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DESCENT FOR NON-ARCHIMEDEAN ANALYTIC SPACES

BRIAN CONRAD AND MICHAEL TEMKIN

Abstract. In this paper we study two types of descent in the category of Berkovich analytic spaces: flat
descent and descent with respect to an extension of the ground field. Quite surprisingly, the deepest results
in this direction seem to be of the second type, including the descent of properties of being a good analytic
space and being a morphism without boundary.

1. Introduction

Motivation. In the theory of schemes, faithfully flat descent is a very powerful tool. One wants a descent
theory not only for quasi-coherent sheaves and morphisms of schemes (which is rather elementary), but also
for geometric objects and properties of morphisms between them. In rigid-analytic geometry, descent theory
for coherent sheaves was worked out by Bosch and Görtz [?, 3.1] under some quasi-compactness hypotheses
by using Raynaud’s theory of formal models, and their result can be generalized [Con06, 4.2.8] to avoid
quasi-compactness assumptions (as is necessary to include analytifications of faithfully flat maps arising
from algebraic geometry [CT09, §2.1]). Similarly, faithfully flat descent for morphisms, admissible open sets,
and standard properties of morphisms works out nicely in the rigid-analytic category [Con06, §4.2].

In Berkovich’s theory of k-analytic spaces, one can ask if there are similar results. The theory of flatness
in k-analytic geometry is more subtle than in the case of schemes or complex-analytic spaces, ultimately
because morphisms of k-affinoid spaces generally have non-empty relative boundary (in the sense of [Ber90,
2.5.7]). In the case of quasi-finite morphisms [Ber93, §3.1], which are maps that are finite locally on the
source and target, it is not difficult to set up a satisfactory theory of flatness [Ber93, §3.2]. A general theory
of flatness was recently developed by Ducros in a 270-page-long manuscript [Duc18]. (In fact, the original
plan of his project was to write a short appendix to the current paper on flat morphisms without boundary,
and we decided to postpone submitting our paper until the project of Ducros is completed.)

Let P be a property of morphisms that are preserved by base changes. In this paper we study twenty
such properties listed on the next page, and a very important case is the property of a morphism f : X → Y
being without boundary in the sense that for any k-affinoid W and morphism W → Y , the base change
X ×Y W is a good k-analytic space (i.e., each point has a k-affinoid neighborhood) and the morphism of
good spaces X ×Y W → W has empty relative boundary in the sense of [Ber90, p. 49]. We say that P is
local for a topology τ if for any morphism g : X → Y and a τ -covering Y ′ → Y such that the base change
Y ′ ×Y X → Y ′ satisfies P, one also has that g satisfies P. A simple example with non-admissible covers
shows that being without boundary is not local for the flat topology, but we will prove that one does have
locality for a slightly weaker Tate-flat topology.

Similarly, if Y is a k-analytic space and it has a cover Y ′ → Y without boundary such that Y ′ is good
then it is natural to expect that Y is good but this does not seem to follow easily from the definitions since
the target of a finite surjective morphism with affinoid source can be non-affinoid [Liu88].

Finally, one can also ask for analogous descent results with respect to extension of the ground field. That
is, if f : X → Y is a map of k-analytic spaces and if K/k is an arbitrary analytic field extension then we
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2 BRIAN CONRAD AND MICHAEL TEMKIN

ask if f satisfies a property P precisely when fK : XK → YK satisfies this same property. Likewise, if YK is
good then is Y good (the converse being obvious)? This latter question seems to be very non-trivial, and
in general the problem of descent through a field extension is much harder than descent through Tate-flat
covers. The purpose of this paper is to apply the theory of reduction of germs (as developed in [Tem04]) to
provide affirmative answers to all of the above descent questions.

Remark 1.1. What we are calling a morphism without boundary is called a closed morphism in [Ber93,
1.5.3(ii)] and [Tem04]. It is a non-trivial fact [Tem04, 5.6] that whether or not f : X → Y is without
boundary can be checked locally for the G-topology on Y . This locality is very useful when checking that
an abstractly constructed map is without boundary, and it is the reason that for any ground field extension
K/k the map fK is without boundary when f is without boundary. In contrast, the relative notion of good
morphism [Ber93, 1.5.3(i)] is not local for the G-topology on the base (one can construct a counterexample
using [Tem00, Rem. 1.6, Thm. 3.1]), so we do not consider it to be an interesting concept for its own sake
(although morphisms that are either proper or without boundary are good by definition).

Main results. In this paper we study descent of properties of morphisms from the following list: (i)
surjective, (ii) has zero-dimensional fibers, (iii) unramified, (iv) monomorphism, (v) G-surjective, (vi) locally
separated, (vii) boundaryless, (viii) quasi-finite, (ix) topologically separated, (x) topologically proper, (xi)
separated, (xii) proper, (xiii) finite, (xiv) closed immersion, (xv) flat, (xvi) quasi-smooth, (xvii) quasi-étale,
(xviii) étale, (xix) open immersion, (xx) isomorphism, and we will use this numeration in the sequel. See
Definitions 3.5, 3.11 and 4.2.

Any property P in the above list is stable under compositions, base changes and extensions of the ground
field. Let f : Y ′ → Y be a morphism of k-analytic spaces, and let K/k be a ground field extension. We
say that P descends or is local with respect to f (resp. K/k) if for any morphism g : X → Y such that the
base change g′ : X ′ → Y ′ (resp. the ground field extension gK : XK → YK) satisfies P, one also has that g
satisfies P. Our first main result is combined from Theorems 4.7 and 11.5, and it establishes descent of all
twenty properties with respect to arbitrary Tate-flat covers and ground field extensions:

Theorem 1.2. The above properties (i)–(xx) are local with respect to arbitrary Tate-flat covers Y → Y ′ and
ground field extensions K/k. More concretely, a morphism g : X → Y satisfies any property P from the list
if and only if the base change g′ : X ′ → Y ′ satisfies P if and only if the ground field extension gK : XK → YK
satisfies P.

In both cases, our proof heavily uses that certain properties can be expressed in terms of others. The Tate-
flat descent is (surprisingly) easier, and its main steps are as follows: (1) by essentially set-theoretic methods
we prove that monomorphisms are local for the class of all surjective morphisms, (2) by G-set-theoretic
methods (e.g., reduction of germs and birational descent) we prove that being without boundary descends
for the smaller class of all G-surjective morphisms, (3) using topological methods we prove that topological
properness descends for an even smaller class of properly surjective morphisms, (4) naturally, flatness is local
for faithfully flat morphisms. Notice also that a Tate-flat covering is a G-surjective flat covering, and by
Theorem 4.7 this is the same as a properly surjective flat covering. Furthermore, in Theorems 3.4, 3.8, 3.13,
4.6, and Examples 3.1, 3.2 and 3.3 we completely describe properties satisfying descent of each type and
here is the summary:

Theorem 1.3. Consider the properties (i)–(xx) above, then
(1) (i)–(iv) are precisely the properties local with respect to all surjective morphisms.
(2) (i)–(viii) are precisely the properties local with respect to all G-surjective morphisms.
(3) (i)–(xiv) are precisely the properties local with respect to all properly surjective morphisms.
(4)(i)–(iv) and (xv)–(xvii) are precisely the properties local with respect to all faithfully flat morphisms.

The proof of descent with respect to ground field extensions is very similar up to one significant exception:
G-surjective descent, including descent of G-surjectivity and of the boundaryless property, is much more
difficult and involves a deeper descent result for graded birational spaces. Finally, in Theorems 10.1 and
11.4 we use the same results on birational spaces to also study descent of two absolute properties of analytic
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spaces that have no relative analogs: being good and being strictly k-analytic (or, more generally, H-strict
as defined in Section 9). Here we only formulate the main result for goodness.

Theorem 1.4. Let f : Y → X be morphism of k-analytic spaces with surjective interior and let K/k be an
extension of the ground field, then

(1) If Y is good then X is good, and the converse is true if f has no boundary.
(2) X is good if and only if XK is good.

Methods and outline of the paper. In Sections 2–4 we work out the easier instances of descent, culmi-
nating in the Tate-flat one. First, we establish in §2 simple cases of descent of graded birational spaces, and
apply this to solve a question from [CT09]. Then we study in §3 set-theoretic and topological descents. The
most subtle result is descent of being without boundary, which is based on the following facts: a difficult
theorem [Tem04, 5.2] reduces this property to properness of the reduction map of birational spaces (which
is a purely G-set-theoretic condition), Lemma 2.4 establishes descent for birational spaces and Theorem 2.7
produces enough test points of X ×Y Y ′ over a compatible pair x ∈ X, y′ ∈ Y ′. Finally, in §4 we recall some
basic facts about flat morphisms introduced by Ducros, study flat topologies and related descent issues, and
accomplish the proof of Tate-flat descent. We want to stress that there are various technicalities specific
for analytic geometry. In particular, unlike algebraic geometry, most properties are not local for the flat
topology, and one has to weaken it to the Tate-flat one. On the one hand, the latter is specific for analytic
geometry, but on the other hand it has certain similarities with the classical fpqc topology, see Remark 4.3
and Theorem 4.4.

Rather more difficult is descent for the absolute properties of goodness and strict-analyticity of analytic
spaces, which we treat (under some separatedness hypotheses) in Theorem 10.1. These harder results rest
on a difficult descent theorem for graded birational spaces (Theorem 8.1) that we prove as a consequence
of a lot of work in “graded commutative algebra” in §6–§7. For example, goodness for strictly k-analytic

germs (when |k×| 6= 1) is closely related to affineness for ungraded birational spaces over the residue field k̃,
so to study descent for goodness one is led to seek an analogue of affineness in classical birational geometry.

As a warm-up, in §5 we digress to show that affineness for a birational space over k̃ is equivalent to a

certain auxiliary integral k̃-scheme of finite type having normalization that is proper over an affine algebraic

k̃-scheme. This latter property is a substitute for affineness in birational geometry, and it is a delicate fact
that this property descends through modifications: such birational invariance fails if the normalizations are
omitted, as shown by an elegant example of de Jong (Example 5.3). De Jong’s counterexample gave us
new insight into Q. Liu’s surprising examples of non-affinoid rigid spaces with affinoid normalization (see
Example 5.4), and it also inspired the intervention of integral closures in both §6 and the proof of our main
descent theorem for birational spaces (Theorem 8.1). Only while working on the revision of this paper we
discovered that varieties admitting a proper morphism to an affine variety were called semiaffine and studied
in [GL73]. In particular, descent under properness and necessity of normalization rediscovered by us are
originally due to Goodman and Landman.

Though we expect our results to be of general interest in k-analytic geometry, perhaps of greater interest
is the techniques of proof. For example, to descend properties after a field extension K/k the essential
difficulty is that if y ∈ Y = XK is a preimage of a point x on a k-analytic space X , it may freely happen that

the reduction map Ỹy → X̃x is not surjective. In particular, a priori it is even not clear if the natural map
h : XK → X is G-surjective. An additional technical complication is that the topological fibers h−1(x) are
of the form M (H (x)⊗̂kK), and these can have a rather complicated structure since the K-Banach algebra
H (x)⊗̂kK can fail to be K-affinoid. We will not try to describe such fibers in their entirety, nor their Shilov
boundary (see [Ber90, p. 36]) which may be infinite, but we will prove in Theorem 2.7 that any point of the

homogeneous spectrum of H̃ (x)⊗k̃ K̃ can be lifted to a point of M (H (x)⊗̂kK). Lifting a generic point of

the homogeneous spectrum provides a generic enough point y = xK over x for which the map Ỹy → X̃x is
surjective, see Lemma 11.1.

The latter property of xK is critical for using it as a test point: many local properties P hold at x ∈ X if
and only if they hold at xK . In particular, xK is used to prove descent of goodness in Theorem 1.4(2) (see
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Theorem 11.4). Another absolute property for which descent through a ground field extension K/k is non-
trivial and interesting is the strict analyticity property (under the necessary assumption

√|K×| = √|k×|).
We treat this in Theorem 11.4 subject to some separatedness hypotheses. Again, the argument essentially
uses a test point xK . The same strategy is also used to prove the second claim of Theorem 1.2 (see
Theorem 11.5), with the main step being descent of the property to be without boundary through ground
field extensions. Though for this application existence of a single test point is not crucial, as one could also
argue similarly to the proof of Theorem 3.8(vii).

As an interesting application of the invariance of the closed immersion property with respect to arbitrary
analytic ground field extensions we conclude the paper by carrying over to k-analytic geometry the basic
results for relatively ample line bundles in the rigid-analytic case [Con06, §3]. We do not know how to adapt
the rigid-analytic arguments of [Con06, §3] to work in the k-analytic case (especially without goodness
hypotheses), so we do not obtain a new approach to relative ampleness in rigid geometry.

Since our proofs rely extensively on the theory of reduction of germs as developed in [Tem04], we assume
that the reader is familiar with this work and we will use its terminology and notation, including the theory

of birational spaces over the R×
>0-graded field k̃ and the “graded commutative algebra” in [Tem04, §1]. As

usual in the theory of k-analytic spaces, we permit the possibility that the absolute value on k may be trivial.

A comparison with the preliminary version. A preliminary version of this paper is available since 2008
and was cited in quite a few papers, so we want to indicate the changes made in the final version. The main
change is that following a request of Tony Yue Yu we study descent for the Tate-flat topology rather than for
the flat boundaryless one. This resulted in complete rewriting of Sections 2–4 devoted to the flat descent. In
particular, descent of few new properties was included and we analyse in detail set-theoretic and topological
aspects of the descent. In addition, some material in other sections was rearranged for expository reasons,
so numeration shifted substantially.

Terminology and notation. For an abelian group G and a G-graded field k̃, by a G-graded birational space

over k̃ we mean an object X of the category birk̃ introduced in [Tem04]. Such an X consists of a G-graded

field K̃ over k̃ and a local homeomorphism X → PK̃/k̃ where X is a non-empty, connected, quasi-compact,

and quasi-separated topological space and PK̃/k̃ is the naturally topologized set of G-graded valuation rings

of K̃ containing k̃. In particular, by taking X = PK̃/k̃ we can view PK̃/k̃ as a G-graded birational space

over k̃. When the group G is understood from context, we will not mention it explicitly (and will simply
speak of “graded” objects). Note also that PK̃/k̃ is irreducible and sober (that is, the topology is T0 and

irreducible closed sets have unique generic points), hence the same necessarily holds for X .

