the strict
transform is useless in this context. Although for a boundary B = {Bi}i∈I on X
and a blow up f : BlV (X) → X the full transform f∗(B) = {f∗(Bi)}i∈I is defined,
it is not the transform one usually uses. Many components of f∗(B) may contain
the exceptional divisor E = f∗(V ) and usually one tries to split off redundant copies
of E, at least to some extent. This leads to definitions of principal and complete
transforms given below. Also, we will view the exceptional component Ef = {E}
as a boundary rather than a single divisor. This becomes sensitive when extending
the notions of the transforms to blow up sequences f , since the new boundary
Ef = {E1, . . . , En} keeps track of the order of blow ups of f .

2.2.1. Principal transform of closed subschemes.

Remark 2.2.2. An important role in embedded resolution of singularities is played
by a so called principle (weak or controllable) transform of ideals or marked ideals
under blow ups. It is obtained from the full (or total) transform f∗(Z) by removing
an appropriate multiple (depending on the setting) of the exceptional divisor. Thus,
the principal transform is a small step from the full transform towards the strict one,
which still can be easily described by explicit formulas in terms of the corresponding
ideals.

Let f : X ′ → X be the blow up along V →֒ X and let Z →֒ X be a closed
subscheme. For our needs it will be convenient to adopt the following variant
of principal transform of Z under f . Decompose V as U

∐
W , where U is the

union of all connected components of V that are closed subschemes in Z. Then
the exceptional divisor V ′ = f∗(V ) possesses a component U ′ = f∗(U) which is
contained in f∗(Z), and hence the closed subscheme f∗(Z)−U ′ is defined. We call
it the principal transform of Z and denote as f⊲(Z). A principal transform g⊲(Z)
with respect to a blow up sequence g : Xn 99K X0 = X is defined iteratively.

Remark 2.2.3. (i) In a sharp contrast with strict and full transforms, the principal
transform is not local on the base because it can happen that V is connected and
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is not a subscheme of Z, in particular, f⊲(Z) = f∗(Z), but ∅ 6= V |U →֒ Z|U for
an open subscheme U →֒ X . The complete transform which will be defined later is
also of a non-local nature.

(ii) Nevertheless, if V is regular (or just has integral connected components) then
the above problem cannot happen and all transforms are of local nature.

2.2.4. Principal transform of the boundary. Note that the principal transform of
any locally principal closed subscheme is a locally principal closed subscheme.
Therefore, given a B-scheme (X,B) with B = {Bi}i∈I and a blow up sequence
f : X ′

99K X we can define the principal transform f⊲(B) as the tuple {f⊲(Bi)}i∈I .
By the very definition, the principal transform is compatible with compositions of
blow up sequences.

Remark 2.2.5. An equivalent definition of the principal transform is given in
[CJS13, 4.4], where the transform is called “principal strict transform”. We prefer
to change the terminology because there might be smaller principal transforms
containing the strict transform (e.g. when we modify the definition as f�(Z) =
f∗(Z) −

∑
i nif

∗(Vi) where Vi’s are the connected components of the center of f
and ni is the maximal number for which nif

∗(Vi) is a subscheme of f∗(Z)).

2.2.6. Complete transform of the boundary. Assume that (X,B) is as above and
X ′ = BlV (X). Then we define the complete transform of the boundary f◦(B) =
f⊲(B)

∐
ordEf , where Ef = {E} and E = V ×XX ′ is the exceptional divisor of the

blow up along V . Note that E depends on the blow up and is not determined only
by the morphism X ′ → X , and we adjoin E as a new element even when f⊲(B)
contains its copies. We have that |f∗(B)| ⊆ |f◦(B)| = |f∗(B)| ∪ |Ef |, because
[f◦(B)] = [f⊲(B)] + E = ([f∗(B)] − nE) + E where n is a number for which
[f∗(B)] − nE is defined. We warn the reader that unlike the principal transform,
the complete transform is not additive, i.e. f◦(B

∐
B′) 6= f◦(B)

∐
f◦(B′) even as

unordered sets.
If f : X ′

99K X is a general blow up sequence then we define the complete
transform f◦(B) iteratively. In particular, f◦(B) is the ordered disjoint union of
the old boundary f⊲(B) and a new boundary Ef which we also call the boundary
of the blow up sequence f .

Example 2.2.7. (i) Assume that V = Bi ∈ B is a Cartier divisor whose connected

components are not contained in any Bj with j 6= i. Then X ′ ∼−→X and f◦(B) equals
to B as unordered sets. However, the order is different because we move Bi to be
the last element in the boundary. Indeed, f⊲(Bi) = ∅ and so we remove the i-th
component, but Ef = Bi and so we adjoin the same component with the largest
index.

(ii) If Bi = nV then the i-th boundary component disappears after n blow ups
with center at V .

2.2.8. Summary of transforms. For the sake of referencing we collect basic proper-
ties of the transforms in the following lemma. Since the strict transform f !(B) is
not defined (at least as a boundary), we will consider f !(|B|) and f !([B]) instead.

Lemma 2.2.9. Let f : X ′
99K X be a blow up sequence with new boundary Ef and

let B = {B1, . . . , Bn} be a boundary on X, then
(i) |Ef | is the reduced exceptional divisor, i.e. |Ef | is the smallest closed subset

of X ′ such that f restricts to a composition of trivial blow ups over X \ f(|Ef |).
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(ii) The total and principal transforms are componentwise in the sense that
f∗(B) = {f∗(B1), . . . , f∗(Bn)} and f⊲(B) = {f⊲(B1), . . . , f⊲(Bn)}, and the com-
plete transform is obtained from the principal transform by adjoining Ef , i.e. f

◦(B) =
f⊲(E)

∐
ordEf .

(iii) We have componentwise inclusions of strict, principal and full transforms
f !(Bi) →֒ f⊲(Bi) →֒ f∗(Bi), where the last two components are always locally
principal. In addition, f∗(Bi) = f⊲(Bi) + Di, where Di is an exceptional divisor
(i.e. |Di| ⊂ |Ef |).

(iv) On the level of supports the transforms are related as follows: |f !(|B|)| ⊆
|f⊲(B)| ⊆ |f∗(B)| ⊆ |f◦(B)| = |f !(|B|)| ∪ |Ef |.

(v) On the level of divisorial supports the transforms are related as follows:
f !([B]) →֒ [f⊲(B)] →֒ [f∗(B)] and [f⊲(B)] + [Ef ] = [f◦(B)].

(vi) Principal transform of closed subschemes agrees with the principal transform
of marked ideals of order one. More concretely, assume that I = (N, ∅, N, I, 1) is
a marked ideal with a permissible blow up sequence f : N ′

99K N and let I ′ =
(N ′, E′, N ′, I ′, 1) be the transform of I (see [BM08, §2]). Then Z ′ = f⊲(Z) where
Z ′ →֒ N ′ and Z →֒ N are the closed subschemes defined by I ′ and I. In particular,
if f is a resolution of I then f⊲(Z) = ∅.

Proof. The assertions (i)–(vi) are easily verified by induction on the length, and
many statements just repeat the definitions. We will only prove (vi) to illustrate
this. Let V be the first center of f . Then V is in the cosupport of I which
is precisely |Z|, and hence Z1 = f⊲(Z) = f∗(Z) − f∗(V ). On the other hand,

I1 = I−d
E (ION ′ ) where E = f∗(V ) is the exceptional divisor and d = 1 is the

order of I. This implies the claim for a sequence of length one, and we deduce that
cosupp(I1) = |Z1| contains the second center of f . So, we can repeat the argument
for the second blow up, etc., thus mastering induction on the length. �

Remark 2.2.10. Typically, one operates with principal and complete transforms
when building a desingularization functor, and a desingularization is often achieved
by getting an empty f⊲(B) and an snc f◦(B). It then follows from Lemma 2.2.9(iv)
that f !(|B|) is empty and f∗(B) is strictly monomial.

2.2.11. B-blow up sequences. We introduced B-schemes in order to control the
boundaries. In particular, it is important to control the boundary of the blow
up sequences. So, we define the B-blow up F : (X ′, B′) → (X,B) as a blow up
f : X ′ → X such that B′ = f◦(B). By the center of F we mean the center of f and
say that F is trivial if f is trivial.

Remark 2.2.12. (i) For this paper it suffices to use the above formal definition of
B-blow ups, but we note for the sake of completeness that a B-blow up possesses
a natural structure of a morphism of B-schemes. Indeed, for each Bi ∈ B we
have that f∗(Bi) = f⊲(Bi) + nEf , where n ∈ {0, 1} and both f⊲(Bi) and Ef are
components of B′ = f◦(B). For the sake of comparison, (X ′, f⊲(B)) → (X,B)
usually cannot be provided with a structure of a B-morphism.

(ii) Unlike blow ups of schemes, usually a B-blow up F is not an isomorphism of
B-schemes even when its center V is a Cartier divisor. Actually, one easily sees that
F is an isomorphism if and only if either f is trivial or we are in the situation of
Example 2.2.7(i) and in addition V = Bi is the largest element of the boundary. In
the second case, the largest component of the boundary is killed by the transform
and then adjoined again as the new component.
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Naturally, a B-blow up sequence F : (X ′, B′) 99K (X,B) is a sequence of B-blow
ups. Giving such a sequence with target (X,B) is equivalent to giving a blow up
sequence f : X ′

99K X because the boundaries are uniquely determined as complete
transforms. Therefore, given a B-scheme (X,B) we will pass freely between blow
up sequences of X and B-blow up sequences of (X,B).

2.2.13. Restriction of transforms onto closed subschemes. Assume that f : X ′ →
X is a blow up along V and Z →֒ X is a closed subscheme. An easy explicit
computation on the charts of BlV (X) shows that the strict transform Z ′ = f !(Z)

is the blow up of Z along Ṽ = V |Z , see [Con07, §1]. This also implies that the
restriction of the exceptional divisor V ×X X ′ onto Z ′ is the exceptional divisor

Ṽ ×Z Z ′ of the blow up f̃ : Z ′ → Z. Assume now that B is a boundary on X

and B̃ = B|Z is its restriction on Z. By the transitivity of fibred products we

obviously have that (B ×X X ′)|Z′ = B̃ ×Z Z ′. In other words, the full transform
f∗ is compatible with the restriction onto closed subschemes.

