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MORPHISMS OF BERKOVICH CURVES AND THE DIFFERENT

FUNCTION

ADINA COHEN, MICHAEL TEMKIN, AND DMITRI TRUSHIN

Abstract. Given a generically étale morphism f : Y → X of quasi-smooth
Berkovich curves, we define a different function δf : Y → [0, 1] that measures
the wildness of the topological ramification locus of f . This provides a new
invariant for studying f , which cannot be obtained by the usual reduction
techniques. We prove that δf is a piecewise monomial function satisfying
a balancing condition at type 2 points analogous to the classical Riemann-
Hurwitz formula, and show that δf can be used to explicitly construct the
simultaneous skeletons of X and Y . As another application, we use our results
to completely describe the topological ramification locus of f when its degree
equals to the residue characteristic p.

1. Introduction

1.1. Motivation. Throughout this paper, k denotes an algebraically closed com-
plete non-archimedean real-valued field whose valuation will be denoted | | : k →
R≥0. By a nice compact Berkovich curve we mean a compact separated quasi-
smooth strictly k-analytic curve. Such objects play a central role in a variety
of recent papers (e.g., [BPR12], [ABBR13], [Fab13a], [Bal10], [PP12]), and their
structure is adequately described by the semistable reduction theorem. Neverthe-
less, morphisms between nice curves are not understood so well, and the main aim
of this paper is to start filling in this gap. Since the case when f : Y → X is tame
is classical, we study the phenomena occurring in the wild case. For this, we intro-
duce a different function δf : Y → [0, 1] that measures the “wildness” of f , and this
paper is devoted to a detailed study of δf and the properties of f reflected by δf .

In particular, we will see that δf is tightly related to the minimal simultaneous

semistable reduction of Y and X , and if the degree of f equals to char(k̃) then
its topological ramification locus and metric structure are completely encoded in
δf . In a sequel work [Tem14], we will show that in the general case the latter are
completely controlled by a more complicated invariant φf , which can be viewed as
a family of Herbrand functions and associates to points of Y piecewise monomial
automorphisms of [0, 1], and the different δf (y) is just the coefficient of the linear
part of φf (y). Note, however, that our study of δf in this work is much more detailed
than the study of φf in [Tem14], and many results, including the genus formulas
are not extended to φf . So, this work and [Tem14] are rather complementary.

1.2. Known results. Before outlining our methods and results, let us discuss the
state of the art in the field.
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1.2.1. The tame case. Berkovich introduced tame étale coverings in [Ber93, Section
6.3] and showed that any connected tame étale covering of a disc is trivial and any
connected tame étale covering of an annulus is Kummer ([Ber93] uses the word
“standard”). As a corollary, one can easily obtain the following description of an
arbitrary tame morphism f : there is a compatible pair of skeletons ΓX ⊂ X and
ΓY = f−1(ΓX) such that f totally splits on their complements. In particular, the
topological ramification locus is a finite graph. Moreover, it suffices to choose ΓX

that contains the image f(Ram(f)) of the ramification locus of f , since its preimage
is automatically a skeleton. The latter observation can be used to give a simple
proof of the semistable reduction theorem for curves Y that admit a morphism

Y → P1
k without wild topological ramification (e.g., when char(k̃) = 0).

1.2.2. The wild case. The situation with wild morphisms is much more complicated.
By the simultaneous semistable reduction theorem, see 3.5.11, one can find skeletons
ΓX and ΓY = f−1(ΓX) such that the restriction of f onto their complements is
a disjoint union of étale coverings of open discs by open discs. However, these
coverings do not have to split and may be pretty complicated, so the description
of f provided by this theorem is not really satisfactory. In addition, it is not clear
how (ΓY ,ΓX) is related to f even when X = P1

k. In the tame case, we can simply
take ΓX to be the convex hull of f(Ram(f)), but in the wild case the latter is not
so informative (e.g., it can be a single point when char(k) > 0).

Furthermore, if k is of mixed characteristic p, for example k = Cp, then already
for the wild Kummer covering P1

k → P1
k given by t 7→ tp, the topological ramifica-

tion locus T is a metric neighborhood of the interval [0,∞] ⊂ P1
k. Although T is a

huge set, it possesses a reasonable “finite combinatorial description”, so it is natural
to wonder if the topological ramification locus can be described “combinatorially”
in general. To the best of our knowledge, this question was only studied in the
works [Fab13a] and [Fab13b] of X. Faber. In particular, Faber managed to bound
from above the topological ramification locus of morphisms P1

k → P1
k when Ram(f)

contains no wildly ramified points (e.g., char(k) = 0): it is contained in a certain
metric neighborhood of the convex hull of f(Ram(f)). In addition, Faber showed
that no such metric neighborhood exists if there are wildly ramified points. It was
not even conjectured in the literature what a precise structure of the topological
ramification locus in general might be (see Section 1.4 below).

1.2.3. The different. The different is a classical invariant that measures wildness
of a valued field extension, so it is quit natural to consider it when studying wild
covers f : Y → X of Berkovich curves. Nevertheless, it seems that the different was
not used in the literature devoted to Berkovich spaces, although it did show up in
the adjacent areas of rigid and, especially, formal geometries. In rigid geometry,
Lütkebohmert, following Gabber’s ideas, used the different to prove a rather deep
non-archimedean version of Riemann’s existence theorem, see [Lüt93]. In fact,
Lütkebohmert implicitly introduced the different function on certain intervals in
Y , showed that it is piecewise monomial on them, and obtained certain estimates
on δf , specific for the mixed characteristic case. Later, Ramero gave in [Ram05]
another proof of Riemann’s existence theorem, which also makes use of the different.

In formal geometry, the different was used in a whole cluster of works related to
lifting problems, automorphisms of open discs and Oort’s conjecture. For example,
see [Ray90], [GM99], [OW14] and the literature cited there. The motivation and
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context in these papers differs from ours. Typically one assumes that the covering
is Galois and the characteristic is mixed and studies the covers in a much more
detailed way. Often, one also restricts the Galois group, for example, assuming
that it is cyclic or even of degree p. Finally, the ground field is assumed to be
discretely valued.

1.3. Main results and outline of the paper.

1.3.1. Preliminaries. In Section 2 we study the different of extensions of one-
dimensional analytic k-fields, i.e. fields that can appear as H(x) where x is a
point of a curve. To large extent this is based on [Tem10, Section 6] and [GR03,
Chapter 6]. For fields, our main formula for computing the differents is established
in Corollary 2.4.6.

Section 3 is devoted to systematization of various material about Berkovich
curves we use. Most of it is well known, although some statements are hard to
find in the literature.

1.3.2. Local behaviour of δf . The main player of this paper is introduced in Sec-
tion 4: we associate to f : Y → X a different function δf : Y \ Y (k) → [0, 1) whose
value at y equals to the different of the extension H(y)/H(x), where x = f(y).
Thus, δf reflects how the different varies in one-dimensional analytic families of
extensions of valued fields. In Theorem 4.1.6 we compute δf by use of tame param-
eters, and obtain, as a corollary, that δf is piecewise |k×|-monomial on any interval
I ⊂ Y \ Y (k). This extends Lütkebohmert’s (implicit) results to the case when I
has a type 4 endpoint. In addition, we describe in Theorem 4.2.6 all restrictions
satisfied by the multiplicity of f at a point y, the value of the different at y and
the slope of the different in some direction from y. As a very particular case, this
recovers the classical fact that for a fixed multiplicity, the different is bounded in
the mixed characteristic case, unlike the equicharacteristic one.

The major part of Section 4 is occupied with the study of local behaviour of δf
at a type 2 point y. In Theorem 4.5.4 we show that if y is inner then the slopes of
the different along all branches v at y satisfy a balancing condition analogous to the
Riemann-Hurwitz formula, where the role of the classical differential ramification
indices Rv (e.g., see [Har77, IV.2.4]) is played by the numbers Sv = −slopevδf +
nv − 1. In particular, we show that almost all Sv vanish, and hence δf increases
in almost all directions from y whenever δf (y) < 1. This indicates that δf is very
different from functions of the form |h| for h ∈ Γ(OY ), and is somewhat analogous
to 1/r(y), where r(y) is a radius function on a disc.

Remark 1.3.3. (i) We often call this balancing condition the local Riemann-
Hurwitz formula at a type 2 point. The formula is new, though it should be noted
that in the situation studied by A. Obus in [Obu12] (the ground field is discretely
valued, the characteristic is mixed and the covering is Galois with cyclic p-Sylow
subgroups), one can easily deduce it from [Obu12, 5.6,5.8,5.10], though translation
of notation requires some effort.

(ii) The balancing condition should not be confused with local Riemann-Hurwitz
formulas at a formal fiber of a closed point of a formal model. The latter type
of formulas compute the genus of such a formal fiber, see, for example, [Säı04,
Theorem 3.4]. We establish a formula of this type in Theorem 6.2.7.



4 ADINA COHEN, MICHAEL TEMKIN, AND DMITRI TRUSHIN

(iii) Although the branches at y correspond to a reduction curve Cy with function

field H̃(y) (see 3.4.1), the numbers Sv cannot be described in terms of any reduction
data and our balancing condition does not reduce to a Riemann-Hurwitz formula

for curves over k̃. For example, it can freely happen that the extension H̃(y)/H̃(x)
is purely inseparable, and hence does not provide any new information about Cy,
while not all Sv vanish, and hence δf distinguishes a few branches at y.

(iv) Our main formula for δf (Theorem 4.1.6) involves radii functions rt, so it

is not so surprising that δf and r−1
t behave similarly. Also, the different is related

to the norms on the sheaves ΩX and ΩY (see Section 4.3), which quite differ from
the norm on OX . In particular, if ω ∈ Γ(ΩX) then |ω|Ω decreases in almost all
directions.

Finally, in Section 4.6 we extend δf to a function δlogf : Y → [0, 1] by continuity

and show that it is piecewise |k×|-monomial with zeros at wild ramification points.
Also, we show that the order of the zero at y ∈ Y (k) is the value of the logarithmic
different of the extension of DVRs Oy/Ox, see Theorem 4.6.4.

1.3.4. Applications to the structure of f . There is a standard graph-theoretic lan-
guage describing skeletons of nice compact curves and tame morphisms between
them. In Section 5 we extend it by adding in a datum related to the different
function. Then we prove a combinatorial Riemann-Hurwitz formula for maps of
such graphs.

In Section 6 we study what δf can tell about f . In particular, Theorem 6.2.3
expresses the genus of Y in terms of the genus of X , the ramification divisor, and
indices Rb at the boundary points of Y . By Theorem 4.5.4, the local Riemann-
Hurwitz formula can fail only at a boundary type 2 point b, and Rb measures its
failure. Again, the essentially new feature here are the indices Rb, that cannot

be defined without the different function (e.g., in terms of geometry over k̃). In
addition, we describe the global structure of δf and its relation to the skeletons. As
we saw, Sv = 0 for almost any branch v ∈ Br(y), i.e. the different δf increases with
slope nv − 1 in the direction of v. So, we say that δf is trivialized by a skeleton
ΓY if for any branch v not pointing towards ΓY , we have that Sv = 0. If one only
has that Sv = 0 for all points y ∈ ΓY of type 2 and all branches v at y pointing
outside of ΓY , then we say that ΓY locally trivializes δf . By Theorem 6.1.9, any
simultaneous skeleton (ΓY ,ΓX) trivializes δf , and, conversely, Theorem 6.3.4 states
that if Γ is the preimage of a skeleton ΓX and δf is locally trivialized by Γ then
Γ is a skeleton (in particular, δf is trivialized by it). As a corollary, one obtains a
constructive description of the skeletons of Y in terms of f and the skeletons of X ,
see Remark 6.3.5.

1.3.5. Degree-p coverings. We describe the structure of morphisms of degree p in
Section 7. Trivialization of δf by a skeleton ΓY allows to express δf in terms of
its restriction onto ΓY and the multiplicity function ny : Y → N. This does not
give a complete description as ny can be complicated, but the situation improves
when deg f = p. In this case, if f is wild at y then ny = p and we obtain a
full control on δf and the topological ramification locus. Namely, if ΓY trivializes
δf then δf increases in all directions pointing outside of ΓY with constant slope
p− 1. In particular, we obtain in Theorem 7.1.4 the following finite combinatorial
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description of the topological ramification locus T of f : it is a radial set around
the subgraph T ∩ ΓY of ΓY whose radius at y ∈ T ∩ ΓY is δf (y)

1/(p−1).
We conclude the paper by illustrating our results in the case of a degree two

covering f : E → P1
k, where E is an elliptic curve. In particular, we classify all ten

possible configurations of the minimal skeleton of f , explain their relation to δf
and relate their metric to the absolute value of the j-invariant, see Theorem 7.2.7.

In the wild case (i.e. char(k̃) = 2) this seems to be new, especially, what concerns
the “tropicalization” of the supersingular configurations, although a brief analysis
of the mixed characteristic case can be found in [GM99, 5.1].

1.4. A sequel. To complete a “combinatorial” description of finite generically étale
morphisms f : Y → X between nice compact curves, one should provide a “finite”
description of the multiplicity function ny. This will be done in a separate paper
[Tem14] by proving the following result:

Let Td be the set of points with ny = d. Then each T≥d =
∐

i≥d Ti is a closed set

and there exists a skeleton ΓY and piecewise monomial functions ri : ΓY → (0, 1]
with 1 ≤ i ≤ [logp(deg f)], such that each Td with d /∈ pN is contained in ΓY

and each T≥pi is the radial set with center ΓY ∩ T≥pi of radius ri(y). In addition,
it will be shown in [Tem14] that the radii ri(y) can be easily obtained from the
breaks of the ramification filtration of H(y)/H(x) and, in fact, they determine the
ramification filtration.
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2. One-dimensional analytic fields

In Section 2 we recall some facts about extensions of analytic fields, i.e. complete
real-valued fields. Recall that the ground field k is assumed to be analytic, non-
trivially valued and algebraically closed.

2.1. Local uniformization and parameters.

2.1.1. One-dimensional k-fields and their types. An analytic k-field K is called

one-dimensional if it is finite over a subfield k̂(t) with t /∈ k. Recall that the sum

of FK/k = tr.deg.k̃(K̃) and EK/k = dimQ(|K×|/|k×| ⊗Z Q) is bounded by 1 by
Abhyankar’s inequality. We say that K is of type 2 if FK/k = 1, of type 3 if
EK/k = 1, and of type 4 if EK/k = FK/k = 0.
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2.1.2. Parameters. If K is a one-dimensional analytic k-field and t ∈ K \k then the

extension K/k̂(t) is finite by [Tem10, Corollary 6.3.4]. If K/k̂(t) is separable (resp.
tame, resp. unramified) then we say that t is a parameter (resp. tame parameter,
resp. unramified parameter). The following theorem is proved in [Tem10, Theo-
rem 6.3.1(i)] by a direct (though involved) valuation-theoretic argument. One can
view it both as a local uniformization of one-dimensional fields and a far reaching
generalization of the separable transcendence basis theorem in dimension one.

Theorem 2.1.3. Any one-dimensional k-field possesses an unramified parameter.

Remark 2.1.4. Theorem 2.1.3 is an easy consequence of the semistable reduc-
tion theorem recalled below. Conversely, using Theorem 2.1.3 one can prove the
semistable reduction theorem relatively easily, and in the algebraic setting this was
done in [Tem10].

2.1.5. Monomial parameters. We say that a parameter t ∈ K is monomial if the
induced valuation on l = k(t) is a generalized Gauss valuation, i.e. |

∑
i ait

i| =
maxi |ai|ri, where r = |t|.

Lemma 2.1.6. Assume that K is a one-dimensional analytic k-field and t ∈ K is
a parameter.

(i) The infimum infc∈k |t− c| is achieved if and only if K is of type 2 or 3.
(ii) The infimum is achieved for c = c0 if and only if t − c0 is a monomial

parameter.

Proof. The field L = k̂(t) is of the same type as K, so it suffices to work with L. In
this case, L = H(x) for a point x ∈ P1

k and the assertion of the lemma reduces to
the following obvious claims: x can be moved to a point of the interval (0,∞) by
an appropriate translation of P1

k if and only if it is of type 2 or 3, and x ∈ (0,∞)
if and only if the valuation of H(x) is a generalized Gauss valuation. �

2.1.7. Radius. Given a parameter t ∈ K, the number rt = infc∈k |t − c| will be
called the radius of t. Note that t induces a map M(K) → A1

k and rt is the radius
of its image x ∈ A1

k, i.e. the infimum of radii of discs containing x.

2.2. Completed differentials.

2.2.1. Kähler seminorm. As in [Tem16, 4.1.1], given an extension of real-valued
fields l/k we provide the module of differentials Ωl/k with the maximal l-seminorm
| |Ω = | |Ω,l/k such that d : l → Ωl/k is contracting. We call | |Ω the Kähler seminorm.

2.2.2. Completed differentials. The completion with respect to | |Ω will be denoted

Ω̂l/k. For shortness, we call its norm the Kähler norm and denote it | |Ω.

2.2.3. Unit balls. The unit balls of Ωl/k and Ω̂l/k will be denoted Ω⋄
l/k and Ω̂⋄

l/k, re-

spectively. Perhaps, Ω◦ would be a better notation than Ω⋄, but in non-archimedean

geometry ◦ is reserved for the spectral seminorm of algebras. Note that Ω̂⋄
l/k is the

π-adic completion of Ω⋄
l/k, where 0 6= π ∈ l◦◦.
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2.2.4. A relation to differentials of rings of integers. The unit balls considered

above are tightly related to the l◦-module Ωl◦/k◦ and its π-adic completion Ω̂l◦/k◦ .

Lemma 2.2.5. Let l/k be as above and L = l̂, then

(i) The natural map Ω̂l/k → Ω̂L/k is an isometric isomorphism.
(ii) The natural map φ : Ωl◦/k◦ → Ωl/k is an embedding and | |Ω is the maximal

seminorm on Ωl/k such that Ωl◦/k◦ ⊆ Ω⋄
l/k.

(iii) The natural map Ω̂L◦/k◦ → Ω̂L/k is an embedding and the norm on Ω̂L/k is

the maximal norm such that Ω̂L◦/k◦ ⊆ Ω̂⋄
L/k.

Proof. Part (i) is proved in [Tem16, Corollary 5.6.7] . Since Ωl/k = Ωl◦/k◦ ⊗l◦ l,
and Ωl◦/k◦ is torsion free by [GR03, Theorem 6.5.20(i)], φ is an embedding. The

group |k×| is dense in R>0, hence the second claim of (ii) follows from [Tem16,
Corollary 5.3.3 and Theorem 5.1.8]. Finally, (iii) is obtained from (i) and (ii) by
passing to the completions. �

2.3. Differentials of one-dimensional fields.

2.3.1. Main computation. In the one-dimensional case, Kähler norm and related
K◦-modules can be explicitly computed as follows.

Theorem 2.3.2. Assume that K is a one-dimensional analytic k-field and t ∈ K
is a tame parameter, then

(i) Ω̂K/k is a one-dimensional vector space with basis dt, and |dt|Ω = rt.

(ii) Ω̂K◦/k◦ is the K◦-submodule of Ω̂K/k generated by the elements dt
c , where

c ∈ k is such that there exists a ∈ k with |t− a| ≤ |c|.