For any extension L̃/K̃ of graded fields over k̃, restriction of graded valuation rings from L̃ to K̃ induces
a continuous map ψL̃/K̃/k̃ : PL̃/k̃ → PK̃/k̃. A morphism Y → X from the birational space Y = (Y → PL̃/k̃)

to the birational space X = (X → PK̃/k̃) is a pair consisting of a graded embedding K̃ →֒ L̃ over k̃ and a

continuous map Y → X compatible with ψL̃/K̃/k̃.

An analytic extension K/k is a field extension in which K is endowed with an absolute value that extends
the given one on k and with respect to which K is complete. If X is a k-analytic space then XK denotes the
K-analytic space X⊗̂kK. If x is a point in a k-analytic space X then we write (X, x) to denote the associated
germ (denotedXx in [Tem04]). A k-analytic spaceX is locally separated if each x ∈ X admits a neighborhood
that is a separated k-analytic domain. By [Tem04, 4.8(iii)], this happens if and only if each R×

>0-graded

birational space X̃x over the R×
>0-graded reduction k̃ is separated, that is, the map X̃x → P

H̃ (x)/k̃
is

injective.
A k-analytic map f : X → Y is without boundary (or has no boundary) if, for any k-affinoid Y ′ and

morphism Y ′ → Y , the pullback X ′ = X ×Y Y ′ is a good space and the morphism of good spaces X ′ → Y ′

has empty relative boundary. This concept is called closed in [Ber90], [Ber93], and [Tem04], but we prefer the
change in terminology to avoid confusion with the unrelated topological notion of a closed map and because
the open unit disc is without boundary over M (k) whereas the closed unit disc is not. The relative interior
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Int(X/Y ) is the open locus of points x ∈ X admitting an open neighborhood V ⊆ X such that V → Y is
without boundary; the complement ∂(X/Y ) = X− Int(X/Y ) is the relative boundary (so X → Y is without
boundary if and only if ∂(X/Y ) is empty).

Acknowledgements. We would like to thank A. Ducros for answering our questions and useful discus-
sions. Also, the second author enjoyed discussions with T. Yue Yu that urged us to extend flat descent from
the boundaryless case to general Tate-flat covers. Finally, the paper owes a lot to the anonymous referee for
pointing our a mistake in our first version of Lemma 2.4 and for valuable suggestions and simplifications. In
particular, Lemma 2.6, a simple proof of Lemma 6.11, and a few simplifications in the proof of Theorem 7.4
are due to the referee.

2. First results on birk̃ and applications

Birational spaces. The following result is not surprising since maps in birk̃ are analogous to dominant
morphisms of varieties.

Lemma 2.1. Assume that f : X → Y and g : Y → Z are maps in birk̃ with g ◦ f proper, and assume that
either g is separated or f is proper. Then both f and g are proper.

Proof. By the definition of a birational space over k̃, Z corresponds to a local homeomorphism U → PK̃/k̃

where U is a non-empty, connected, quasi-compact, and quasi-separated topological space and K̃/k̃ is an
extension of R×

>0-graded fields. We similarly have that Y and X respectively correspond to local homeomor-
phisms U ′ → PK̃′/k̃ and U ′′ → PK̃′′/k̃, and the maps f and g respectively correspond to the left and right

squares in a commutative diagram of topological spaces

U ′′ //

��

U ′

��

// U

��
PK̃′′/k̃

λ // PK̃′/k̃
// PK̃/k̃

in which the maps along the bottom row are the natural pullback maps induced by maps of graded k̃-algebras

K̃ → K̃ ′ and K̃ ′ → K̃ ′′. Properness (resp. separatedness) of g (if it holds) means that the natural map
β : U ′ → U ×P

K̃/k̃
PK̃′/k̃ is bijective (resp. injective), and the properness of g ◦ f says that the natural map

U ′′ → U ×P
K̃/k̃

PK̃′′/k̃ is bijective. This latter map factors as the composition of natural maps

U ′′ α−→ U ′ ×P
K̃′/k̃

PK̃′′/k̃

λ∗β−→ U ×P
K̃/k̃

PK̃′′/k̃

in which the second map is the topological (or set-theoretic) base change of the map β by the map λ.
The natural map λ along which we form the base change of β is surjective, due to the easy consequence

of Zorn’s Lemma that every graded local ring in a graded field F is dominated by a graded valuation ring
in F having graded fraction field F . In particular, λ∗β is bijective (resp. injective) if and only if β bijective
(resp. injective). Since f is proper if and only if α is bijective, the lemma reduces to the following obvious
set-theoretic assertion: assume that the composition λ∗β ◦ α is bijective and either λ∗β is injective or α is
bijective, then both λ∗β and α are bijective. �

The category birk̃ does not have all fiber products because tensor products of fields do not have to be
fields. We will use the following replacement, which is also motivated by [Tem04, Proposition 4.6].

Definition 2.2. Let Y = (Y → PL/k̃) and Xi = (Xi → PKi/k̃
) with i = 0, 1, 2 be four birational spaces in

birk̃. A square diagram

Y //

��

X1

��
X2

// X0
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is called quasi-Cartesian if Y = X ′
2 ×X′

0
X ′

1, where X
′
i = Xi ×P

Ki/k̃
PL/k̃.

Remark 2.3. (1) Clearly, the quasi-Cartesian diagram above is determined by Xi for i = 0, 1, 2 and the
graded field L with the embeddings Ki →֒ L. More concretely, using that limits commute with limits it is
easy to see that a diagram is quasi-Cartesian if and only if Y is the limit of the diagram obtained from the
cube

PL/k̃

��

// PK1/k̃

��

Y //❴❴❴❴❴❴❴❴❴

��✤
✤

✤

✤

✤

✤

✤

<<②
②

②
②

X1

��

<<②②②②②②②②

PK2/k̃
// PK0/k̃

X2
//

<<②②②②②②②②
X0

<<②②②②②②②②

by removing Y and the dashed arrows.
(2) Morally, the non-existing fiber product X1 ×X0 X2 should be the disjoint union of the quasi-Cartesian

diagrams with the fields Lt = k(t) parameterized by the points t ∈ SpecG(A), where A = K1 ⊗K0 K2 (recall
that the latter are the prime homogeneous ideals t ⊂ A, and k(t) = FracG(A/t)). This can be made rigorous
by considering the category of all disjoint unions of birational spaces, but we will not need this.

The following descent result is the main motivation for considering quasi-Cartesian diagrams.

Lemma 2.4. Let X = (X → PK/k̃), Y = (Y → PL/k̃) and Xi = (Xi → PKi/k̃
) with i ∈ I be birational

spaces in birk̃ and let f : Y → X and Xi → X be morphisms such that X is covered by the images of Xi. In
addition, for each i ∈ I and t ∈ SpecG(L⊗K Ki) let

Yi,t //

fi,t

��

Y

f

��
Xi // X

be a quasi-Cartesian diagram such that t is the image of SpecG(Li,t), where Yi,t = (Yi,t → PLi,t/k̃
). Then f

is proper (resp. separated) if and only if each fi is proper (resp. separated).

Proof. Only the descent statement needs a proof, so assume that each fi,t is proper (resp. separated). We
should prove that for each valuation v ∈ PL/k̃ with restriction u ∈ PK/k̃ and a point x ∈ X over u there

exists a unique (resp. at most one) point y ∈ Y mapped to x and v.
By our assumptions, there exists j ∈ I and x′ ∈ Xj sitting over x, and let u′ ∈ PKj/k̃

be the image of

x′. Now comes the main point: the pair (u′, v) can be lifted to a valuation v′ on some Lj,t (in other words,
the map

∐
tPLj,t/k̃

→ PKj/k̃
×P

K/k̃
PL/k̃ is onto). The maps PLj,t/k̃

→ Pk(t)/k̃ are surjective, hence it

suffices to lift (u′, v) to some k(t), that is, to find t such that the graded valuation rings Ou′ and Ov, viewed
as subrings of k(t) via the embeddings Kj →֒ k(t) and L →֒ k(t), are dominated by a graded valuation ring
of k(t). Moreover, it suffices to show that they are dominated by a local graded subring O ⊂ k(t), because
any such O is dominated by a graded valuation ring of k(t).

Choose a point w ∈ W = SpecG(Ou′ ⊗Ou Ov) over the closed points of SpecG(Ou′) and SpecG(Ov) – the
fiber over this pair coincides with SpecG(k(u

′)⊗k(u) k(v)) and hence is non-empty. It is easy to see that all
generic points of W are contained in W0 = SpecG(Kj ⊗K L) (for example, one can use that any torsion free
module over a graded valuation ring is flat, see Lemma 6.9). So, w possesses a generization t ∈W0 and then
the image O ⊂ k(t) of Ow is a local ring dominating Ou′ and Ov.
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Using that the diagram with Yj,t is quasi-Cartesian we obtain that the lifts of (x, v) to a point of Y are
in a one-to-one correspondence with the lifts of the pair (x′, v′) to a point of Yj,t. Since fj,t is proper (resp.
separated) there is precisely one (resp. at most one) such a lift. �

Remark 2.5. In fact, it suffices to consider only finite sets I since the maps Xi → X are open and X is
quasi-compact. Also, one can show (though we will not use this) that it suffices to consider only generic
points t. In the second part of the paper, in such a case we will say that Ki and L are in general position
in k(t) over K, see Remark 7.3(2).

Fiber spaces. Let k[T ] be the polynomial algebra in a set of indeterminates T = (Ti)i∈I . Any family r =
(ri)i∈I of positive real numbers induces a generalized Gauss norm | |r whose restriction to each k[Ti1 , . . . ,Tin ]
is the usual generalized Gauss norm with radii ri1 , . . . ,rin . In particular, | |r is multiplicative and hence
extends to k(T ). The completions of k[T ] and k(T ) with respect to | |r will be denoted k{r−1T } and kr. For
a finite I these are just the generalized Tate algebra and the completed residue field of the maximal point
of a k-polydisc of radii r1, . . . ,rn. The following result and its proof were suggested by the referee, it allows
to avoid finiteness assumptions in Theorem 2.7 below.

Lemma 2.6. The graded reduction of A = k{r−1T } is Ã = k̃[r−1T̃ ] and the reduction map π : M (A ) →
SpecG(Ã ) is surjective, where G = R×

>0.

Proof. By definition, A is the completed filtered union of its isometric subalgebras AJ = k{r−1
i Ti}i∈J with

finite subsets J ⊆ I. Therefore, Ã is the filtered union of the graded reductions ÃJ , which coincide with

k̃[r−1
i Ti]i∈J by [Tem04, Proposition 3.1(i)]. The first claim follows.

Let us show that a point x̃ ∈ X̃ := SpecG(Ã ) can be lifted to a point x ∈ X := M (A ). Choose an

extension k′/k such that there is an embedding of graded k̃-fields k(x̃) →֒ k̃′, and set A ′ = k′{r−1T }. Then
Ã ′ = k̃′[r−1T ] by the first claim, hence X̃ ′ := SpecG(Ã

′) = X̃⊗k̃ k̃′ and the fiber of X̃ ′ → X̃ over x̃ contains

a k′-point x̃′. This point is given by equalities T̃i = ãi for some homogeneous ãi ∈ k̃′ of grading ri and lifting

them to elements of k′ one obtains a k-point x′ ∈ X ′ := M (A ′) mapped by the reduction π′ : X ′ → X̃ ′ to
x̃′. It follows that the image x ∈ X of x′ is a lift of x̃. �

In order to apply Lemma 2.4 to non-archimedean spaces we will need some control on the spaces
M (K⊗̂kL) and their reductions, where K,L are non-archimedean extensions of k. Such spaces, for exam-
ple, appear as fibers of the maps XL = X⊗̂kL → X and they can be fairly complicated, see Examples 11.2
and 11.3 (these examples also discuss some properties of birational spaces, so we postpone them to §11).
Nevertheless, we have:

Theorem 2.7. Let k be a non-archimedean field with non-archimedean extensions K/k and L/k. Then

reduction induces a surjective map ψ : M (K⊗̂kL) → SpecG(K̃ ⊗k̃ L̃), where G = R×
>0.

Proof. The proof runs by establishing a series of particular cases. As a rule, we fix K and play with L, so

set X = M (K), XL = X⊗̂kL = M (K⊗̂kL) and SL̃ = SpecG(K̃ ⊗k̃ L̃). We should prove that the map

ψL : XL → SL̃ composed from the reduction map XL → X̃L = SpecG(K̃ ⊗k L) and the morphism X̃L → SL̃
is surjective.

Step 1. If suffices to prove that ψL′ is surjective, where L′/L is an extension of non-archimedean fields.

The maps ψL and ψL′ are compatible with the projections XL′ = XL⊗̂LL′ → XL and SL̃′ = SL̃⊗L̃ L̃′ → SL̃,
which are clearly surjective. In particular, the surjectivity of ψL′ implies the surjectivity of ψL.

Step 2. The assertion of the theorem holds when L = k̂a. This is the only step, in which we play with

K: by Step 1 and the symmetry between K and L we can assume that k̂a ⊆ K. Now, the points of XL

correspond to k-embeddings k̂a →֒ K, hence XL is a torsor under G = Gal(ks/k). Similarly, SL̃ is a torsor

under H = Gal(k̃s/k̃). It is easy to see that for any graded field F the separable closure F s is obtained

by taking the extension F ⊗F1 F
s
1 and extracting all roots of orders invertible in K̃ from its homogeneous

elements. It follows that the homomorphism G → H identifies H with the tame Galois group of k, in
particular, it is surjective. Therefore, the map XL → SL̃ is surjective.
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Step 3. The assertion holds when L = kr is the completed fraction field of A = k{r−1T }, where r =
(ri)i∈I . Note that M (L) is the point of D = M (A ) cut off by the conditions |f(x)| = ρA (f) for any

f ∈ A − {0}. Similarly, SpecG(L̃) is the point of D̃ = SpecG(k̃[r
−1T ]) cutoff by the conditions f̃(x) 6= 0.

Therefore, the same conditions cut off XL from D⊗̂kK and SL̃ from D̃⊗k̃ K̃. It follows that ψL is the base

change of the reduction map M (K{r−1T }) → SpecG(K̃[r−1T ]), which is surjective by Lemma 2.6.
Step 4. The assertion holds when L is the completed algebraic closure of some kr. Since φkr is surjective

by Step 3 it suffices to show that for any x ∈ Xkr with image w ∈ Sk̃r the fiber over x in XL is mapped
surjectively onto the fiber over w in SL̃. The map of this fibers is the composition

M (H (x)⊗̂krL) → SpecG(H̃ (x) ⊗k̃r L̃) → SpecG(k(w)⊗k̃r L̃).