The situation with other transforms is more delicate: the equalities f⊲(B)|Z′ =

f̃⊲(B̃) and f◦(B)|Z′ = f̃◦(B̃) fail if and only if there exists Bi ∈ B and a connected
component V ′ →֒ V such that V ′ is not a subscheme of Bi but V ′|Z is a subscheme
of Bi|Z . Indeed, the condition on Bi is satisfied if and only if the transforms of

Bi and Bi|Z under f and f̃ are computed using different cases. However, this bad
situation cannot occur whenever V →֒ Z, so we at least have the following lemma.

Lemma 2.2.14. Let X be a scheme with a closed subscheme Z and assume that
f : (X ′, B′) 99K (X,B) is a B-blow up sequence whose centers are closed subschemes

of the strict transforms of Z. Let B̃ = B|Z and let f̃ : Z ′
99K Z denote the induced

blow up sequence of strict transforms. Then f⊲(B)|Z′ = f̃⊲(B̃) and f◦(B)|Z′ =

f̃◦(B̃). In particular, (Z ′, B′|Z′) 99K (Z,B|Z) is a B-blow up sequence which will
be denoted f |Z .

2.3. Permissible B-blow up sequences.

2.3.1. Transversality to the boundary. Given a B-scheme (X,B) and a closed sub-
scheme Z →֒ X we say that Z is transversal to the boundary if (Z,B|Z) is a regular
B-scheme. A more traditional way to formulate this condition is to say that each
scheme Z ×X Bi1 ×X . . . Bin is either empty or regular of codimension n in Z. In
particular, taking n = 0 we see that Z itself is regular. In the important particular
case when (X,B) is regular this just means that Z is regular and transversal to the
snc divisor |B| in the usual sense.

2.3.2. Simple normal crossings with the boundary. More generally, we say that Z
has simple normal crossings with the boundary if (Z,B|Z) is a semi-regular B-
scheme. As earlier, in the case when (X,B) is regular this reduces to the usual
notion of being regular and having simple normal crossings with an snc divisor.

2.3.3. Permissibility. A B-blow up (X ′, B′) → (X,B) is called permissible if its
center V →֒ X has simple normal crossings with the boundary B. More generally,
a B-blow up sequence is permissible if all its B-blow ups are permissible.

Remark 2.3.4. (i) Even when B is empty the permissibility condition is stronger
than just blowing up along regular centers. Namely, the first center just has to
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be regular, but after that a non-empty boundary appears, and this imposes an
additional restriction on the choice of further centers.

(ii) For the sake of giving an inductive proof, even when interested in embedded
desingularization without boundaries one often has to treat the exceptional divisors
with a certain respect, and practically this amounts to considering only permissible
blow up sequences. In particular, the known embedded desingularization algorithms
for varieties construct permissible blow up sequences.

Lemma 2.3.5. If (X,B) is a regular B-scheme and (X ′, B′) 99K (X,B) is a
permissible B-blow up sequence then (X ′, B′) is regular and f⊲(B) = f !(B).

Proof. We can assume that f is a single blow up along V . Let Bi be a component
of B and V0 a connected component of V . It is easy to see that both in the case
when V0 is transversal to Bi and in the case when V0 is contained in Bi one has
that f⊲(Bi) = f !(Bi) in a neighborhood of f∗(V0). So, f◦(B) = f !(B)

∐
ordEf

and it is well known that the latter is an snc divisor whenever V has simple normal
crossings with B. �

2.3.6. B-permissibility. Often it will be convenient to express the permissibility in
terms of usual blow up sequences and the initial boundary B. So, given a B-scheme
(X,B) we say that a blow up sequence X ′

99K X is B-permissible if the induced
B-blow up sequence (X ′, B′) 99K (X,B) is permissible.

2.3.7. Pushforward and restriction. We refer to [Tem12, §4.2.1] for the definition
of the pushforward of a blow up sequence with respect to a closed immersion.

Lemma 2.3.8. Assume that X is a scheme with a boundary B and closed sub-

scheme i : X̃ →֒ X, and set B̃ = B|X̃ .

(i) If f̃ : X̃ ′
99K X̃ is a B̃-permissible blow up sequence then the pushforward

f = i∗(f̃) is a B-permissible blow up sequence.
(ii) If f : X ′

99K X is a B-permissible blow up sequence whose centers are con-

tained in the strict transforms of X̃ then the induced blow up sequence of strict

transforms f̃ : f !(X̃) 99K X̃ (see [Tem12, §2.2.7]) is B̃-permissible.

Proof. Note that both in (i) and (ii) the centers of f lie on the strict transforms of

X̃, and hence the transforms of the boundaries in the blow up sequences f and f̃
are compatible with the restriction by Lemma 2.2.14. Now, an obvious induction
on the length of f reduces the proof of both (i) and (ii) to the claim that if both

f̃ and f are a single blow up along V →֒ X̃ then either f is B-permissible and f̃

is B̃-permissible or both blow ups are not permissible. But the latter is clear since

V →֒ X̃ and hence Bi|V = B̃i|V . �

2.4. Desingularization of B-schemes.

2.4.1. Desingularization of a B-scheme. By desingularization of a B-scheme (X,B)
we mean a B-blow up sequence f : (X ′, B′) 99K (X,B) such that the B-scheme
(X ′, B′) is semi-regular and the centers of f are disjoint from the preimages of
(X,B)sreg. If, in addition, the centers of f are regular (resp. B-permissible) then
we say that the desingularization is strong (resp. B-strong).

Remark 2.4.2. (i) A desingularization f : (X ′, B′) 99K (X,B) can be extended
in an obvious way to a B-blow up sequence that modifies the non-regular locus
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of (X,B) and produces a regular B-scheme (X ′′, B′′): one just has to kill the
components of X ′ contained in |B| by blowing them up.

(ii) Also, it is easy to produce from f a B-blow up sequence g : (X ′′, B′′) →
(X,B) such that (X ′′, B′′) is semi-regular, g⊲(B) = ∅ and the centers of g sit over
|B| ∪Xsing. This is done by blowing up the strata of B′ starting with the smallest
ones. Namely, we blow up B′

I at the first stage. This resolves the strict transform
of ∪i∈IB

′
I\{i}, so we can blow it up at the second stage and proceed similarly until

the strict transform of ∪i∈IB
′
i is blown up at the last stage. The new sequence g,

which is obtained by extending f in this way, is as required.

2.4.3. Functoriality. Let C be a category whose objects are certain B-schemes and
whose morphisms are certain strict regular morphisms. Then a functorial desingu-
larization on C is a rule F which associates a desingularizationF(X,B) : (X ′, B′) 99K
(X,B) to each B-scheme (X,B) from C in a way compatible with the morphisms of
C. The latter means that for each h : (X,B) → (X,B) in C the B-blow up sequence
F(X,B) is obtained from h∗(F(X,B)) by omitting all trivial B-blow ups.

2.4.4. The case of varieties. Let FVar be the non-embedded desingularization func-
tor from [BMT11, Theorem 6.1]. Recall that it associates to a variety X of char-
acteristic zero a strong desingularization F(X) : X ′

99K X and is compatible with
all regular morphisms. Moreover, the addendum to [BMT11, Theorem 6.1] asserts
that the associated B-blow up sequence (X ′, B′) 99K (X, ∅) is a B-strong desingu-
larization. In other words this can be formulated as follows.

Theorem 2.4.5. There exists functorial B-strong desingularization FVar on the
category BVarB=∅ whose objects are finite disjoint unions of B-varieties of charac-
teristic zero with empty boundary and whose morphisms are all regular morphisms.

2.5. Formal and analytic analogs. All definitions concerning boundaries, B-
schemes, B-blow ups, desingularization of B-schemes and functoriality apply almost
verbatim to the contexts of qe formal schemes and complex or non-archimedean
analytic spaces. Note that semi-regularity is preserved by the following functors:
(1) formal completion of qe S-schemes along a fixed ideal on a base scheme S,
(2) analytification of k-varieties where k is a complete field (either archimedean or
non-archimedean). In particular, it follows that the completion and analytification
functors take desingularizations of B-schemes to desingularizations of formal B-
schemes or analytic B-spaces.

3. Desingularization of qe B-schemes of characteristic zero

3.1. B-Varieties. Let BVar be the category of finite disjoint unions of B-varieties
of characteristic zero with all regular strict morphisms between them.

Remark 3.1.1. One can extend the argument from [BMT11, Addendum 6.1] to
the case of a non-empty initial boundary obtaining a B-strong desingularization on
BVar. However, this requires a serious adjustment and will be done elsewhere. In
this paper we will only use FVar as a black box to construct a strong desingular-
ization on BVar, and this desingularization is not B-strong.

Theorem 3.1.2. There exists a strong desingularization functor FBVar on the cat-
egory BVar.
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Proof. We will construct a strong desingularization FBVar(X,B) of an object (X,B)
from BVar in three steps Fi(Xi, Bi) : (Xi+1, Bi+1) 99K (Xi, Bi), where (X,B) =
(X0, B0) and 0 ≤ i ≤ 2. In fact, F0 resolves X , F1 resolves an “outer” part
of the boundary, and F2 completes the job. Functoriality will be clear from the
construction.

Let B = {H1, . . . , Hn} and Z = (X,B)ssing. We will only use B-blow up sequence
whose centers are regular and Z-supported, i.e. contained in the preimage of Z.
Such sequences will be called admissible throughout the proof. Also, we will use
induction on d = dim(X). If d = 0 then we define FBVar(X,B) to be the blow up
along Z. So, assume that d > 0.

Step 0. There exists a functorial admissible B-blow up sequence F0 : (X1, B1) 99K
(X,B) such that X1 is regular. The strong non-embedded desingularization func-
tor from [BMT11, Theorem 6.1] applied to X produces a strong desingularization
X1 99K X . Let F0(X,B) be the corresponding B-blow up sequence.