Proof. Set l = k(t) and F = l̂. By Lemma 2.2.5(i), Ω̂F/k is one-dimensional with
basis dt. The extension K/F is finite and separable, hence the map ΩF/k ⊗F K →
ΩK/k is an isomorphism, and we obtain that the map

ψK/F/k : Ω̂F/k ⊗F K → Ω̂K/k

has a dense image. It follows that either Ω̂K/k vanishes, or it is one-dimensional
with basis dt, and in the latter case ψK/F/k is an isomorphism. Since (ii) implies
that |dt|Ω,K/k = rt > 0, we see that (ii) implies (i). Furthermore, if |t − a| ≤ |c|

then dt
c = d t−a

c ∈ Ω̂K◦/k◦ . So we should only prove that any df with f ∈ K◦ lies

in the module generated by the elements dt
c as in (ii).

Step 1. The theorem holds true when K = F . First, assume that K/k is of type
3. To prove the theorem we can replace t with any element t − a for a ∈ k. So,

we can assume that K = k{r−1t, rt−1}. Obviously, Ω̂K◦/k◦ is generated by the

elements df where f =
∑
ait

i ∈ K◦ and a0 = 0. Since a0 = 0 we actually have
that |f | < 1, hence df = ftdt =

∑
iait

i−1dt and |ft| < |t−1|. In particular, taking
c ∈ k with |ft| < |c|−1 < |t−1| we achieve that df ∈ l◦ dt

c and |t| < |c|.
Assume, now, that the type is 2 or 4. Let C denote the set of all elements c ∈ l

such that |t − a| ≤ |c| for some a ∈ k. Recall that Ωl◦/k◦ embeds into Ωl/k = ldt

by Lemma 2.2.5(ii). We claim that Ωl◦/k◦ is l◦-generated by the elements dt
c with

c ∈ C. Take any element f ∈ l◦. Then f = a
∏

i(t − ai)
ni and hence df =∑

i ni(t− ai)
−1fdt. Note that for any i there exists ci ∈ C such that |ci| ≤ |t− ai|.

Indeed, if no such ci exists then |t−ai| = rt /∈ |k×|, and so K is of type 3. Thus, we
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can choose ci as above and then |ni(t−ai)−1f | ≤ |ci|−1. In particular, df ∈
∑

i l
◦ dt
ci

and we have proved an analogue of the theorem for the extension l/k. Passing to
the completions we obtain the assertion of Step 1.

Step 2. The general case. We start with the following result.

Lemma 2.3.3. If K/F is a tamely ramified algebraic extension of real-valued fields
and the valuation on F is not discrete then ΩK◦/F◦ = 0.

Proof. We have that ΩK◦/F◦ = K◦◦/F ◦◦K◦ by [Tem16, Lemma 5.2.7], and it
remains to note that K◦◦/F ◦◦K◦ = 0 since the valuation on F is not discrete. �

Returning to the proof of Theorem 2.3.2, consider the map

φ : ΩF◦/k◦ ⊗F◦ K◦ → ΩK◦/k◦ .

It has zero kernel by [GR03, Theorem 6.3.23] and Coker(φ) = ΩK◦/F◦ = 0 by
Lemma 2.3.3. So, φ is an isomorphism and hence its completion

ψK◦/F◦/k◦ : Ω̂F◦/k◦⊗̂F◦K◦ → Ω̂K◦/k◦

is an isomorphism. Since the theorem holds for F , we obtain that the assertion (ii)
holds for K. The assertion (i) follows. �

The assertion of Theorem 2.3.2 becomes especially convenient for applications
when t is a tame monomial parameter, and so |t| = rt. Let us make the assertion of
the theorem more explicit in this case. We will use notation K◦

s = {x ∈ K| |x| ≤ s}
and K◦◦

s = {x ∈ K| |x| < s}.

Corollary 2.3.4. Assume that K is a one-dimensional analytic k-field, t ∈ K is
a tame parameter and s = r−1

t . Then,

(i) Ω̂⋄
K/k = K◦

sdt. In particular, if t is a tame monomial parameter then dt
t is a

basis of Ω̂⋄
K/k.

(ii) Ω̂K◦/k◦ = K◦
sdt if K is of type 2, and Ω̂K◦/k◦ = K◦◦

s dt if K is of type 3 or 4.

In particular, Ω̂K◦/k◦ is a free module if and only if K is of type 2, and in this case

for any tame monomial parameter x with |x| = 1 we have that Ω̂K◦/k◦ = K◦dx.

2.3.5. Quasi-invertible modules. IfK is a real-valued field then we call aK◦-module
M quasi-invertible if it is torsion free, MK = M ⊗K◦ K is of dimension one, and
0 (M (MK . In fact, any quasi-invertible module is of the form K◦

s or K◦◦
s . Note

that the notion “almost invertible” introduced by Gabber and Ramero is more
general since an almost invertible module may contain torsion.

Given a real-valued field l with an l-vector space V and two l◦-submodules
M,N ⊂ V , we define the ratio (M :l N) to be the set of all elements x ∈ l such
that xN ⊆M . It is a fractional ideal of l◦. The absolute value of the ratio is

|M :l N | = sup
x∈(M :lN)

|x|.

In the rank-one case, this absolute value is multiplicative, namely we have the
following obvious result.

Lemma 2.3.6. Assume that l is a real-valued field, V is a one-dimensional l-vector
space, and M,P,Q ⊂ V are quasi-invertible submodules. Then |M :l P | · |P :l Q| =
|M :l Q|.
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2.3.7. Relative differentials. Using absolute differentials, we can also describe dif-
ferentials of extensions of one-dimensional fields.

Lemma 2.3.8. Assume that L/K is a finite separable extension of one-dimensional
fields. If L is of type 2 then ΩL◦/K◦ is of the form L◦

r/L
◦
s, so it is a finitely presented

cyclic module, and if L is of type 3 or 4 then ΩL◦/K◦ is of the form L◦◦
r /L

◦◦
s .

Proof. Since ΩL◦/K◦ ⊗L◦ L = ΩL/K = 0, the module ΩL◦/K◦ is torsion. Further-
more, it is annihilated by a single element 0 6= π ∈ K◦ by [GR03, 6.3.8 and 6.3.23].
(An alternative and more elementary argument is to use the first fundamental se-
quence to reduce to the case when L/K is an elementary extension as in [GR03,
6.3.13], and in the latter case one can bound the torsion of ΩL◦/K◦ by the same

computations as used in the proof of loc.cit.) It follows that ΩL◦/K◦ = Ω̂L◦/K◦ , so
completing the first fundamental sequence of k◦ →֒K◦→֒L◦ we obtain that ΩL◦/K◦

is the cokernel of the map

ψL◦/K◦/k◦ : Ω̂K◦/k◦⊗̂K◦L◦ → Ω̂L◦/k◦ .

Since both the target and the image of ψL◦/K◦/k◦ are quasi-invertible modules
described by Corollary 2.3.4(ii), the lemma follows. �

2.4. Different for one-dimensional fields.

2.4.1. The definition. Given a separable extension of one-dimensional k-fields L/K
we define its different as the absolute value of the annihilator of ΩL◦/K◦ , i.e.

δL/K = |Ann(ΩL◦/K◦)|,

where we set |I| = supx∈I |x| for an ideal I ⊆ L◦. Note that δL/K = s/r, where r
and s are as in Lemma 2.3.8.

Remark 2.4.2. (i) If the valuations are not discrete, the different of a tamely
ramified extension equals to 1 by Lemma 2.3.3. In a sense, the different measures
“wildness” of extensions, though it may be equal to 1 for wildly ramified extensions
(these are so-called almost unramified extensions).

(ii) Usually one defines the different as a fractional ideal of K◦, but we are only
interested in its absolute value.

(iii) Our definition with the annihilator is an analogue of the classical definition
that concerns discrete valuation fields with perfect residue fields. However, it is
meaningful only because ΩL◦/k◦ is quasi-invertible and hence its quotient ΩL◦/K◦

is a “rank one” torsion module. In particular, we will show below that the different
we define is multiplicative, and Lemma 2.3.6 will be used in the argument.

(iv) For general extensions of valued fields one can define the different by use of
an analogue of the zeroth Fitting ideal of ΩL◦/K◦ , see [GR03].

2.4.3. Comparison of Kähler norms. The different of the extension appears as the
scaling factor when comparing the Kähler norms of a field and its extension.

Theorem 2.4.4. Assume that L/K is a separable extension of one-dimensional

fields and consider the isomorphism ψ : Ω̂K/k ⊗K L → Ω̂L/k. Then |x′|Ω,L =

δL/K |x|Ω,K for any x ∈ Ω̂K/k with x′ = ψ(x⊗ 1).

Proof. By Lemma 2.2.5(iii),

|x′|Ω,L = |x′L◦ :L Ω̂L◦/k◦ |
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and similarly

|x|Ω,K = |xK◦ :K Ω̂K◦/k◦ | = |x′L◦ :L ψ(Ω̂K◦/k◦ ⊗K◦ L◦)|.

It remains to use Lemma 2.3.6 and the fact that

δL/K = |ψ(Ω̂K◦/k◦ ⊗K◦ L◦) :L Ω̂L◦/k◦ |.

�

Corollary 2.4.5. If L/K/F is a tower of finite separable extensions of one-dimensional
analytic k-fields then δL/F = δL/KδK/F .

As another corollary, we obtain a convenient way to compute the differents.

Corollary 2.4.6. Assume that L/K is a finite separable extension of one-dimensional
k-fields and t ∈ L, x ∈ K are parameters. Then,

(i) δL/K =
∣∣dx
dt

∣∣ |dt|Ω,L

|dx|Ω,K
.

(ii) If the parameters are tame then δL/K =
∣∣dx
dt

∣∣ rt
rx
.

Proof. By definition, dx
dt is the element h ∈ L such that hdt = dx. By Theo-

rem 2.4.4,

|dt|Ω,L = |h−1dx|Ω,L = |h−1| · |dx|Ω,L = δL/K |h−1| · |dx|Ω,K

and we obtain (i). The second claim follows from (i) and Theorem 2.3.2(i). �

3. Analytic curves

In Section 3 we provide a brief review of some basic facts about k-analytic spaces,
making a special accent on curves. Concerning facts about curves, proofs can be
found in [Ber90, Section 4.1], [Duc] and the literature cited there.

3.1. G-topology. First, we recall the terminology of [Tem16] related to the G-
topology.

3.1.1. Choice of the G-topology. Although a separated analytic curve X is good
and hence the sheaf OX is reasonable, we prefer to work with coherent sheaves in
the G-topology. Since we consider only strictly analytic curves, XG denotes the
G-topology of strictly k-analytic domains throughout the paper.

3.1.2. The space XG. For any strictly k-analytic space X , the topos of sheaves of
sets X∼

G on the G-topological space XG is coherent and hence has enough points by
the famous theorem of Deligne (see [sga72, VI.9.0]). It follows easily, see [Tem16,
Theorem 9.1.6], that X∼

G is equivalent to the topos of a natural topologization |XG|
of the set of points of X∼

G . In particular, it is safe to replace XG with the larger
space |XG| when working with sheaves. From now on, we will use the notation XG

to denote the honest topological space |XG|, adopting the convention of [Tem16].

Remark 3.1.3. (i) Any G-sheaf on X extends uniquely to XG, so we can (and
will) view any G-sheaf on X as a sheaf on XG, justifying the notation. The main
profit of working with XG is that we can consider non-analytic points, i.e. points
of XG \X , and stalks at these points as an integral part of the picture.

(ii) On the set-theoretical level, we identify X with a subset of XG. In fact, the
G-topology of X is induced from the topology of XG in the following sense: G-open
sets are restrictions of open sets of XG and a covering U = ∪iUi is a G-covering if
there exist an open covering V = ∪iVi in XG such that V ∩X = U and Vi∩X = Ui.
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3.1.4. Residue fields. Given a point x ∈ XG, by κG(x) we denote the residue field
of OXG,x. The spectral seminorms on affinoid subspaces containing x induce a
norm | |x on OXG,x via the rule |f |x = inf ρA(f), where ρA denotes the spectral
seminorm of A and the infimum is over all affinoid domains V = M(A) such that
x ∈ V and f is defined on V . It is easy to see that | |x is a real semivaluation with
kernel equal to the maximal ideal mG,x. In particular, giving | |x is equivalent to
giving a real valuation on κG(x) that will also be denoted | |x.

3.1.5. Completed residue field. Let H(x) be the completion of (κG(x), | |x). This
notation is compatible with the classical notation when x ∈ X . Indeed, H(x) is
preserved when passing to an analytic subdomain containing x, and if X is good
then κ(x) ⊆ κG(x) is dense. Thus, H(x) is the completion of both fields.

3.1.6. Adic interpretation. In the framework of rigid geometry, van der Put studied
the points ofXG in [vdP82]. In fact, he used the language of prime filters of analytic
domains, but this is equivalent to the topos-theoretic definition. In particular, van
der Put showed that O◦

XG,x is the preimage of a valuation subring of κG(x) under

OXG,x → κG(x). Thus, giving the subring O◦
XG,x ⊆ OXG,x is equivalent to giving

an equivalence class of semivaluations on OXG,x with kernel equal to mG,x. By a
slight abuse of language we fix one such semivaluation and the induced valuation
on κG(x) and denote them ‖ ‖x. This valuation extends to H(x) by continuity and
we will use the same notation for the extension. Note that throughout this paper
| | refers to real-valued (semi) valuations, while ‖ ‖ refers to (semi) valuations that
may have values in arbitrary valued groups.

Remark 3.1.7. The valuative interpretation of the points of XG is very important
in adic geometry. In fact, XG is the underlying topological space of the Huber’s
adic space corresponding to X , see [Hub96].

3.1.8. The retraction rX . Further properties of the spaceXG were studied in [vdPS95].
In particular, one shows that there is a retraction rX : XG → X and rX identifies
X with the maximal Hausdorff quotient of XG. In particular, any point x ∈ XG

has a single generization y = rX(x) in X ⊆ XG and r−1
X (y) = y is the closure of y

in XG.

3.1.9. Germ reductions. If x ∈ XG and y = rX(x) then the generization map
φ : OXG,x → OXG,y is local and induces an embedding of real valued fields κG(x)→֒κG(y).
In particular, | |x is induced from | |y via φ, so in the sequel we will freely use | |y
instead of | |x. In addition, H(x)→̃H(y), see [Tem16, Lemma 9.2.5]. The valuation
‖ ‖x is composed from the real valuation | |x of H(x) and a valuation on the residue

field H̃(x). So, all points of y are interpreted as valuations on H̃(y).

Remark 3.1.10. In fact, the closure of y inXG can be identified with the reduction

of the germ (X, y), which is a certain Riemann-Zariski space (̃X, y) of valuations

on H̃(y), see [Tem00, Remark 2.6].

3.2. Topological ramification.

3.2.1. Topological ramification index. Assume that a morphism of k-analytic spaces
f : Y → X is étale at a point y ∈ Y and let x = f(y). The number ny = [H(y) :
H(x)] will be called the topological ramification index or the multiplicity of f at y.
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Naturally, we say that f is topologically ramified at y if ny > 1, and the set of all
points with ny > 1 is called the topological ramification locus.

Remark 3.2.2. (i) In [Ber93, Section 6.3], Berkovich calls ny the “geometric rami-
fication index”, but we prefer to change the terminology since the word “geometric”
usually refers to a property satisfied after an arbitrary base field extension.

(ii) The term “topological ramification” is justified by the observation that ny =
1 if and only if f is injective on a neighborhood of y. In fact, ny = 1 if and only if
f is a local isomorphism at y by [Ber93, Theorem 3.4.1].

(iii) In fact, ny is the local degree of f at y, the notion that makes sense for arbi-
trary flat quasi-finite morphisms. In particular, if f is finite and the nice compact
curves are connected then the value of nx =

∑
y∈f−1(x) ny is independent of x.

3.2.3. Tame and wild ramification. We say that f is tamely topologically ramified

at y if ny is invertible in k̃. Otherwise, the topological ramification at y is called
wild. Usually, we will simply say that f is wild étale or tame étale at y.

Remark 3.2.4. The definition of tameness is due to Berkovich, see [Ber93, Section
6.3]. One might be surprised that a (type 2) point y with an unramified extension
H(y)/H(x) is declared wildly ramified when p|ny. However, this definition has the
following two advantages: any tame étale covering of a disc is trivial (see [Ber93,
Theorem 6.3.2]) and the tame ramification locus is a finite graph (we do not need
the second claim, and it will be proved elsewhere). Both claims would fail if one
extends the definition of tameness by only requiring that H(y)/H(x) is tame.

3.2.5. Ramification points. It will be convenient to extend the above classifica-
tion to actual ramification points, at least in the case of curves. So, assume
that f : Y → X is a generically étale morphism of quasi-smooth curves, and
y ∈ Y is a ramification point of Y . Let ny be the usual ramification index, i.e.
mf(y)Oy = m

ny
y . We say that the ramification at y is tame if ny is invertible in k,

and the ramification is wild otherwise. This fits the usual algebraic definition.
In addition, we classify y as a point of topological ramification and call ny the

topological ramification index at y. We say that the topological ramification at y is

tame if ny is invertible in k̃. Otherwise, the topological ramification is wild. This
fits the intuition that topological ramification is related to the ramification of the
completed residue fields H(s), while usual ramification is related to ramification of
the local rings Os.

3.2.6. Wild and tame loci. The set of all points y ∈ Y where f is topologically tame
(resp. topologically wild) will be called the tame locus (resp. the wild locus) of f .

3.3. Local structure of analytic curves.

3.3.1. Nice compact curves. A purely one-dimensional k-analytic space is called a
k-analytic curve, and we will omit k as a rule. Almost all our work is concerned
with compact separated strictly k-analytic curves X that are smooth at Zariski
closed points. For the sake of brevity, we will refer to such curves nice compact
curves throughout the paper.

Note that the smoothness assumption on a nice compact curve X means that
X is rig-smooth, i.e. the associated rigid space is smooth. Since X is strictly
analytic, this is also equivalent to requiring that X is quasi-smooth, see [Duc03,
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Section 2.1.8]. Furthermore, X is smooth if and only if it has no boundary, so this
happens if and only if it is proper.

3.3.2. Types of points. Let X be a k-analytic curve. Points of type 1 are the k-
points. For any other point x ∈ X , the k-field H(x) is one-dimensional and the type
of x is the type of H(x). To any type 2 point we associate the genus g(x) equal to

the genus of the functional k̃-field H̃(x). It will also be convenient to set g(x) = 0
for any point of another type. A point is called monomial (resp. hyperbolic) if it is
of type 2 or 3 (resp. 2, 3 or 4). The set of such points will be denoted Xmon (resp.
Xhyp).

3.3.3. Intervals. By an interval I ⊂ X we mean a topological subspace homeomor-
phic to a closed or an open interval and provided with an orientation. Often we
will denote I as [x, y] or (x, y); such notation specifies the boundary of the interval
and the orientation.