The first map is surjective by Step 2 and the second map is surjective in the obvious way.
Step 5. The assertion holds true when L is arbitrary. By Step 1 we can assume that L is algebraically

closed. We claim that L contains a subfield isomorphic to kr whose completed algebraic closure F satisfies

F̃ = L̃. Choose any homogeneous transcendence basis T̃ = (T̃i)i∈I of L̃/k̃ and choose any lifting T = (Ti)i∈I
in L. Using the algebraic independence of T̃i over k̃ it is easy to see that the induced norm on k[T ] is the

generalized Gauss norm, and hence the closure of k(T ) in L is kr. Since L is algebraically closed, F = k̂ar also

embeds in L and clearly both F̃ and L̃ coincide with the algebraic closure of k̃r. Now we have that SF̃ = SL̃
and the map ψL is composed from the surjective map XL → XF and the map ψF , which is surjective by
Step 4. �

Remark 2.8. It seems plausible that the theorem can be strengthened to the claim that both the reduction

map XL → X̃L and the morphism f : X̃L → SL̃ are surjective. However, unlike the situation with products
of k-analytic spaces, f does not have to be integral, as follows from Example 11.3.

Properties of relative interior. The following result was recorded (under a mild restriction) in [Tem04,
5.7]. Since the proof was omitted there and we now need a more general version, we give the proof in its
entirety.

Lemma 2.9. Let ψ : X → Y and ϕ : Y → Z be morphisms of k-analytic spaces. The relative interiors
satisfy

Int(X/Y ) ∩ ψ−1(Int(Y/Z)) ⊆ Int(X/Z),

and a point x ∈ Int(X/Z) lies in Int(X/Y ) ∩ ψ−1(Int(Y/Z)) if either x ∈ Int(X/Y ) or if ϕ is separated on
an open neighborhood of ψ(x). In particular, the inclusion is an equality whenever Int(X/Y ) = X or ϕ is
locally separated.

Proof. The inclusion is [Ber93, 1.5.5(ii)], and for the reverse statement at a point x ∈ Int(X/Z) such that
ϕ is separated near ψ(x) we can replace our spaces with suitable open subspaces so that ϕ is separated.
In this case the equality is [Tem04, 5.7], but since we also want to treat the case x ∈ Int(X/Y ) without
separatedness conditions on ϕ we give the argument here for the convenience of the reader. We choose

x ∈ Int(X/Z) and let y = ψ(x) ∈ Y and z = ϕ(y) ∈ Z. Consider the induced maps ψ̃ : X̃x → Ỹy and

ϕ̃ : Ỹy → Z̃z of reductions of germs in the category birk̃ of birational spaces over the R×
>0-graded field k̃. By

[Tem04, 5.2], a morphism of k-analytic spaces has empty relative boundary near a point of the source if and
only if the induced map of reductions of germs at that point and its image is a proper map in the category
birk̃ (in the sense of properness defined in [Tem04, §2]). The condition x ∈ Int(X/Z) therefore says exactly

that ϕ̃ ◦ ψ̃ = ϕ̃ ◦ ψ is a proper map in birk̃, and the condition x ∈ Int(X/Y ) says exactly that ϕ̃ is proper.
By [Tem04, 4.8(iii)], separatedness for ϕ near ψ(x) says exactly that ϕ̃ is a separated map in the category
birk̃ (in the sense defined in [Tem04, §2]). It remains to use Lemma 2.1. �

As an immediate consequence of this lemma we obtain a result on étale equivalence relations that answers
a question that naturally arose in [CT09] (and was referenced to there as 2.2).
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Theorem 2.10. Let p1, p2 : R⇒ U be a pair of quasi-finite maps of k-analytic spaces such that

δ = (p1, p2) : R → U × U

is a quasi-compact monomorphism. If U is locally separated in the sense that each u ∈ U has a separated
open neighborhood then δ is a closed immersion.

The quasi-compactness of δ means that the inverse image of a quasi-compact domain is quasi-compact
(see also Lemma 3.9 below). The case of most interest is when the pi are étale. Recall that étale maps are
quasi-finite; cf. [Ber93, 3.1.1, 3.3.4].

Proof. Let us first show that δ has no boundary. By definition of quasi-finiteness in k-analytic geometry
[Ber93, 3.1.1], the quasi-finite maps p1 and p2 are without boundary. The first projection U × U → U is
locally separated since U is locally separated, so by Lemma 2.9 we have that Int(R/U×U) contains Int(R/U)
(taken with respect to p1 : R → U), and this latter interior is R.

Next, we claim that δ is a finite morphism of k-analytic spaces. Being a monomorphism δ is separated,
hence topologically separated and hence δ is actually compact. Recall that a proper morphism is nothing
else but a compact morphism without boundary ([Ber93, 1.5.3, 1.5.4]), so δ is proper. The fibers of δ are
discrete, hence it is finite by [Ber93, 1.5.3(iii)].

Finally, we claim that a finite monomorphism of k-analytic spaces X → Y is a closed immersion. Indeed,
by [Ber93, 1.3.7] we can assume X = M (A ) and Y = M (B) are k-affinoid, and since completed tensor
products coincide with ordinary tensor products for finite admissible morphisms of k-affinoid algebras it
follows that the corresponding map Spec(A ) → Spec(B) is a finite monomorphism of schemes. Hence, it is
a closed immersion of schemes, so the finite admissible map of k-affinoid algebras B → A is surjective, as
required. �

3. Set-theoretic and topological descent

As another application of the theory of birational spaces, we shall now establish some easier descent
results. In particular, results in graded commutative algebra in [Tem04] cover our needs in this section.

Counterexamples. In this subsection we consider three examples where certain properties do not descend
along a morphism f . This will be later used to show that our descent theorems are tight. All three examples
are constructed along the same line: one takes f to be a bijective monomorphism with some nasty properties.
The base change of f along itself is an isomorphism, and this suffices to obtain almost all no-descent results.

Our first example is specific for the analytic category. The idea is to take a non-admissible covering by
subdomains, and here is the simplest but typical example.

Example 3.1. Let Y = M (k{t}) be the closed unit disc, Y0 = Y {|t| ≥ 1} the unit annulus in Y and
Y1 = Y − Y0 the open unit disc. Then f : Y ′ = Y0

∐
Y1 → Y is a non-admissible covering and a bijective

monomorphism. The following properties are not local with respect to f : (v)–(xiv), and (xviii)–(xx). Indeed,
the base change of g = f with respect to f is an isomorphism, and this covers all above properties except
various forms of separatedness. To show that separatedness and local separatedness do not descent with
respect to f , consider the space X obtained from two copies of Y by gluing along Y0 (this is Y with doubled
open disc). Then g : X → Y is not locally separated at the maximal point of X , but Y ′ = X ×Y Y ′ is a
disjoint union of an annulus and two open discs, hence g′ : Y ′ → X ′ is even separated. Finally, the case of
topological separatedness is dealt with similarly, but this time we double the annulus Y0, that is, we define
X by gluing two copies of Y along Y1.

The other two examples have algebraic analogs and can arise from analytifications of algebraic k-schemes
as well. Our second example is obtained by “decomposing” a space into a closed subspace and its complement.

Example 3.2. LetD be the closed unit disk, D∗ = D−{0}, andD′ the disjoint unionD∗
∐{0}. The canonical

bijective monomorphism f : D′ → D is a disjoint union of an open immersion and a closed immersion. In
particular, f is boundaryless. Properties (ix)–(xx) are not local with respect to f . For all properties except
separatedness and topological separatedness, it suffices to observe that f does not satisfy them, while its



10 BRIAN CONRAD AND MICHAEL TEMKIN

base change along itself is an isomorphism. For the latter two, let X denote the non-separated gluing of D
to itself along the identity on D∗ then the canonical map g : X → D is not topologically separated but its
base change along f is separated because g has separated pullback over D∗ and over the origin.

Our last example is a classical nilpotent thickening, and, again, we consider the simplest possible case.

Example 3.3. Consider the bijective closed immersion f : X = M (k) →֒ Y = M (k[ε]/(ε2)). The base change
of f along itself is an isomorphism, hence properties (xv)–(xx) are not local with respect to f .

Surjective descent. First, we study which properties of morphisms satisfy purely set-theoretic descent.

Theorem 3.4. The following properties of morphisms g : X → Y are local with respect to the class of
surjective base change morphisms Y ′ → Y : (i) surjective, (ii) has zero-dimensional fibers, (iii) unramified,
(iv) monomorphism.

Proof. Let g′ : X ′ → Y ′ be the base change of g. Cases (i) and (ii) are obvious: if g′ is has non-empty (resp.
zero-dimensional) fibers then so does g.

(iii) If g is not unramified then the coherent OXG -module ΩXG/YG
does not vanish, and we can find a

point x ∈ X with a non-zero fiber ΩXG/YG
(x) := ΩXG/YG

⊗̂H (x). Since differentials are compatible with
base changes, this implies that for any point x′ ∈ X ′ above x the fiber ΩX′

G/Y
′

G
(x′) does not vanish too. In

particular, g′ is not unramified.
(iv) Assume that g′ is a monomorphism. Set Z = X×YX and Z ′ = X ′×Y ′X ′ and note that Z ′ = Z×XX ′,

that is, the diagonal δg′ of g
′ is the base change of the diagonal δg of g with respect to the surjective morphism

Z ′ → Z. A morphism is a monomorphism if and only if its diagonal is an isomorphism. In particular, δg′

is an isomorphism and I ′ = ker(OZ′

G
→ OX′

G
) vanishes. Thus ΩX′

G/Y
′

G
= I ′/I ′2 = 0, and using (iii) we

obtain that g is unramified. In addition, δg is surjective by (ii). Being a diagonal of a morphism, δg is a
G-locally closed immersion, that is, it is a composition of a closed immersion and embedding of a subdomain.
Therefore, δg is a surjective closed immersion, and hence the corresponding ideal I = ker(OZG → OXG) is
locally nilpotent. We already know that I/I2 = ΩXG/YG

= 0, and since I is locally nilpotent this implies
that I = 0. So, δg is an isomorphism and we are done. �

The list of properties in Theorem 3.4 cannot be increased due to Examples 3.1 and 3.2.

G-surjectivity. Example 3.1 indicates that in order to descent more properties we should better take
the G-topology into account, so we will now impose a surjectivity assumption for the G-topology. In the
case of covers by subdomains, this is precisely the condition that makes a covering admissible, ruling out
Example 3.1. In general, this condition can be defined purely topos-theoretically, but we prefer to stick to a
down-to-earth approach with points because not only G-topological spaces in analytic geometry have enough
points, but these points also possess a simple informative description.

Definition 3.5. For an analytic space X let XG denote the corresponding G-topological space considered
as a site and let |XG| denote the set of (isomorphism classes of) points of XG. We say that a morphism
f : X → Y is G-surjective if the map |XG| → |YG| is surjective.

Remark 3.6. We will prove in Theorem 9.10 that |XG| =
∐
x∈X X̃x. That proof is self-contained and we

are going to use this fact below without causing to a circular reasoning. The reason for postponing our
study of spaces |XG| to the end of §9 is expository: we will introduce H-strict G-topologies XH in §9, and
Theorem 9.10 is formulated in that generality. The case we need here is obtained by taking H = R×

>0, it
corresponds to Kedlaya’s reified adic spaces, see Remark 9.11.

Recall that for any morphism φ : (X → PL/k̃) → (Y → PK/k̃) of graded birational spaces over k̃ the

underlying topological map f : X → Y is an open map by [Duc18, Theorem 7.2.5]. In particular, (f(X) →
PK/k̃) is a birational subspace of (Y → PK/k̃) that we call the image of φ.

Lemma 3.7. Let f : X → Y be a morphism of k-analytic spaces, then the following conditions are equivalent:
(1) f is G-surjective,
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(2) ∪x∈f−1(y)Im(f̃x : X̃x → Ỹy) = Ỹy for any point y ∈ Y ,

(3) for any point y ∈ Y , there exist finitely many points xi ∈ f−1(y) such that Ỹy = ∪iIm(f̃xi).

Proof. (1)⇐⇒(2) since |XG| =
∐
x∈X X̃x, and (2)⇐⇒(3) since each Ỹy is quasi-compact. �

G-surjective descent. We next wish to discuss descent of properties of morphisms with respect to base
change along G-surjective morphisms f : Y ′ → Y . We only list properties not covered by the surjective
descent. The main case is being without boundary, which is a sort of local properness (for the same reason
the analogous notion is called partial properness in adic geometry). We will see that descent of being without
boundary can be reduced to set-theoretic issues by germ reductions (in other words, it can be dealt with by
set-theoretic methods in the G-topology).

Theorem 3.8. The following properties of morphisms g : X → Y are local with respect to G-surjective
morphisms f : Y ′ → Y : (v) G-surjective, (vi) locally separated, (vii) boundaryless, (viii) quasi-finite.

Proof. Let g′ : X ′ → Y ′ be the base change of g. Case (v) is a general property of Grothendieck topologies:
if g′ is G-surjective then the composition X ′ → Y ′ → Y is G-surjective and hence X → Y is G-surjective.

(vii) Assume that g′ is without boundary. It suffices to prove that g has no boundary at a point x ∈ X .

Set y = g(x) and choose y1, . . . ,yn ∈ f−1(y) such that Ỹy is covered by the images of Ỹ ′
yi , see Lemma 3.7.