Assumption 1. We can assume in the sequel that X is regular and B is divisorial.
After step 0, we should resolve (X1, B1) with a regular X1. To simplify notation, we
replace (X,B) by (X1, B1) and assume in the sequel that X is regular. In addition,
by the regularity of X , each component of B decomposes as Hi = Hdiv

i

∐
Hcomp

i

where Hdiv
i is a Cartier divisor and Hcomp

i is a component of X in the sense of
§1.2.7. Let Bdiv denote the boundary {Hdiv

1 , . . . , Hdiv
n }. Clearly, any strong desin-

gularization X ′
99K X of (X,Bdiv) is also a strong desingularization of (X,B) and

hence we can replace B by Bdiv, making it divisorial.
Since X is regular, each Hi splits as Hout

i + H in
i , where H in

i is Z-supported
and any irreducible component of Hout

i is not Z-supported. We call Bout =
{Hout

1 , . . . , Hout
n } and Bin = {H in

1 , . . . , H in
n } the outer and inner parts of B. Deal-

ing with Bout will require a special care. Given an admissible B-blow up sequence
f : (X ′, B′) 99K (X,B) we will use the notation B′ = {H ′

1, . . . , H
′
n′}. In particular,

H ′
i := f⊲(Hi) for 1 ≤ i ≤ n and B′ = {H ′

1, . . . , H
′
n}

∐
ordEf , where Ef is the

boundary of f . Since X and the centers of f are regular, X ′ is regular and we can
split B′ as the sum of Z-supported and completely not Z-supported parts B′in and
B′out. Note that H ′out

i = f !(Hout
i ) for 1 ≤ i ≤ n and H ′out

i = ∅ for n < i ≤ n′.
Step 1. There exists a functorial admissible B-blow up sequence F1 : (X2, B2) 99K

(X,B) such that Bout
2 is snc. We will compose n sequences. For a number l with

1 ≤ l ≤ n define a B-blow up sequence gl(X,B) as follows. Set X̃ = Hout
l ,

C = {Hout
l+1, . . . , H

out
n } and C̃ = C|X̃ . By induction on the dimension, there exists

a strong desingularization f̃ : (X̃ ′, C̃′) 99K (X̃, C̃). Let f : X ′
99K X be the push-

forward of X̃ ′
99K X̃, and let gl : (X ′, B′) 99K (X,B) and (X ′, C′) 99K (X,C) be

the corresponding B-blow up sequences.

Note that gl is Z̃-supported, where Z̃ = (X̃, C̃)sing, and Z̃ ⊆ (X,C)sing by

Lemma 2.1.14. In particular, gl is admissible. Note also that H ′out
l = f !(Hout

l ) = X̃ ′

and H ′out
i →֒ f⊲(Hout

l ) = C′
i for l < i ≤ n. Since C′|X̃′ = C̃′ by Lemma 2.2.14,

we obtain from Lemma 2.1.14 that the boundary {H ′out
l , C′

2, . . . , C
′
n} is snc in a

neighborhood U of H ′out
l . Therefore the smaller boundary {H ′out

l , . . . , H ′out
n } is

also snc in U .
We define F1 as the composition of the sequences g1(X,B) : (X ′, B′) 99K (X,B),

g2(X
′, B′) : (X ′′, B′′) 99K (X ′, B′), etc. By the properties of gl we then have that
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B′out is snc in a neighborhood U of H ′out
1 . Furthermore, g2 only modifies the non-

snc locus of {H ′out
2 , . . . , H ′out

n } and hence is an isomorphism over U . Therefore,
B′′out is snc in a neighborhood of H ′′out

1 ∪ H ′′out
2 , etc. Composing g1, . . . , gn we

resolve the whole outer boundary.
Assumption 2. We can assume in addition that Bout is snc. Indeed, after Step 1

it we should resolve (X2, B2) with an snc Bout
2 . So we replace (X,B) with (X2, B2),

for shortness.
Step 2. Resolution of B. Note that the divisor D = [Bin] is Z-supported. Since

Bout is snc, we can consider the marked ideal I = (X,Bout, X, ID, 1), where marked
ideals are as defined in [BMT11, §5]. Let f : X ′

99K X be the resolution of I. We
claim that the associated B-blow up sequence F2(X,B) : (X ′, B′) → (X,B) is a
strong desingularization of (X,B).

First, f depends functorially on (X,B) and is D-supported and hence Z-supported.
Since X is regular and f blows up regular centers, X ′ is regular. It remains to show
that f◦(B) is snc. Note that f⊲(D) = ∅ by Lemma 2.2.9(vi). In addition, if Ef de-
notes the boundary of f then f⊲(Bout)

∐
ordEf is snc because f is Bout-permissible.

Since H in
i →֒ D for 1 ≤ i ≤ n, we have that f⊲(H in

i ) →֒ f⊲(D) = ∅, and hence
f⊲(Hi) = g⊲(Hout

i ). Therefore, f◦(B) = f⊲(Bout)
∐

ordEf is snc. �

3.2. Formal B-varieties with small singular locus.

3.2.1. Locally principal formal B-schemes. By a locally principal formal B-scheme
we mean a triple (X,B, I) where (X,B) is a formal B-scheme and I is an invertible
ideal of definition of X. Note that Z = Spf(OX/I) is a closed formal subscheme
with reduction Xs. Sometimes we will replace I by Z in the triple. By a morphism
(X′,B′,Z′) → (X,B,Z) of such creatures we always mean a morphism of formal
B-schemes f : (X′,B′) → (X,B) such that Z′ = f∗(Z). Actually, we will only be
interested in the cases when f is either a strict regular morphism or a formal B-blow
up sequence.

Remark 3.2.2. (i) Both Z and the components of B are locally principal closed
formal subschemes. However, they transform differently under formal B-blow ups.
This is the reason to distinguish Z rather than to include it as a special (e.g.
minimal) component of the boundary.

(ii) The role of Z will be to control the bad locus of the formal B-scheme (X,B).

3.2.3. A category B̂Varsmall. We now introduce a category B̂Varsmall whose objects
are finite disjoint unions of certain locally principal formal varieties with small

boundaries. More concretely, (X,B, I) is in B̂Varsmall if (X,B) is a finite disjoint
union of formal B-varieties of characteristic zero, X is rig-regular and B is Z-
supported, i.e. all components of B are supported on the closed fiber Xs. A

morphism of B̂Varsmall is a strict regular morphism between its objects.

Remark 3.2.4. (i) When B is empty we obtain the category V̂arp=0 from [Tem12,
§3.1].

(ii) Assume that (X,B, I) is an object of B̂Varsmall and (X, I) is an algebraiza-
tion of (X, I) in the sense of [Tem12, §3.1]. Since B is I-supported, it algebraizes
uniquely to an I-supported boundary B on X and Bi = Bi as schemes. In par-
ticular, this algebraization uniquely extends to an algebraization (X,B, I) of the
original triple. Moreover, all components of B are closed subschemes in the n-th
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fibers Xn = Spec(OX/In) for a large enough n. It follows that all results from

[Tem12, §3.2] obviously generalize to the objects of B̂Varsmall. For example, an
analog of [Tem12, Proposition 3.2.1] holds true and the proof is almost identical
with the only minor modification that one should always consider thick enough n-th
fibers so that they contain B.

3.2.5. Desingularization on B̂Varsmall. Now we are ready to generalize [Tem12,
Theorem 3.1.5] to formal B-schemes.

Theorem 3.2.6. Let FBVar be a desingularization functor on BVar. Then there ex-

ists unique up to unique isomorphism desingularization functor F̂BVar on B̂Varsmall

such that F̂BVar is compatible with FBVar under formal completions. Moreover,

F̂BVar is strong (resp. B-strong) if and only if FBVar is strong (resp. B-strong).

Proof. The argument repeats the proof of [Tem12, Theorem 3.1.5], as given in
[Tem12, §§3.2-3.3], with the only minor modification that one should always con-
sider thick enough n-th fibers so that they contain the boundary. �

Remark 3.2.7. The constructed algorithm depends on Z, in particular, we es-
tablish its functoriality only with respect to morphisms that respect Z. It seems
probable that known algorithms for varieties can be extended to formal varieties.
If this is the case then the dependency on Z is only an artefact of our method that
uses Elkik’s algebraization theorem.

3.3. B-schemes with small singular locus. Our next aim is to generalize [Tem12,
Theorem 3.4.1] to B-schemes with small singular locus. Consider the category
Bschsmall as follows. Objects of Bschsmall are triples (X,B,Z), where (X,B) is
a noetherian qe B-scheme of characteristic zero and Z →֒ X is a Cartier divisor
which is a disjoint union of varieties and contains (X,B)ssing. In particular, X
is generically reduced. Morphisms (X ′, B′, Z ′) → (X,B,Z) in Bschsmall are strict
regular morphisms, i.e. regular morphisms f : X ′ → X such that B′ = f∗(B) and
Z ′ = f∗(Z).

Theorem 3.3.1. Assume that there exists a strong desingularization functor F̂BVar

on B̂Varsmall. Then there exists a strong desingularization functor Fsmall on Bschsmall

which assigns to a triple (X,B,Z) a desingularization of (X,B) and is compatible
with all morphisms from Bschsmall.

Proof. Let T = (X,B)ssing denote the bad locus. Also, when possible we decompose
the boundary B = {H1, . . . , Hn} as a sum of inner and outer boundaries Bin and
Bout, where Hi = H in

i + Hout
i for each Hi ∈ B, and the irreducible components

of |H in
i | are exactly the Z-supported irreducible components of Hi. If exists, this

decomposition is unique, and it always exists when X is regular (or just locally
factorial).

Case 1. Empty outer boundary. Let Bsch0 denote the full subcategory of
Bschsmall whose objects have empty outer boundary (i.e. |B| ⊆ Z). We claim

that F̂BVar induces a desingularization functor on Bsch0. Indeed, the formal com-

pletion of (X,B,Z) along Z is an object of B̂Varsmall, and hence it is resolved

by the functorial Ẑ-supported B-blow up sequence F̂BVar(X̂, B̂, Ẑ). Similarly to
the proof of [Tem12, Theorem 3.4.1] this sequence algebraizes to a functorial Z-
supported B-blow up sequence F0(X,B,Z) : (X ′, B′) 99K (X,B) which provides
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a strong desingularization of (X,B). In particular, compatibility with all regular
morphisms follows from [Tem12, Corollary 2.4.5].

Case 2. Regular outer boundary. Let Bsch1 denote the full subcategory of
Bschsmall formed by the triples (X,B,Z) for which the decomposition B = Bin +
Bout is defined and |Bout| is disjoint from T . We claim that the functor F0 from
Case 1 trivially extends to a desingularization functor F1 on Bsch1. Indeed, if
(X,B,Z) is an object of Bsch1 then (X,Bin)ssing ⊆ T is disjoint from |Bout| and
it follows that F0(X,Bin, Z) resolves (X,B): it obviously resolves (X,B) over
X \ |Bout| and it does not change anything near |Bout|. Thus, we simply set
F1(X,B,Z) = F0(X,Bin, Z).