3.3.4. Branches. A branch v of X at a point x ∈ X is an isomorphism class of
germs of intervals [x, y] ⊂ X , see [Duc, Secion 1.7]. The set of branches at x will
be denoted Br(x), it can also be identified with the set of connected components of
V \{x}, where V is a sufficiently small connected neighborhood of x. We claim that
any point of type 1 or 4 is unibranch, and any point of type 3 has two branches.
This is clear for points in P1

k and the general case is reduced to this by Section 3.3.6
below. Note that we use here that X is nice: non-smooth points of type 1 may have
more than one branch and boundary points of type 3 may have 1 or 0 branches
(and even more than two branches in the non-separated case). For shortness, we
will denote the branch at a type 1 or 4 point x by the same letter.

Remark 3.3.5. It is convenient to introduce branches at arbitrary points, but only
branches at type 2 points are really informative.

3.3.6. Elementary neighborhoods. A point x ∈ X has a fundamental family of ele-
mentary neighborhoods Ui, see [Ber93, Section 3.6]. Recall that Ui are isomorphic
to discs if the type of x is 1 or 4, Ui are annuli if the type is 3, and Ui \ {x} is a
union of open discs and finitely many open annuli if the type is 2. In the latter
case, these discs and annuli are parameterized by the branches at x.

3.3.7. Parameters. Recall that étale morphisms in rigid geometry correspond to
quasi-étale morphisms of Berkovich spaces. The discrepancy is due to the fact that
étale morphisms in Berkovich geometry are defined to be without boundary. A
morphism is quasi-étale if it is étale G-locally on the source and the target, see
[Ber94, Section 3] for the precise definition.

By a parameter at x we mean any element tx ∈ OXG,x such that the induced
map f : U → A1

k from an affinoid subdomain containing x is quasi-étale at x. Thus,
if x is of type 1 then tx − c is a uniformizer of OX,x for c = tx(x) ∈ k, and if x
is hyperbolic then tx is an element of κG(x) \ k if char(k) = 0 and an element of
κG(x) \ (κG(x))p if char(k) = p.

If x is hyperbolic then the parameter tx is tame (resp. monomial) if it is a tame
(resp. monomial) parameter of H(x). If x is of type 1 then any uniformizer tx is
tame by definition, and tx is monomial if tx(x) = 0. We warn the reader that even

when tx is tame, it may happen that p divides [H(x) : k̂(tx)] and thus f has wild
topological ramification at x.
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There always exists a tame parameter, and if x is monomial then it can also be
chosen monomial. Indeed, this is obvious when x is of type 1, and for hyperbolic
points one can choose such a parameter t′x ∈ H(x) and take tx ∈ κG(x) = OXG,x

such that |t′x − tx| < rtx . It is easy to see that tx is also a tame (resp. tame and
monomial) parameter.

3.4. Type 5 points.

3.4.1. Germ reduction curves. Any (non-analytic) point x ∈ XG \X corresponds

to a non-trivial valuation on H̃(y), where y = r(x) ∈ X . For curves this can happen

only when y is of type 2 and then x corresponds to a discrete valuation on H̃(y)

trivial on k̃. The closure of y in XG can be identified with a normal k̃-curve Cy

such that k̃(Cy) = H̃(y). Indeed, Cy = (̃X, y) is a one-dimensional Riemann-Zariski

space over k̃, hence it is a normal curve. We will call Cy the germ reduction of X at
y. For concrete computations one can often use the following recipe: there always
exist a formal model X such that the reduction map πX : X → Xs takes y to the

generic point of an irreducible component Z ⊂ Xs and k̃(Z) = H̃(y), and then Cy

is the normalization of Z. Note also that Cy is proper if and only if y ∈ Int(X) is
an inner point, see [Tem00, Theorem 4.1].

3.4.2. Type 5 points. If X is a curve then any point x ∈ XG \ X will be called
a type 5 point. It corresponds to a closed point of the germ reduction Cy at a
type 2 point y. The valuation ‖ ‖x corresponding to O◦

XG,x is of rank two, and

it is composed from the real-valuation | |x (i.e. induced from the generization

map OXG,x → OXG,y) and a discrete valuation on κ̃G(x) = H̃(x) = H̃(y). We

denote the latter as εx : H̃(x)
×

→ λZx , where λx is the generator of the group of
values satisfying λx < 1. Since |H(x)×| = |k×|, the group of values ‖H(x)×‖x
splits canonically into the lexicographic product |H(x)|y ×λZx of ordered groups, in
particular, εx extends to a homomorphism (but not a valuation!) H(x)× → λZx so
that ‖f‖x = (|f |y, εx(f)). In the sequel, we will prefer to work with the additive

homomorphism νx : H(x)× → Z corresponding to εx, so that ‖f‖x = (|f |y, λ
νx(f)
x ).

Remark 3.4.3. There is a natural bijection between type 5 specializations of a
type 2 point y and the branches at y, see [Duc, Section 3.2]. So, we will freely
identify them.

3.4.4. Multiplicities. Assume that f : Y → X is a generically étale morphism be-
tween nice compact curves, y ∈ YG is of type 5 and x = f(y) ∈ XG. Consider the
type 2 points η and ǫ that generize y and x, respectively, and let fη : Cη → Cǫ be
the induced morphism between the germ reductions. The multiplicity ny of f at y
is defined to be the usual (algebraic) multiplicity of y in the fiber f−1

η (x).

Remark 3.4.5. (i) Note that nη = [H(η) : H(ǫ)] = [H̃(η) : H̃(ǫ)] since H(ǫ) is
stable for any point of type 2. This fact and a local computation of the degree
of fη allow to extend Remark 3.2.2(iii) to points of type 5: if f is finite and X
is connected then

∑
y∈f−1(x) ny = deg(f) for any x of type 5. In particular, this

indicates that our definition of the multiplicity is “correct”.
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(ii) Note that for type 5 points, ny = #‖H(y)×‖y/‖H(x)×‖x is the ramification
index of the extension of valued fields of height two, but it can be strictly smaller
than [H(y) : H(x)]. Note also that λx = λ

ny
y .

3.4.6. Parameters. We say that points of type 5 are both monomial and hyperbolic,

so Xmon
G consists of Xmon and points of type 5, and similarly for Xhyp

G . If x is of
type 5 then by a parameter at x we mean an element tx ∈ κG(x) such that tx /∈ k
and tx is not a p-th power when char(k) = p > 0. Furthermore, tx is monomial
if |tx − c|x ≥ |tx| for any c ∈ k. This happens if and only if νx(tx) 6= 0. Also, tx
is tame if for the induced map f : U → A1

k the map between the germ reductions

Cx → Cf(x) is not wildly ramified at x, i.e. nx is invertible in k̃. In particular, tx

is tame monomial if and only if νx(tx) is invertible in k̃, hence there exist plenty of
such parameters.

3.5. Global structure. The main result about global structure of nice compact
curves is the semistable reduction theorem, which can be formulated either in terms
of formal models or in terms of skeletons, see [Ber90, Section 4.3]. We will only
discuss the second approach.

3.5.1. Skeletons of curves. By a finite topological graph we mean a topological
space Γ with a finite set of vertices Γ0 ⊆ Γ which is isomorphic to the topological
realization of a finite graph. In particular, Γ \Γ0 is a finite disjoint union (perhaps
empty) of open intervals called edges of Γ. If no confusion with combinatorial
graphs is possible, we will simply say that Γ is a finite graph.

By a skeleton of a nice compact curve X we mean a finite graph Γ ⊂ X such
that the following conditions hold:

(i) Γ0 consists of type 1 and 2 points and contains all boundary points and points
of positive genus,

(ii) X \ Γ is a disjoint union of open discs.
We explain below that any nice curve possesses a skeleton, but let us list basic

properties of skeletons first. To make notation uniform, by a semi-annulus we mean
either an open annulus or an open disc punched at a type 1 point.

Remark 3.5.2. (i) Since points of type 1 and 4 are unibranch, Γ contains no type
4 points, and any x ∈ Γ of type 1 is a vertex (in fact, a leaf).

(ii) Any edge e ⊂ Γ is contained in a semi-annulus A ⊂ X so that e is the skeleton
of A, see, for example, [Duc, Theorem 4.1.14]. In fact, this result means that X \Γ0

is a disjoint union of open discs and semi-annuli, with semi-annuli parameterized
by the edges of Γ. In terms of [Duc] this means that Γ0 is a triangulation of X .

(iii) Any skeleton Γ is a deformation retract of X ; in particular, π0(Γ) = π0(X)
and h1(Γ) = h1(X).

3.5.3. Enlarging a skeleton. One of a very special features of the theory of curves
is that any enlargement of a skeleton is again a skeleton.

Lemma 3.5.4. Let X be a nice compact curve with a skeleton Γ, and assume that
Γ′ ⊂ X is a finite subgraph such that Γ ⊆ Γ′, π0(Γ) = π0(Γ

′) and all vertices of Γ′

are of type 1 and 2. Then Γ′ is a skeleton of X.

Proof. This reduces to proving that if D ⊂ X is an open disc with limit point
q ∈ X , and T is a finite connected subgraph of X such that q ∈ T and T \{q} ⊂ D,
then D \ T is a disjoint union of discs. By induction on the size of T 0 this reduces
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to the case when T = [x, q], where x is of type 1 or 2 inside of D. The latter is
trivial. �

3.5.5. Semistable reduction. The semistable reduction theorem asserts that any nice
compact curve X possesses a skeleton Γ. Moreover, it follows from Lemma 3.5.4
that for any finite set V of type 1 and 2 points one can achieve that V ⊂ Γ0. As
we have seen above, this provides very detailed information about X .

3.5.6. Stable reduction. Assume that X is connected. The stable reduction theorem
sharpens the semistable reduction by asserting that, excluding a few degenerate
cases, there exists a unique minimal skeleton ∆(X,V ) containing V . It turns out
that the only degenerate cases are as follows: X = P1

k and V consists of at most 2
points of type 1, and X is a Tate curve while V is empty. For example, see [Duc,
Sections 5.4, 5.5].

3.5.7. Morphisms of annuli. Let A = M(k{R−1t, rt−1}) be a closed annulus. Its
minimal skeleton l can be naturally identified with the interval [r, R]. For example,
if A is identified with the subdomain of A1

k given by r ≤ |t| ≤ R then l consists
of the generalized Gauss valuations with r ≤ |t| ≤ R. We will need the following
classical result whose proof is omitted (for example, see [Ber93, Section 6.2]).

Lemma 3.5.8. Let A1 = M(k{R−1t, rt−1}) and A2 = M(k{S−1x, sx−1}) be
annuli with minimal skeletons l1 and l2, respectively, and assume that f : A1 → A2

is a finite morphism. If | |i denotes the spectral norm of Ai then
(i) f is given by a series x = h(t) =

∑∞
i=−∞ hit

i and there exists m ∈ Z such
that |h− hmt

m|1 < |h|1. The degree of f equals to |m|.
(ii) f−1(l2) = l1 and the induced map l1 → l2 is bijective and given by |x|2 =

|hm| · |t|m1 . In particular, ny = |m| for any y ∈ l1.

3.5.9. Skeleton of a morphism. Let f : Y → X be a finite generically étale mor-
phism of nice compact curves. By a compatible pair of skeletons we mean skeletons
ΓX ⊂ X and ΓY ⊂ Y such that ΓY is the preimage of ΓX , in the sense that
f−1(ΓX) = ΓY and f−1(Γ0

X) = Γ0
Y . By a skeleton of f we mean a compatible pair

of skeletons Γf = (ΓY ,ΓX) such that ΓY contains the set Ram(f) of the ramifica-
tion points of f . Note that on the complement to Γf , the morphism f breaks down
into a disjoint union of finite étale morphisms between open discs.

Lemma 3.5.10. If (ΓY ,ΓX) is a skeleton of a morphism of nice compact curves
f : Y → X then the multiplicity function ny is constant along any edge e ⊂ ΓY .

Proof. Any open semiannulus is a union of closed annuli, hence the lemma follows
from Lemma 3.5.8(ii). �

3.5.11. Simultaneous semistable reduction. The simultaneous semistable reduction
theorem asserts that any finite generically étale morphism of nice compact curves
possesses a skeleton. This is not essentially stronger than the semistable reduction
theorem and can be deduced from it as follows. Start with any skeleton Γ′

X of X ,
choose a skeleton Γ′

Y of Y that contains Ram(f) and f−1(Γ′
X), and set ΓX = f(ΓY )

and ΓY = f−1(ΓX). Clearly, ΓX is connected and contains Γ′
X , hence it is a

skeleton by Lemma 3.5.4. We claim that ΓY is a skeleton too, and hence (ΓY ,ΓX)
is a skeleton of f .

We should prove that a connected component D of Y \ΓY is an open disc. Note
that D is a connected component of f−1(E), where E is a connected component
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of X \ ΓX and hence E is a disc. In addition, Γ′
Y ⊆ ΓY hence D is contained

in a connected component D′ of Y \ Γ′
Y , which is an open disc. Finally, f(D′)

is contained in an open component E′ of X \ Γ′
X , which is an open disc too. It

remains to use the simple fact that for any morphism D′ → E′ between open discs,
the preimage of an open disc E ⊆ E′ is a disjoint union of open discs.

Remark 3.5.12. In the language of formal models, the theorem is due to Liu. The
skeletal version appeared in [ABBR13].

3.5.13. Simultaneous stable reduction. One can also show that, excluding a couple
of degenerate cases, there exists a unique minimal skeleton of f . In particular, if one
starts with a skeleton Γ ofX then there exists a unique minimal skeleton (ΓY ,ΓX) of
f such that Γ ⊆ ΓX ([ABBR13, Corolary 4.18]). Indeed, take the minimal skeleton
Γ′ ⊂ Y containing f−1(Γ) and take ΓX to be the minimal skeleton containing
f(Ram(f) ∪ Γ′).

3.6. Piecewise monomial structure.

3.6.1. A metric. An interval in an analytic curve possesses a natural metric. For
brevity, we only recall the approach of [BPR12, Section 5.58], which makes use of
semistable reduction. Probably, this is the shortest, though not the most concep-
tual, way. If I ⊂ Xmon is the skeleton of an annulus A ⊆ X isomorphic to the
subdomain of A1

k given by s < |t| < r then l(I) = log r− log s. In general, it follows
from semistable reduction that there exists a finite subset S such that the connected
components Ij of I \S are skeletons of open annuli and we set l(I) =

∑
j l(Ij). The

length l(I) turns out to be independent of choices, so we obtain a metric on any
interval inside of Xmon. Moreover, this metric extends to Xhyp by continuity. All
type 1 points are singular for the metric: if [a, b] ⊂ X and a is of type 1 then the
length of (a, b) is infinite.

3.6.2. Radius parametrization. Note that if [x, y] is an interval in P1
k and y domi-

nates x then l([x, y]) = log r(y)− log r(x). More generally, by a radius parametriza-
tion of an interval I ⊂ X we mean a function r : I → [0,∞] such that

(i) l([a, b]) = log r(b)− log r(a) for any subinterval [a, b] ⊂ I,
(ii) r(x) ∈ |k×| for some point x ∈ I of type 2.
In particular, if I = [x, y] then r(x) = 0 if and only if x is of type 1 and r(y) = ∞

if and only if y is of type 1. Also, r(x) ∈ |k×| for any type 2 point and r(x) /∈ |k×|
for any type 3 point.

3.6.3. Piecewise monomial functions. Let S be a subset of X (our cases of interest
are S = X and S = Xhyp). A function f : S → [0,∞] is called piecewise monomial
if for any interval I ⊂ S there exists a finite subdivision I = ∪m

j=1Ij such that
for each j there exist n ∈ Z and a ∈ (0,∞) with f |Ij = arn, where r is a radius
parametrization of Ij . If, moreover, a ∈ |k×| then we say that f is piecewise |k×|-
monomial; this property is independent of the choice of the radius parametrization.
Note also that n is independent of the radius parametrization once the orientation
of Ij is fixed, and n changes sign if we switch the orientation.

Example 3.6.4. (i) If f ∈ OX(U) is an analytic function then |f | is a piecewise
|k×|-monomial function on U .

(ii) The radius function on A1
k is piecewise |k×|-monomial. Note that it is semi-

continuous but not continuous (in the usual topology).
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(iii) A product of piecewise |k×|-monomial functions is piecewise |k×|-monomial.
(iv) If f : Y → X is a morphism of curves and I ⊂ Y is an interval then it

follows from Lemma 3.6.8 below that for any piecewise |k×|-monomial function
φ : X → [0,∞] the pullback φ∗f = φ ◦ f is a piecewise |k×|-monomial function on
Y .

(v) As an important particular case of the above consider the following situation:
t ∈ Γ(OY ) is a global function on Y and rt is the radius function of t, i.e. rt(y) =
infa∈k |t − a|y for any y ∈ Y . Then t induces a morphism Y → A1

k and rt is
the pullback of the radius function on the target. In particular, rt is piecewise
|k×|-monomial.

3.6.5. Slopes. If φ : X → R+ is piecewise |k×|-monomial, x ∈ X is a point and
b ∈ Br(x) is a branch then there exists an interval I = [x, y] in the direction of b,
and taking I small enough we can achieve that φ = arn is monomial on I. We call
n the slope of φ at b and denote it slopeb(φ). As we have mentioned, n depends only
on the orientation of the interval, which is fixed by choosing x to be the starting
point.

Remark 3.6.6. (i) If x is of type 3 and u, v are its two branches then the slopes at
u and v are opposite, that is, φ is monomial locally at x. Indeed, otherwise φ = arn

at u and φ = brm at v for m 6= n, and one gets that arn = brm at x, yielding a
contradiction via |r(x)| = (|a|/|b|)1/(m−n) ∈ |k×|. Up to the sign, these slopes are
equal to the image of φ(y) in |H(x)×|/|k×| = Z.

(ii) If x is unibranch and f ∈ OX,x has zero of order n at x then |f | has slope n
at x. In particular, |f | is of slope zero at any type 4 point.

(iii) If x is of type 2, v ∈ Cx and f ∈ OXG,x then ‖f‖v = (|f |x, λ
slopev |f |
x ).

3.6.7. Piecewise monomiality of morphisms. The assumptions on the morphism f
in the following lemma are redundant, but we use them to give a short proof based
on semistable reduction.

Lemma 3.6.8. Assume that f : Y → X is a finite morphism between nice compact
curves. If Γ ⊂ Y is a finite graph then f(Γ) is a finite graph and the induced map
Γ → f(Γ) is piecewise |k×|-monomial with respect to the radius parameterizations
on the edges of Γ and f(Γ).

Proof. If Γ ⊂ Y mon then it is contained in a sufficiently large skeleton Γ′ ⊂ Y .
By the simultaneous semistable reduction we can find a skeleton (ΓY ,ΓX) of f
such that Γ′ ⊂ ΓY (it suffices to require that f(Γ′0) ⊆ Γ0

X). Then it is clear that
f(Γ) is a finite graph and we claim that the maps on the edges are monomial.
Indeed, this reduces to study of a map φ : A1 → A2 between closed annuli, and
then Lemma 3.5.8(ii) does the job.