Furthermore, by Theorem 2.7 for any t in the homogeneous spectrum W = SpecG(H̃ (x) ⊗
H̃ (y)

H̃ (yi)),

where G = R×
>0, the fiber f ′−1(x) ∩ g′−1(yi) = M (H (x) ⊗H (y) H (yi)) contains a point xi,t such that t is

the image of SpecG(H̃ (xi,t)). On the level of reductions we obtain the following diagrams

X̃ ′
xi,t

//

g̃′xi,t

��

X̃x

g̃x

��
Ỹ ′
yi

// Ỹy

which are quasi-Cartesian by [Tem04, 4.6]. By [Tem04, 5.2] the maps of birational spaces g̃′xi,t
are proper,

and using Lemma 2.4 we obtain that g̃x is proper. It remains to apply [Tem04, 5.2] once again.
(vi) One way is to copy the argument for (vii) and replace the references to [Tem04, 5.2] by references

to [Tem04, 4.8(iii)]. Instead of this, we prefer a formal argument with diagonals which also applies to other
contexts (e.g. topological properness and separatedness). Assume that g′ is locally separated. Note that a
morphism is locally separated if and only if its diagonal has no boundary. In particular, δg′ has no boundary.
Recall that δg′ is the base change of δg along X ′ ×Y ′ X ′ → X ×Y X . The latter morphism is G-surjective
because it is the base change of the G-surjective morphism Y ′ → Y along X ×Y X → Y . Thus, δg has no
boundary by (vii), and hence g is locally separated.

(viii) By [Ber93, 3.1.10], quasi-finiteness is equivalent to being without boundary and having zero-
dimensional fibers. So, this case follows from (vii) and Theorem 3.4(ii). �

The list of properties in Theorem 3.8 cannot be increased due to Example 3.2.

Properly surjective descent. In analytic geometry, properness is a combination of two properties: a
morphism is without boundary and the underlying topological map is compact. In addition, in the non-
separated case it also makes sense to look at quasi-compact morphisms. These notions turn out to be a
bit subtle and the terminology is not fixed in the literature, so let us discuss them briefly. We say that
a morphism f : X → Y of k-analytic spaces is compact (resp. quasi-compact) if for any (quasi-)compact
analytic domain V ⊆ Y the inverse image f−1(V ) is (quasi-)compact. In particular, a compact morphism is
topologically separated. If Y possesses an admissible covering by affinoid domains Yi, then any quasi-compact
domain Y ′ ⊆ Y is a finite union of affinoid domains contained in one of the Yi, hence f is (quasi-)compact
if and only if each f−1(Yi) is (quasi-)compact. In other words, these notions are local on the base.

Now let us discuss purely topological notions. We say that f is topologically (quasi-)compact if for each
(quasi-)compact subset S ⊆ Y , the preimage f−1(S) is (quasi-)compact. Recall also that a continuous map
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is called topologically proper (or proper if no ambiguity is possible) if it is universally closed. Finally, we say
that a topological space X is locally compact if any point of X has a compact neighborhood. In particular
X is locally Hausdorff, but not necessarily Hausdorff, and any k-analytic space is locally compact.

Lemma 3.9. Let f : X → Y be a morphism of k-analytic spaces.
(i) The following conditions are equivalent: (a) f is topologically proper, (b) f is topologically quasi-

compact, (c) f is quasi-compact.
(ii) The following conditions are equivalent: (a) f is topologically proper and separated, (b) f is topologi-

cally compact, (c) f is compact.

Proof. The second claim follows from the first one working locally on Y and using that if Y is Hausdorff,
then f is topologically separated if and only if X is Hausdorff. To prove (i) we note that (a) implies (b) by
[Sta, Tag:005R], and (b) obviously implies (c). Assume, now that f is quasi-compact. By [Sta, Tag:005R]
to prove that f is topologically proper it suffices to show that it is a closed map with quasi-compact fibers.

If y ∈ Y is a point, then shrinking Y we can make it compact without affecting the fiber. In this case X
is quasi-compact, hence a finite union of compact (even affinoid) domains Xi. Each compact map Xi → Y
has a compact fiber over y, hence the union f−1(y) of these fibers is quasi-compact.

Let us prove that the image of a closed set V ⊆ X is closed. It suffices to show that if Y ′ ⊆ Y is a
compact analytic domain, then f(V )∩Y ′ is closed in Y ′. Being a quasi-compact domain, X ′ = f−1(Y ′) is a
union of finitely many compact domains Y ′

i . Each intersection Vi = V ∩ Y ′
i is closed in Y ′

i , hence compact.
Thus, each f(Vi) is compact and we obtain that their union f(V )∩ Y ′ is a compact, hence closed, subset of
Y ′. �

Remark 3.10. In the definition of proper k-analytic morphisms one requires f to be topologically compact.
Perhaps, it is not immediate that this definition is local on the base when the base is not Hausdorff, but this
is so due to Lemma 3.9. In fact, we will now establish a much stronger descent claim.

Our next aim is to also ensure descent of topological properties, and as a main application we will achieve
descent of properness and finiteness. This time we want to also rule out Example 3.2, and naturally we
will have to require that a base change morphism f : Y ′ → Y is “topologically surjective” in an appropriate
sense. The most straightforward choice is to require that f is quasi-compact, but it is natural to consider,
the topology generated by such maps. This leads to the following definition:

Definition 3.11. A morphism of k-analytic spaces f : X → Y is properly surjective if every quasi-compact
domain Y ′ ⊆ Y is the image of a quasi-compact domain X ′ ⊆ X .

For example, any surjective quasi-compact map is properly surjective. In addition, if Y possesses an
admissible covering by affinoids Yi it suffices to check that each Yi is the image of a quasi-compact domain.
In particular, it follows easily that if f is surjective and topologically open then it is properly surjective.
Properly surjective maps are closed under composition, and if f ◦ g is properly surjective then f is properly
surjective. It is easy to see that any admissible covering

∐
iXi → X of a k-analytic space X by k-analytic

domains is properly surjective.
Furthermore, if f : X → Y is a properly surjective k-analytic morphism, then for any morphism g : Y ′ → Y

the base change f : X ′ → Y ′ is properly surjective. Indeed, it suffices to check that for a sufficiently fine
admissible affinoid covering Y ′ = ∪iY ′

i each Y ′
i is the image of a quasi-compact domain. Thus, we can assume

that g(Y ′
i ) is contained in an affinoid domain Yi ⊆ Y . By assumption, Yi is the image of a quasi-compact

domain, hence Yi = ∪nj=1f(Xij) for affinoid domains Xi1, . . . ,Xin in X , and we obtain that Y ′
i is the image

of the quasi-compact domain ∪nj=1Xij ×Yi Y
′
i . By a similar argument, any ground field extension functor

Z  ZK carries properly surjective k-analytic maps to properly surjective K-analytic maps.
Finally, despite an analogy between Examples 3.1 and 3.2, the relation between G-surjectivity and compact

surjectivity is completely asymmetric: on the one hand, the cover in Example 3.2 is G-surjective but not
properly surjective, but on the other hand we have the following result.

Lemma 3.12. Any properly surjective morphism f : X → Y is G-surjective.
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Proof. By Lemma 3.7 it suffices to prove that for any point y ∈ Y the reduction Ỹy is covered by the images

of the maps f̃x : X̃x → Ỹy with x ∈ f−1(y). Shrinking Y around y we can assume that Y is compact.
Then we can also replace X by a quasi-compact subdomain that maps surjectively onto Y . For any point

x ∈ f−1(y) the image of f̃x is open, hence we can fix a subdomain U = U(x) in Y such that y ∈ U and Ũy
is the image of f̃x. Set V = V (x) = f−1(U(x)). Then Ṽx = f̃−1

x (f̃x(X̃x)) = X̃x, and we obtain that V (x)
is a neighborhood of x. Since f−1(y) is quasi-compact, there exist finitely many points x1, . . . ,xn such that
V (xi) cover f

−1(y).
Using that f is quasi-compact and hence closed, it follows that for a small enough neighborhood Y ′ of

y one has that f−1(Y ′) ⊆ ∪ni=1V (xi), and hence we can replace Y and the spaces X , V (xi) by Y ′ and its
preimages. Thus, we are reduced to the case when X = ∪ni=1V (xi), and then the assertion is clear. Indeed,

Y = f(X) = ∪if(V (xi)) = ∪iU(xi), hence the reductions of U(xi) at y cover Ỹy, and it remains to recall

that the latter are the images of f̃xi . �

Now, we can work out descent with respect to properly surjective morphisms. We only list properties
that do not satisfy G-surjective descent.

Theorem 3.13. The following properties of morphisms g : X → Y are local with respect to properly surjective
base change morphisms Y ′ → Y : (ix) topologically separated, (x) topologically proper, (xi) separated, (xii)
proper, (xiii) finite, (xiv) closed immersion.

Proof. We start with (x), which is the critical new ingredient. By Lemma 3.9 we should prove that g is
quasi-compact whenever the base change g′ : X ′ → Y ′ is. For any quasi-compact domain V ⊆ Y find a
quasi-compact V ′ ⊆ Y ′ which maps onto V . Then g′−1(V ′) is quasi-compact and maps surjectively onto
g−1(V ). Hence the latter is quasi-compact too.

(ix) Similarly to the proof of Theorem 3.8(vi), stability of the properly surjective property under k-analytic
base change implies that the morphism of the diagonals X ′ ×Y ′ X ′ → X ×Y X is properly surjective. Thus,
by working with the diagonal maps and descent for topological properness we see that g is topologically
separated when g′ is topologically separated.

(xi) A morphism is separated if and only if it is topologically and locally separated. Therefore this case
follows from (ix) and Theorem 3.8(vi).

(xii) This case follows from (ix), (x) and Theorem 3.8(vii).
(xiii) A finite morphism is the same as a proper quasi-finite morphism. So, this case follows from (xi) and

Theorem 3.8(viii).
(xiv) If g′ is a closed immersion then g is at least finite. By Nakayama’s Lemma, a finite map is a

closed immersion if and only if its non-empty fibers are reduced 1-point sets corresponding to a trivial field
extension. Thus, any finite k-analytic map that becomes a closed immersion after a surjective k-analytic
base change is clearly a closed immersion. Hence, g is a closed immersion when g′ is. �

In view of Example 3.3, the list of properties in Theorem 3.13 cannot be increased.

Remark 3.14. To some extent, the properly surjective topology on the category of analytic spaces is analogous
to the h-topology on the category of schemes, and the lists of properties local or non-local for these topologies
are somewhat similar. Also, it is the analogue of Sholze’s v-topology on perfectoid spaces.

4. Flat descent

Example 3.3 shows that in order to descend more properties we have to impose a flatness assumption.
Flatness in the analytic category is a rather subtle notion recently developed in full generality by Ducros in
[Duc18], so we first recall some needed material.

Flatness in Berkovich geometry. We refer the reader to [Duc18], but note for the sake of completeness
that for quasi-finite morphisms this theory was developed by Berkovich already in [Ber93], and there was an
unpublished work by Berkovich where some results about flat morphisms between good spaces were obtained,
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including the theorem that boundaryless naively flat morphisms are flat (i.e., they are preserved under base
changes).

Let f : X → Y be a morphism between k-analytic spaces, F be a coherent OX -module, x ∈ X be a point
with y = f(x). If X and Y are good then we say that F (resp. f) is naively Y -flat at x if Fx (resp. OX,x)
is a flat OY,y-module. We say that F or f is naively Y -flat if it is so at all points of X . Unfortunately, this
definition does not make too much sense in general since the naive flatness can be destroyed after a base
change Y ′ → Y with a good source Y ′, and, even worse, one can built such examples with Y ′ → Y being an
embedding of an analytic subdomain, see [Duc18, Section 4.4]. For this reason, the only reasonable notion is
that of universal naive flatness which we will simply call flatness: we say that an f as above is flat if each its
good base change is naively flat (and similarly for coherent sheaves). By [Duc18, 4.1.7] (see also the online
erratum) flatness is of G-local nature, namely F is Y -flat at x if and only if there exists a pair of good
analytic domains U →֒ X and V →֒ Y with x ∈ U and f(U) ⊂ V and such that F |U is naively V -flat at
x, and then F |U ′ is naively V ′-flat at x for any choice of such a pair U ′, V ′. Due to the G-locality, flatness
globalizes to all morphisms of k-analytic spaces: given a morphism f : X → Y , a coherent OYG-module FG

is Y -flat at a point x ∈ X if there exist good domains U →֒ X and V →֒ Y such that x ∈ U , f(U) ⊂ V
and (FG)|U is V -flat at x. An important difficult theorem [Duc18, Theorem 8.4.3] by Ducros asserts that
for overconvergent (in particular, for boundaryless) morphisms between good spaces flatness is equivalent to
the naive one, and hence can be checked on stalks. Here a morphism X → Y is called overconvergent at a
point x ∈ X if it factors into a composition of embedding of an analytic domain X →֒ X ′ and a morphism
X ′ → Y with x ∈ Int(X ′/Y ).

Quasi-smoothness. Berkovich introduced in [Ber93] notions of étale and smooth morphisms. An étale
morphism is a flat unramified quasi-finite morphism. A smooth morphism X → Y is a morphism that
locally factors as an étale morphism X → An

Y followed by the projection. Probably the latter definition
was chosen because it minimizes the use of flatness, which was not developed in [Ber93] beyond the quasi-
finite case. However, we will see that this definition also has drawbacks. Note that smooth morphisms
are automatically boundaryless. Furthermore, Berkovich introduced quasi-étale morphisms in [Ber94] by
G-localizing the notion of étaleness on the source.

In the first version of this paper we used flatness to define G-local analogues of étaleness and smoothness,
that were called G-étaleness and G-smoothness. The first one is, in fact, equivalent to the quasi-étaleness
while the second one was a new notion. Since then Ducros introduced in [Duc18, Chapter 5] the notion of
quasi-smooth morphisms, which is equivalent to G-smoothness, and checked various properties, so we prefer
to switch to the terminology of [Duc18]. Ducros defines a quasi-smooth morphism as a morphism X → Y
that G-locally factors as a quasi-étale morphism X → An

Y followed by the projection, and shows that this is
equivalent to requiring that f is flat and has geometrically regular fibers.

Remark 4.1. A morphism is étale if and only if it is quasi-étale and boundaryless. The notion of smoothness
is somewhat problematic. Probably, it is not G-local on the base in the non-good case. In this case, there
should exist quasi-smooth and boundaryless morphisms which are not smooth (see also [Duc18, 5.4.9]). For
these reasons, we will not study descent of smoothness in this paper.

Flat topologies. We will work with two flat topologies.

Definition 4.2. (1) As in the theory of schemes, a faithfully flat morphism means a surjective flat morphism.
Such morphisms are covers of the flat topology on the category of analytic spaces.

(2) A G-surjective flat morphisms will be called G-faithfully flat or a Tate-flat covering. The corresponding
topology will be called the Tate-flat topology.