Case 3. The general case. Now, we are going to construct desingularization
Fsmall(X,B,Z) of a general object of Bschsmall. We will use induction on the
dimension of Z, so assume that dim(Z) = d and the functor is already constructed
for the smaller values of d. Our construction is similar to the construction of the
functor FBVar in the proof of Theorem 3.1.2, though we will have to separate Bout

from the bad locus of the whole B, and this will require more work. Again we will
proceed in 3 steps: 0) reduce to the case when X is regular and B is divisorial, 1)
separate Bout from the bad locus, 2) resolve B.

Step 0. We can assume that X is regular and each Hi is a Cartier divisor.
In particular, (X,B) is regular outside of Z. Note that F0(X, ∅, Z) induces a
desingularization f : X ′

99K X of X . (In fact, this is FVar(X,Z) constructed in
[Tem12, Theorem 3.1.5].) Set B′ = f◦(B) and Z ′ = f∗(Z). Then B′ decomposes
as Bdiv +Bcomp, where Bdiv is divisorial and any component of Bcomp is a compo-
nent of X . Since any desingularization of (X ′, Bdiv) is also a desingularization of
(X ′, B′) we can safely replace (X,B,Z) by (X ′, Bdiv, Z ′) accomplishing the step.
In particular, the decomposition B = Bin + Bout is now defined.

Now, we will define F(X,B,Z) as a composition of a few T -supported B-blow
up sequences with regular centers. To ease the notation, we will consider the
underlying blow up sequences of schemes and the intermediate sequences will be
denoted f : X ′

99K X . In addition, we set B′ = f◦(B) and Z ′ = f∗(Z). By the
bad loci we mean the closed sets T and T ′ = (X ′, B′)ssing.

Step 1. We can achieve that (X ′, B′, Z ′) is in Bsch1, thus separating the outer
boundary from the bad locus. We start with the following observation.

Claim (1). It is enough for a component Hl of B to construct a blow up sequence
with regular T -supported centers g : X ′

99K X such that H ′out
l is disjoint from T ′.

Indeed, given such g we can apply the same argument to (X ′, g◦(B), g∗(Z)) to
find a T ′-supported blow up sequences X ′′

99K X which separates another outer
boundary component from the bad locus, etc.

General plan of constructing g. We will only blow up regular T -supported centers

lying on the strict transforms of X̃ := Hout
l . So, we will always have that g is the

pushforward of the blow up sequence g̃ : X̃ ′
99K X̃, where X̃ ′ = g!(X̃). Also,

we will use the following notation: Z̃ = Z|X̃ , C̃ = C|X̃ and C̃′ = g̃◦(C̃), where

C = {H1, . . . , Hl−1, H
in
l , Hl+1, . . . , Hn}.

Substep (a). We can achieve that the B-scheme (X̃ ′, C̃′) is regular. Since (X,B)

is regular outside of Z, it follows that (X̃, C̃) is regular outside of Z̃. In par-

ticular, (X̃, C̃, Z̃) is an object of Bschsmall. Furthermore, Z does not contain

irreducible components of X̃, hence dim(Z̃) = d − 1 and the desingularization
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Fsmall(X̃, C̃, Z̃) : (X̃ ′, C̃′) 99K (X̃, C̃) is defined by the induction assumption. We

define g : X ′
99K X to be the pushforward of g̃ : X̃ ′

99K X̃ with respect to the closed

immersion X̃ →֒ X .
Substep (b). We can achieve in addition that X̃ ′ = H ′out

l and X̃ ′ is a component

of H ′
l = g⊲(Hl). This will be achieved by a few blow ups that do not modify X̃ ′. In

particular, the condition of substep (a) will be preserved. Since X ′ is regular and

X̃ ′ is its regular subscheme of codimension one, X̃ ′ is a divisor. Clearly X̃ ′ →֒ H ′
l

and hence H ′
l = X̃ ′ + Y ′, where Y ′ is a Z-supported divisor. Note also that

the irreducible components of X̃ ′ = g!(Hout
l ) are not Z-supported. In particular,

Ỹ ′ := Y ′|X̃′ is a divisor on X̃ ′, and if it is empty then H ′
l splits as X̃ ′

∐
Y ′ and

this splitting coincides with H ′out
l

∐
H ′in

l .

It remains to achieve the situation when Ỹ ′ = ∅. Note that

|Ỹ ′| ⊆ |X̃ ′| ∩
(
|Eg| ∪ |f⊲(H in

l

)
|) ⊆ |Eg̃| ∪ |C̃′| = |C̃′|

and C̃′ is snc by substep (a). Let D1, . . . , Dk be the components of C̃′. Choose the

minimal numbers m1, . . . ,mk such that Ỹ ′ →֒
∑k

i=1 miDi. We will kill Ỹ ′ by a few
blow ups along Di’s and their pullbacks.

Take the minimal j with a non-zero mj and consider the blow ups h : X ′′ =
BlDj

(X ′) → X ′ and X ′′′ = BlE′′(X ′′) → X ′, where E′′ = h∗(Dj) is the exceptional
divisor of h. Note that both blow ups have regular centers and are Dj-supported,

and hence Z-supported. When restricted to X̃ ′, both centers coincide with Dj,

hence X̃ ′′′ ∼−→X̃ ′. We claim that extending g to the composition X ′′′
99K X one

achieves that the new Ỹ ′ is contained in (
∑k

i=1 miDi) − Dj . This follows from a
straightforward computation with charts, that we postpone to Lemma 3.3.2 after
the proof of the theorem. Repeating the same double blow up operation (

∑
i mi)-

times, we achieve that Ỹ ′ vanishes.

Claim (2). The conditions from substeps (a) and (b) imply that X̃ ′ is disjoint
from the bad locus T ′. In particular, this completes step 1. Recall that X ′ is

a regular scheme, X̃ ′ is a regular divisor by substep (a), and g◦(C)|X̃′ = C̃′ by

Lemma 2.2.14. Hence Lemma 2.1.14 implies that {X̃ ′}
∐

g◦(C) is an snc boundary

in a neighborhood U of X̃ ′. By substep (b), shrinking U we can also achieve

that H ′
l ∩ U = X̃ ′. Let F be obtained from C by removing H in

l . Then, ignoring
the order, g◦(B) = {H ′

l}
∐

g◦(F ). So, g◦(B)|U is contained in the snc boundary

{X̃ ′}
∐

g◦(C)|U , and hence g◦(B)|U is itself snc. Thus, T ′ lies in the complement

of U and is disjoint from X̃ ′ = H ′out
l .

Step 2. Resolution of B. Let F1(X ′, B′, Z ′) : X ′′
99K X ′ be as defined in Case 2

above. The composition g : X ′′
99K X is a desired desingularization of (X,B) that

functorially depends only on the triple (X,B,Z), so we set Fsmall(X,B,Z) = g. �

Finally, let us prove the lemma we used in substep (b) above.

Lemma 3.3.2. Assume that X is a regular scheme with a regular divisor T , and
Y is a divisor in X such that Y |T →֒

∑n
i=1 miDi, where {D1, . . . , Dn} is an snc

boundary on T . Let f : X ′′ → X ′ → X be obtained by first blowing up D1 and
then blowing up D′

1 = D1 ×X X ′. Then T ′′ = f !(T ) is isomorphic to T and the
restriction of f⊲(T + Y ) − T ′′ onto T ′′ embeds into m′

1D1 +
∑n

i=2 miDi, where
m′

1 = max(0,m1 − 1).



FUNCTORIAL DESINGULARIZATION OVER Q: THE EMBEDDED CASE 21

Proof. Since the centers are regular, the principal transform is compatible with
localizations by Remark 2.2.3(ii). So, it is enough to check the claim étale-locally
on X , and hence we can assume that X = Ad+1 = Spec(k[x, y]), T = V (x)
and Di = V (x, yi) for y = (y1, . . . , yd) and 1 ≤ i ≤ d (it is harmless to add
components Dj that do not appear in Y |T and set mj = 0). Then Y = V (φ),

where φ = yl11 . . . yldd + xP (x, y) and li ≤ mi. The blow up g : X ′ → X along D1 is

covered by the x-chart and the y1-chart. The first one is disjoint from g!(T ) and
hence is not relevant. The new coordinates in the y1-chart are (x′ = x

y1

, y1, . . . , yd),

hence the pullback of φ equals to φ′ = yl11 . . . yldd + y1x
′P (y1x

′, y). Note also that
g∗(T + Y ) = V (y1x

′φ′) and hence Z := g⊲(T + Y ) coincides with V (x′φ′).
The second blow up h : X ′′ → X ′ of f is along Eg, hence h is an isomorphism

and the transform is computed as follows: if l1 = 0 then D′
1 = V (y1) * Z and so

h⊲(Z) = h∗(Z) = Z; if l1 > 0 then D′
1 ⊆ Z and so h⊲(Z) = Z −D′

1. In the first
case f⊲(T +Y ) = Z is defined by x′φ′, and in the second case, f⊲(T +Y ) = T −D1

is defined by the element x′φ′/y1 = x′yl1−1
1 yl22 . . . yldd + x′2P (y1x

′, y). Since T ′′ =
V (x′), the lemma follows. �

Remark 3.3.3. If F̂BVar is independent of Z (see Remark 3.2.7) then Fsmall(X,B,Z)
is independent of Z too.

Remark 3.3.4. Using Trushin’s strengthening of Elkik’s theorem, see [Tru12, The-
orem 51] one can also construct a B-strong desingularization in Theorem 3.3.1. This
will not be used and the argument is rather complicated, so we only mention the
main line. The naive idea is to pass to a formal completion along Z and algebraize
the obtained rig-regular formal variety X with its rig-snc boundary B. The bot-
tleneck here is that Trushin’s theorem only allows to algebraize X with a single
rig-regular closed formal subscheme T rather than the entire B. Naturally, one
should take T to be the non-empty B(n) with the maximal possible n. Then, using
algebraization, one can separate B(n) from the bad locus of (X,B), and proceed
by induction on n.

3.4. General B-schemes.

3.4.1. Unresolved locus. Similarly to [Tem12, §4.1.1], when working on strong (resp.
B-strong) desingularization of B-schemes by the unresolved locus fsing of a B-blow
up sequence f : (X ′, B′) 99K (X,B) we mean the smallest closed subset T ⊆ X
such that f is a strong (resp. B-strong) desingularization over X \ T . Also, we say
that f is a desingularization up to codimension d if fsing ⊆ X>d. Recall that X≤d

denotes that set of points of X of codimension at most d, and X>d = X \X≤d.