It remains to consider the case when Γ contains a point y of type 1 or 4, say
I = [y, q], and we should prove that the map is piecewise monomial at y. We know
that the map is piecewise monomial on (y, q), so we should only prove that it has
finitely many breaks near y, i.e. the slope of f changes finitely many times in a
neighborhood of y. Shrinking Y around y we can assume that Y = M(k{t}) is a
unit disc (see 3.3.6) and Γ is the interval I = [y, q] connecting y with the maximal
point of Y . Similarly, we can assume that X is a unit disc, and so f is given by
a series h(t) =

∑∞
i=0 ait

i. It suffices to prove that the slope of f on (y, q] is a
non-negative increasing function. Furthermore, it suffices to check the latter claim
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for a closed subinterval J ⊂ (y, q]. By change of coordinates we can move J to a
subinterval of [0, q], and then the claim becomes obvious: the slope equals to m on
any subinterval of [0, q] on which amt

m is the dominant term of h(t). �

3.6.9. The multiplicity function. Let nf : Y → N denote the multiplicity function
y 7→ ny.

Lemma 3.6.10. If f : Y → X is as in Lemma 3.6.8 then the multiplicity function
nf is upper semicontinuous. In addition, if I ⊂ Y is a closed interval then the
restriction of nf onto I has finitely many discontinuity points, all of which are of
type 2.

Proof. Let us show that nf is upper semicontinuous at a point y ∈ Y . For an
analytic neighborhood X ′ of x let Y ′ be the connected component of f−1(X ′) that
contains y. TakingX ′ sufficiently small we can achieve that y is the only preimage of
x in Y ′. Then the finite map Y ′ → X ′ is of degree nf (y) and hence nf (y

′) ≤ nf (y)
for any y′ ∈ Y ′.

Now, let us study nf |I . The argument is similar to the one used in Lemma 3.6.8.
Assume first that I ⊂ Y mon. By the simultaneous semistable reduction, we can find
a skeleton (ΓY ,ΓX) such that I ⊆ ΓY . If e is an edge in ΓY then the multiplicity
equals to the absolute value of the slope of f on e and is constant along e by
Lemma 3.5.8(ii).

If I = [y, q] with y of type 1 or 4 then we reduce to the case when X and Y
are discs, and the same argument as in the proof of Lemma 3.6.8 shows that the
multiplicity decreases when we approach y. In particular, it stabilizes from some
stage. Shrinking X and Y we can assume that nf is constant along (y, q]. Then
any point of f((y, q]) has a single preimage in Y and, by continuity, y is the single
preimage of f(y). Hence, ny equals to the degree of f and so nf is constant on all
of [y, q]. �

3.6.11. Multiplicity of f at a branch. Lemma 3.6.10 implies that for any branch
v ∈ Br(x) there exists an interval I = (x, y] along v such that the multiplicity of f
is constant on (x, y]. We set nv = ny and call it the multiplicity of f at v.

Remark 3.6.12. The notation nv will be convenient in the sequel, but it does not
contain a new information: if x is of type 1, 3 or 4 then nv = nx, and if x is of
type 2 then v can be viewed as a type 5 point and nv agrees with the definition of
Section 3.4.4.

3.6.13. Application to tame parameters. We conclude Section 3 with the following
result.

Lemma 3.6.14. Assume that X is a nice compact curve, x ∈ XG is a point, and
t is a tame parameter at x. Then there exists an analytic subdomain Y ⊆ X such
that x ∈ YG and t is a tame parameter at any point of Y .

Proof. ShrinkingX around x we can assume that t induces a morphism f : X → A1
k.

Type 4 fields have no non-trivial tame extensions, hence if x is of type 4 then

H(x) = k̂(t). The latter implies that f is a local isomorphism at x (e.g., by [Ber93,
Theorem 3.4.1]), and we are done.

The case of x of type 1 is clear because f is a local isomorphism at x. If x is
of type 3 then we can replace t by t + c with c ∈ k making it monomial. Then
Lemma 3.5.8 implies that for a small enough annulus A around x with a coordinate
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τ , the map f is given by t = h(τ) =
∑
hiτ

i such that |h−hmτ
m|A < |h|A for some

m 6= 0. Since nx = |m| and the parameter is tame, m is invertible in k̃. Then it
is easy to see that f has multiplicity m on the skeleton of A and multiplicity one
outside of it, hence f is tame everywhere on A.

If x is of type 2 then it follows from simultaneous semistable reduction that
replacing X by an affinoid domain we can achieve that X is finite over Z = f(X)
andX\{x} =

∐
Xi, Z\{z} =

∐
Zj , where z = f(x), andXi and Zj are open discs.

SinceH(x)/H(z) is unramified, the map Cx → Cz is generically étale, and removing
some Xi’s and Zj’s we can achieve that Cx → Cz is étale. Thus, the multiplicity of
f at any branch v ∈ Cx is one. On the other hand any restriction fi : Xi → Zj is a
finite étale morphism between open discs and a direct computation shows that its
degree equals to the multiplicity of f at the branch v ∈ Br(x) pointing towards Xi.
Thus, each fi is an isomorphism, in particular, t is a tame parameter everywhere
on X .

It remains to consider the case when x is of type 5, say x ∈ Cy where y is of type
2. By 3.3.6, shrinking X we can achieve that X \ {y} is a disjoint union of open
discs and annuli parameterized by Cy. Let A be the component corresponding to x;
without restriction of generality, it is an annulus. It follows from the simultaneous
semistable reduction that taking A small enough we can achieve that f induces a
finite étale morphism of A onto an open annulus in A1

k. Then the same argument
as used for type 3 points, shows that f is tame on A since it is a tame parameter
at x. It remains to achieve that f is a tame parameter at the other connected
components of X \ {y}. But we are allowed to remove finitely many of them, and
it remains to use what we have already proved for type 2 points. �

4. The different function

4.1. Definition and first properties.

4.1.1. A morphism f . In the sequel, we consider a generically étale morphism
f : Y → X between nice compact curves.

Definition 4.1.2. The different function of f is the map δf : Y
hyp → (0, 1] that

associates the different δH(y)/H(f(y)) to a point y ∈ Y hyp.

Note that δf = 1 on the tame locus of f , as follows from Lemma 2.3.3. We will
later extend δf to all of Y . An extension of δf to type 5 points will not be used,
but we prefer to discuss it for the sake of completeness.

Remark 4.1.3. (i) The only extension of δf to a map Y hyp
G → (0, 1] is by composing

it with the retraction Y hyp
G → Y hyp, hence it is not informative. More naturally,

one can simply set δf (y) = δH(y)/H(f(y)) for any type 5 point (the different of an
arbitrary finite separable extension of valued fields is defined in [GR03, Section 6]).
Then δf (y) is an element of |H(y)×|, which is not a subgroup of R×

+ for type 5

points, and hence δf should be viewed as a section of O×
YG
/(O◦

YG
)×.

(ii) Using the same ideas as in the proof of Theorem 4.3.3(ii) below, one can

show that if v is a type 5 point and y = rY (v) then δf (v) = (δf (y), λ
−slopevδf
v ).

In this paper, Theorem 4.3.3(ii) will be used to control the slopes of δf , making it
unnecessary to extend δf to type 5 points.
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4.1.4. The maps φx. Let x ∈ XG. For an affinoid domain V = M(AV ) with

x ∈ VG consider the map Ω̂AV /k → Ω̂H(x)/k. These maps are compatible with

the inclusions V ′ →֒V , so an OXG,x-linear colimit map φx : ΩXG,x → Ω̂H(x)/k and a
differential d : OXG,x → ΩXG,x arise. Moreover, this differential is compatible with
the differential of H(x), i.e. we obtain the following cartesian square

OXG,x
//

d

��

H(x)

d
��

ΩXG,x
φx // Ω̂H(x)/k.

4.1.5. Computation of δf . The following lemma is our main tool for working with
δf . Here the functions rty and rtx are as defined in Example 3.6.4(v).

Theorem 4.1.6. Let f be as in Section 4.1.1. Assume that ty and tx are tame

parameters at points y ∈ Y hyp
G and x = f(y). Then there exists an analytic domain

U such that y ∈ UG, h = dtx
dty

is defined in U , and for any z ∈ Uhyp

δf (z) = |h(z)|rty (z)rtx(z)
−1.

Proof. By Lemma 3.6.14, we can replace Y with an analytic domain containing y
so that ty is a tame parameter at any point of Y . Similarly, we can achieve that tx
is a tame parameter everywhere.

Consider the OYG,y-linear map φy : ΩYG,y → Ω̂H(y)/k as defined in Section 4.1.4;
it is compatible with the differentials of OYG,y and H(y). Since dty is a generator

of Ω̂H(y)/k by Theorem 2.3.2(i), it is a generator of the invertible OYG,y-module
ΩYG,y. Hence dty is a generator of ΩYG in a small enough neighborhood UG ⊆ YG
of y, and then h is defined in U . Let z ∈ U . Since φz is OYG,z-linear, one also has

that dtx = hdty in Ω̂H(z)/k. So, the claim follows from Corollary 2.4.6(ii). �

4.1.7. Piecewise monomiality. As a first corollary of Theorem 4.1.6 we obtain that
the different function is piecewise monomial.

Corollary 4.1.8. Assume that f is as in Section 4.1.1. Then the different function
δf : Yhyp → (0, 1] is piecewise |k×|-monomial.

Proof. By Theorem 4.1.6, δf can be presented G-locally as a product of piecewise

monomial functions |h|, rty and r−1
tx . �

4.2. Restrictions on δf .

4.2.1. Tameness and wildness. The relation between the different function and the
wild topological ramification locus is as follows.

Lemma 4.2.2. Assume that f : Y → X is a finite generically étale morphism of
nice compact curves. Then, if y ∈ Y mon is a monomial point then δf (y) < 1 if and
only if the extension H(y)/H(x) is wildly ramified.

Proof. Set x = f(y). It follows from the definition of the different that δf (y) < 1
if and only if ΩH(y)◦/H(x)◦ contains an element not killed by k◦◦. Since H(x) is
stable, the extension H(y)/H(x) is defectless, and [Tem16, Lemma 5.5.9] implies
that δf (y) = 1 if and only if this extension is tame. �
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Remark 4.2.3. (i) The lemma implies that if f is wild at a monomial point y with
δf (y) = 1 then y is of type 2 and H(y)/H(x) is an unramified extension of degree
divisible by p. For a type 4 point, it may freely happen that δf (y) = 1 but f is not
split at y and so H(y)/H(x) is wild.

(ii) A typical example is provided by the Kummer covering P1
k → P1

k of degree
p over k = Cp (t goes to tp). A simple direct computation shows that f is split

at all points whose distance from I exceeds log |p|
p−1 , the equality δf = |p| holds on

the interval I = [0,∞], and δf increases with slope p − 1 in all directions from I.
(This also follows from a general description of degree p coverings we will prove in
Theorem 7.1.4.) In particular, the locus of wild points y with δf (y) = 1 consists of

all points whose distance from I is log |p|
p−1 , and it contains both type 2 and type 4

points.

4.2.4. δf on an annulus. Consider the annulus A = M(k{rt−1, t}) with skeleton
I = [r, 1]. Let y ∈ I be the end-point given by |t|y = 1 and let v ∈ Br(y) be the
direction along I. Assume that f : A → A1

k is a generically étale morphism given
by h(t) =

∑
i hit

i. Choosing an appropriate coordinate x on the target we can
achieve that h0 = 0 and |h|y = maxi |hi| = 1. Let m denote the minimal integer
such that |hm| = 1; note that ny = |m|R (we prefer to keep the notation |m| for
the absolute value of m in k). Since t and x are monomial along I, Theorem 4.1.6
implies that for a point z ∈ I close enough to y, the different can be computed as
δf (z) = |h′|z |t|z|x−1|z = |h′|z|t1−m|z, where h′ =

dx
dt =

∑
i∈Z ihit

i−1.
Using the above formula we can compute δ = δf (y) and s = slopevδf as follows:

δ = |nhn| and s = 1 − n +m − 1 = m − n, where n denotes the minimal integer
such that |nhn| = |h′|y = maxi |ihi|. The numbers m, s and δ are subject to certain
restrictions that we are going to describe. First, we claim that

(1) |m| ≤ δ ≤ |n|.

Indeed, the right inequality holds because |hn| ≤ 1, and the left one holds because
|nhn| ≥ |mhm| = |m|. Now let us split into two cases.

Case 1. Assume that s = 0. In this case, m = n and so δ = |m|. (In particular,
in the equicharacteristic case we automatically obtain that δ = 1.) Conversely, if
m ∈ Z>0 and δ = |m| (in particular, |m| 6= 0) then h = tm gives rise to a generically
étale morphism f such that nv = m, slopevδf = 0 and δf (y) = |m|.

Case 2. Assume that s 6= 0. If δ = |n| then hn = 1, hence n ≥ m by the
definition of m, and we obtain that s < 0. If δ = |m| then |nhn| = |m| = |mhm|,
hence m ≥ n by the definition of n, and we obtain that s > 0. This shows that at
least one inequality in (1) is strict, and so |n| > |m| and |s| = |n|. To summarize,
|m| ≤ δ ≤ |s| with at least one inequality being strict and s > 0 (resp. s < 0) if the
first (resp. the second) inequality is an equality.

Conversely, assume that m ∈ Z>0, s ∈ Z and δ ∈ (0, 1] satisfy the above con-
dition. A direct computation shows that if a ∈ k satisfies |a| = δ|m − s|−1, then
h = tm + atm−s induces a morphism f with slopevδf = s, δf (y) = δ and nv = m
(recall that nv denotes the multiplicity of f at the branch v, see 3.4.4). Further-
more, a similar argument shows that even if δ /∈ |k|, one can choose a ∈ k and a
type 3 point y′ ∈ I with a branch v′ ∈ Br(y′) such that h = tm + atm−s induces a
morphism f with nv′ = m, slopev′δf = s and δf (y

′) = δ.
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4.2.5. Slopes and values of δf . It turns out that the above restrictions on m, n and
δ are general. In the following theorem all absolute values refer to the valuation of
k, and given a morphism f : Y → X , a point y ∈ Y and a branch v ∈ Br(y), the
multiplicities of f at y and v are denoted ny and nv, respectively.

Theorem 4.2.6. Let f : Y → X be a finite generically étale morphism of nice
k-analytic curves.

(i) If y ∈ Y hyp, m = ny and δ = δf (y) then δ ≥ |m|. Moreover, this is the only
restriction on ny and δf (y), i.e. any pair m ∈ Z>0 and δ ∈ (0, 1] with δ ≥ |m| is
realized for some morphism f and y.

(ii) If y ∈ Y hyp, v ∈ Br(y), m = nv, s = slopevδf and δ = δf (y) then the
inequality |m − s| ≥ δ ≥ |m| holds and, in addition, s ≤ 0 whenever the first
inequality is an equality, and s ≥ 0 whenever the second inequality is an equality.
Moreover, this is the only restriction on nv, slopevδf and δf (y), i.e. any triple
(m, s, δ) ∈ Z>0 ×Z× (0, 1] satisfying this condition is realized for some f , y and v.

Proof. We start with (ii). In the case when Y is an annulus and X is a domain in
A1

k, this condition on the triple was established in 4.2.4 (for example, the asserted
inequality is nothing else but (1)). Moreover, we saw that any such triple can be
obtained already when Y is an annulus and X = A1

k. Although in this case f is
not finite, we can shrink Y and A1

k around v and f(v) so that f becomes finite. It
remains to deduce that the triple (m, s, δ) satisfies the assertion of (ii) when f is
arbitrary. We will do this using the continuity of the triple along intervals.

Let I = [y, z] be an interval in Y in the direction of v. It follows from the
simultaneous semistable reduction theorem that shrinking I we can achieve that
for any t ∈ (y, z), the interval [t, z] is the minimal skeleton of an annulus A and
f restricts to a finite morphism A → A′ with A′ an annulus in X . Let v(t) ∈
Br(t) be the branch towards z. Shrinking I we can achieve that nv(t) = nv and
slopev(t)δf = s for any t ∈ (y, z]. By the case of annuli, the triple (m, s, δv(t))

satisfies the condition of (ii). It remains to use that the condition is closed and δf
is continuous on I.

Now, let us prove (i). We claim that there exists a branch v ∈ Br(y) such that
nv|ny. Indeed, only the case when y is of type 2 needs an argument, but then the

multiplicity of a general branch equals to the degree of inseparability of H̃(y)/H̃(x),
where x = f(y). For such branch, |nv| ≥ |ny|, and we use that δf(y) ≥ |nv| by (ii).
It remains to prove that any pair (m, δ) with δ ≥ |m| is achieved for some f and y.
This is done similarly to the construction in 4.2.4: one takes Y to be an annulus
and uses a binomial when the inequality is strict, and a monomial when it is an
equality. �

Remark 4.2.7. (i) The tame case (i.e. |m| = 1) of Theorem 4.2.6(i) is trivial.
In the wild case, we see that the different can be any number from (0, 1] in the
equicharacteristic case, and it can be any number from [|m|, 1] in the mixed char-
acteristic case. This is the control on the different in the mixed characteristic case
that misses in the equicharacteristic one. Particular cases of this (e.g., for stable
fields) showed up in [Lüt93] and [Fab13a].

(ii) Part (ii) of Theorem 4.2.6 provides a strip for the values of δ; clearly s is
non-negative at the low border and non-positive at the top border. In addition,
s = 0 happens only on the border of the strip, and if s 6= 0 then |s| > |m| and the
inequality rewrites as |s| ≥ δ ≥ |m|.
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(iii) We will later need the particular case when p = 2 and f is wild at v, i.e. nv

is even. In the equicharacteristic case, this automatically implies that s is odd. In
the mixed characteristic case, there are more options, but if we assume, in addition,
that nv ∈ 4Z+ 2 then either s is odd or s = 0 and δ = |2|.

4.3. Kähler norm on ΩXG and the different. Our next aim is to study the
behaviour of δf in a neighborhood of a type 2 point. This question is not local
for the G-topology, in particular, we cannot work with a single parameter and a
sheaf-theoretic argument is required. In the current section we will interpret δf as
annihilator of a certain torsion O◦

XG
-sheaf.

4.3.1. The norm on ΩXG . Recall that a seminorm on a sheaf of modules F on a site
C is introduced in [Tem16, 3.1.2] as a family of (perhaps unbounded) seminorms
on the modules F(U) that satisfy certain natural conditions. A Kähler seminorm
| |Ω on the sheaf ΩXG/SG

is introduced in [Tem16, 6.1.1], and by [Tem16, The-
orem 6.1.13] | |Ω is a so-called analytic seminorm, in particular, it is determined
by its stalks as |ω|Ω,U = maxx∈U |ω|Ω,x, see [Tem16, §§3.2.7, 3.3.1, 3.3.3]. Fi-
nally, the stalks of | |Ω are described by [Tem16, Theorem 6.1.8]. In particular,
for ΩXG = ΩXG/k this works as follows: take φx as in Section 4.1.4 and define a
seminorm on ΩXG,x by the rule |ω|x = |φx(ω)|Ω,H(x)/k.

4.3.2. The sheaf Ω⋄
XG

. By Ω⋄
XG

we denote the unit ball of | |Ω. It is the O◦
X -

submodule of ΩX whose sections satisfy |ω|Ω,x ≤ 1 at any point x ∈ XG.