Remark 4.3. (1) The situation is somewhat analogous to the usual theory of schemes, where one has flat
topology and fpqc topology, and many descent results only hold in the fpqc topology. This similarity is
strengthened by Theorem 4.4 below. Nevertheless, the analogy is not so close because in algebraic geometry
most properties of morphisms are local for arbitrary faithfully flat morphisms.

(2) A typical example of a flat but not Tate-flat cover is a non-admissible cover by subdomains.
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The following result is highly non-trivial because its proof uses the theorem of Ducros on the images of
flat morphisms.

Theorem 4.4. Let f : X → Y be a surjective flat morphism of analytic spaces. Then f is a Tate-flat
covering if and only if it is properly surjective. In particular, if f is boundaryless then it is a Tate-flat
covering.

Proof. The inverse implication is covered by Lemma 3.12, so we should only prove that if f is G-surjective
then each compact subdomain Y ′ in Y is the image of a quasi-compact subdomain of X . Replacing Y and
X by Y ′ and f−1(Y ′), we can assume that Y = Y ′ is compact. It suffices to show that for a fixed point
y ∈ Y there exists a quasi-compact domain X ′ ⊆ X whose image is a neighborhood of y. By Lemma 3.7

there exist x1, . . . ,xn ∈ f−1(y) such that Ỹy is covered by the images of X̃xi . For each i choose a compact
domain Xi, which is a neighborhood of xi, and set X ′ = ∪iXi. By [Duc18, Theorem 9.2.1], Y ′ = f(X ′) is

an analytic domain in Y . Since Y ′
y contains the images of X̃xi, the inclusion Ỹ ′

y ⊆ Ỹy is an equality, and
hence Y ′ is a neighborhood of y by [Tem04, Theorem 4.5]. �

We will not use the following remark, so we skip its simple justification.

Remark 4.5. (1) It is easy to see that a flat covering f : X → Y is properly surjective if and only if f
locally admits a compact flat quasi-section, that is, there exists an open covering Y = ∪iYi and subdomains
Xi →֒ X such that f restricts to surjective flat compact morphisms Xi → Yi.

(2) The definition of Tate-flat topology in [Con06, Definition 4.2.1] uses property 4.4(3) with Berkovich
topology replaced by Tate topology. It is easy to see that both choices are equivalent.

(3) In addition, it follows easily that the Tate-flat topology is equivalent to the topology generated by
Berkovich topology and the topology of flat topologically proper morphisms.

Faithfully flat descent. Now, let us discuss descent with respect to flat base change morphisms. We only
list properties not satisfied by the properly surjective descent.

Theorem 4.6. The following properties of morphisms g : X → Y are local with respect to faithfully flat
morphisms Y ′ → Y : (xv) flat, (xvi) quasi-smooth, (xvii) quasi-étale.

Proof. All three properties are G-local on X and Y , hence we can assume that X , Y and Y ′ are good (or
even affinoid). For a point x ∈ X choose a preimage x′ ∈ X ′ = X ×Y Y ′ and let y′ ∈ Y ′ and y ∈ Y be
the images of x′. If the base change g′ : X ′ → Y ′ is flat then the composition X ′ → Y ′ → Y is flat, and
in particular OX′,x′ is flat over OY,y. Since OX′,x′ is flat over OX,x because flatness is preserved under base
changes, we obtain that OX,x is flat over OY,y. This proves that g is naively flat at x. To prove that g is
actually flat we must prove the same for any good base change of g, but that can be done precisely in the
same way. Descent of quasi-smoothness follows since a morphism is quasi-smooth if and only if it is flat
and has geometrically regular fibers, see [Duc18, 5.3.4(1)]. By Theorem 3.4(ii) this also implies descent of
quasi-étaleness, since a morphism is quasi-étale if and only if it is quasi-smooth and has zero-dimensional
fibers. �

In view of Example 3.1, the list of properties in Theorem 4.6 cannot be increased.

Tate-flat descent. Finally, we prove that all twenty properties from §1 satisfy Tate-flat descent. We only
list properties that do not satisfy a stronger descent – the properly surjective or the faithfully flat one.

Theorem 4.7. The following properties of morphisms g : X → Y are local with respect to faithfully flat
morphisms Y ′ → Y : (xviii) étale, (xix) open immersion, (xx) isomorphism.

Proof. Recall that g is properly surjective by Theorem 4.4. In particular, descent holds for all properties of
Theorems 3.8 and 3.13, including finiteness and quasi-finiteness. Since descent of flatness holds by Theo-
rem 4.6, it remains to make the following observations: isomorphism is a finite flat morphism whose fibers
are isomorphisms, étaleness is the same as quasi-étaleness and quasi-finiteness, and open immersions are the
same as étale monomorphisms. �
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It is more difficult to descend properties with respect to a base field extension and to descend absolute
properties (e.g., to determine if, for a surjective k-analytic morphism Y ′ → Y without boundary, Y is good
or strictly k-analytic if and only if Y ′ is). To prove these descent statements we need certain facts about
graded birational spaces and graded reductions that are not covered by [Tem04] and will be proved in §7-8,
building on some additional graded commutative algebra that we develop in §6. To motivate some of these
later considerations, we make a digression in the next section.

5. Ungraded birational descent

Descent of affineness. By [Tem04, 5.1], a k-analytic germ (X, x) is good if and only if the corresponding

(R×
>0-graded) birational space X̃x in birk̃ is affine, i.e., corresponds to an open subset P

H̃ (x)/k̃
{A} ⊆ P

H̃ (x)/k̃

for a finitely generated R×
>0-graded k̃-subalgebra A ⊆ H̃ (x). Thus, descent of goodness is related to descent

of affineness of (graded) birational spaces over a graded field. In this section we describe an elementary
approach to this descent problem for birational spaces in the special case of the trivial grading group, so
all fields, rings, birational spaces, etc., in this section are assumed to be ungraded (i.e., we take the grading
group G to be trivial). Recall from [Tem00, §1] that any graded birational space X = (X → PK/k) in the
category birk for the trivial grading group naturally “arises” from a k-map η : Spec(K) → X , where X

is an integral scheme of finite type over k and η is generic over X . (Explicitly, if X is separated then
X ⊆ PK/k is the open subset of valuations rings of K containing k and dominating the local ring of a point
on X . The general case proceeds by gluing over separated opens in X .) We call such η : Spec(K) → X

a (pointed) integral scheme model of X. For any two pointed integral scheme models ηj : Spec(K) → Xj of
X = (X → PK/k) there exists a third such Spec(K) → X with X proper over each Xj . (Actually, the
collection of all such pointed X with a fixed K/k is an inverse system and X is naturally homeomorphic to
the inverse limit of all such X .)

Given X and X as above and a pair of field extensions K/k and L/l equipped with a map K → L over a
map k → l, there is a naturally induced map ψL/l,K/k : PL/l → PK/k and one easily checks that a pointed
integral l-scheme model Spec(L) → Y of the birational space Y = X×PK/k

PL/l in the category birl is given

by taking Y to be the Zariski closure (with reduced structure) of the image of the natural composite map

η : Spec(L) → Spec(K ⊗k l) → Xl = X ⊗k l.

(Note that Xl does not have to be either irreducible or reduced, and η does not have to hit a generic point
of Xl.) If X is affine then Y is affine, since X = PK/k{f1, . . . , fn} implies that Y = PL/l{f1, . . . , fn}. It
turns out that the converse is true under the additional assumption that any algebraically independent set
over k in l is algebraically independent over K. (We will prove in Theorem 7.4(1) that this condition on L/l
and K/k is equivalent to the surjectivity of ψL/l,K/k.)

Theorem 8.1 generalizes this converse statement for an arbitrary grading group G, but in the ungraded
case it can be proved much more easily: it is a consequence of the following theorem that gives a criterion for
affineness of birational spaces in the ungraded case in terms of pointed integral scheme models. To explain
this implication, we first note that by Theorem 5.1 below affineness descends in three special cases: (1)
l = k(T ) and L = K(T ) are purely transcendental with a transcendence basis T = {Ti}i∈I , (2) l = k, (3)
L = K and l/k is algebraic. Indeed, (2) is obvious because one can take Y = Xl = X , and (3) is obvious
because L = K and ψL/l,K/k is bijective. In (1), choosing a pointed integral scheme model X we have that
Spec(L) → Y = X ⊗k k(T ) is a pointed integral model, and it is easy to see that if X ⊗k k(T ) is proper
over an affine k(T )-scheme then X is proper over an affine k-scheme. It remains to note that choosing a
transcendence basis T of l over k we obtain a factorization

ψL/l,K/k = ψK(T )/k(T ),K/k ◦ ψL/k(T ),K(T )/k(T ) ◦ ψL/l,L/k(T )

with factors of types (1), (2) and (3).
Finally, we note that Theorem 5.1 should generalize to graded birational spaces if one uses graded integral

schemes in the role of X , but a theory of graded schemes has not been developed.
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Theorem 5.1. Let X = (X → PK/k) be a birational space over a field k, and let Spec(K) → X be a pointed
integral scheme model for X. The birational space X is affine if and only if the normalization of X is proper
over an affine k-scheme of finite type.

Proof. The “if” direction easily follows from the definition of the functor (Spec(K) → X )  (X → PK/k)

in [Tem00, §1]. Indeed, the dominant point Spec(K) → X lifts to the normalization X̃ of X , and since X̃

is proper over X the pointed integral schemes Spec(K) → X̃ and Spec(K) → X correspond to isomorphic

objects in birk. We are given that X̃ is proper over an affine k-scheme X ′ of finite type, so Spec(K) → X̃

and the induced morphism Spec(K) → X ′ have isomorphic images in birk. Thus, if A ⊆ K is the finitely
generated coordinate ring of X ′ over k thenX = PK/k{A} ⊆ PK/k is affine in birk. The converse implication
follows from the next lemma and the fact that any two pointed integral scheme models for an object in birk
admit a common refinement that is proper over both of them. �

The non-trivial direction in the following result is [GL73, Theorem 2.1], but we provide our proof for
completeness. Our extensive study of graded integral closure in §6 is inspired by the role of normalizations
in the lemma. The results in §6 are the main ingredients in the proof of the key descent theorem for graded
birational spaces given in Theorem 8.1.

Lemma 5.2. Let S and S′ be irreducible and reduced schemes of finite type over a field k, and let π : S′ → S

be a proper surjection. The normalization S̃′ of S′ is proper over an affine k-scheme of finite type if and

only if the normalization S̃ of S satisfies the same property.

Proof. We can and do replace S and S′ with their normalizations. The condition that an integral k-scheme
X be proper over an affine algebraic k-scheme is equivalent to the simultaneous conditions: (1) the domain
A = OX(X) is of finite type over k, (2) the canonical k-map X → Spec(A) is proper. The nontrivial direction
is descent from S′ to S, so assume that S′ is proper over an affine algebraic k-scheme. In particular, S′ is
separated. Since π is a proper surjection it follows that ∆S has closed image, so S is separated over k. Let
A = OS(S) and A′ = OS′(S′), so A′ is a k-algebra of finite type and A is a k-subalgebra of A′. If we can
show that A′ is a finite A-module then A must be of finite type over k [AM16, 7.8], so in the commutative
square

S′ //

��

S

��
Spec(A′) // Spec(A)

the bottom and left sides are proper, the top is a proper surjection, and the right side is separated and finite
type. Hence, the right side is proper, as required.

To prove that A′ is A-finite, observe that the A-algebra A′ is identified with the global sections of the
coherent sheaf of algebras A ′ = π∗(OS′) on S. If η ∈ S is the generic point then for any section h of A ′

over a non-empty open U in S, the characteristic polynomial of hη ∈ A ′
η over OS,η = k(S) has coefficients

in OS(U) since the coherent OS-algebra A ′ is torsion-free and we can work over an affine open cover of U
in the normal scheme S. Thus, A′ is integral over A. But A′ is finitely generated as an A-algebra (it is even
of finite type over k), so A′ is finite as an A-module. �

Some examples. Though the proof of descent of affineness for birational spaces with trivial grading as
explained above is much shorter than the proof required in the general graded case in Theorem 8.1, even
in the ungraded case the argument has hidden dangers. One subtlety is that Lemma 5.2 is false without
normalizations, as was shown in [GL73, Example 2.4]. Here is another counterexample along these lines that
was suggested to us by de Jong.

Example 5.3. Assume k has characteristic 0 (!), and let S be the integral k-scheme obtained from S′ = P1×A1

by identifying the lines {0}×A1 and {1}×A1 via t 7→ t+1. In other words, replaceA1×A1 = Spec(k[x, t]) ⊆
S′ by Spec(A), where A ⊆ k[x, t] is the k-subalgebra of f ∈ k[x, t] such that f(0, t+ 1) = f(1, t). (An easy
argument in the category of locally ringed spaces shows that S has the expected universal mapping property
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in the category of k-schemes.) Since x2 − x ∈ A and t + x ∈ A, the extension A → k[x, t] is integral and
hence finite, so [AM16, 7.8] ensures that A is finitely generated over k. Hence, S is of finite type over k.
Obviously Ax2−x = k[x, t]x2−x (since (x2 − x)k[x, t] ⊆ A), so S′ is the normalization of S (in particular, S
is separated) and S′ is proper over the affine k-line, with OS′(S′) = k[t]. Thus, the global functions on S
are those h ∈ k[t] such that h(t) = h(t+ 1), so since char(k) = 0 we get OS(S) = k. Since S is not k-proper
it therefore cannot be proper over an algebraic affine k-scheme, though its normalization S′ admits such a
description.

We will later apply descent of affineness for birational spaces (in the graded case, Theorem 8.1) to prove
that the property of being a good analytic space descends through morphisms with surjective interior and
extension of the ground field. As we mentioned in the Introduction, one should be especially careful when
dealing with descent of goodness because of an example (due to Q. Liu) of a 2-dimensional separated non-
affinoid rigid spaceX (over any k with |k×| 6= 1) such thatX has an affinoid normalization. This phenomenon
has no analogue for schemes of finite type over fields. While reading Liu’s paper [Liu88], we discovered a
much simpler example of the same nature which is a very close relative of de Jong’s example above.