3.4.2. Equicodimensional blow up sequences and filtration by codimension. A B-
blow up sequence (X ′, B′) 99K (X,B) is equicodimensional if the blow up sequence
X ′

99K X is equicodimensional in the sense of [Tem12, §4.1.3]. For completeness,
we note that there is a straightforward generalization of [Tem12, Lemma 4.1.3] to
desingularization of B-schemes, which we leave to the reader. We will only use
the obvious (and weaker) observation that if {F≤d}d∈N is a compatible family
of functorial equicodimensional desingularizations up to codimension d then this
family possesses a limit F , which is a desingularization functor.
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3.4.3. Construction of F . Let Bsch denote the category of all qe noetherian B-
schemes of characteristic zero with all strict regular morphisms, and let Bschred be
the full subcategory of generically reduced B-schemes.

Theorem 3.4.4. Assume that there exists a desingularization Fsmall on Bschsmall.
Then there exists a desingularization Fred on Bschred. Moreover, if Fsmall is strong
or B-strong, then Fred can be chosen to be strong or B-strong, respectively.

Proof. For shortness, we will write F instead of Fred. Let (X,B) be a B-scheme
from Bschred. We will construct a desingularization F(X,B) and it will be clear that
all stages of the construction are functorial. Actually, we will build a compatible
sequence of functors F≤d which provide an equicodimensional desingularization up
to codimension d and such that if a center Ci ⊂ Xi of F≤d(X,B) is such that its
image in X is of codimension d then Ci sits over Td−1 := F≤d−1(X,B)sing. The
construction will be done inductively, and we define F≤0 to be the empty B-blow
up sequence. This works fine since a generically reduced B-scheme is semi-regular
at all its maximal points.

In the sequel, we assume that the functors F≤0, . . . ,F≤d−1 are already con-
structed, and our aim is to construct F≤d(X,B). The required B-blow up se-
quence will be obtained by modifying the B-blow up sequence F≤d−1(X,B). Let
n be the length of this sequence. To simplify notation and avoid double in-
dexes, after each modification we will denote the obtained blow up sequence as
f : (Xm, Bm) 99K (X0, B0) = (X,B). In particular, we start with f = F≤d−1(X,B)
and m = n, and we will change f and m in the sequel. By our assumption, Td−1 is
a closed subset of X≥d, hence it has finitely many points of codimension d. Let T
denote the set of these points and let T be the Zariski closure of T .

Step 1. Construction of F≤d(X,B) in the particular case when T is closed.
Note that in this case F≤d−1(X,B) is a desingularization over X \ T and hence

F≤d(X,B) will be a desingularization of the whole X . We will use the operation
of inserting a blow up sequence into another blow up sequence, which is defined in
[Tem12, Definition 4.2.2].

Extension 0. Provide T with the reduced scheme structure and extend f by
inserting BlT (X) → X as the first blow up. As an output we obtain a blow up

sequence F≤d
0 (X,B) : X ′

m 99K X ′
0 → X0 = X of length m+ 1 where the first center

(the inserted one) is regular. Set f = F≤d
0 (X,B) and increase m by one after this

step. As an output we achieve that T ×X X ′
i is a Cartier divisor in X ′

i for i > 0.

Extensions 1, . . . , n. The last n centers of F≤d
0 (X,B) do not have to be suitable

for a B-strong (resp. strong) desingularization. So, we will use n successive ex-
tensions to make the centers B-permissible (reps. regular) in the case of B-strong
(resp. strong) desingularization. If the desingularization is not strong, one should
just skip these extensions and go directly to extension n + 1.

Let us describe the i-th extension with 1 ≤ i ≤ n. It obtains as an input a blow up

sequence f = F≤d
i−1(X,B) in which only the last n−i centers can be non-permissible

(resp. non-regular) and outputs a blow up sequence F≤d
i (X,B) with only n− i− 1

bad blow ups in the end. By our assumption, (Xi+1, Bi+1) → (Xi, Bi) is the first
blow up of f whose center W can be non-permissible (resp. non-regular). The latter
happens if and only if TW := (W,Bi|W )ssing (resp. TW := Wsing) is not empty.
Obviously, the bad locus TW sits over T and hence TW ⊆ W ∩ (Xi)

≤d ⊆ W≤d−1.
In particular, F≤d−1(W,Bi|W ) is a B-strong (resp. strong) desingularization that



FUNCTORIAL DESINGULARIZATION OVER Q: THE EMBEDDED CASE 23

we denote h : (W ′, B̃′) 99K (W,Bi|W ). Clearly, h is TW -supported and hence T -
supported. By [Tem12, Lemma 4.2.1], the pushforward H : X ′

i 99K Xi of h with
respect to the closed immersion W →֒ Xi is a blow up sequence with the same
centers. Moreover, H is Bi-permissible in the B-strong case by Lemma 2.3.8.

Let now f ′ : X ′
m 99K X ′

i 99K Xi 99K X0 be obtained from f by inserting
H : X ′

i 99K Xi instead of Xi+1 → Xi. By [Tem12, Lemma 4.2.3] the center of

X ′
i+1 → X ′

i is the strict transform of W , hence it is W ′. Since (W ′, B̃′) is semi-

regular (resp. W ′ is regular) and B̃′ = B′
i|W ′ , only the last i− 1 blow ups of f ′ can

have non-permissible (resp. non-regular) centers. So, we can set F≤d
i (X,B) = f ′

and replace the old f with f ′.
Extension n+1. At this stage we already have a blow up sequence f = F≤d

n (X,B)
such that all its centers are as required. The last problem we have to resolve is that
(Xm, Bm)ssing does not have to be empty. However, we at least know that the bad
locus is T -supported and hence is contained in the Cartier divisor D = T ×X Xm,
which is a disjoint union of varieties. So, the triple (Xm, Bm, D) is an object of
Bschsmall and hence (Xm, Bm) can be desingularized by Fsmall(Xm, Bm, D).

Step 2. Construction of F≤d(X,B) in general. Set XT =
∐

x∈T Spec(OX,x) and

BT = p∗(B), where p : XT → X is the projection, and note that fT = F≤d(XT , BT )
was defined in Step 1. For each x ∈ T let fx denote the restriction of fT onto
Xx = Spec(OX,x) with all trivial blow ups inherited from fT . By functoriality, fx
is a trivial extension of F≤d(Xx, B|Xx

).
Choose an open neighborhood U →֒ X of X≤d such that the closures x ∈ U

of distinct points x ∈ T are pairwise disjoint, and define gx : Ux 99K U as the
pushforward of fx with respect to the pro-open immersion Xx →֒ U . Since each gx
is x-supported, [Tem12, Lemma 4.2.4] implies that we can merge all gx’s into a single
blow up sequence U ′

99K U . Let f : X ′
99K X be the pushforward of g with respect

to the open immersion U →֒ X . It follows that f is obtained from F≤d−1(X,B)
by inserting a few equicodimensional T -supported blow ups. In particular, f is a
trivial extension of F≤d−1(X,B) over X \ T , and f coincides with fx over Xx for
each x ∈ T . Thus, f desingularizes (X,B) over X≤d and we set F≤d(X,B) = f .

The functoriality of the construction is established by checking that all interme-
diate steps are functorial. This is straightforward and done in the same way as in
the proof of [Tem12, 1.2.1], so we omit the details. �

Corollary 3.4.5. Assume that there exists a desingularization Fsmall on Bschsmall.
Then there exists a desingularization F on Bsch. Moreover, if Fsmall is strong then
F can be chosen to be strong.

Proof. Assume, for concreteness, that Fsmall is strong, and hence by Theorem 3.4.4
there exists a strong desingularization functor Fred on Bschred.

Let (X,B) be a B-scheme from Bsch. Consider the reduction X̃ of X and let

X ′
99K X be the pushforward of Fred(X̃, ∅) : X̃ ′

99K X̃. This gives rise to a B-blow

up sequence (X ′, B′) 99K (X,B) with regular centers. Since X̃ ′ is the reduction of

X ′, we can further blow up all components of X̃ ′ which underly generically non-
reduced components of X ′. This gives rise to a B-blow up (X ′′, B′′) → (X ′, B′)
with a generically reduced source. Finally, if (X ′′′, B′′′) 99K (X ′′, B′′) is the blow up
sequence Fred(X ′′, B′′), then the composition (X ′′′, B′′′) 99K (X,B) is a required
strong desingularization F(X,B) of (X,B). Clearly, all three steps are functorial.

�
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3.5. Proof of the main results.

3.5.1. Theorems 1.1.6. Applying Theorems 3.1.2, 3.2.6, 3.3.1 and Corollary 3.4.4
one after another we construct a strong desingularization functor F , thus proving
Theorem 1.1.6.

3.5.2. Theorem 1.1.9. To construct Femb(X,E,Z) we will compose two T -supported
blow up sequences with regular centers. We will denote the intermediate sequence
f : X ′

99K X and we set, in addition, Z ′ = f !(Z) and E′ = f◦(E).
Step 1. We can achieve that Z ′ is regular and has simple normal crossings with

E′. Consider the B-blow up sequence f̃ : (Z ′, B′) 99K (Z,B), where B = E|Z and

f̃ = F(Z,B) with F as in Theorem 1.1.6, and let f : (X ′, E′) 99K (X,E) be its
pushforward. In particular, the centers of f are as required, and B′ = E′|Z′ by
Lemma 2.2.14. Thus, E′

Z′ is semi-regular and hence Z ′ has simple normal crossings
with E′.

Step 2. Making the boundary snc. The boundary E′ does not have to be

snc since f̃ and f do not have to be permissible. However, Z ′ has simple nor-
mal crossings with E′, hence the bad locus of (X ′, E′) is disjoint from Z ′. Thus,
F(X ′, E′) : (X ′′, E′′) 99K (X ′, E′) does not modify a neighborhood of Z ′. Note that
E′′ is snc because (X ′′, E′′) is semi-regular and E′′ is divisorial. Finally, F(X ′, E′)
is T -supported because E′ is snc at any point x′ ∈ X ′ such that f is a local iso-
morphism at x′. So, the composition g : (X ′′, E′′) 99K (X,E) satisfies all assertions
of the theorem and we set Femb(X,E,Z) = g.