Theorem 4.3.3. Let X be a nice compact curve. The stalk of Ω⋄
XG

at a point
x ∈ XG is described as follows:

(i) If x is of type 1 then Ω⋄
XG,x = ΩXG,x.

(ii) If x is of type 2, 3, or 5 then Ω⋄
XG,x is a free O◦

XG,x-module with basis dtx
tx

where tx is a tame monomial parameter at x.
(iii) If x is of type 4 then Ω⋄

XG,x = κ◦◦s dtx, where tx is a tame parameter at x,

κ = κG(x) = OXG,x and s = rtx(x)
−1.

Proof. For shortness, we will denote the Kähler seminorm simply by | |. If x is of

type 1 then Ω̂H(x)/k = Ω̂k/k = 0, so |ω|x = 0 for any ω ∈ ΩXG,x. It follows from
the analyticity of | |Ω (see [Tem16, §3.3.3 and Theorem 6.1.13]) that |ω| ≤ 1 in a
sufficiently small neighborhood of x, and hence ω ∈ Ω⋄

XG,x. This proves (i).

Next, let us prove (iii). If ω ∈ κ◦◦s dtx then |ω|x < 1 by Theorem 2.3.2(i) and,
by the semicontinuity, ω ∈ Ω⋄

XG,x. Conversely, assume that ω = fdtx with f ∈ κ

and |f | ≥ s. Note that |f | is fixed in a neighborhood of x. On the other hand,

H(x) = k̂(tx) hence tx is a coordinate of a sufficiently small disc E with x ∈ E ⊆ X .
At any point y of the interval connecting x with the maximal point of the disc we
have that s−1 < rtx(y) and hence |ω|y = |f |yrtx(y) = srtx(y) > 1 when y is close
enough to x. Thus, ω /∈ Ω⋄

XG,x.

It remains to prove (ii). Shrinking X at x we can assume that tx is defined
on all of X and, by Lemma 3.6.14, is a tame parameter at every point of X . By

Theorem 2.3.2(i),
∣∣∣dtxtx

∣∣∣
y
≤ 1 for any y ∈ XG. In particular, dtx

tx
∈ Ω⋄

XG,x. Recall

that
∣∣∣dtxtx

∣∣∣
x

= 1 by Corollary 2.3.4(i). So, if ω ∈ Ω⋄
XG,x then ω = f dtx

tx
with

f ∈ OXG,x and |f |x ≤ 1. If x is type 2 or 3 then this implies that f ∈ O◦
XG,x and

so Ω⋄
XG,x = O◦

XG,x
dtx
tx

, as claimed.
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Assume, finally, that x is of type 5. It suffices to show that for any f ∈ κG(x) \
κG(x)

◦ the element f dtx
tx

is not contained in Ω⋄
XG,x. Working locally we can assume

that tx induces a map g : X → A1
k. Let I be an open interval in the direction

of x. Shrinking I we can achieve that g maps I into (0,∞) ⊂ A1
k, i.e. tx is

a monomial parameter at any point of I. By Lemma 3.6.8, we can also achieve
that the map I → (0,∞) is monomial, and then the multiplicity of g along I is
constant and equals to its multiplicity at x. So, tx is a tame monomial parameter
along I. Finally, we can shrink I so that |f |y > 1 for any point y ∈ I. Then∣∣∣f dtx

tx

∣∣∣
y
= |f |y > 1, and hence f dtx

tx
/∈ Ω⋄

XG,x. �

4.3.4. Relation to the different. As a corollary of the above theorem, we can relate
the different function to the annihilator of an appropriate sheaf. This fact will not be
used in the sequel, but it clarifies the role of the sheaf Ω⋄

YG
in the study of differents.

Given a torsion O◦
XG

-sheaf F define the annihilator function aF : X → (0, 1] by

aF (x) = |Ann(Fx ⊗O◦

XG,x
H(x)◦)|.

Corollary 4.3.5. Let f be as in Section 4.1.1. Then, the sheaf F = Ω⋄
YG
/f∗Ω⋄

XG

is torsion and δf = aF |Y hyp, where the pullback is defined by

f∗Ω⋄
XG

= f−1Ω⋄
XG

⊗f−1O◦

XG
O◦

YG
.

Proof. The stalks of Ω⋄
YG

are quasi-invertible by Theorem 4.3.3 and the stalks of

f∗Ω⋄
XG

are non-zero, hence F is torsion. Choose a point y ∈ Y hyp and set x = f(y).
Fix tame parameters tx and ty at these points. If the points are monomial, then
we can also require that the parameters are monomial and then Theorem 4.3.3(ii)

implies that Fy→̃k◦/ak◦ where |a| =
∣∣∣dtxdty

tyt
−1
x

∣∣∣
y
. Clearly, aF(y) = |a|, and δf (y) =

∣∣∣dtxdty
tyt

−1
x

∣∣∣
y
by Corollary 2.4.6(ii).

If the points are of type 4, then Theorem 4.3.3(iii) implies that Fy→̃k◦◦/ak◦◦,

where |a| =
∣∣∣dtxdty

∣∣∣ rty (y)rtx(y)−1. Again, aF(y) = |a| and it remains to recall that

δf (y) =
∣∣∣dtxdty

∣∣∣ rty (y)rtx(y)−1 by Corollary 2.4.6(ii). �

4.4. O◦
XG,C-modules.

4.4.1. Notation. Throughout Section 4.4 we fix a type 2 point x ∈ X , set C = Cx,
and denote the embedding of the generic point by i : x→֒C. By a distinguished
parameter at a point v ∈ C we mean a tame monomial parameter at v such that
|tv|x = 1 and slopev(|tv|) = 1.

For any sheaf F on C we will use the notation MF = i∗Fx. In particular,
MC = MOC is the sheaf of meromorphic functions and MΩC/k̃ is the sheaf of

meromorphic differentials.

4.4.2. Restriction onto C. For any sheaf F on XG we denote by FC its restriction
onto C via the topological embedding C →֒XG. For example, O◦

XG,C is the restric-
tion of O◦

XG
. Although we do not introduce a sheaf M◦

XG
, we will use the notation

M◦
XG,C = MO◦

XG,C to denote the sheaf of “meromorphic functions of O◦
XG,C”. It

is the constant sheaf associated with O◦
XG,x.
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4.4.3. Reduction. For any O◦
XG,C-module G we define its reduction as G̃ = G ⊗k◦ k̃.

For example, the reductions of O◦
XG,C and M◦

XG,C are canonically isomorphic to

OC and MC , respectively. In general, G̃ is an OC -module.

4.4.4. Twists. Assume that D =
∑

v∈C nvv is a formal linear combination of closed
points of C such that almost all coefficients are non-negative. Then the twistOC(D)
is the quasi-coherent submodule of the sheaf of meromorphic functions MC whose
sections on an open U satisfy ordP (f) ≥ −nv for any P ∈ U . In particular, the

stalk at P is t̃−nv
v OC,P . For any OC -module F we define F(D) = F ⊗O O(D).

The opposite twist F(−D) may be not defined, but if F→̃G(D) for an OC -module
G then G is unique up to a canonical isomorphism and we will use the notation
G = F(−D). In fact, we will need all this in the single case when D =

∑
v∈C v,

and then we will simply write G = F(−C).
A similar theory of twists exists for O◦

XG,C-modules, where O◦
XG,C(D) is defined

as the subsheaf of M◦
XG,C whose stalk at v equals to t−nv

v O◦
XG,v. Plainly, twists

are compatible with the reduction, i.e. F̃(D) = F̃(D).

4.4.5. Pullbacks. Assume that f : Y → X is as in Section 4.1.1 and y ∈ f−1(x),
and let h : Cy → Cx be the induced map between the germ reductions. For any
O◦

XG,C -module F we define its pullback by

h∗F = h−1F ⊗h−1O◦

XG,Cx
O◦

YG,Cy
.

Plainly, this operation is compatible with the reduction (which is also defined by a
tensor product), namely, the following result holds.

Lemma 4.4.6. Keep the above notation, then h̃∗F = h∗F̃ .

4.5. Local Riemann-Hurwitz formula.

4.5.1. Reduction of Ω⋄
XG,Cx

. The reduction of Ω⋄
XG,Cx

is a huge quasi-coherent
sheaf, so it is more convenient to work with an appropriate twist.

Lemma 4.5.2. Assume that X is a nice k-analytic curve and x ∈ X is a type
2 point. Then Ω⋄

XG,Cx
(−Cx) exists and is a locally free O◦

XG,Cx
-module whose

reduction is isomorphic to ΩCx/k̃
.

Proof. Set C = Cx for shortness. Let F be the subsheaf of Ω⋄
XG,C such that for any

open U ⊆ C the module F(U) consists of all elements φ ∈ Ω⋄
XG,C(U) such that φv ∈

tvΩ
⋄
XG,v for any v ∈ U . We claim that for each v ∈ C the inclusion Fv ⊆ tvΩ

⋄
XG,v is

an equality and hence F = Ω⋄
XG,C(−C). Indeed, by Theorem 4.3.3(ii) each tvΩ

⋄
XG,v

is a free module with basis dtv, where tv is a distinguished parameter at v. For each
v we have that t̃v is a local parameter on C at v, hence dt̃v is a generator of ΩC/k̃,v,

and there exists a neighborhood Uv of v in C such that ΩC/k̃(Uv) is a free module

generated by dt̃v. In particular, for each point u ∈ Uv the element t̃v − t̃v(u) is a
local parameter at uv. It follows that tv − au is a distinguished parameter at u,
where au ∈ k◦ is a lifting of t̃v(u). In particular, dtv = d(tv − au) is a generator of
Fu for any u ∈ Uv, and hence dtv ∈ F(Uv) and Fv is as required.

Moreover, we have proved above that each F(Uv) is a free module with basis

dtv. So, sending dtv to dt̃v we obtain an isomorphism hv : F(Uv)⊗k◦ k̃→̃ΩC/k̃(Uv)

and we claim that this globalizes to an isomorphism h between the reduction of
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F and ΩC/k̃. We should only check that isomorphisms hv and hu are compatible

on Uu ∩ Uv. In other words, we should check that the reduction of an element
dtv
dtu

∈ O◦
XG,x equals to the element dt̃v

dt̃u
∈ H̃(x).

Recall that Ω̂H(x)◦/k◦ is the unit ball of Ω̂H(x)/k by Corollary 2.3.4(ii). In

particular, the map φx : ΩXG,x → Ω̂H(x)/k from Section 4.1.4 restricts to a map

Ω⋄
XG,x → Ω̂H(x)◦/k◦ , and the commutativity of the diagram in Section 4.1.4 implies

that the left square in the following diagram is commutative

O◦
XG,x

//

d1

��

H(x)◦ //

d

��

H̃(x)

d2

��
Ω⋄

XG,x
// Ω̂H(x)◦/k◦

// Ω
H̃(x)/k̃

.

The right square is obviously commutative and so the differentials d1 and d2 are
compatible, as claimed. �

4.5.3. Local Riemann-Hurwitz. Now we are in a position to prove the following
result.

Theorem 4.5.4. Assume that f : Y → X is as in Section 4.1.1, y ∈ Int(Y ) and
x = f(y) ∈ Int(X) are inner type 2 points, and h : Cy → Cx is the corresponding
map on the germ reductions at the points x and y. Then,

2g(y)− 2 = n(2g(x)− 2) +
∑

v∈Cy

(−slopevδf + nv − 1)

where g(x) and g(y) are the genera of the curves Cx and Cy, respectively, n = deg h,
and nv is the ramification index of h at v ∈ Cy.

Proof. Since the points are inner, the residue curves Cy and Cx are proper. Set

G = Ω⋄
YG,Cy

(−Cy) and F = Ω⋄
XG,Cx

(−Cx), so that G̃→̃ΩCy/k̃
and F̃→̃ΩCx/k̃

by

Lemma 4.5.2. Fix an element a ∈ k such that |a| = δf (y)
−1 and consider the

O◦
XG,Cy

-submodule E = ah∗F of ΩYG . Since E→̃h∗F , Lemma 4.4.6 tells us that

Ẽ→̃h∗ΩCx/k̃
.

Choose tame monomial parameters tx and ty at x and y, respectively, such that
|tx| = |ty| = 1. Then rty (y) = rtx(y) = 1, adtx generates Ey and dty generates Gy.

Note that
∣∣∣adtx

dty

∣∣∣
y
= 1 by Theorem 4.1.6, hence Ey = Gy and we can view both G̃

and Ẽ as subsheaves of MG̃y = MẼy. Then the index (G̃ : Ẽ)v ∈ Z makes sense for
any v ∈ Cy and we have the global degree formula

∑

v∈Cy

(G̃ : Ẽ)v = deg(G̃)− deg(Ẽ) = 2g(y)− 2− n(2g(x)− 2).

To complete the proof it suffices to show that (G̃ : Ẽ)v = −slopevδf+nv−1. This
is a local question at v, so fix distinguished parameters tv at v and tu at u = f(v).
Let I ⊂ Ymon be an interval starting at y in the direction of v. Shrinking I we
can achieve that tv is a tame monomial parameter for any point in I and tu is a
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tame monomial parameter at any point of f(I). In particular, if g = dtu
dtv

then by

Theorem 4.1.6 we obtain that δf (z) = |gtvt−1
u |z for any point z ∈ I, and hence

−slopevδf + nv − 1 = νv(g
−1t−1

v tu) + nv − 1 = νv(g
−1) = νv(ag

−1).

It remains to note that dtv is a basis of Gv and adtu is a basis of Ev, and so νv
of their ratio dtv

adtu
= ag−1 equals to (G̃ : Ẽ)v. �

4.5.5. The differential indices Ry. The entries of the local Riemann-Hurwitz for-
mula will show up again and again throughout the paper, so it makes sense to
introduce special notation. For any branch v we define the differential slope index

Sv,f = −slopevδf + nv − 1.

Since f is usually fixed, we will simple denote it by Sv = Sv,f . Next, we define a
characteristic function χf : Y → N by

χf (y) = 2g(y)− 2− ny(2g(x)− 2),

where x = f(y). Note that excluding a finite set of type 2 points, we have that
g(y) = 0 and hence χf (y) = 2ny − 2. Finally, for any point y ∈ Y we define the
differential index

Ry = χf (y)−
∑

v∈Br(y)

Sv.

Remark 4.5.6. We will later see that
∑

y∈Y Ry relates the genera of Y and X , so
let us discuss when these indices do not vanish.

(0) At any unibranch point y we have that Ry = slopeyδf + ny − 1.
(1) We will prove in Theorem 4.6.4 that Ry is the classical differential index for

a type 1 point y. In particular, Ry ≥ 0 and the equality takes place if and only if
y is not a ramification point.

(2) Assume that y is of type 2. The local Riemann-Hurwitz formula states that
if y is inner then Ry = 0, so if Ry 6= 0 then y ∈ ∂(Y ). In this case, Ry can be
negative (depending on the indices at the “missing branches”).

(3) If y is of type 3 then y is inner because Y is strict, hence Br(y) = {u, v},
χf (y) = 2ny − 2, nv = nu = ny and the numbers su = slopeuδf and sv = slopevδf
are opposite. Thus,

Ry = 2ny − 2− (−sv + nv − 1)− (−su + nu − 1) = 0.

(4) It follows from Theorem 6.1.9 below that Ry = 0 for any type 4 point.

4.6. Behaviour at type 1 points. We conclude Section 4 with studying the local
behaviour of δf at type 1 points.

4.6.1. Algebraic different. Assume that y ∈ Y is of type 1 and x = f(y). Since f
is generically étale, ΩY/X,y is a torsion OY,y-module of a finite length l, and we set
δy/x = l. It follows from GAGA that if Y → X is the analytification of a morphism
of algebraic k-curves then δy/x equals to the value of the classical (additive) dif-
ferent of Oy/Ox. Furthermore, the usual argument (e.g., from [Har77, IV.2.2(b)])
shows that the different δy/x can be computed analogously to the formula in Corol-
lary 2.4.6, but using the discrete valuation νy of OY,y.

Lemma 4.6.2. Keep the above notation and choose parameters ty and tx at y and

x, respectively. Then δy/x = νy(
dtx
dty

).
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Proof. This follows from the fact that ΩY/X,y = OY,ydtx/OY,ydty. �

4.6.3. The limit formula. Now, we can establish the limit formula for δf . In partic-
ular, it shows that our definition of Ry at type 1 points agrees with the differential
ramification index used in the algebraic Riemann-Hurwitz formula.

Theorem 4.6.4. Assume that f is as in Section 4.1.1, y ∈ Y is a type 1 point and
x = f(y). Then slopeyδf = δy/x − ny + 1, or, equivalently, Ry = δy/x. Moreover,
let I ⊂ Y be an interval starting at y, then

(a) If char(k) > 0 then there exists a radius parametrization r : I → [0, a] such
that δf (z) = r(z)δy/x−ny+1 for any point z ∈ I\{y} close enough to y. In particular,
limz→y δf (z) = 0 if and only if the ramification at y is wild, and otherwise δf = 1
near y.

(b) If char(k) = 0 then δf (z) = |ny| on a small enough neighborhood of y in
I. In particular, δf (z) < 1 near y if and only if the ramification is topologically
wild, and the value of δf (z) near y is the minimal possible for multiplicity ny (see
Theorem 4.2.6(i)).

Proof. Choose parameters ty ∈ my \m2
y and tx ∈ mx \m2

x and parameterize I by

r(z) = |ty|z. Then δy/x = νy(h) for h = dtx
dty

, and for any point z ∈ I close enough

to y we have that |tx|z = ar(z)ny and |h|z = br(z)δy/x for some a, b ∈ |k×|. So, by
Theorem 4.1.6 we obtain that

(2) δf = |htyt
−1
x |z = a−1br(z)δy/x−ny+1.

In particular, slopeyδf = δy/x−ny+1 andRy = 2ny−2−(−slopeyδf+ny−1) = δy/x.
By the classical theory, δy/x − ny + 1 ≥ 0 and the equality holds only in the

tame case. So, δf vanishes at y if and only if y is a wild ramification point. In this
case char(k) > 0 and the order of zero is as asserted in (a). To complete the wild
case it remains to get rid of the constant term, so we re-scale the radius function
as r′ = (a−1b)1/(δy/x−ny+1)r.

Assume now that y is a tame ramification point, and so ny is invertible in k. Let

t
ny
y +

∑ny−1
i=0 ait

i
y be the minimal polynomial of ty over OX,x. Note that νx(ai) ≥ 1

and νx(a0) = 1, and so a0 is a parameter at x and we can replace tx with a0. Then

tx ∈ −t
ny
y + t

ny+1
y OY,y and hence |tx| = |ty|ny on a small enough neighborhood of

y in I. In addition,

nyt
ny−1
y dty + hdty +

ny−1∑

i=1

iait
i−1
y dty = 0

and all terms, except the first two, are of order at least νy(tx) = ny at y. It follows

that h ∈ −nyt
ny−1
y + t

ny
y OY,y and hence |h| = |nyt

ny−1
y | near y on I. So, a = 1 and

b = |ny| in (2) and we are done. �

4.6.5. The log different function. Using Theorem 4.6.4 we can extend δf to a piece-

wise monomial function δlogf : YG → [0, 1] which has zeros at wild ramification
points. We call the latter function the log different function because its zero at
a type 1 point y is of order δy/x − ny + 1 rather than δy/x.
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4.7. Aside on log differentials. The reader might have noticed that log differ-

entials showed up even before we introduced δlogf . Indeed, we saw in Lemma 4.5.2
that the reduction of Ω⋄

XG,Cc
is not ΩCx/k̃

, as one might expect, but its huge twist

ΩCx/k̃
(Cx), which is nothing else but the sheaf of log differentials of Cx. We con-

clude Section 4 with a brief explanation of the role of log differentials that was
somewhat implicit throughout the section. This will not be used, so the uninter-
ested reader can skip to Section 5.