Naturally, one constructs X by pinching its affinoid normalization X ′. Let us recall first, how pinching
works for schemes. Assume that X′ = Spec(A′) is an affine scheme with a closed subscheme Y′ = Spec(B′)
and h : Y′ → Y = Spec(B) is a finite morphism, then there exists a pushout X = X′

∐
Y′ Y, called pinching of

X ′ along h, and it satisfies the following list of nice properties:
(1) X is affine and hence coincides with the pushout in the category of affine schemes, that is, X = Spec(A)

for A = A′ ×B′ B,
(2) The morphism f : X′ → X restricts to h over Y and induces an isomorphism X′ − Y′ ≃ X − Y. In

particular, the following squares are both Cartesian and co-Cartesian

B′ A′oooo Y′

h
��

�

� // X′

f

��
B

OO

Aoooo

OO

Y
�

� // X

and if X′ is normal and Y′ is nowhere dense, then f is the normalization morphism.
(3) In addition, the construction is universal: any base change with respect to Z → X yields another

pinching diagram.
Using (3) one can deduce a similar theory for the case when the schemes are not affine, but it is a bit

pathological and a pinching of a projective variety can be not a scheme but only an algebraic space.

Example 5.4. Let k be a non-archimedean field with a non-trivial valuation and residue characteristic zero.

We will work with reductions of k-Banach algebras in the traditional (rather than graded) sense, so now k̃
denotes the ordinary residue field of k (rather than an R×

>0-graded field as in §2 and [Tem04]).
Surprisingly it turns out that pinching in the affinoid category is not always possible, and the general

idea of Q. Liu is to construct a Cartesian diagram of rings with strictly k-affinoid A ′,B′,B, but not
affinoid k-Banach algebra A = A ′ ×B′ B. Nevertheless, in Liu’s example one constructs the pushout X of
X ′ = M (A ′) and Y = M (B) along Y ′ = M (B′) by gluing affinoid pushouts of subdomains, similarly to
non-affine pinchings of schemes. Then X is a non-affinoid space (already A = Γ(OX) is not affinoid), but
its normalization X ′ is affinoid.

B′ A ′oooo Y ′

h

��

�

� // X ′

f

��
B

φ

OO

Aoooo

ψ

OO

Y
�

� // X

In addition, in Liu’s and our examples the finite homomorphisms φ, ψ are isometric embeddings, but the

reduction homomorphism ψ̃ : Ã → Ã ′ is not finite. Then A is not affinoid, as otherwise the latter homo-

morphism has to be finite by [BGR84, 6.3.5/1]. The desired property of ψ̃ is achieved by a careful choice of φ

with a non-surjective φ̃; although the reduction functor preserves finiteness, it does not preserve surjectivity,
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see [BGR84, Example 6.3.1/2]. In particular, for the associated affine formal models the pushout datum is
already not a pinching datum.

To make our example, let A ′ = k{x, y} and B′ = A ′/(x2 − πx), where π ∈ k is a non-zero element with
r = |π| < 1. Thus, B′ ≃ k{y0}×k{yπ}, where (y0, yπ) is the image of y. In particular, X ′ is a 2-dimensional
closed unit polydisc and Y ′ is a disjoint union of two one-dimensional closed unit subdiscs D0 = {x = 0}
and Dπ = {x = π}. Also we take B = k{y} and define φ by φ(y) = (y0, yπ +1). In other words, we want to
pinch X along the morphism h, which identifies D0 and Dπ via y0 = yπ + 1.

First, let us define the pinching X . For s ∈ (0, 1] set A ′
s = A ′{s−2(x2 − πx)} and X ′

s = M (A ′
s ). Now,

fix s < r and notice that in this case X ′
s = X ′

0

∐
X ′
π consists of two disjoint polydiscs of radii (s, 1) with

a choice of coordinates (x0 = x, y0) and (xπ = x − π, yπ + 1) convenient for our purposes. Identifying
the closed subspaces D0 →֒ X ′

0 and Dπ →֒ X ′
π one obtains a pinching Xs = M (As) of X ′

s along h,
where As = M (k{s−1x0, s

−1xπ, y}/(x0xπ)). Clearly, X ′
s is the normalization of Xs. Since X ′

s → Xs is an
isomorphism on the complements to Y ′ and Y , we can past to both complements the space X ′−Y ′ obtaining
a morphism f : X ′ → X , which restricts to h and induces an isomorphism X ′ − Y ′ ≃ X − Y . Thus, f is a
required pinching and X ′ is the normalization of X . We will now prove that X is not affinoid, and other
properties will be outlined later.

Assume to the contrary that X = M (C ). Then the morphism of reductions h̃ : X̃ ′ = Spec(Ã ′) → X̃ =

Spec(C̃ ) is finite by [BGR84, 6.3.5]. Let us compare the morphisms of Ỹ ′ = D̃0

∐
D̃π to X̃ ′ and Ỹ . The first

one maps D̃0 and D̃π isomorphically onto the closed subscheme Z = Spec(k̃[ỹ]) →֒ Spec(k̃[x̃, ỹ]) by sending
ỹ to ỹ0 and ỹπ. The other one is the disjoint union of isomorphisms but this time sending ỹ to ỹ0 and ỹπ+1.

Since the compositions Ỹ ′ → X̃ ′ → X̃ and Ỹ ′ → Ỹ → X̃ coincide, we obtain that the points of Z with ỹ ∈ Z

are mapped to the same point in X̃ . Since char(k̃) = 0 this implies that h̃ has an infinite fiber and hence
cannot be finite. This completes our construction of a non-affinoid X with an affinoid normalization.

For the sake of comparison, we list a few other properties satisfied by this data, but skip detailed arguments
for shortness. First, X is indeed the pushoutX ′

∐
Y ′ Y . To prove this it suffices to show thatX ′

s

∐
Y ′ Y = Xs.

By a direct inspection As = A ′
s×B′B, hence the latter is true in the affinoid category. Moreover, this pushout

is compatible with affinoid base changes T → X and it follows easily that X ′
s

∐
Y ′ Y = Xs also in the category

of all k-analytic spaces.
In fact, the same arguments shows that even Xr is still affinoid with normalization X ′

r – the unit polydisc
of radii (r, 1). On the other hand, we proved earlier that the pushout X = X1 is not affinoid and the same
argument shows that this is so for any s > r. The conceptual explanation is very simple: the affine formal
model Spf(B′◦) → Spf((A ′

s )
◦) of the closed immersion Y ′ → Xs is a closed immersion if and only if s ≤ r.

Finally, let A = A ′×B′ B be the preimage of B in A ′ provided with the k-Banach norm induced from the
Gauss norm on A ′. Working on the level of abstract rings, it is immediate that the inclusion homomorphism

ψ : A → A ′ is finite and A ′ is the normalization of A . However, comparing the maps Ỹ ′ → X̃ ′ → Spec(Ã )

and Ỹ ′ → Ỹ → Spec(Ã ) in the same way as above, one obtains that the morphism X̃ ′ → Spec(Ã ) is not

finite. Thus, ψ̃ is not finite, and hence A is not k-affinoid by [BGR84, 6.3.5/1].

Example 5.4 is very close to de Jong’s example. In both cases a global pushout loses a good property (being
proper over an affine or being affinoid), yet it can be constructed by restricting to a subspace (A1 ×A1 →֒
P1 × A1 or X ′

r = M (k{ xπ , y}) →֒ X = M (k{x, y})) where it behaves nicely and is described by simple
explicit formulas that are the same in both examples.

6. Graded commutative algebra

Throughout §6–§8, G is an arbitrary commutative multiplicative group (that will be R×
>0 in the applica-

tions) and k is a G-graded field. We consider only G-gradings in the sequel, so G will often be omitted from
the notation. The G-grading on any graded ring A = ⊕g∈GAg will be denoted ρ :

∐
(Ag − {0}) → G. For

any nonzero A, by A× we denote the group of invertible homogeneous elements, so there is a homomorphism
ρ : A× → G whose image in case A = K is a graded field is the subgroup of G that consists of all g ∈ G
such that Kg 6= 0. We are going to prove some results about extensions of graded fields. We will see that
the theory of graded fields is similar to the classical ungraded case, and many proofs are just mild variants
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of the classical proofs. Some results on graded fields were proved in [CT09, §5.3], and the notions of a finite
extension and its degree were introduced there; recall from [Tem04, 1.2] that any graded module over a
graded field K is necessarily a free module (with a homogeneous basis), and if K → L is a map of graded
fields then its degree is defined to be the K-rank of L.

A graded domain is a non-zero graded ring A such that all nonzero homogeneous elements of A are not
zero-divisors in A, and a key example of a graded domain is the ring K[g−1

0 T ] for a graded field K and
any g0 ∈ G; this is the ring K[T ] in which K is endowed with its given grading and T is declared to be
homogeneous with grading g0. For example, if c ∈ K× with ρ(c) = g ∈ G then evaluation at c defines a
graded homomorphism of graded rings K[g−1T ] → K.

A graded ring A is graded noetherian if every homogeneous ideal in A is finitely generated, and by the
classical argument it is equivalent to say that the homogeneous ideals of A satisfy the ascending chain
condition, in which case every graded A-submodule of a finitely generated graded A-module is finitely
generated. The proof of the Hilbert basis theorem carries over, so A[g−1X ] is graded noetherian for any
g ∈ G when A is graded noetherian. In particular, if k is a graded field then any finitely generated graded
k-algebra is graded noetherian.

Some graded field theory.

Lemma 6.1. Let K be a graded field. For any g ∈ G, every nonzero homogeneous ideal I ⊆ K[g−1T ] is
principal with a unique monic homogeneous generator. Moreover, K[g−1T ]× = K× and K[g−1T ] is graded-
factorial in the sense that every monic homogeneous element in K[g−1T ] with positive degree is uniquely (up
to rearrangement) a product of monic irreducible homogeneous elements in K[g−1T ].

Proof. If f and g are nonzero homogeneous elements of A having respective leading terms aTm and bT n

with m ≤ n then a, b ∈ K× and g− a
bT

n−mf is homogeneous and either vanishes or is of degree smaller than
n, as in the usual Euclidean algorithm. In particular, it follows that I is generated by a monic homogeneous
polynomial, and such a generator is obviously unique. It follows that the maximal graded ideals of K[g−1T ]
are precisely the ideals (f) for a monic irreducible homogeneous f ∈ K[g−1T ]. Hence, K[g−1T ]/(f) is a
graded field for such f . In particular, if h ∈ K[g−1T ] is homogeneous and a given monic homogeneous f does
not divide h then αf +βh = 1 for some homogeneous α, β ∈ K[g−1T ]. We can therefore show that K[g−1T ]
is graded-factorial by copying the classical argument (working just with nonzero homogeneous elements). �

An important instance of this lemma occurs for an extension L/K of graded fields: if x ∈ L× with
ρ(x) = g ∈ G then the gradedK-algebra evaluation mapK[g−1T ] → L at x has homogeneous kernel denoted
Ix, and K[g−1T ]/Ix → L is an isomorphism onto the graded domain K[x] ⊆ L, so Ix is a graded-prime ideal
of K[g−1T ]. If Ix = 0 then we say x is transcendental over K, and otherwise Ix is a graded-maximal ideal
with K[x] therefore a graded field of finite degree over K. The case Ix 6= 0 always occurs when L has finite
degree over K (due to K-freeness of graded K-modules), and whenever Ix 6= 0 the unique monic generator
of Ix is denoted fx(T ) and is called the minimal homogeneous polynomial of x over K.

Corollary 6.2. For any graded field K and nonzero homogeneous polynomial f(T ) ∈ K[g−1T ], there exists
a finite extension L/K such that f splits completely into a product of homogeneous degree-1 polynomials in
L[g−1T ].

Proof. We may assume f is monic and we induct on degT (f). We may assume degT (f) > 0. Factoring
f(T ) as a product of irreducible monic homogeneous polynomials in K[g−1T ], we may assume f is a monic
irreducible and f(0) ∈ K×. Then K ′ = K[g−1T ]/(f) is a graded field of finite degree over K such that

f(x) = 0 for a homogeneous x ∈ K ′× with ρ(x) = g. Hence, T − x ∈ K ′[g−1T ] is homogeneous and by the
Euclidean algorithm in such graded polynomial rings we have f = (T − x)h(T ) in K ′[g−1T ] for some monic
homogeneous h ∈ K ′[g−1T ]. Since degT (h) < degT (f), we are done. �

Next, we discuss transcendental extensions of graded fields. For any extension of graded fields K/k, a
subset S ⊆ K× (with ρ(s) = gs ∈ G for each s ∈ S) is said to be algebraically independent over k if the
graded k-algebra map k[g−1

s Ts]s∈S → K defined by Ts 7→ s is injective. The following two conditions on a
subset S ⊆ K× are equivalent: (1) S is a maximal algebraically independent set over k, (2) S is minimal
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for the property that K is integral over the graded k-subfield generated by S (i.e., K is integral over the
graded fraction field of the graded k-subalgebra generated by S). In condition (2) it clearly suffices to check
integrality for elements of K×. A subset S ⊆ K× satisfying (1) and (2) is called a transcendence basis for
K/k (and such subsets clearly exist, via condition (1)). Analogously to the classical arguments, one proves
that all transcendence bases have equal cardinality, which is called the transcendence degree of K over k and
is denoted trdegk(K). Also, one shows akin to the classical case that transcendence degree is additive in
towers of graded fields. An extension K/k of graded fields has transcendence degree 0 if and only if each
x ∈ K is integral over k, in which case we say that K/k is algebraic.

As with degree for finite extensions of graded fields (studied in [CT09, 5.3.1]), the value of the transcen-
dence degree “splits” into a contribution from the extension of 1-graded parts K1/k1 (ordinary fields) and a
contribution from the extension of grading groups ρ(k×) ⊆ ρ(K×) in G. Namely, the following lemma holds.

Lemma 6.3. Let K/k be an extension of graded fields. We have

trdegk(K) = trdegk1(K1) + dimQ

(
(ρ(K×)/ρ(k×))⊗Z Q

)

in the sense of cardinalities.