3.5.3. Theorem 1.1.15. First, let us fix an S-compactification X of Y : by Nagata
compactification theorem there exists a reduced proper S-scheme X with a dense
subscheme S-isomorphic to Y . We identify Y with that subscheme and set E =
X \ Y . Since Fprinc(X,E) : X ′ → X does not modify Y we can replace X by X ′

achieving that X is regular and E is an snc divisor. Next, consider the snc divisor
D = Y \Y0 and let D1, . . . , Dn be its irreducible components. By D and D1, . . . , Dn

we denote their Zariski closure in X . It suffices to find a modification f : Y → X
such that f is an isomorphism over Y and the preimage of E ∪D is an snc divisor.
We will construct f as a composition of n blow up sequences. At first step we apply
f1 = Femb(X,E,D1), which only modifies E because D1 is regular. To simplify
notation, replace X,E and all Di with their preimages under f1. In this way we
achieve that E1 := E ∪ D1 becomes snc. Next, apply f2 = F(X,E1, D2). Since
D1 has simple normal crossings with D2, the modification locus of f2 is contained
in E. Renaming X,E,Di as earlier we achieve that E2 := E ∪ D1 ∪ D2 is snc,
etc. Obviously, after n iterations we achieve that X \ Y0 = E ∪ D is snc. As we
explained above, the blow ups do not modify Y , so we can set Y = X .

Remark 3.5.4. There are two choices in our construction: the initial choice of the
compactification, and the choice of the order of the components of D.

3.5.5. Other theorems. We saw in the Introduction that Theorem 1.1.3 follows from
Theorem 1.1.6, see Remark 1.1.7(i). Also, we deduced Theorem 1.1.11 from The-
orem 1.1.9, and explained how Theorem 1.1.13 is proved. It, thus, remains to
establish the semistable reduction theorem.

4. Semistable reduction

4.1. Reduction to d-regularization.
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4.1.1. Special morphisms. We start with recalling some terminology on formal sche-
mes. We say that a morphism f : X → S of formal schemes is of topologically finite
type if it is quasi-compact and locally of the form

Spf(A[[x1, . . . , xm]]{xn+1, . . . , xn}/I) → Spf(A).

Following Berkovich, we will also call such morphisms special. Note that a special
morphism f is adic if and only if one can take m = 0, and this happens if and only
if f is of finite type.

4.1.2. Distinguished formal schemes. Let R be a complete DVR with a uniformizer
π and residue field k and let S = Spf(R). For a formal R-scheme X we call
Z = X⊗R k the special fiber of X. It is a divisor containing the closed fiber Xs.

Given 0 ≤ m ≤ n, let Rn,m denote the completion of R{t0, t1, . . . , tn} along
the principal ideal (t0 . . . tm). We say that X is strictly distinguished (resp. distin-
guished) if locally (resp. étale-locally) on X one can factor the structure morphism
into a composition

X
φ
→ Spf

(
Rn,m/(tl00 . . . tlnn − a)

)
→ S

such that φ is étale, 0 6= a ∈ πR, and li > 0 for 0 ≤ i ≤ m. If one can also achieve
that li ≤ 1 for 0 ≤ i ≤ n then X is called strictly semistable (resp. semistable).

Remark 4.1.3. (i) We require that n ≥ 0 and l0, . . . , lm > 0 in order to ensure
that Xs is the support of a divisor: Xs = V (t0 . . . tm). In particular, t0 . . . tm
automatically divides π. Sometimes it is convenient to view t0 as a dummy variable.
For example, one can represent R{t1, . . . , tn} as Rn,0/(t0 − a) with 0 6= a ∈ πR.

(ii) Berkovich considered the case when X is distinguished and one can take a to
be a uniformizer. Note that this happens if and only if X is distinguished and reg-
ular. Such formal schemes are called π-distinguished in [Ber15a, Definition 2.1.1].

(iii) Using desingularization of formal schemes, Berkovich proved in [Ber15a,
Theorem 2.1.2] that after modifying X and extending R, any reduced formal R-
scheme X can be made (a) π-distinguished, (b) semistable. Our version of semi-
stable reduction asserts that both conditions can be achieved simultaneously.

Lemma 4.1.4. Assume that R is a complete discrete valuation ring with residue
field k of characteristic zero and X is a regular special formal R-scheme. Then X
is strictly distinguished if and only if the special fiber Z = X⊗R k is an snc divisor
and the closed fiber Xs is a divisor.

Proof. In fact, this is a particular case of [Ber15a, Proposition 2.1.3], where an
analogous description of π-distinguished formal schemes is given. For completeness,
we outline the argument.

The direct implication is clear, so assume that Z is snc and Xs is a divisor,
and let us prove that X is strictly distinguished. We can work locally at a closed
point x ∈ Xs. By our assumption there exists a regular family of parameters
t0, . . . , tn ∈ OX,x such that Z = V (π) is given by the vanishing of t0 . . . tl for
0 ≤ l ≤ n. Shrinking X we can assume that ti are global functions, and multiplying
t0 by a unit we can assume that π = t0 . . . tl. Since Xs is a subdivisor of Z, we can
also assume that Xs is given by the vanishing of t0 . . . tm for 0 ≤ m ≤ l. Thus, we
obtain a morphism

φ : X → Y = Spf (Rn,m/(t0 . . . tl − π)) ,
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and it suffices to prove that φ is étale at x.
Since t0 . . . tm generates ideals of definition of X and Y, the special morphism

φ is of finite type. Thus, it suffices to prove that h : OY,y → OX,x is flat and
unramified, where y = φ(x). Since mx and my are generated by t0, . . . , tn, the fiber
of h is the finite field extension k(x)/k. Using that k is of characteristic zero, we
obtain that φ is unramified at x. To show that h is flat, it suffices to show that

its completion ĥ : ÔY,y → ÔX,x is flat. The homomorphisms Q →֒ k →֒ k(x) are

formally smooth, hence we can find compatible fields of coefficients k →֒ ÔY,y and

k(x) →֒ ÔX,x. Since both complete rings are regular with parameters t0, . . . , tn,

we then have kJt0, . . . , tnK
∼
−→ÔY,y and k(x)Jt0, . . . , tnK

∼
−→ÔX,x. In particular, ĥ is a

base change of k →֒ k(x), so ĥ is flat. �

4.1.5. d-regularization. Given a reduced qe formal scheme X with a global func-
tion f ∈ Γ(OX) and a number d > 0, let X[f1/d]nor denote the normalization of
SpfX(OX{f1/d}). It follows from Lemma 4.1.4 that Theorem 1.1.18 is equivalent
to the following: if X is a reduced special formal R-scheme then there exists a
(Xsing ∪ Z)-supported blow up X′ → X and d > 0 such that X′[π1/d]nor is regular
and has an snc special fiber. The latter statement makes sense for arbitrary qe
formal schemes, and we will prove it in that generality. Moreover, we will work
with invertible ideals instead of global functions.

Assume that X is a reduced formal scheme, Z is a closed formal subscheme and
d > 0 is a number invertible on X. We say that the pair (X,Z) is d-regular if
there exists an open covering X = ∪iXi such that each Zi = Z ×X Xi is principal,

say Zi = V (fi), the formal schemes X′
i = Xi[f

1/d
i ]nor are regular, and the formal

subschemes Z′
i = V (f

1/d
i ) are snc divisors. The definition is independent of the

choice of generators fi because d is invertible on X. Thus, Theorem 1.1.18 will be
proven once we establish the following d-regularization result:

Theorem 4.1.6. Assume that X is a reduced qe formal scheme of characteristic
zero and Z is a closed formal subscheme. Then there exists a number d > 0 and a
blow up X′ → X with center supported on Xsing ∪Z and such that the pair (X′,Z×X

X′) is d-regular.

Proof. Recall that T-supported blow ups are preserved by compositions. Hence
resolving the pair (X,Z) by Theorem 1.1.13 we can assume that X is regular and Z
is strictly monomial. In this special case, the theorem will be proved by combina-
torial methods later. In fact, we will deal with a slightly more general situation in
Theorem 4.5.1 below. �

4.2. d-regularization for cone fans. Combinatorial d-regularization can be for-
mulated in few equivalent languages, and we start with the language of [KKMSD73].

4.2.1. Cone fans. The classical combinatorial objects appearing in toroidal geom-
etry are rational polyhedral cone complexes Σ with integral structures L, i.e. Σ is
glued from finitely many rational polyhedral cones {σ ⊂ Nσ = Rnσ}σ∈F along face
maps and each Nσ is provided with a lattice Lσ ⊂ Qnσ in a way compatible with
the face maps. For shortness, we call Σ = (Σ, L) a cone fan.

4.2.2. Projective subdivisions. To simplify notation, if Σ′ → Σ is a subdivision
then we view functions Σ → R also as functions on Σ′. Let λ : Σ → R be a convex
integral pl function, in the sense that its restrictions λσ onto the cones are convex
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integral pl functions. Then there exists a minimal subdivision Σλ → Σ such that λ
is a linear function on (the simplices of) Σλ. Such a subdivision is called projective
in [KKMSD73, Definition III.1.5].

4.2.3. Root covers. Let f : Σ → R be an integral linear function in the sense that
its restrictions fσ onto the cones are integral and linear. Given a number d > 0 we
define a new fan Σ′ = Σ[d−1f ] by changing the integral structure of Σ as follows:
L′
σ = Lσ[d−1f ] is the lattice of points l ∈ Lσ such that d|f(l). In other words,

we make the minimal change of the integral structure such that d−1f becomes an
integral function.

4.2.4. Regularity. We say that Σ is regular if each Lσ possesses a distinguished
basis e1, . . . , enσ

such that σ is the standard cone
∏nσ

i=1 R≥0ei. An integral linear
function f on a regular Σ is called snc if for each σ with the distinguished basis
e1, . . . , en one has that fσ(ei) ∈ {0, 1} for 1 ≤ i ≤ n. Finally, we say that the pair
(Σ, f) is d-regular if Σ[d−1f ] is regular and d−1f is snc on Σ[d−1f ]. Now we can
reformulate the main combinatorial result of [KKMSD73] in a way resembling the
semistable reduction theorem.

Theorem 4.2.5. Assume that Σ is a cone fan and f : Σ → R is a convex integral
pl function. Then there exists a projective subdivision Σ′ → Σ and d > 0 such that
f is integral on Σ′ and (Σ′, f) is d-regular.

Proof. Note that the class of projective subdivisions is preserved by compositions.
So, replacing Σ by Σf we can assume that f is integral. Furthermore, by using
[KKMSD73, Theorem I.10] we can further refine Σ so that it becomes regular. By
P we denote the subset of Σ given by f = 1.