4.7.1. Log different. Given a finite separable extension of real-valued fields L/K,

the log different δlogL/K is defined analogously to the usual different but using the

module of logarithmic differentials Ωlog
L◦/K◦ = Ω(L◦,L◦\{0})/(K◦,K◦\{0}) instead of

ΩL◦/K◦ .

4.7.2. Relation to the different. For a real-valued fieldK set λK = supπ∈K◦◦ |π|. So,
λK is the absolute value of a uniformizer πK if the valuation is discrete, and λK = 1

otherwise. Then δlogL/K = δL/KλLλ
−1
K by [Tem16, Theorem 5.4.9(i)]. Equivalently,

δlogL/K = δL/K if the valuation on K is not discrete, and δlogL/K = δL/K |πL|1−e if K

is discretely valued and e = eL/K . In particular, this explains the formula for the
additive log different we gave in 4.6.5.

4.7.3. The log different function. Since we work over k, which is not discretely

valued, δlogL/K = δL/K for any extension L/K of analytic k-fields. In particular, the

different function δf on Y hyp can be also interpreted as the log different function

δlogf . We do feel the difference between the two notions when discrete valuations
are used, and this happens at type 1 and type 5 points. In the first case, the
continuation to type 1 points is related to the log different of the extension of their
local rings, and in the second case, the slope of δf at a type 5 point is related to
the log different of the corresponding discrete valuation on the reduction curve.

Remark 4.7.4. (i) The above discussion shows that it is much more natural to

interpret δf as δlogf . However, we preferred to work with the more classical object,
the different, to avoid any use of log geometry.

(ii) Another indication of the relevance of log differentials is obtained when the
ground field k is discretely or trivially valued. In this case, the discrepancy between

ΩL◦/K◦ and Ωlog
L◦/K◦

is not negligible, and it turns out that this is Ωlog
L◦/K◦

that

induces the Kähler seminorm on ΩL/K (see [Tem16, Theorem 5.1.8]).

(iii) For analytic k-fields, the modules ΩL◦/K◦ and Ωlog
L◦/K◦ are almost isomor-

phic, but Ωlog
L◦/K◦

is still more convenient to work with. For example, if L = H(y)

for a type 3 point and t is a tame monomial parameter then Ωlog
L◦/k◦

is a free module

with basis dt
t , while ΩL◦/K◦ is isomorphic to L◦◦.

5. Combinatorial Riemann-Hurwitz formula

5.1. Genus graphs.
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5.1.1. Combinatorial graphs. Throughout section 5, a graph Γ means a combinato-
rial graph (V,E) that may contain loops (i.e. edges whose both endpoints coincide),
where V is the set of vertices and E is the set of edges. We will only consider finite
graphs. A morphism of graphs ϕ : Γ′ → Γ is a pair of maps ϕE : E′ → E and
ϕV : V ′ → V compatible with the incidence relation.

5.1.2. Oriented edges and functions. The set of oriented edges of a graph Γ will be
denoted by Eor. If e is an oriented edge from x to y, we will write x ≺ e and e ≺ y
for short, and denote the opposite edge by −e. By an oriented function on Γ we
mean a function f : Eor → Z such that f(−e) = −f(e) for any e ∈ Eor.

5.1.3. Branches. If v ≺ e then we say that e is a branch at v and the set of all
branches at v is denoted by Br(v). Any morphism of graphs ϕ : Γ → Γ′ induces the
maps Br(v) → Br(ϕ(v)) for v ∈ V .

5.1.4. Proper morphisms. An edge-weighted morphism or an n-morphism of graphs
consists of a morphism ϕ : Γ → Γ′ and a multiplicity function n : E → Z>0. We
also view n as a multiplicity function on the set of branches of Γ. An n-morphism
(ϕ, n) has a locally constant multiplicity at a vertex v ∈ V if for any choice of
e′ ∈ Br(f(v)), the sum of the multiplicities ne with e ∈ Br(v) and f(e) = e′ is
independent of e′. In such case, this sum is called the multiplicity of ϕ at v and
denoted nv.

We say that an n-morphism (ϕ, n) of connected graphs is proper if it has a locally
constant multiplicity at all vertices and, in addition, it has a constant global rank,
i.e. for any v′ ∈ V ′, the number

∑
v∈ϕ−1(v′) nv does not depend on v. The latter

number will be called the degree of ϕ. We will not need this, but an n-morphism of
non-connected graphs is proper if it restricts to proper morphisms on the connected
components.

5.1.5. Formal divisors. A divisor on a graph Γ is a formal sum
∑

v∈V cvv, where
cv ∈ Z. The degree of a divisor D =

∑
v∈V cvv is degD =

∑
v∈V cv. For a proper

n-morphism of graphs ϕ : Γ′ → Γ we define the pullback ϕ∗D =
∑

v′∈V cϕ(v′)nv′v′.
Then deg(ϕ∗D) = degϕdegD in the obvious way.

5.1.6. Genus graphs. A genus graph is a finite connected graph Γ together with a
genus function g : V → N that associates to any vertex v its genus g(v). We then
define the genus of Γ to be g(Γ) = h1(Γ)+

∑
v∈V g(v), where h

1(Γ) = |E| − |V |+1
is the number of loops of Γ. The following example is our main motivation for
introducing genus graphs.

Remark 5.1.7. (i) We have defined in 3.3.2 a genus function on any nice compact
curve C, hence any topological finite subgraph of a nice compact curve gives rise
to a genus graph.

(ii) Assume that Z is a connected nodal curve over k̃. Then it is customary to
consider the graph ΓZ whose vertices correspond to the irreducible components of
Z and whose edges correspond to the nodes. Assigning to a vertex the genus of
the corresponding component, we obtain a genus graph. Any finite morphism of
constant rank between connected nodal curves gives rise to a proper morphism of
the corresponding graphs.

(iii) The examples of (i) and (ii) are related as follows. If X is a connected
semistable k◦-curve with generic fiber X and closed fiber Z then the topological



32 ADINA COHEN, MICHAEL TEMKIN, AND DMITRI TRUSHIN

realization of ΓZ can be identified with a skeleton Γ ⊂ X and ΓZ is the genus graph
corresponding to Γ via (i).

5.1.8. Canonical divisors. Following [ABBR13, Section 2], we define the canonical
divisor on a genus graph Γ as KΓ =

∑
v∈V (val v+2g(v)−2)v, where val v = |Br(v)|

is the valency of v. It is designed to mimic the usual canonical divisor. In particular,
degKΓ = 2g(Γ)− 2 because

∑
v∈V val(v) = 2|E|.

5.1.9. δ-morphisms. So far, our definitions were more or less analogous to those
of [ABBR13], though we use different terminology. Now, we are going to add a
combinatorial datum corresponding to slopes of the different. It is not related to
maps of nodal curves (unless an additional structure is specified), but, as we will
later see, such a structure naturally arises on a simultaneous skeleton of a map
between nice compact curves.

By a δ-morphism between (genus) graphs we mean a triple (ϕ, n, sδ), where
(ϕ, n) : Γ → Γ′ is a proper morphism of graphs and sδ is an oriented function on Γ.
Intuitively, the latter can be thought off as the slope of the different along the edges,
though the different function itself is not defined in this context. In particular, we
will abuse notation by writing seδ instead of sδ(e).

5.1.10. The ramification divisor. The following definitions are analogous to those
of Section 4.5.5. Assume that (ϕ, n, sδ) : Γ → Γ′ is a δ-morphism between genus
graphs. For any edge e ∈ E

Se = −seδ + ne − 1

is called the differential slope index. For any vertex v ∈ V with v′ = ϕ(v) we set

χ(v) = 2g(v)− 2− nv(2g(v
′)− 2)

and define the differential index to be

Rv = χ(v) −
∑

e∈Br(v)

Se.

The ramification divisor of the δ-morphism is Rϕ =
∑

v∈V Rvv.

5.1.11. Riemann-Hurwitz for δ-morphisms. In the following result, ∆ϕ =
∑

v∈V ∆vv,
where ∆v =

∑
e∈Br(v) −seδ.

Theorem 5.1.12. Let (ϕ, n, sδ) : Γ → Γ′ be a δ-morphism of genus graphs. Then,
(i) KΓ = ϕ∗(KΓ′) +Rϕ +∆ϕ,
(ii) 2g(Γ)− 2 = degϕ(2g(Γ′)− 2) +

∑
v∈V Rv.

Proof. The proof of (i) reduces to comparing the coefficients of v ∈ V on the both
sides of the equality. Set u = f(v) and let lv and rv be the coefficients of v on the
left side and on the right side, respectively. Then

rv = nv(val(u) + 2g(u)− 2) +Rv +∆v =

nv(val(u) + 2g(u)− 2) + 2g(v)− 2− nv(2g(u)− 2)−
∑

e∈Br(v)

(seδ + Se) =

2g(v)− 2 + nv val(u)−
∑

e∈Br(v)

(ne − 1) =

2g(v)− 2 + val(v) + nv val(u)−
∑

e∈Br(v)

ne = 2g(v)− 2 + val(v) = lv.
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Note that deg∆ϕ = 0 because sδ is an oriented function. So, (ii) is obtained
from (i) by comparing the degrees. �

Remark 5.1.13. The above Riemann-Hurwitz formula is essentially the formula
[ABBR13, 2.14.2]. Although our ramification divisor is defined differently, so that
sδ is taken into account, this difference is cancelled out in the Riemann-Hurwitz
formula because deg∆ϕ = 0.

5.1.14. Balanced vertices. Given a δ-morphism ϕ as above, we say that a vertex
v ∈ V is balanced if Rv = 0. Only non-balanced vertices contribute to the Riemann-
Hurwitz formula. In our applications, the only non-balanced vertices will come
from the ramification points and from the boundary components (i.e. non-proper

k̃-curves).

5.2. Stability.

5.2.1. Contractions of genus graphs. By a contraction of a genus graph Γ we mean
an operation of one of the following two types:

(1) If v is a leaf of genus 0 and e is the edge incident to v then one can remove
v and e from Γ.

(2) If v is a vertex of genus 0 and valence 2 and v is not the only vertex of Γ,
then one can remove v and replace the two edges with endpoint v by a single edge.

Remark 5.2.2. (i) Combinatorial contractions correspond to blowing down unsta-
ble rational components in the closed fiber of a semistable k◦-curve. Equivalently,
such a contraction corresponds to an operation of decreasing a (non-minimal) skele-
ton of a nice compact curve.

(ii) Any contraction preserves both the topological type of Γ and the set of
positive genus vertices; in particular, it preserves the genus of Γ.

5.2.3. Stable genus graph. A genus graph Γ is called stable if it does not admit
contractions.

Remark 5.2.4. It is a simple classical fact that if g(Γ) > 1 then the stable graph
Γ′ obtained from Γ by a series of contractions is essentially unique (e.g., it has the
same set of vertices V ′ ⊆ V ).

5.2.5. Contractions of δ-morphisms. Assume that ϕ : Γ → Γ′ is a δ-morphism of
genus graphs. By a contraction of ϕ we mean an operation of one of the following
two types:

(1) Assume that v′ is a leaf of genus zero with edge e′, such that any v ∈ ϕ−1(v′)
is a leaf satisfying g(v) = Rv = 0. Then one can remove v′ and e′ from Γ′, and
ϕ−1(v′) and ϕ−1(e′) from Γ.

(2) Assume that v′ is a vertex of genus 0 and valence 2, such that v′ is not the
only vertex of Γ′ and any vertex v ∈ ϕ−1(v′) satisfies g(v) = Rv = 0 and val(v) = 2.
Then we can remove v′ from Γ′ replacing its two edges with a single edge, and do
the same operation with all vertices of ϕ−1(v′).

Remark 5.2.6. Contractions preserve the topological types and the positive genus
sets of both Γ and Γ′. In addition, they preserve all unbalanced vertices of Γ, hence
the Riemann-Hurwitz formulas for ϕ and its contraction are essentially the same.

5.2.7. Stable δ-morphisms. Similarly to the absolute case, we say that a δ-morphism
is stable if it cannot be contracted.
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5.3. Classification of stable δ-morphisms of degree 2 and genus 1 7→ 0. We
will later describe analytic morphisms E → P1

k of degree two with E an elliptic
curve. In this section, we study the combinatorial part of the problem.

5.3.1. Tame and wild vertices. Assume that ϕ : Γ → Γ′ is a δ-morphism. We say
that a vertex v ∈ V is tame if seδ = 0 for any edge e ∈ Br(v). Any other vertex is
called wild.

5.3.2. Special δ-morphisms. A δ-morphism ϕ : Γ → Γ′ will be called special if the
following conditions are satisfied:

(1) ϕ is stable, deg(ϕ) = 2, g(Γ) = 1 and g(Γ′) = 0.
(2) If Rv 6= 0 for a vertex v of Γ then v is a leaf, g(v) = 0, Rv > 0 and nv = 2.
(3) One of the following three possibilities holds:

(T) Tame case: all vertices are tame (i.e. sδ vanishes identically).
(M) Mixed case: any vertex with Rv 6= 0 is tame, but there also exist wild

vertices.
(W) Wild case: any vertex with Rv 6= 0 is wild.

(4) If an edge e of Γ splits (i.e. ne = 1) then seδ = 0.
(5) If seδ 6= 0 for an edge of Γ then seδ is odd.

A special δ-morphism models the minimal skeleton of a morphism of proper curves;
in particular, there are no boundary points, and this explains why Rv ≥ 0 in (2).
The meaning of condition (5) is explained by Remark 4.2.7. The trichotomy of (3)

corresponds to the trichotomy of the characteristics of k and k̃. For the ramification
points, its meaning is clear: they are wild when char(k) = 2 and tame otherwise.

Also, it is clear that everything is tame when char(k̃) 6= 2.
In fact, in our case we will see that all vertices are wild in the wild case and

all vertices with Rv = 0 are wild in the mixed case, but this is an artefact of a
relatively small classification that we are going to establish; in particular, this does
not generalize to larger genera. Our goal in Section 5.3 is to classify all special
δ-morphisms.

5.3.3. Ramification points. Fix a special δ-morphism ϕ : Γ → Γ′. By a ramification
point we mean any vertex v ∈ Γ with Rv 6= 0. Since v is a leaf, there is a single
oriented edge e starting at v and we set Sv = Se for simplicity.

The set of all ramification points will be denoted Ram(ϕ). Since nv = 2 and
g(v) = 0 for v ∈ Ram(ϕ), we have that Sv = 1− seδ and Rv = 2− Sv = 1+ seδ.

Lemma 5.3.4. If ϕ is a special δ-morphism then one of the following possibilities
holds:

(i) There is one ramification point v and Rv = 4.
(ii) There are two ramification points having Rv = 2.
(iii) There are four ramification points having Rv = 1.
Cases (i) and (ii) happen in the wild case, and case (iii) occurs in the mixed and

tame cases.

Proof. By Theorem 5.1.12, the sum of all Rv’s equals to 2g(Γ)−2−2(2g(Γ′)−2) = 4.
This makes the claim obvious. �
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5.3.5. Root subtrees. By a root subtree of Γ we mean a subtree T ⊆ Γ with a special
leaf r such that: (a) r is not a ramification point, (b) if v 6= r is in T then g(v) = 0
and all edges of v are in T . Note that by saying that r is a leaf we assume that its
valence is 1, and so T 6= r. We call r the root of T while “leaves” will refer to other
leaves only. If e is the oriented edge of T starting at r then Se is called the slope
index of T . We say that an oriented edge e of T is upward if it goes towards the
leaves.

Lemma 5.3.6. If T ⊆ Γ is a root subtree of slope index s, then
(i) ne = 2 for any edge e in T ,
(ii) if e is an upward edge then seδ ≤ 0,
(iii)

∑
v∈Ram(f)∩T Rv = s.

Proof. The proof runs by induction on the depth of T , i.e. the maximal length of
a chain from r to a leaf. Any leaf v ∈ T is also a leaf of Γ. Since ϕ cannot be
contracted by removing v and its image in Γ′, we necessarily have that nv = 2 and
Rv > 0. If T is of depth 1 then it has a single edge e connecting r with a leaf v.
Orienting e upward we obtain that s = 1 − seδ = 1 + s−eδ = Rv. In particular,
seδ = 1−Rv ≤ 0.

Assume that the depth is larger than one. Let e be the upward edge starting at
r, let x be the other end of e, let e1, . . . , em be all upward edges starting at x, and
let Ti be the rational tree growing from x in the direction of ei. Since e is the only
edge not contained in any Ti, we obtain by the induction assumption that claims
(i) and (ii) hold for all edges different from e. In particular, it remains to check all
claims for e.

Since nei = 2 for any 1 ≤ i ≤ m and the edges f ∈ Br(x) with nf = 1 come
in pairs, we obtain that ne = 2. In addition, Sei =

∑
v∈Ram(f)∩Ti

Rv by the

induction, and so
∑

v∈Ram(f)∩T Rv =
∑m

i=1 Sei . Since x is balanced we have that

S−e +
∑m

i=1 Sei = χ(x) = 2, and so
∑m

i=1 Sei = 2 − S−e = Se = s. Finally,
seδ = 1− s ≤ 0 because s =

∑
v∈Ram(f)∩T Rv and, as we mentioned above, Rv > 0

for any leaf v. �

Since the set of leaves of T is a subset of Ram(f) and the latter was described in
Lemma 5.3.4, the same inductive argument as in the lemma produces a complete
list of root subtrees that may occur in Γ. So, we skip the justification and just
describe the eight trees. The first three have a single edge connecting the root with
the leaf and the slope can be 0, 1 or 3. The remaining five are as follows, with the
arrow always indicating the direction with negative sδ:

•

◦

◦ ◦

1

OO

0 0

•

◦

◦ ◦

3

OO

1

OO

1

OO

•

◦

◦ ◦ ◦ ◦

0 0 0 0

3

OO

•

◦

◦

◦ ◦

◦

◦◦

3

OO

1

OO

1

OO

0 0 00

•

◦

◦

◦ ◦◦ ◦

3

OO

1

OO

0 0

0 0

5.3.7. A classification: the terminology. We will classify special δ-morphisms by
the characteristic type: tame, mixed or wild, and by the structure of Γ. Since
g(Γ) = 1, one of the following possibilities holds: (B) Γ contains a loop (the bad
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reduction case), (G) Γ contains a vertex r of genus 1 (the good reduction case). As
we will see, in the mixed and wild cases, case (G) splits to the two cases: (O) r is
of valency 2 (ordinary reduction), (S) r is of valency 1 (supersingular reduction),
and in the mixed case there is also a possibility (ME) that r is of valency 3. Also,
it will be convenient to split the supersingular case to (S) and (SS). The latter can
be thought of as “strongly supersingular”. In §7.2 below, mixed and wild cases
correspond to the case when p = 2, and then case (SS) corresponds to the case
|j| ≤ |256| while supersingular reduction is obtained already when |j| < 1.