Proof. Let {xi} be a transcendence basis for K1/k1 in the usual sense, and choose elements yj ∈ K× such
that the gradings ρ(yj) form a Q-basis of (ρ(K×)/ρ(k×))⊗Z Q. It suffices to show that S = {xi, yj} ⊆ K×

is a transcendence basis of K/k.
First we check that S is a transcendence set. If there is a nontrivial polynomial relation over k satisfied by

these elements then by their homogeneity we may take the relation to have homogeneous coefficients. Any
monomial cye1j1 · · · yerjr with r > 0, e1, . . . , er > 0, and c ∈ k× has grading ρ(c) ·∏ ρ(yjm)em whose image in

(ρ(K×)/ρ(k×))⊗ZQ is nonzero and uniquely determines r and the ordered r-tuple (e1, . . . , er). Thus, we can
decompose a hypothetical nontrivial homogeneous polynomial relation over k according to the y-monomial
gradings to get such a relation in which the y-contribution to each monomial in the x’s and y’s is a common
term ye1j1 · · · y

er
jr

with r ≥ 0 and em > 0 for 1 ≤ m ≤ r. This can then be cancelled, so we get a nontrivial

relation
∑
cIx

eI
I = 0 with all cI ∈ k× having a common grading. We can then scale by k× to get to the case

when all cI ∈ k×1 , contradicting that the xi’s are algebraically independent in K1 over k1 in the usual sense.
Finally, we check that K is algebraic over the graded subfield generated over k by S. Any t ∈ K× satisfies

ρ(te) = ρ(c) ·∏ ρ(yjm)em for some c ∈ k× and j1, . . . , jr with e1, . . . , er > 0 (for some r ≥ 0). Replacing t
with te/(c

∏
yemjm ) then allows us to assume t ∈ K1, so we are done by the transcendence basis property for

{xi}. �

Integral closure. It was noted in [Tem04, §1] that a non-zero graded ring A does not contain non-zero
homogeneous divisors of zero (i.e., A is a graded domain) if and only if it can be embedded into a graded
field: the unique minimal such graded field FracG(A) is obtained by localizing at the multiplicative set of all
non-zero homogeneous elements (and it has the expected universal mapping property). We call FracG(A)
the graded field of fractions of A.

For any injective graded map R → R′ between graded rings, the graded integral closure of R in R′ is

the graded R-subalgebra R̃ ⊆ R′ consisting of elements r′ ∈ R′ whose homogeneous parts are integral over
R. Note also that if r′ ∈ R′

g satisfies f(r′) = 0 for some monic f ∈ R[X ] with degree n > 0 then we may
replace nonzero coefficients of f with suitable nonzero homogeneous parts (depending on g ∈ G) to find
such an f that is homogeneous in R[g−1X ]. We say that R is integrally closed (in the graded sense) in R′ if

R̃ = R. Also, we say that a graded domain R is integrally closed if it is integrally closed in the graded sense
in FracG(R). Now, we will prove few results about integrally closed rings that will be used later.

Lemma 6.4. If L/K is an extension of graded fields, A is a graded subring of K integrally closed in K,
and x ∈ L× is integral over A with ρ(x) = g ∈ G, then the minimal homogeneous polynomial fx of x over
K is defined over A; i.e. fx(T ) ∈ A[g−1T ] ⊆ K[g−1T ].

Proof. Since x ∈ L×, minimality of d = degT (fx) forces the homogeneous fx(0) ∈ K to be nonzero with
ρ(fx(0)) = gd. Increase L so that there is a homogeneous factorization

fx(T ) = (T − x1) . . . (T − xd)
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in L[g−1T ]. Each xi is homogeneous in L with
∏
xi = ±fx(0) ∈ K×, so xi ∈ L× for all i. By homogeneity

of the factorization, ρ(xi) = ρ(T ) = g for all i. Obviously each xi ∈ L has minimal homogeneous polynomial
fx over K, so each graded subring A[xi] ⊆ L is isomorphic to A[g−1T ]/(fx) ≃ A[x] and hence each A[xi] is
finite as an A-module. Thus, the subring A[x1, . . . , xd] ⊆ L is finite over A. Since the coefficients of fx(T )
are contained in this latter ring, they are integral over A. But A is integrally closed in K in the graded sense
and the coefficients of fx are homogeneous (or zero), so fx(T ) ∈ A[g−1T ]. �

Corollary 6.5. Let L/K be an extension of graded fields and let {Ai} be a non-empty collection of graded
subrings of K that are integrally closed in K in the graded sense. If Bi denotes the graded integral closure
of Ai in L then ∩Bi coincides with the graded integral closure of ∩Ai in L.

Note that the assumption on integral closedness of Ai’s is critical for the corollary to hold.

Proof. Obviously, ∩Bi contains the integral closure of ∩Ai. Conversely, let x be a nonzero homogeneous
element of ∩Bi, with ρ(x) = g. Clearly, K[x] has finite K-rank (since x satisfies a monic homogeneous
relation over any Ai ⊆ K), and the coefficients of fx ∈ K[g−1T ] lie in each Ai by Lemma 6.4. Hence x is
integral over ∩Ai, as claimed. �

Lemma 6.6. If k is a graded field and A is a finitely generated k-algebra that is a graded domain then the
graded integral closure A of A in K = FracG(A) is finite over A (and so it is a finitely generated k-algebra).

Proof. Let k′ = FracG(k[g
−1Tg]g∈G), so k

′/k is a graded extension field with ρ(k′
×
) = G. Since k′ is a graded

localization of k[g−1Tg]g∈G, the finitely generated graded k′-algebra A′ = A ⊗k k′ is a graded localization

of the domain A[g−1Tg]g∈G. In particular, A′ is a graded domain. The graded integral closure A′ of A′ in

K ′ := FracG(A
′) contains A⊗k k′. Since k′ is a free k-module, A is a finite A-module if and only if A⊗k k′

is a finite A′-module. But A′ is a graded noetherian ring, so such finiteness holds if A′ is A′-finite. Hence,
we may replace k with k′ to reduce to the case ρ(k×) = G.

To prove that A is A-finite, it suffices (by integrality of A over A) to show that there cannot be an infinite
strictly increasing sequence of A-finite graded subalgebras in A. Since ρ(k×) = G, [Tem04, 1.1] gives that
R1 7→ k ⊗k1 R1 is an equivalence of categories between k1-algebras and graded k-algebras, and by chasing
gradings we see that a map of k1-algebras is integral if and only if the corresponding map of graded k-algebras
is integral. It is likewise clear that this equivalence respects finiteness of morphisms in both directions, and
it also respects the property of being a graded domain or being finitely generated (over k or k1) in both
directions. Hence, if there is an infinite strictly increasing sequence of A-finite graded domains over A with
the same graded fraction field as A then we get an infinite strictly increasing sequence of A1-finite graded
domains over A1 with the same ordinary fraction field as A1. But A1 is a domain finitely generated over k1,
so we have a contradiction (as the A1-finiteness of the integral closure of A1 is classical). �

Lemma 6.7. Let L/k be a graded field extension, {Aj} a collection of k-subalgebras of L, T = {Ti}i∈I ∈ L a
set of homogeneous elements algebraically independent over each Aj, and F = FracG(k[T ]). Then ∩(FAj) =
F (∩Aj).

Proof. Since FAj is the localization of Aj [T ] at the multiplicative set of nonzero homogeneous elements
of F [T ], the natural graded map Aj ⊗k F → FAj is an isomorphism of rings (and hence is a graded
isomorphism). By the same reason, (∩Aj)⊗k F ≃ F (∩Aj), and since F is a free k-module by [Tem04, 1.2],
the lemma now follows from the following lemma. �

Lemma 6.8. Let M and N be modules over a commutative ring R, with M projective over R. Let {Ni} be
a set of R-submodules of N . The inclusion (∩Ni)⊗RM ⊆ ∩(Ni ⊗RM) inside of N ⊗RM is an equality.

Proof. Since M is a direct summand of a free module, we can assume M is free. We may replace N with
N/(∩Ni), so ∩Ni = 0. In this case we want ∩(Ni ⊗RM) = 0 inside of N ⊗RM . We have M ≃ ⊕jRej, so
using linear projection to the factors reduces us to the trivial case M = R. �
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Graded valuation rings. Recall that a graded domain O is called a graded valuation ring if for any non-
zero homogeneous element f ∈ FracG(A), at least one of the elements f, f−1 lies in A. As in the classical
case, a graded valuation ring Ov of a graded field K gives rise to a graded valuation | |v : K× → H = K×/O×

augmented by |0|v = 0, the divisibility relation induces an ordered group structure on H and | |v satisfies the
strong triangle inequality on elements of the same grading. Our next aim is to extend some results about
valuation rings to the graded setting.

Lemma 6.9. Let M be a graded module over a graded valuation ring O, and assume M is torsion-free in
the graded sense, which is to say that for each nonzero homogeneous a ∈ O, the self-map m 7→ am of the
O-module M is injective. Then M is O-flat, and if M is finitely generated it admits a homogeneous basis.

Proof. By consideration of direct limits we may assume thatM is finitely generated. Let K = FracG(O), and
let V = K ⊗O M . The natural map M → V is injective, and V admits a finite homogeneous K-basis. We
prove the existence of a homogeneous basis of M by induction on the K-rank of V (which we may assume
to be positive). If the K-rank is 1 then by shifting the grading on M we can assume that V = K as graded
K-modules and that M is a finitely generated graded ideal in O ⊆ K. Hence, this case is settled since O is a
graded valuation ring. If the K-rank n is larger than 1, let L ⊆ V be the graded K-submodule spanned by a
member of a homogeneous K-basis of V , so the image M ′′ of M in V/L admits a homogeneous O-basis. In
particular, M ′′ splits off as a graded direct summand of M , so M ∩ L is identified with a complement and
thus is also finitely generated over O. By the settled rank-1 case we are done. �

Theorem 6.10. Let K ′/K be an integral extension of graded fields and let O be a graded valuation ring of
K. Let O′ denote the integral closure of O in K ′. Each graded prime ideal m′ of O′ over mO is a graded
maximal ideal and the graded localization O′

m′ is a graded valuation ring, with O′
m′ ∩ O′ = m′. Every graded

valuation ring of K ′ dominating O arises in this way.

Proof. The maximality of m′ reduces to the fact that a graded domain that is integral over a graded field
F must be a graded field, the proof of which goes almost exactly as in the classical ungraded case (by using
integrality to reduce to considering a graded domain that is finitely generated over F as a graded F -module,
for which there is a homogeneous F -basis). As for the description of the graded valuation rings extending
O, in the ungraded case this is [ZS60, Thm. 12, §7] and its corollaries. The method of proof there (including
the proof of [ZS60, §5, Lemma]) adapts nearly verbatim to the graded case, due to the fact [Tem04, 1.4(i)]
(where the ground field k plays no role) that the integral closure of O in K ′ is the intersection of all graded
valuation rings of K ′ containing O. �

Finally, we later need the following result.

Lemma 6.11. Let B be an integrally closed graded domain, T = {Ti}i∈I a set of variables and g = {gi}i∈I a
set of elements of G (where some gi’s may be equal). The G-graded Laurent polynomial ring B[g−1T, gT−1]
is an integrally closed graded domain.

Proof. Since B[g−1T, gT−1] is a filtered union of its Laurent subalgebras in finitely many variables, we may
assume that I = {1, . . . , n}. By induction on the number of variables we can furthermore assume n = 1, so
in the sequel T is a single variable.

Consider the graded fraction field K = FracG(B). First, let us establish the case when B = K. By
Lemma 6.1K[g−1T ] is graded-factorial, hence the same is true for its homogeneous localizationK[g−1T, gT−1].
It remains to note that the usual argument shows that any graded-factorial graded domain A is integrally
closed: if a, b are homogeneous in A and b ∤ a, then dividing by the gcd we can assume that (a, b) = 1, and
in the latter case there exists a prime p such that p|b and p ∤ a. Using such a p one easily sees that a/b does
not satisfy a monic polynomial equation over A, and hence A is integrally closed.

The above case reduces our task to proving the following claim: if a Laurent polynomial f =
∑
i aiT

i ∈
K[g−1T, gT−1] is integral over B[g−1T, gT−1], then each ai lies in B. Furthermore, B is the intersection of
the graded valuation rings Ov ⊆ K containing it, hence B[g−1T, gT−1] = ∩vOv[g−1T, gT−1] and it suffices
to prove that ai ∈ Ov for each v. This reduces us to the case when B = Ov is a graded valuation ring.
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Let | |v be the graded valuation on K corresponding to Ov and let | |w be its Gauss extension to
K[g−1T, gT−1], that is, |∑i aiT

i|w = maxi |ai|v. Obviously, it is multiplicative and hence extends to a
valuation on FracG(K[g−1T, gT−1]) with a graded valuation ring Ow. Note that f is integral over Ow be-
cause B[g−1T, gT−1] ⊆ Ow. But Ow is integrally closed, hence f ∈ Ow and by the definition of | |w we obtain
that |ai|v ≤ 1 for any i. The latter means that ai ∈ B, as required. �

Corollary 6.12. Let L/k be a graded field extension, A ⊆ L an integrally closed graded k-subalgebra,
T = {Ti}i∈I ∈ L a set of homogeneous elements algebraically independent over A, and F = FracG(k[T ]).
Then the graded subring FA ⊆ L generated by F and A is integrally closed.

Proof. Obviously F is the graded fraction field of its graded subring B generated by k and the elements
T±1
i , so F coincides with the graded localization ring BR, where R is the set of non-zero homogeneous

elements of B. It follows that FA = CR, where C is the graded algebra generated by A and the elements
T±1
i . Since graded integral closedness is preserved by graded localization (similarly to the ungraded case),

it suffices to prove that C is integrally closed. Now, it remains to notice that by our assumption on Ti’s,
C ≃ A[g−1S, gS−1], where g = {ρ(Ti)}i∈I and S = {Si}i∈I is a corresponding set of graded indeterminates.
Hence, the corollary follows from Lemma 6.11. �

7. The category birG

The absolute birational category. In the sequel, we will have to simultaneously consider several G-
graded birational spaces with different G-graded ground fields. Here is a key example of a natural map
between birational spaces with different fields of definition. Assume that χ : l ⊗k K → L is a homogeneous
homomorphism, where k, l,K, L are G-graded fields. Then a commutative diagrams of G-graded fields arises

l // L

k

OO

// K

OO

and restriction of graded valuation rings induces a continuous map ψL/l,K/k : PL/l → PK/k. We do not
include the diagram or the homomorphism χ in the notation ψL/l,K/k because it will always be clear from the
context. Note that ψL/l,K/k is the composition of the obvious topological embedding ψL/l,L/k : PL/l →֒ PL/k
and the natural map ψL/K/k : PL/k → PK/k of birational spaces over k. The maps ψL/l,K/k were used in
[Tem04, 5.3] to establish a connection between reduction of germs of the analytic spaces X over k and
XK = X⊗̂kK over K. A deeper study of these maps in this and the next sections will be used later to prove
that certain properties of analytic spaces (e.g. goodness) descend from XK to X .