Let Σ̃ be the cone subfan of Σ consisting of cones σ̃ ⊂ Σ such that the set P ∩ σ̃
is bounded; this happens if and only if f does not vanish on the edges of σ̃. We

first solve the problem for Σ̃ and f |Σ̃. Note that P̃ = Σ̃ ∩ P is a polytope complex

and L̃ = L ∩ P̃ is an integral structure on P̃ . By [KKMSD73, Theorem III.4.1]

there exists d > 0 and a projective subdivision P̃ ′ of P̃ whose polytopes are d−1L̃-

integral simplices of minimal possible volume. The subdivision P̃ ′ → P̃ induces

a projective subdivision Σ̃′ = Σ̃h̃ → Σ̃ of the cone fans, where to each polytope

p ∈ P̃ ′ corresponds a cone σp in Σ̃′. It is easy to see that the condition that p

is a d−1L̃-integral simplex of minimal volume is equivalent to the condition that

σp is regular with respect to the integral structure of Σ̃′[d−1f ], see [KKMSD73, p.

106-107]. So, Σ̃′ is regular. In addition, if e1, . . . , en is the distinguished basis of σp

then f(ei) > 0 by the definition of Σ̃, and f(ei) ∈ dZ by the definition of L[d−1f ].
By the minimality of the volume, we then have f(ei) = d.

We extend the subdivision Σ̃h̃ → Σ̃ to a subdivision Σ′ = Σh → Σ as follows.
Any cone σ in Σ splits into the product of the standard cones σ̃ × σ, where σ̃ is in

Σ̃ and f = 0 on σ. Pulling back h̃σ̃ to a function hσ for each σ, we obtain a convex
integral pl function h on Σ, and it is easy to see that the preimage of σ in Σ′ is the

product of σ with the preimage of σ̃ in Σ̃′. Thus, each cone of Σ′ splits into the

product of a cone of Σ̃′ and a cone σ. Also, any edge of Σ′ lies either in Σ̃′ or in

Σ\ Σ̃, and hence its basic integral vector satisfies f(e) = d or f(e) = 0, accordingly.

Since (Σ̃′, f |Σ̃′) is d-regular we obtain that (Σ′, f) is also d-regular. �
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4.3. Translation to fans.

4.3.1. Kato’s fans. A more economical way to represent a cone fan Σ is by use of
the associated Kato’s fan consisting of the set F = FΣ of cones of Σ with the sheaf
of monoids MF such that MF,x = Lx ∩ σx. We will simply call F = (F,MF ) a
fan. In this paper we only consider saturated fans, so the word saturated will often
be omitted.

We refer to [IT14, §3.1] for the definition of the category of saturated fans; it is
easy to see that it is equivalent to the category of cone fans. In addition, for a fixed
field k with S = Spec(k), both categories are equivalent to the category of toric
k-varieties with toric morphisms. As in [IT14, §3.2], we will denote the equivalences
Σ 7→ S[Σ] and F 7→ S[F ].

4.3.2. Invertible ideals. An ideal I ⊆ MF is called invertible if each Ix is generated
by an element fx ∈ MF,x. Since MF,x is a sharp monoid, fx is uniquely determined
and this implies that these elements glue to a global section f ∈ Γ(I). In particular,
I = (f) is principle. Note that principle ideals correspond to non-negative integral
functions on cone fans.

4.3.3. Blow ups. The blow up of a fan F along an ideal I ⊆ MF is naturally defined
using charts, e.g. see [IT14, §3.2]. We also recall that ideals in MF correspond to
toric ideals on S[F ] bijectively and this functor takes blow ups of F to toric blow ups
of S[F ], see [IT14, Lemma 3.2.17]. By [KKMSD73, Chapter I], for any projective
subdivision Σ′ → Σ, the corresponding morphism of toric varieties S[Σ′] → S[Σ] is
a toric blow up, and so the corresponding morphism of fans F ′ → F is also a blow
up. We do not explore the question whether the ideal defining the blow up can be
chosen canonically.

4.3.4. d-regularization for fans. We say that a fan F is regular if each stalk MF,x is
a free monoid Nnx . Assume F is regular, then we call an ideal I ⊆ MF snc if each
Ix is generated by an element of the form

∑n
i=1 aiei, where e1, . . . , en form the basis

of MF,x and ai ∈ {0, 1}. Assume that I is invertible. Then I = (f) and we obtain a
canonical morphism F → Spec(N) taking the generator of N to f . Let F [d−1f ]sat

be the saturated base change of F with respect to the map Spec(N) → Spec(N)
corresponding to the homomorphism d : N → N. This construction corresponds
to the construction of Σ[d−1f ] in the language of cone fans, and it makes the
analogy with the semistable reduction even more direct. We say that a pair (F, I)
is d-regular if I is invertible, F [d−1I]sat is regular and d−1I is snc on F [d−1I]sat.
Theorem 4.2.5 can now be reformulated as follows:

Theorem 4.3.5. For any fan F with an ideal I ⊆ MF whose stalks are non-empty
there exists a blow up h : F ′ → F and a number d > 0 such that the pair (F ′, h−1I)
is d-regular.

4.4. d-regularization for log regular log schemes.

4.4.1. Log regular log schemes. We refer to [Kat94, Section 2] for the definition of
log regular log schemes. If X is a log regular log scheme then the set D = X(0)
of all points x ∈ X with Mx = 1 is a divisor and MX is determined by D via
MX = OX ∩ i∗(O×

U ), where U = X \ D and i : U →֒ X . In particular, one can
represent log regular log schemes by pairs (X,D), and the typical example is when
X is regular and D is an snc divisor. Furthermore, if (X,D) is log regular then the
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following conditions are equivalent: (a) X is regular, (b) X is regular and D is snc,
(c) all stalks Mx are free monoids.

4.4.2. Monoidal ideals. An ideal I on a log scheme (X,D) is called monoidal if it
is of the form IOX for an ideal I ⊆ MX . In this case, we say that Spec(OX/I) is
a monoidal subscheme of X . We refer to [Niz06, Section 4] for the definition of the
log blow up along a monoidal ideal I. When (X,D) is log regular, it reduces to the
normalized blow up along I on the level of schemes, see [Niz06, Proposition 4.3].

4.4.3. Fans of log regular schemes. To any log regular log scheme (X,D) one as-
sociates a fan F = F (X,MX) as follows: F = ∪n∈NFn is the set of generic
points of the log strata X(n) of (X,D) (i.e. the strata where the rank of MX

equals to n) and MF = MX |F . Monoidal ideals of (X,D) correspond bijectively
to ideals of the fan, and log blow ups of (X,D) correspond to blow ups of fans:
F (LogBlI(X)) = BlI(F ), where I ⊆ MF corresponds to I, see [Niz06, Theo-
rem 4.7]. Naturally, we say that (F, I) is the fan of the pair ((X,D), I). Theo-
rem 4.3.5 then implies the following analogue:

Theorem 4.4.4. Assume that (X,D) is a log regular log scheme and I is a
monoidal ideal. Then there exists a log blow up f : (X ′, D′) → (X,D) and a number
d > 0 such that the fan of the pair ((X ′, D′), f−1I) is d-regular.

Remark 4.4.5. If d is invertible on X then the fan of a pair ((X,D), I) is d-
regular if and only if the pair (X, I) is d-regular. Hence, Theorem 4.4.4 implies the
scheme-theoretic analogue of Theorem 4.1.6.

4.5. The case of formal log schemes. It remains to extend the above theory
from schemes to formal schemes. The notions of §4.4 are compatible with regular
morphisms and hence can be extended to other geometric categories. For concrete-
ness, we work out the case of formal schemes, which is used to prove Theorem 4.1.6.

Let (X,MX) be a qe formal log scheme. If X = Spf(A) is affine then Γ(MX) → A
gives rise to an affine log scheme X = (X,MX) with X = Spec(A), and we say
that (X,MX) is log regular if (X,MX) is. Since X is qe, formal localizations are
regular morphisms and it follows that affine formal subschemes of (X,MX) are log
regular too. In particular, the notion of log regular formal log schemes globalizes.

In the same fashion, one defines the log blow up X′ = LogBlI(X) along a
monoidal ideal: choose an appropriate affine covering of X by Xi = Spf(Ai) and
glue the formal completions of the log blow ups of Xi = Spec(Ai).

The only place where one should exercise some care is with extending the notion
of fans. One cannot define log strata X(n) by gluing formal subschemes of Xi corre-
sponding to Xi(n), but, fortunately, it suffices to use the closures X(≥n) of X(n)
instead. Clearly Xi(≥ n) are closed subschemes compatible with the morphisms
Spec(Aijk) → Xi, where Xi ∩ Xj = ∪kSpf(Aijk) is an open covering. Therefore,
the corresponding closed formal subschemes Xi(≥n) of Xi glue to a closed formal
subscheme X(≥n) of X, thus defining the locus of X where rk(MX) ≥n. We define
the fan of X by F = ∪n∈NFn, where Fn is the set of irreducible components of
X(≥ n) which are not contained in X(≥ n + 1). Now, all basic results about log
blow ups, including compatibility with blow ups of fans, can be extended to formal
schemes in the obvious way, and the proofs reduce to choosing an affine covering
and using the analogous results for schemes. In particular, we obtain the following
extension of Theorem 4.4.4.
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Theorem 4.5.1. Assume that (X,D) is a log regular formal log scheme and I is a
monoidal ideal. Then there exists a log blow up f : (X′,D′) → (X,D) and a number
d > 0 such that the fan of the pair ((X′,D′), f−1I) is d-regular. In particular, if X
is of characteristic zero then the pair ((X′,D′), f−1I) is d-regular.

As we saw earlier, Theorem 4.5.1 implies Theorem 4.1.6, which in its turn implies
Theorem 1.1.18.

Appendix A. Motivation for introducing B-schemes

In this appendix we advertise B-schemes and try to explain why their defini-
tion in desingularization context is natural. Also, we explain the logic of other
definitions, for example, of the complete transform.

A.1. Embedded desingularization and the boundary. At least since the great
work [Hir64] of Hironaka, it is a common knowledge that in the embedded desingu-
larization one should give a special treatment to the exceptional divisor accumulated
through the blow up sequence. It is also common to call this divisor the bound-
ary, and, indeed, in many aspects it behaves like a boundary. Thus, for the sake
of mastering an inductive desingularization procedure one should consider triples
(X,E,Z) even if one starts with an empty E.

Also, it is now a standard observation that although the support of E is an
snc divisor, at least at some stages of the algorithm one should provide E with the
finer structure of splitting to regular components and ordering them (see also §A.7).
Very naturally, both tasks are accomplished by the history of the desingularization
process, and, after adding the history function, E becomes an snc boundary in our
sense. In principle, there are finer versions of the algorithm that involve less history
data, but in this paper we choose to work with the total history and defined the
B-schemes accordingly. Note also that the rule of forming the new boundary from
the old one is encoded in the complete transform.