5.3.8. Good reduction. Assume that Γ contains a vertex r of genus 1. Note that
Γ is a union of root subtrees Ti with vertex r, and let si be the slope index of Ti.
Then the balancing condition at r reads as

∑
i si = χ(r) = 4. Combining this with

the list of root trees we obtain the following list of seven possibilities for Γ with
symmetric leaves:

WSS WO TG MO WS MSS MS

•

◦

3

OO

•

◦ ◦

1

OO

1

OO

•

◦ ◦ ◦ ◦

0 0 0 0

•

◦

◦ ◦

◦

◦◦

1

OO

1

OO

0 0 00

•

◦

◦ ◦

3

OO

1

OO

1

OO

•

◦

◦ ◦ ◦ ◦

0 0 0 0

3

OO

•

◦

◦

◦ ◦

◦

◦◦

3

OO

1

OO

1

OO

0 0 00

and two exceptional configurations

MES ME

• ◦ ◦
◦

◦

◦

◦

3 // 1 //

0

0

0

0

• ◦
◦

◦

◦

◦

1 //

0

0

0

0

5.3.9. Bad reduction. Now, assume that Γ contains a loop L. Since Γ′ is a tree,
ne = 1 for any edge in L and nv = 1 for all but two vertices of L that we denote x
and y. Note that Γ is a union of L and root trees with roots r in L. Moreover, by
Lemma 5.3.6, a root tree can only start at a root r with nr = 2, hence Γ is a union
of L and root trees hanging on x and y. In particular, if v is a vertex of L different
from x and y then its valency is 2. Since v is not a leaf, it is balanced and hence
it can be contracted, contrary to the assumption that ϕ is stable. This proves that
L consists of the vertices x, y and two edges e, f connecting them. Since e and f
split, seδ = sfδ = 0 and hence Se = ne − 1 = 0 and Sf = 0. Thus, the balancing
conditions for x and y imply that the sum of slope indices of root trees hanging on
each of them equals to χ(x) = 2. This leaves us with the following three options:

TB MB WB

◦◦

◦

◦

◦

◦

0

0

0

0

0

0

◦◦ ◦

◦

◦

◦

◦

◦

0

0

1 //1oo

0

0

0

0

◦◦ ◦◦

0

0

1 //1oo
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5.3.10. The final classification. It remains to summarize the results of Section 5.3.

Theorem 5.3.11. Up to an isomorphism, there exist twelve special δ-morphisms
ϕ : Γ → Γ′: (TB), (MB), (WB) are the bad reduction cases in each characteristic,
(TG) is the good reduction in the tame case, (MO), (WO) are the ordinary reduction
cases in the mixed and wild cases, (MS) and (WS) are supersingular reductions in
the mixed and wild case, (MSS) and (WSS) are strongly supersingular configurations
in the mixed and wild case, (ME) and (MES) are exceptional graphs in the mixed
case. The possibilities for Γ are shown on the figures in Sections 5.3.8 and 5.3.9.
In each case, the map V → V ′ is bijective and the map E → E′ is bijective on all
edges not contained in a loop and, if h1(Γ) = 1, sends the edges of the loop to the
same edge in E′.

Proof. We have proved above that these twelve cases are the only possibilities for
Γ. In addition, we proved that nv = 2 for any vertex of Γ and ne = 2 if and only if
e does not lie in the loop. Thus, if Γ extends to a special δ-morphism ϕ : Γ → Γ′,
then ϕ has to be as stated in the theorem. It is a trivial check that, indeed, in all
twelve cases this recipe produces a special δ-morphism. �

Remark 5.3.12. Let Γ0 be the convex hull of f(Ram(f)) in Γ′. In the tame and
mixed case, it is a tree with four leaves, so it has either the X-shape (a star graph of
valency four) or the H-shape (two vertices of valency 3). The X-shape corresponds
to the cases (TG) and (MSS), and the H-shape to (TB), (ME), (MES), (MB),
(MO) and (MS). We will see in the next section that the latter three cases can be
distinguished by the length l of the bar (i.e. the path connecting the valency three
vertices in H), and the exceptional configurations are excluded by the condition
l > 0.

5.4. Metric genus graphs.

5.4.1. Metric graphs. Usually, a metric graph means a topological graph all whose
edges are provided with metrics making them homeomorphic to closed intervals
I ⊂ R. We extend this definition by allowing infinite leaves. Each such leaf
is singular for the metric, i.e. the metric on its edge induces a homeomorphism
e→̃[a,∞]. The edge e will be called a tail. All other edges have finite length and
they will be called inner. We will only consider metric graphs of finite type, in the
sense that there are finitely many edges and vertices.

Remark 5.4.2. (i) One can also work within purely combinatorial framework by
providing a combinatorial graph Γ with a length function l : E → (0,∞]. The
metric graph in our sense is a topological realization of such an object.

(ii) In our situation, tails will correspond to type 1 points. In tropical geometry
tails correspond to divisors or marked points. In fact, these two contexts are tightly
related.

5.4.3. Morphisms. A morphism ϕ : Γ → Γ′ between metric graphs is a continuous
map which sends vertices to vertices and edges to edges, and each induced map
e→ e′ has a constant dilatation factor ne ∈ Z>0.

Remark 5.4.4. On the combinatorial side, this corresponds to an n-morphism
(ϕ, n) : Γ → Γ′ such that l(ϕ(e)) = nel(e) for any edge e ∈ E.
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5.4.5. Proper morphisms. Similarly to the combinatorial case, a morphism between
connected graphs is called proper if it has a locally constant multiplicity at all
vertices (in particular, the multiplicities nv are defined) and the global rank is
constant.

5.4.6. Metric genus graphs. By a metric genus graph we mean a metric graph pro-
vided with a genus function g : V → N such that g(v) = 0 for any infinite leaf
v.

5.4.7. δ-morphism of metric genus graphs. Fix a non-archimedean real semivalu-
ation | | on Z; it is either trivial, or p-adic, or induced from the trivial valuation
on Fp. A δ-morphism between metric (genus) graphs (with respect to | |) is a pair
(ϕ, δ), where ϕ : Γ → Γ′ is a proper morphism of metric graphs and δ : Γ → [0, 1]
is a continuous function such that log δ|e is a linear function with an integral slope
for each edge e ⊂ Γ. In addition, we require that δ(v) = |nv| for any infinite leaf
v, and for any other vertex v and edge e ∈ Br(v) the condition of Theorem 4.2.6

is satisfied. In particular, if ne = 2 and char(k̃) = 2 then seδ is even only when
δ = |2| along e.

Remark 5.4.8. (i) So far, our definitions run parallel to the combinatorial ones,
but the situation with δ is different. The slope function sδ : Eor → Z we considered
in Section 5.1 does not have to be the differential of any function log δ : V → R.

(ii) In our applications, δ will be the restriction of the different onto a skeleton.
Its slope seδ along an edge e is not determined only by the values of δ at the vertices
of e. In order to compute seδ one should also use the length of e, so restricting log δ
onto the set of vertices V and ignoring the lengths one gets a meaningless function
not related to sδ.

5.4.9. Special δ-morphisms of metric genus graphs. A δ-morphism of metric genus
graphs is special if it induces a special δ-morphism of the corresponding combina-
torial graphs and, in addition, if r is a vertex of genus one then δ(r) = 1. It is easy
to see that the type of the combinatorial morphism is as follows: tame if |2| = 1,
mixed if 0 < |2| < 1, wild if |2| = 0.

5.4.10. Classification. We classify special δ-morphisms of metric genus graphs into
twelve types according to the type of the underlying special δ-morphism. In fact,
we will see that the exceptional cases cannot occur, so we are left with ten cases.
In addition, we describe all possible metrics in these cases.

Theorem 5.4.11. (i) The ten non-exceptional cases are precisely the cases that
can be lifted to special δ-morphisms of metric graphs.

(ii) All possible metrics on the liftings are described by the following three rules,
where we only describe the lengths in Γ since the lengths in Γ′ are then defined as
l(ϕ(e)) = nel(e).

(a) The length of any tail is infinite.
(b) All inner edges of the same slope are of the same length, that we denote l0,

l1 and l3 according to the slope.
(c) Set li = 0 if there are no inner edges of slope i. Then in each of the ten cases,

the only restriction on the numbers li is that in the mixed case
∑

i ili = − log |2|.
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Remark 5.4.12. (i) Conditions (b) and (c) above can be explicated as follows. In
the bad reduction case, the two edges in the loop are of the same length that can
be equal to any positive number l0. Inner edges of positive slope are as follows:

(MB) and (MO) The edges of slope 1 are of length l1 = − log |2|.
(MS) The edges of slope 1 are of the same length l1 ∈ (0,− log |2|) and the edge

of slope 3 is of length l3 = − log |2|−l1
3 .

(MSS) The edge of slope 3 is of length l3 = − log |2|
3 .

(WS) The length of the edge of slope 3 is an arbitrary number l3 ∈ (0,∞).
(ii) The formula

∑
ili = − log |2| poses a restriction only in the mixed case, but

it makes sense more generally. In the tame case, it means that l1 = l3 = 0. To
make sense of it in the wild case, one should redefine li with i > 0 by setting li = ∞
if there is a tail of slope i. Then the formula means that in the wild case there is a
tail of slope 1 or 3.

Proof of Theorem 5.4.11. One checks straightforwardly that all the suggested met-
rics give rise to special δ-morphisms of metric graphs. So, it remains to establish the
asserted restrictions. In the bad reduction case, the two edges e and f of the loop
are mapped to the same edge h of Γ′ and ne = nf = 1. Hence l(e) = l(h) = l(f).
Other restrictions, including the equality of lengths of the edges of the same slope,
are only essential in the mixed case, and they all follow in an obvious way from the
observation that δ = 1 on the loop and at the good reduction point, and δ = |2| on
the tails. For an illustration, let us check this for (MS), (ME) and (MES) cases.

In the exceptional cases, there is an edge of a positive slope that connects two
tails. This is impossible since the different on both its ends equals to |2|. In the
case (MS), there are inner edges a, b of slope 1 and an inner edge c of slope 3.
The paths (c, a) and (c, b) connect the good reduction point with the tail, hence
l(a) + 3l(c) = l(b) + 3l(c) = − log |2|. �

Finally, we can use the metric to complete Remark 5.3.12 by separating mixed
cases.

Remark 5.4.13. Assume that ϕ : Γ → Γ′ is of type (MB), (MO) or (MS). The
convex hull Γ0 of ϕ(Ram(ϕ)) has an H-shape and let l be the length of the bar. In
all cases, the bar consists of the images of all inner edges of slopes 0 and 1, and
ne = 2 on edges of slope 1. It follows that l = 4l1 + l0, and using Theorem 5.4.11
we obtain that l > − log |16| in the case (MB), l = − log |16| in the case (MO), and
l < − log |16| in the case (MS).

6. Main results

6.1. Ordinary behaviour of δf .

6.1.1. Orientation on a curve. By an orientation on a curve X we mean a map τ
from the set of branches of X to the set {−1, 0, 1} such that for any point x ∈ X
and a branch v at x there exists an interval [x, y] in the direction of v such that if
x′ ∈ [x, y) and v′ is the branch at x′ corresponding to [x′, y] then τ(v) = τ(v′).

We say that a branch v is downward, neutral or upward according to the value
of τ(v). Similarly, if I = [x, y] is an interval and for any x′ ∈ [x, y) with branch
v′ corresponding to [x′, y] the value of τ(v′) is constant on I, then we say that I
is downward, neutral or upward, according to the value of τ . It follows from the
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definition that any interval I ⊂ X possesses a finite subdivision into a union of
downward, neutral and upward intervals.

Example 6.1.2. (i) If f : Y → X is a finite morphism of curves and τ is an
orientation on X then its pullback f∗τ = τ ◦ f is an orientation on Y .

(ii) Any piecewise monomial function φ : X → R+ induces an orientation τ
on X such that an interval I ⊂ X is downward, neutral, or upward if and only
if φ|I strictly decreases, is constant, or strictly increases, respectively. Actually,
τ(v) = sign(slopev(φ)).

6.1.3. Orientation induced by a skeleton. Any skeleton Γ ⊂ X naturally induces an
orientation τΓ on X that points towards Γ. Namely, the edges of Γ are neutral for
τΓ and any interval [x, y] with [x, y] ∩ Γ = {y} is increasing.

Remark 6.1.4. In fact, any connected component D of X \Γ is an open disc and
the restriction of τΓ onto D is induced by the radius function on D. More generally,
the formula rΓ = exp−d(x,Γ) defines a piecewise monomial radius function onX that
measures the inverse exponential distance from Γ, and then τΓ is the orientation
induced by rΓ.

6.1.5. δ-ordinary points. Assume now that f : Y → X is a finite generically étale
morphism of nice compact curves and an open subdomain V ⊂ Y is provided with
an orientation. We say that y ∈ V is a δ-ordinary point of the covering f if there is
a unique upward direction v at y and slopev(δf ) = 1− ny. We say that δf behaves
ordinary on V if any point of V is δ-ordinary.

Remark 6.1.6. The condition on existence and uniqueness of v is essential only
for type 2 points; it is automatic for other types.

6.1.7. Skeletons and trivialization of δf . We say that δf is trivialized by a skeleton
Γ ⊂ Y if it behaves ordinary on Y \Γ with respect to the orientation induced by Γ.

Lemma 6.1.8. Assume that a skeleton Γ of Y trivializes δf . Then Sv = 0 for any
downward branch v and Ry = 0 for any unibranch point y ∈ Y \ Γ.

Proof. Take a downward interval I = [x, y] in the direction of v. By Lemma 3.6.8,
choosing I small enough we can achieve that nz = nv for any z ∈ (x, y]. The
opposite interval [y, x] is upward and since δf behaves ordinary outside of Γ, it is
of constant slope 1− nv on [y, x]. Hence δf is of constant slope nv − 1 on [x, y], in
particular, Sv = −slopevδf + nv − 1 = 0.

If y ∈ Y \Γ is unibranch then its branch is upward and hence slopeyδf = 1−ny,
Sy = 2ny − 2 and Ry = 0. �

The following theorem is our first main result on the connection between δf and
skeletons.

Theorem 6.1.9. Assume that f : Y → X is a finite generically étale morphism of
nice compact curves and (ΓY ,ΓX) is a skeleton of f , then

(i) ΓY trivializes δf .
(ii) δf has constant slope on any oriented edge of ΓY and hence induces a δ-

morphism (f, n, sδf ) : ΓY → ΓX of genus graphs.
(iii) Any non-balanced vertex of (f, n, sδf) is contained in ∂(Y ) ∪ Ram(f).
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Proof. We start with (i). Fix a point y ∈ Y \ ΓY and let us prove that it is
δ-ordinary. The connected component of y in Y \ ΓY is an open disc Y0 and f
restricts to an étale covering f0 : Y0 → X0, where X0 is the connected component
of f(y) in X \ΓX . We can identify Y0 and X0 with open unit discs with coordinates
t and z, and then f0 is given by sending z to a series h(t) =

∑∞
i=0 hit

i ∈ k◦[[t]].
Furthermore, f0 is étale, hence h′(t) is invertible and so |h′(a)| = |h1| for any point
a ∈ Y0.

Let yr ∈ Y0 denote the maximal point of the disc Er of radius r with center at
0. Assume, first, that y is of type 2 or 3. Then we can choose t to be monomial
at y, i.e. we can assume that y = ys for some 0 < s < 1. Note that h induces
a finite map hs : Es → h(Es) between discs and ys is the only preimage of the
maximal point of the target, hence ny = deg(hs). On the other hand, it follows from
the Weierstrass division theorem that deg(hs) is the maximal number d such that
|h|y = maxn |hn|sn equals to |hd|sd. Choose s1 ∈ (s, 1) such that |hn|sn1 < hnys

ny

1

for any n > ny, then nyq = ny for any q ∈ [s, s1]. In particular, if xq = f(yq) then
rz(xq) = |hny |q

ny . Since rt(yq) = q, Theorem 4.1.6 implies that

δf (z) = |h′|z |hny |
−1qq−ny = |h1h

−1
ny

|q1−ny .

Therefore, the upward slope of δf equals to 1−ny everywhere on the interval [y, ys1 ].
It remains to consider the case when y is of type 1 or 4. Consider an increasing

interval I starting at y. The function ny is constant in a neighborhood of y in I
because it can only jump at type 2 points (see Lemma 3.6.10) and the slope of
δf is constant in a neighborhood of y in I because δf is piecewise monomial by
Corollary 4.1.8. By the case of type 2 and 3 points, the upward slope of δf equals
to 1− ny for any point of I \ y, hence the same is true for y.

Let us prove (ii). Recall that the value of ny is fixed along any edge e by
Lemma 3.5.10, so we denote it by ne. Then (f, n) : ΓY → ΓX is a proper n-
morphism of graphs by Remark 3.4.5. So, it suffices to show that for any type
2 point y ∈ e with branches u and v pointing at different directions along e, the
numbers su = slopeu(δf ) and sv = slopev(δf ) are opposite. Note that g(y) = 0
since y is not a vertex of ΓY , and hence also g(f(y)) = 0. In addition, n = ne

coincides with nv, nu and ny. Any direction w ∈ Cy \ {u, v} is downward, hence
Sw = 0 by Lemma 6.1.8, and the local Riemann-Hurwitz formula at y, see 4.5.4,
reads as

−2 = −2n+ (−su + n− 1) + (−sv + n− 1).

Thus, su + sv = 0, as required.
Finally, if a non-boundary type 2 point y is a vertex of ΓY , then a similar

application of Lemma 6.1.8 and the local Riemann-Hurwitz formula at y proves
that y is balanced, whence (iii) follows. �

6.2. The genus formulas.

6.2.1. Genus of a nice compact curve. For any nice compact curve X we define
its genus as the sum of its first Betti number and all genera of its type 2 points:
g(X) = h1(X) +

∑
x∈X g(x). It is a classical result that this definition agrees with

the usual notion of genus when X is a connected smooth proper curve. Since any
skeleton Γ of X is a deformation retract of C and contains all points of non-zero
genus, we have that g(X) = g(Γ), where Γ is viewed as a genus graph.
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6.2.2. The genus formula for nice compact curves. The following result extends the
classical algebraic Riemann-Hurwitz formula to nice compact curves with boundary.

Theorem 6.2.3. Assume that f : Y → X is a finite generically étale morphism of
degree n between connected nice compact curves. Then

2g(Y )− 2− n(2g(X)− 2) =
∑

y∈Y

Ry =
∑

y∈Ram(f)

Ry +
∑

b∈∂(Y )

Rb.