A.2. Non-embedded desingularization and the boundary. A common ap-
proach to building a non-embedded desingularization of a scheme Z is to embed
it into a regular ambient scheme X and to apply embedded desingularization to
(X, ∅, Z). For example, this gives a non-strong desingularization of equidimen-
sional varieties of characteristic zero in many works, including [W lo05] and [Kol07].
As an output one gets a permissible blow up sequence f : X ′

99K X such that

f̃ : Z ′ = f !(Z) 99K Z is a desingularization and Z ′ has simple normal crossings
with the boundary E′ of f . In particular, in addition to getting a regular Z ′ one

automatically obtains that the exceptional divisor E′|Z′ of f̃ is snc. Moreover, if
we start with an arbitrary initial snc boundary E such that D := E|Z is a divisor

and resolve (X,E,Z) by f : X ′
99K X , then its restriction f̃ : Z ′

99K Z also makes
D ×Z Z ′ a strictly monomial divisor whose reduction has simple normal crossings
with the exceptional divisor.

To summarize, the embedded desingularization makes more than just desingu-
larizing the embedded scheme Z; it desingularizes the embedded pair (Z,E|Z), and
this is non-trivial even when E|Z = ∅. This observation indicates that even for
non-embedded desingularization one implicitly deals with boundaries, and the nat-
ural problem one solves, even without planning to, is to desingularize a pair (Z,B)
where B = E|Z is a boundary. If one works with a total history then E is a set of
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divisors, and hence B should at least be a set of divisors rather than a single divi-
sor. Moreover, it is natural to restrict E onto closed subschemes without excluding
non-divisorial cases, and this directly leads to our definition of boundaries.

A.3. B-permissibility. As we discussed in §A.1, one usually uses permissible blow
up sequences of an ambient B-scheme (X,E). When constructing a strong embed-
ded resolution of Z →֒ X one only blows up centers on the strict transform of Z,
e.g. see [BM97, 12.2]. In this case the blowing up sequence f : X ′

99K X is deter-
mined by the blow up sequence g : Z ′

99K Z of strict transforms. Namely, f is the
pushforward of g. It is then natural to encode all data we define on X in terms
of a data defined on Z. This naturally leads to the definitions of boundaries and
B-permissible blow ups. In particular, Lemma 2.3.8 says that f is E-permissible if
and only if g is E|Z -permissible.

A.4. B-schemes. In order to discuss desingularization of pairs (Z,B) it looks nat-
ural to link them into a single object, and the fact that such a pair can be interpreted
as a log scheme of a special type gives a strong indication that this definition makes
sense. We will discuss below two situations where the use of B-schemes seems to
be very natural.

Remark A.4.1. It is an interesting question whether more general log schemes
can be useful for desingularization theory.

A.5. Redundancy of blow ups. There are two possibilities to work with blow
ups. In [Tem08], by a blow up one means a morphism X ′ → X that is isomorphic to
a blow up along some center, while in [Tem12] and in this paper the center of a blow
up is a part of the data, and hence blow ups are enriched morphisms. The latter
is crucial in order to have strict and principal transforms. There are also various
examples (obvious and not) of different blow up sequences that produce the same
morphism but induce different tranforms, see [Kol07, 3.33]. However, if we consider
a blow up of schemes f : X ′ → X as a B-blow up of B-schemes (X ′, E′) → (X, ∅),
then the center is almost always determined by the B-blow up, and similarly for
the blow up sequences from [Kol07]. The only small redundancy with B-blow ups
was described in Remark 2.2.12(i), and even that could be avoided by using the
history function for ordering, i.e. by ordering components by the natural numbers
so that empty components are allowed.

A.6. Transforms. Principal (weak or controllable) transforms of closed subschemes
or ideals are commonly used in embedded desingularization. The idea is to split off
some multiples of the exceptional divisors from pullbacks of the ideal until nothing
is left.

However, in general there is no morphism (X ′, f⊲(B)) → (X,B), and this is-
sue is resolved by introducing the complete transform of B, which is the minimal
natural increment of f⊲(B) such that there is a natural morphism of B-schemes
(X ′, f◦(B)) → (X,B). Note also that |f◦(B)| = |f !(|B|)| ∪ |Ef | and so the com-
plete transform keeps at least set-theoretical information about the old boundary
and the boundary of f .

A.7. On strict desingularization from [Tem08]. If X is a qe scheme of char-
acteristic zero and B is a divisorial boundary on X then by Theorem 1.1.6 there
exists a B-blow up sequence F(X,B) : (X ′, B′) → (X,B) such that X ′ is regular,
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B′ is snc and F(X,B) only modifies the locus where X is not regular or B is not
snc. A non-functorial version of this theorem was established in [Tem08] under the
name of semi-strict desingularization. It was formulated in terms of the underlying
divisors, i.e. it addressed D = |B| rather than B. Moreover, one similarly defined in
[Tem08] strict desingularization of a pair (X,D) as a blow up sequence that resolves
X , makes D normal crossings and only modifies the locus where X is not regular
or D is not normal crossings. It might look surprising, but strict desingularization
does not exist even for algebraic surfaces, as one can see in the classical example of
Whitney umbrella discussed in Example A.7.2 below.

Remark A.7.1. (i) Existence of strict desingularization of varieties was incorrectly
proved in [Tem08, Theorem 2.2.11]. The mistake in that proof was in claim (i) and
it is due to the fact that the number of formal brunches through a point of D is not
Zariski semi-continuous, unlike the number of irreducible components. This should
be corrected by replacing strict desingularization and formal branches by semi-
strict desingularization and irreducible components in the formulation and proof of
[Tem08, Theorem 2.2.11]. Actually this was in the original argument I heard from
Bierstone-Milman! The correction does not affect anything else in [Tem08].

(ii) Functorial semi-strict desingularization does not exist. Indeed, such desingu-
larization would automatically be strict due to the fact that normal crossings and
strict normal crossings loci are indistinguishable in the étale topology. The best
one can hope for is a semi-strict desingularization that it is only functorial with
respect to morphisms that preserve the number of irreducible components through
any point. This is not an étale invariant and missing this subtlety lead me to the
mistake in [Tem08]. The semi-strict desingularization obtained from F is slightly
weaker: it depends on an ordering of the components and is only functorial with
respect to smooth morphisms that respect the order.

(iii) The above subtleties do not show up when one works with boundaries D =
{D1, . . . , Dn}, snc loci of boundaries, and strict regular morphisms. For example,
strict regular morphisms respect the k-multiple locus D(k) that consist of points
contained in exactly k boundary components. Thus, the proof of [Tem08, 2.2.11]
applies to the B-variety (Z,D) and provides a strong functorial desingularization
of B-varieties. This gives another proof of Theorem 2.4.5, which has the advantage
of being independent of the order of the components. In particular, the latter proof
also applies to unordered boundaries.

Example A.7.2. Take the Whitney umbrella D ⊂ Z = A3
k = Spec(k[x, y, z]) given

by x2 = zy2. It has the so-called pinching point singularity at the origin O. Clearly,
D is smooth outside of the z-axis C, is not monomial at O, and is normal crossings
but not snc at any point of C0 = C \ {O}. We will show that any modification
D′ → D with normal crossings D′ has to resolve D at the generic point of C. In
particular, it cannot preserve the whole normal crossings locus of D.

A nice topological argument is given by J. Kollar at [Kol08]. Here is a slightly
different argument that applies over any field. An easy computation shows that the
preimage of C0 in the normalization of D0 = D \ {O} is an irreducible étale double

covering C̃0 of C0 whose extension to a covering C̃ → C with a normal C̃ ramifies
over O. Assume now that D′ → D is a modification inducing an isomorphism over

D0, and let D̃′ → D′ be its normalizations. Clearly, C0 embeds into D′, its Zariski

closure C′ ⊂ D′ is isomorphic to C, and the preimage of C′ in D̃′ is an irreducible
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double covering that ramifies over O′ := C′ \ C0. It follows easily that D′ is not
normal crossings at O′.

A.8. Non-existence of normal crossings compactifications. The same ex-
ample with a pinching point shows that one cannot replace strict normal crossings
with normal crossings in Theorem 1.1.15.

Example A.8.1. (i) Let C,D,Z,D0, C0 be as in Example A.7.2. Then D0 is a
normal crossings surface such that any compactification D of D0 is not normal
crossings, as can be shown by precisely the same argument. Indeed, the closure C
of C0 in D admits a morphism from C, so let O ∈ C be the image of O ∈ C. Then
the preimage of C in the normalization of D is a double covering which ramifies
over O. Therefore, D is not normal crossings at O.

(ii) Consider the smooth variety Y = Z \ {O} with the normal crossings divisor
D0 and set Y0 = Y \D0. We claim that there is no regular compactification Y of
Y such that Y \ Y0 is a normal crossings divisor. Indeed, if such a compactification
exists then the closure D of D0 in Y is a normal crossings divisor, contradicting
part (i).
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MR 3329777

[Kat94] Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099.
MR 1296725 (95g:14056)

[KKMSD73] G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal em-
beddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin, 1973.
MR 0335518 (49 #299)

[Kol07] János Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies,

vol. 166, Princeton University Press, Princeton, NJ, 2007. MR 2289519 (2008f:14026)
[Kol08] , Semi log resolution, ArXiv e-prints (2008).
[Niz06] Wies lawa Nizio l, Toric singularities: log-blow-ups and global resolutions, J. Alge-

braic Geom. 15 (2006), no. 1, 1–29. MR 2177194 (2006i:14015)



34 MICHAEL TEMKIN

[Tem08] Michael Temkin, Desingularization of quasi-excellent schemes in characteristic zero,
Adv. Math. 219 (2008), no. 2, 488–522. MR 2435647 (2009h:14027)

[Tem12] , Functorial desingularization of quasi-excellent schemes in characteris-
tic zero: the nonembedded case, Duke Math. J. 161 (2012), no. 11, 2207–2254.
MR 2957701

[Tru12] Dmitry Trushin, Algebraization of a Cartier divisor, ArXiv e-prints (2012).
[W lo05] Jaros law W lodarczyk, Simple Hironaka resolution in characteristic zero, J. Amer.

Math. Soc. 18 (2005), no. 4, 779–822 (electronic). MR 2163383 (2006f:14014)

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Giv’at Ram,

Jerusalem, 91904, Israel

E-mail address: temkin@math.huji.ac.il