Proof. Choose a skeleton (ΓY ,ΓX) of f ; by Theorem 6.1.9(ii) it induces a δ-
morphism ϕ : ΓY → ΓX . By Section 6.2.1, g(ΓX) = g(X) and g(ΓY ) = g(Y ).
Furthermore, any ramification or boundary point is a vertex of ΓY . For any ver-
tex y ∈ Γ0

Y , we have that Ry,f = Ry,ϕ because Sv,f = Sv,ϕ for any v ∈ Br(y)
pointing along an edge of ΓY and Sv,f = 0 for any other branch at y. Thus,
the genus formula for f follows from the combinatorial genus formula for ϕ, see
Theorem 5.1.12(ii). �

6.2.4. Wide open domains. A connected open domain V ⊂ Y will be called wide if
S = V \V is a finite non-empty set of type 2 points. (Then V is a wide open curve
as defined by Coleman.) Note that V is a connected component of Y \ S. The
genus of a wide open domain V is defined similarly to the genus of a nice compact
curve, namely g(V ) = h1(V ) +

∑
y∈V g(y). We will not need the following remark,

so its justification is omitted.

Remark 6.2.5. (i) Wide open domains typically appear as formal fibers, i.e.
preimages of closed points under the reduction map π : Y → Ys, where Y is a
formal model of Y . In fact, one can show that any wide open V is a formal fiber of
some formal model.

(ii) If y is a closed point of Ys and V = π−1(y) then g(V ) = δy − ny + 1, where
ny is the number of branches at y and δy is the classical δ-invariant of y, that
measures the contribution of y to the arithmetic genus. In other words, if Z is the
normalization of Ys and z is the preimage of y in Z with semilocal ring Oz = OZ,z,
then ny is the number of points in z and δy = dimk̃(Oz/Oy).

6.2.6. The genus formula for wide open domains. Given a wide open domain V ⊆ Y
we say that v is a branch at infinity of V if v is a branch at a point x ∈ V \ V and
any interval [x, y] along v intersects with V . The set of all branches at infinity will
be denoted V∞.

Theorem 6.2.7. Assume that f : Y → X is a finite generically étale morphism
between nice compact curves, U ⊆ X is a wide open domain and V is a connected
component of f−1(U). Then

2g(V )− 2− n(2g(U)− 2) =
∑

y∈Ram(f)∩V

Ry +
∑

v∈V∞

(2nv − 2− Sv),

where n is the degree of the induced morphism V → U .

Proof. Choose a skeleton (ΓY ,ΓX) of f such that U \ U ⊆ Γ0
X . Define a graph

ΓU to be equal to to the compactification of ΓX ∩ U by the points of U∞, that is,
Γ0
U = (Γ0

X ∩ U) ∪ U∞ and the edges of ΓU are the edges of ΓX lying in U . We
assign genus zero to the vertices of U∞. In the same fashion, we define ΓV to be
the compactification of ΓY ∩ V by the vertices of V∞.
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Now, the claim reduces to the combinatorial genus formula for ΓV → ΓU similarly
to the proof of Theorem 6.2.3. We omit the details and only remark that the
ramification points of ΓV are the usual ramification points of Y lying in V and the
points of V∞. Each v ∈ V∞ is a leaf of genus zero, hence Rv = 2nv − 2 − Sv and
we see that the right hand side of the asserted equation is the sum of Ry over all
ramification points of ΓV . �

Remark 6.2.8. In fact, the assumption that f : V → U comes from a morphism
of nice compact curves is only needed to obtain the numbers nv and Sv for v ∈ V∞.
The theorem can be easily extended to the case when V and U are wide open
domains and f : V → U is a finite generically étale morphism such that for any
v ∈ V∞ there exist an interval [a, v) ⊂ V in the direction of v, a branch at infinity
u ∈ U∞ and an interval [b, u) ⊂ U in the direction of u such that f maps [a, v) to
[b, u) and ny and Sy are constant along [a, v).

6.3. The different and the minimal skeleton of f .

6.3.1. Coverings of an open disc. Our next result shows that a (compactifiable)
étale covering of an open disc is a disc if and only if δf behaves ordinary at the
branches at infinity.

Lemma 6.3.2. Assume that f : Y → X is a finite étale morphism between con-
nected nice compact curves, U ⊂ X is a wide open domain isomorphic to a disc
and V is a connected component of f−1(U). If Sv = 0 for any v ∈ V∞ then V is
an open disc.

Proof. Let n be the degree of f |V ; it is well defined since V is connected and non-
empty. Clearly, n =

∑
v∈V∞

nv. By our assumption, there are no ramification
points hence the genus formula of Theorem 6.2.7 reads as

2g(V ) + 2n− 2 =
∑

v∈V∞

(2nv − 2).

Since
∑

v∈V∞

(2nv − 2) ≤ 2n− 2 with equality holding if and only if |V∞| = 1, we
obtain that g(V ) = 0 and V has a single branch at infinity. Using the semistable
reduction theorem it follows easily that V is an open disc. �

6.3.3. A characterization of skeletons of f . Now we can characterize the skeletons
of f in terms of the different. We say that a graph Γ ⊂ Y locally trivializes δf if for
any point y ∈ Γ and a branch v ∈ Br(y) pointing outside of Γ the equality Sv = 0
holds.

Theorem 6.3.4. Let f : Y → X be a finite generically étale morphism of nice
compact curves, let ΓX ⊂ X be a skeleton and let ΓY ⊂ Y be the preimage of
ΓX . Then (ΓY ,ΓX) is a skeleton of f if and only if Ram(f) ⊂ Γ0

Y and ΓY locally
trivializes δf .

Proof. The direct implication is covered by Theorem 6.1.9, so let us prove the
opposite one. Let D be any connected component of X \ ΓX and let V be a
connected component f−1(D). The finite map V → D is étale by our assumption
on the ramification locus. In addition, any branch at infinity v ∈ V∞ is a branch
at a point of ΓY that points outside of ΓY . Hence Sv = 0, and by Lemma 6.3.2 we
obtain that V is an open disc. This proves that ΓY is a skeleton of Y and we are
done. �
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Remark 6.3.5. The main advantage of the new characterization of the skeletons
of f is that it is of local nature on Y , in particular, one obtains a pretty explicit way
to construct a skeleton of Y in terms of X and the covering. Namely, start with
any skeleton ΓX of X . Enlarge ΓX to contain the image of the ramification locus
of f . If there is a point y ∈ ΓY = f−1(ΓX) and a branch v at y pointing outside of
ΓY and having Sv 6= 0 then there exists an interval [y, z] in the direction of v such
that Su 6= 0 for any branch u on I towards z. Add f(I) to ΓX and f−1(f(I)) to
ΓY , and repeat this procedure again. In the end, one obtains the minimal skeleton
of f that contains the original ΓX (though this may require transfinite induction if
the intervals I are chosen too short).

7. Coverings of degree p

7.1. Topological ramification locus.

7.1.1. Radial sets. Let Y be a nice compact curve, ΓY ⊆ Y a skeleton of Y , Γ ⊆ ΓY

a finite subgraph, and φ : Γ → (0, 1] a piecewise monomial function. We provide Y
with the orientation with respect to ΓY . For a point x ∈ Γ let C(Γ, x, φ(x)) denote
the union of all closed downward intervals I starting at x such that l(I) = − logφ(x).
The radial set C(Γ, φ) with center at Γ of radius φ is the union of C(Γ, x, φ(x)) for
all x ∈ Γ.

Remark 7.1.2. Let B(Γ, φ) be the metric neighborhood of Γ given by φ, i.e.
B(Γ, φ) is the union of intervals at x ∈ Γ of length ψ(x) = − logφ(x). Obviously,
C(Γ, φ) ⊆ B(Γ, φ), but the inclusion may be strict. Indeed, assume that [x, y] is
an interval in Γ and ψ(x) − ψ(y) > l([x, y]); for example, φ is monomial of slope
smaller than −1 on [x, y]. Choose a downward interval [y, z] of length l such that
ψ(y) < l < ψ(x) − l([x, y]). Then z /∈ C(Γ, φ) since ψ(y) < l, but d(z, x) < ψ(x)
and hence z ∈ B(Γ, φ). Intuitively, the radial set behaves as a non-convex set in
this case.

7.1.3. Coverings of degree p.

Theorem 7.1.4. Assume that f : Y → X is a finite generically étale morphism

between nice compact curves and deg(f) = p = char(k̃). Let (ΓY ,ΓX) be a skeleton
of f and let Γ ⊆ ΓY be the subgraph consisting of topological ramification points.
Then the topological ramification locus T of f coincides with the radial set C =

C(Γ, δ
1/(p−1)
f ).

Proof. By Theorem 6.1.9, ΓY trivializes δf . Since deg(f) = p, it follows that for
any ramification point x ∈ Γ with δf(x) < 1 and a closed downward interval I
starting at x, the restriction of δf on I is monomial with the slope p − 1. Also, if

δf (x) = 1, then C(Γ, x, δ
1/(p−1)(x)
f ) = {x}. This shows that C ⊂ T and we claim

that this is, in fact, an equality because f splits outside of C.
To prove the claim, choose any connected component D of Y \ C. It is an open

disc with limit point y that lies on the boundary of C and hence satisfies δf (y) = 1.
Note that D is a wide open domain (see 6.2.4) and D∞ = {v}, where v is the
branch at y in the direction of D. Recall that ΓY trivializes δf , hence Sv = 0 and
slopevδf = nv − 1. Since δf (y) = 1, we necessarily have that slopevδf ≤ 0 and
hence nv = 1. The morphism D → f(D) is finite of rank nv, hence D→̃f(D) and
the claim is proved. �
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7.2. Double coverings of P1
k of genus 1. We would like to finish the paper

with illustrating our results on the particular case of a double covering f : E →
P1

k with E being an elliptic curve. In the tame case, this is classical, e.g., see
[BGR84, Section 9.7.3], but the description of the wild case is new, to the best of
our knowledge.

7.2.1. The minimal skeleton. In the sequel, (ΓE ,ΓP ) denotes the minimal skeleton
of f , and ϕ : ΓE → ΓP is the induced morphism of graphs. By Theorem 6.1.9,
(ϕ, slope(δ)) is a δ-morphism, that will be denoted by ϕ for shortness.

Lemma 7.2.2. The δ-morphism ϕ is special (5.3.2) and the type of ϕ is as follows:
tame or mixed if char(k) 6= 2, wild if char(k) = 2. Moreover, the restriction of δ
onto ΓE induces a special δ-morphism of metric genus graphs.

Proof. Let us check conditions (1)–(5) of 5.3.2. The minimality of the skeleton is
equivalent to the stability of ϕ, and clearly deg(φ) = 2. In addition, g(ΓE) = 1
and g(ΓP ) = 0 by 6.2.1, so ϕ satisfies condition (1). Condition (2) is satisfied
by Theorem 6.1.9(iii) because E is proper and so ∂(E) = ∅. Any ramification
point y ∈ Ram(f) has multiplicity 2, hence the ramification is tame if and only
if char(k) 6= 2. By Theorem 4.6.4, the ramification is tame at v if and only if
slopevδf = 0, and so Rv = 1. This establishes condition (3) and the asserted
dichotomy between tame or mixed, and wild cases. Condition (4) from 5.3.2 is
satisfied in the obvious way, and (5) follows from Remark 4.2.7 in the case of
m = p = 2.

To prove that the morphism of metric graphs is special we should check two
more conditions. In the mixed case, Theorem 4.6.4 implies that δ = |ne| for any
tail e. If y ∈ Y has genus 1 and x = f(y) then H(y)/H(x) is an extension of degree

2, and the residue field extension H̃(y)/H̃(x) separable, because otherwise it must
be purely inseparable and we would have that g(y) = g(x) = 0. Thus, H(y)/H(x)
is unramified and hence δf (y) = 1. �

Lemma 7.2.3. Keep the above notation and assume that char(k̃) = 2, Y has good
reduction, and y ∈ Y is the point of genus 1. Then Y has ordinary reduction if and
only if the valence of y in ΓE is 2.

Proof. Let x = f(y) and let f̃ : Ẽ → P1
k̃
be the morphism of smooth proper k̃-curves

associated to the extension H̃(y)/H̃(x). If y has valence two then there are two

ramified branches at y hence the morphism f̃ has two ramification points and so Ẽ
is ordinary. If the valence of y is one then there is v ∈ Br(y) with slopevδf = −3.

It follows easily that the different of f̃ at v is 4, and hence Ẽ is supersingular. �

7.2.4. The tame and mixed cases. If char(k) 6= 2 then the ramification is tame,
hence |Ram(f)| = 4. Moving three ramification points to 0, 1,∞ we can achieve
that the fourth one is λ such that |λ| ≥ 1 and |1 − λ| ≥ 1. Since f is Kummer, it
is given by the equation y2 = x(x − 1)(x − λ). Note that the j-invariant of E is

j = 28 (λ2−λ+1)3

λ2(λ−1)2 in this case (e.g., [Har77, p. 317]), and so |j| = |256| · |λ|2 when

|λ| > 1.
Let Γ0 be the convex hull of f(Ram(f)) in X . By Remarks 5.3.12 and 5.4.13,

Γ0 is either of X-shape or H-shape, and the shape together with the length l of the
bar, which equals to |λ|, determines the type completely. In addition, the metric
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is determined by the formulas |λ| = l = 4l1 + l0 and l1 + 3l3 = − log |2| from
Remark 5.4.13 and Theorem 5.4.11(c).

7.2.5. The wild case. Assume, now, that char(k) = 2. We should replace the Weier-
strass form with a reasonable non-constant one-parametric family. Perhaps the
most natural choice is to take Deuring’s normal form: y2 + αxy + y = x3. Let
Eα be the associated curve; its j-invariant can be computed by Tate’s formulae,
see [Tat74, Section 2]. The following modular forms from Tate’s list are non-zero
for this equation: a1 = α, a3 = 1, b2 = α2, c4 = α4, c6 = α6, ∆ = α3 + 1 and

j = α12

α3+1 . In particular, the α-line provides a 12-fold covering of the moduli space
of elliptic curves, Eα is supersingular if and only if α = 0 and Eα is nodal if and
only if α ∈ {1,∞}. Note also that if |α| ≤ 1 = |α+ 1| then Eα is a good reduction
curve whose genus 1 point sits over the Gauss point of the x-line. The reduction
curve is given by ỹ2 + α̃x̃ỹ + ỹ = x̃3, so it is supersingular if and only if |α| < 1.

The metric skeleton is as follows: ϕ is of type (WB) if and only if Eα has bad
reduction. It is classical that this happens if and only if |j| > 1, and then log |j|
is the length of the loop (the interested reader can also deduce this directly by
analysing the case |α + 1| < 1). It follows from Lemma 7.2.3 that E has ordinary
reduction if and only if ϕ is of type (WO). To distinguish the cases (WS) and
(WSS) corresponding to the supersingular reduction we note that |Ram(f)| = 1
and so E is supersingular and j = 0 in the case (WSS), while |Ram(f)| = 2 and
so E is ordinary and j 6= 0 in the case (WS). In the cases (WO) and (WSS), ΓP

consists of tails. The metric structure of ΓP in (WS) is determined by the length
l3 of the edge e connecting the supersingular point with the path between the
ramification points. The double covering f : Eα → P1

k of the x-plane is ramified
over the points x = 1

α ,∞, hence the image of e ⊂ ΓE ⊂ Eα in P1
k is the interval

connecting the Gauss point with the line [ 1α ,∞]. Its length equals to − log |α| and

hence l(e) = − 1
2 log |α| = − 1

24 log |j|.

7.2.6. The summary. Using the fact the reduction is good if and only if |j| ≤ 1

and the reduction is supersingular if and only if |j| < 1 and char(k̃) = 2, we can
summarize our classification of double coverings as follows. The relations between
|j| and |λ| or |α| we have observed earlier, are used to express the metric in terms
of |j| only.

Theorem 7.2.7. The ten non-exceptional special δ-morphisms from Theorem 5.3.11
are precisely the δ-morphisms that occur as the minimal skeleton ϕ : ΓE → ΓP of
a double covering f : E → P1

k with E an elliptic curve. Moreover, a special δ-
morphism Γ → Γ′ of metric genus graphs (with respect to the semivaluation of Z
induced from k), see Theorem 5.4.11, lifts to such a double covering if and only if
the lengths of the inner edges of Γ belong to |k×|. These cases are characterized as
follows:

(i) ϕ is (TB) if and only if char(k̃) 6= 2 and |j| > 1 if and only if char(k̃) 6= 2
and E has bad reduction. In this case, l0 = 1

2 log |j|.

(ii) ϕ is (TG) if and only if char(k̃) 6= 2 and |j| ≤ 1 if and only if char(k̃) 6= 2
and E has good reduction.

(iii) ϕ is (MB) if and only if char(k) = 0, char(k̃) = 2 and |j| > 1 if and only if

char(k) = 0, char(k̃) = 2 and E has bad reduction. In this case, l0 = 1
2 log |j| and

l1 = − log |2|.
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(iv) ϕ is (MO) if and only if char(k) = 0, char(k̃) = 2 and |j| = 1 if and only if

char(k) = 0, char(k̃) = 2 and E has ordinary reduction. In this case, l1 = − log |2|.

(v) ϕ is (MS) if and only if char(k) = 0, char(k̃) = 2 and |256| < |j| < 1. In
this case, the reduction is supersingular, l1 = 1

8 log |j| − log |2| and l3 = − 1
24 log |j|.

(vi) ϕ is (MSS) if and only if char(k) = 0, char(k̃) = 2 and |j| ≤ |256|. In this
case, the reduction is supersingular and l3 = − 1

3 log |2|.
(vii) ϕ is (WB) if and only if char(k) = 2 and |j| > 1 if and only if char(k) = 2

and E has bad reduction. In this case, l0 = 1
2 log |j|.

(viii) ϕ is (WO) if and only if char(k) = 2 and |j| = 1 if and only if char(k) = 2
and E has ordinary reduction.

(ix) ϕ is (WS) if and only if char(k) = 2 and 0 < |j| < 1 if and only if char(k) =
2, E is ordinary and the reduction is supersingular. In this case, l3 = − 1

24 log |j|.
(x) ϕ is (WSS) if and only if char(k) = 2 and j = 0 if and only if E is super-

singular.

Corollary 7.2.8. (i) The type of the graph is determined by |j| and the character-

istics of k and k̃.
(ii) If one only considers the type of reduction (bad, ordinary, supersingular)

instead of |j| then all cases are distinguished except the following two pairs: (MS)
versus (MSS), and (WS) versus (WSS). The latter pair is distinguished by the type
of E itself.

Remark 7.2.9. Using the notion of canonical subgroups one can also distinguish
cases (MS) and (MSS). Recall that if E has ordinary reduction then there is a
canonical subgroup C of the 2-torsion group E[2], which lifts the connected com-

ponent of Ẽ[2]. Moreover, it is well known that this subgroup extends to some
elliptic curves with supersingular reduction. In fact, these are precisely the (MS)
curves and one should simply take C = {∞, λ}. For (MSS) curves, any disc in E
containing two points of E[2] contains all of E[2].

Remark 7.2.10. By Theorem 7.1.4 the topological ramification locus of f : E →
P1

k is the radial set C(Γ0, δf ) with center at a subgraph Γ0 of ΓE obtained by
removing the loop edges. The configuration is supersingular if and only if there is an
edge with slope of the different equal to 3. It follows easily from Remark 7.1.2 that
this happens if and only if C(Γ0, δf ) is strictly smaller than the metric neighborhood
B(Γ0, δf ) of Γ0.
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