We now introduce the category bir = birG of all G-graded birational spaces. On the level of objects, bir
is just the disjoint union of all categories birl. A morphism f : Y → X of birational spaces corresponding
to respective local homeomorphisms Y → PL/l and X → PK/k is a pair of compatible graded embeddings
k →֒ l and K →֒ L and a continuous map Y → X compatible with ψL/l,K/k. We naturally extend the
properties of objects and morphisms that were defined in [Tem04, §2]:

Definition 7.1. In the category birG of birational spaces over G-graded fields, Y = (Y → PL/l) is affine if
Y maps bijectively onto an affine subset of PL/l, a morphism (Y → PL/l) → (X → PK/k) is separated if the
natural map φ : Y → X ×PK/k

PL/l is injective, and such a morphism is proper if φ is bijective and ψL/l,K/k
is onto.

Furthermore, we say that X = (X → PK/k) is separated (resp. proper) if X → PK/k is injective (resp.
bijective), which is to say that the canonical morphism X → PK/k in bir is separated (resp. proper).

Lemma 7.2. For birational spaces Z = (Z → PM/m), Y = (Y → PL/l), and X = (X → PK/k) and
morphisms h : Z → Y, g : Y → X, and f = g ◦ h, the following properties hold.

(1) If g and h are separated, then f is separated.
(2) If f is separated then h is separated.
(3) If g and h are proper, then f is proper.
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(4) If f and h are proper, then g is proper.
(5) If f is proper, g is separated, and ψM/m,L/l is surjective (e.g., m = l) then h is proper.
(6) If f is separated and h is proper then g is separated.

Proof. The proof is based on the same set-theoretic argument as we used in the proof of Lemma 2.9. Consider
the following diagram

Z
γ→Y ×PL/l

PM/m
β′

→X ×PK/k
PM/m

where β′ is the base change by ψM/m,L/l of the natural map β : Y → X×PK/k
PL/l. Separatedness/properness

of f , g, and h are related to injectivity/bijectivity of the maps α := β′ ◦ γ, β, and γ respectively. In (1), we
are given that β and γ are injective. Hence the base change β′ is injective, and so α is also injective, proving
(1). Obviously, injectivity of α implies injectivity of γ, thus proving (2). In (3), we are given that the maps
ψM/m,L/l and ψL/l,K/k are surjective, hence their composition ψM/m,K/k is also surjective. Also, since β
and γ are bijective, so are β′ and α in this case. In particular, f is proper. In (4), we deduce bijectivity
of β′ from the bijectivity of α and γ. Since ψM/m,L/l is surjective by the properness of h, the bijectivity of
β′ implies bijectivity of β. Thus, g is proper. It remains to establish (5) and (6). In either case the map
ψM/m,L/l is surjective, so g is separated if and only if β′ is injective. Thus, (5) is the obvious claim that γ
is bijective when α is bijective and β′ is injective, and (6) is the obvious claim that β′ is injective when α is
injective and γ is bijective. �

Surjectivity of ψ. We, now, turn to studying the maps ψL/l,K/k. Our main goal is to describe when
such a map is surjective, since such surjectivity is an ingredient of our definition of properness in birG.
For this we will need the following notion: assume that L/k is a graded field extension and l,K ⊆ L are
two graded subfields containing k. We say that l and K are in general position with respect to k if for
any pair of graded subfields l′ ⊆ l and K ′ ⊆ K containing k and finitely generated over it, the equality
trdegk(l

′K ′) = trdegk(l
′) + trdegk(K

′) holds. It will be convenient to express this condition in the following
asymmetric form: l and K are in general position if and only if any algebraically independent set over k in l×

is algebraically independent over K. Moreover, it suffices to check this condition for a single transcendence
basis for l over k, and if trdegk(l) <∞ this happens if and only if the inequality trdegK(lK) ≤ trdegl(k) is
an equality.

Remark 7.3. (1) For l and K to be in general position it is insufficient to assume the weaker condition that
l ∩ K is algebraic over k. For example, in the ungraded case there are infinite subgroups Γ ⊆ PGL2(k)
generated by a finite collection of non-trivial elements γ1, . . . , γn with finite order (using n = 2 if char(k) = 0
and n = 3 otherwise), so there exists a pair of finite subgroups H1, H2 ⊆ PGL2(k) that generate an infinite
group. Thus, L = k(t) is a finite Galois extension of rational subfields l = k(t)H1 = k(x1) and K = k(t)H2 =
k(x2), yet l ∩K = k.

(2) It is easy to see that for any extensions l/k, K/k there exist k-embeddings of l and K into a graded
k-field L such that l and K are in general position in l over k. For example can take L to be the algebraic
closure of a field whose transcendence basis over k is the union of transcendence bases of l and K. Also,
decreasing L we can achieve that L = lK.

(3) In fact, one can show that l andK are in general position if and only if the kernel of the homomorphism
l ⊗k K → L is a minimal homogeneous prime ideal, or, that is equivalent, the image of SpecG(L) in
SpecG(l ⊗k L) is a generic point. In the ungraded case, this is a simple exercise on the dimension theory of
varieties, and the graded case is dealt with similarly.

Theorem 7.4. Assume that L is a graded field with graded subfields l, K and k ⊆ l ∩K, and consider the
map associated map ψL/l,K/k. Then,

(1) ψL/l,K/k is surjective if and only if l and K are in general position with respect to k.
(2) ψL/l,K/k has finite fibers (resp. is injective) if the extension L/K is finite (resp. trivial);

(3) ψL/l,K/k is bijective if l/k is algebraic, L1 = K1, and ρ(L
×)/ρ(K×) is a torsion group.

Proof. We start with the third claim. Note that any element of L× is a power of an element of K×. Hence
any graded valuation ring O in PK/k uniquely extends to an element O′ of PL/k via the following rule: f is
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a homogeneous element of O′ if and only if fn ∈ O for some n > 0. This proves that PL/k = PK/k. Choose
an element O′ ∈ PL/k. Since l is algebraic over k and O is integrally closed in L in the graded sense, we
obtain that l ⊆ O, and hence PL/l = PL/k.

The second claim follows from the fact that any graded valuation ring O on K admits at most [L : K]
extensions to a graded valuation ring on L. To prove this fact, we adapt the classical ungraded argument.

By Theorem 6.10, it is equivalent to check that the graded integral closure Õ of O in L has at most [L : K]
graded prime ideals over the graded maximal ideal of O. For this it suffices to show that each graded O-
subalgebra R ⊆ L that is O-finite and spans L over K has at most [L : K] graded prime ideals dominating
the graded maximal ideal of O. The O-module R is free by Lemma 6.9 so the graded algebra R/mOR over
the graded residue field O/mO is a free module of rank [L : K]. We are therefore reduced to checking that
if F is a graded field and A is a graded finite F -algebra whose underlying F -module has rank n then A
has at most n graded prime ideals. Note that all such graded prime ideals are maximal, since a graded
domain of finite rank over F is necessarily a graded field. Thus, if F ′/F is any graded extension field and
A′ = A⊗F F ′ then SpecG(A

′) maps onto SpecG(A), so it suffices to treat the pair (A′, F ′). By choosing F ′

such that ρ(F ′×) = G (e.g., the graded fraction field of the graded polynomial ring F [g−1Tg]g∈G) we can
thereby reduce to the case that each homogeneous nonzero a ∈ A satisfies ρ(a) ∈ ρ(F×). Consequently, by
[Tem04, 1.1(ii)] the natural map F ⊗F1 A1 → A is an isomorphism and the operation I 7→ I ∩ A1 identifies
the ideal theory of A with that of A1 respecting primality. Since A1 is of rank n over the ordinary field F1,
we are reduced to the obvious classical case.

The first claim is the most difficult one. Assume the fields are not in general position. Then there exists a
finite subset t = {t1, . . . ,tn} ∈ K× which is algebraically independent over k and is algebraically dependent
over l. Choose linearly independent elements r1, . . . ,rn ∈ R×

>0 and extend the trivial valuation on k to

k(t) as the generalized Gauss valuation such that |ti| = ri (thus a homogeneous element
∑
j∈J ajt

j with

non-zero aj ’s is of valuation maxj∈J r
j). Extending this valuation from k(t) to K in an arbitrary way yields

an element | | ∈ PK/k, which is easily seen to be not in the image of ψL/l,K/k. Indeed, otherwise | | can be
extended to a valuation on L trivial on l, which restricts to a valuation on l(t)/l violating the Abhyankar
inequality: (|l(t)×|/|l×|) ⊗Q = |l(t)×| ⊗Q is of dimension at least n, while trdegl(l(t)) < n. The classical
proof of Abhyankar’s inequality (for example, see [Tem10, Lemma 2.1.2]) applies in this case without changes,
though it even suffices to check the particular case that t1, . . . ,tn are algebraically independent over l because
|t1|, . . . ,|tn| are linearly independent over |l×| = 1. So we skip details.

Let us prove the converse implication. Assume that l and K are in general position over k. Choose
a transcendence basis T = {Ti} of l over k, so T ⊆ L× is algebraically independent over K. For l0 =
FracG(k[T ]) ⊆ L we have ψL/l,K/k = ψL/l0,K/k ◦ ψL/l,L/l0 , and ψL/l,L/l0 is bijective by (3). Thus, by
replacing l with l0 we can assume that l = FracG(k[T ]) with T an algebraically independent set over K.
The inclusion of graded subfields k ⊆ K ∩ l in K must be an equality, since any x ∈ (K ∩ l)× not in k is
transcendental over k (from the explicit description of l) yet is also visibly algebraic over K.

We can now lift a graded valuation ring O ∈ PK/k to an element of PL/l, as follows. Consider the

corresponding valuation | | on K. By our assumption K[g−1T ] with g = ρ(T ) is a graded polynomial
subalgebra of L, hence the Gauss valuation provides an extension of | | to K(T ) := Frac(K[g−1T ]) such that
|k×| = 1 and |Ti| = 1. It follows that this valuation on K(T ) restricts to the trivial valuation on l, hence
extending it from K(T ) to L in an arbitrary way, we obtain a lift of | | to an element of PL/l. �

H-strict birational spaces. We conclude this section with a brief discussion of H-strictness of birational
spaces. Let X correspond to X → PK/k and let H ⊇ ρ(k×) be a subgroup of G. Then X is called H-strict if
it admits a proper morphism to a birational space XH = (XH → PKH/k), where KH denotes the G-graded
subfield KH := ⊕g∈HKg ⊆ K over k. Thus, a separated X is H-strict if and only if the corresponding open
subset of PK/k is the exact preimage of its image in PKH/k. It is proved in [Tem04, 2.6, 2.7] that for any
H-strict X, the space XH and the proper morphism X → XH are unique up to unique isomorphism. A
given X is H-strict if and only if it admits an H-strict structure, which is an open covering of X by H-strict
separated subspaces whose pairwise intersections are also H-strict. (This corresponds to choosing an open
covering of XH and forming its preimage in X.) By the uniqueness up to unique isomorphism, any two
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H-strict structures on X are equivalent in the sense that the pairwise intersections among their members are
H-strict.

Remark 7.5. Unfortunately, a simple criterion of H-strictness is missing. Given a birational space X corre-
sponding to X → PK/k let Sn denote the set of all points of PK/k that have precisely n preimages in X .
Clearly, Sn form a stratification of PK/k, and it is easy to see that each Sn is constructible, i.e. it is an
element of the boolean algebra generated by open quasi-compact subsets of PK/k. If X is H-strict then each
Sn is H-strict, i.e. it is the preimage of a constructible subset of PKH/k. We do not know the answer to
the natural question if the converse is also true, but the positive answer would provide a nice criterion of
H-strictness. Currently, it is only available in the trivial case when X is separated and so Sn = ∅ for n > 1.

8. Descent for birational spaces

We study descent on G-graded birational spaces in this section, and later our results will be applied via
the reduction functor to study descent on analytic spaces.

Theorem 8.1. Let Y = (h : Y → PL/l) and X = (g : X → PK/k) be two birational spaces equipped with a
proper morphism f : Y → X and let P be any of the following properties of objects in bir: separated, affine,
separated and H-strict for ρ(l×) ⊆ H ⊆ G. Then Y satisfies P if and only if X satisfies P.

It seems probable that H-strictness descends without the separatedness assumption, but it is not clear
how to attack this problem. If the answer to the question in Remark 7.5 is positive then our proof below
extends to the non-separated case straightforwardly.

Proof. Only the descent implications (from Y to X) require a proof. Descent of separatedness is purely set-
theoretic: given that Y = X×PK/k

PL/l, so h is the base change of g under the surjective map PL/l → PK/k,

clearly g is injective if (and only if) h is.
We switch now to descent of H-strictness in the separated case. Consider the commutative diagram

PL/l //

��

PK/k

��
PLH/l

// PKH/k

in which the bottom side is surjective since the top and right sides are surjective. We claim that the natural
map ψ : PL/l → PK/k×PKH/k

PLH/l is surjective. Choose graded valuation rings O′, O, and O′′ corresponding
to compatible points in PK/k, PKH/k, and PLH/l respectively. The natural graded map K ⊗KH LH → L is
clearly injective (by consideration of graded parts). Moreover, the natural map O′ ⊗O O′′ → K ⊗KH LH is
injective because K⊗KH LH = K⊗OLH and O → O′′ and O → K are flat (Lemma 6.9). The corresponding
tensor product of graded residue fields is nonzero, so by choosing a graded prime ideal of this latter tensor
product we get a graded prime ideal P of O′ ⊗O O′′ that dominates mO′ , mO, and mO′′ . The graded
localization (O′ ⊗O O′′)P is a graded-local subring of L that contains l, so it is dominated by a graded
valuation ring R ∈ PL/l. Clearly ψ(R) = (O′,O′′), establishing the surjectivity of ψ.

Since Y is assumed to be separated, X is separated by descent of separatedness. Thus, we can identify X

with an open subspace X in PK/k. If X is not H-strict then we can find two points x ∈ X and x′ ∈ PK/k−X
sitting over a point xH ∈ PKH/k. Choose yH ∈ PLH/l over xH , so by surjectivity of ψ we can find points
y, y′ ∈ PL/l sitting over (yH , x) and (yH , x

′), respectively. Then y ∈ Y and y′ /∈ Y , but their images in
PLH/l coincide. Thus, Y is not H-strict. This establishes descent of H-strictness in the separated case.

The deepest and most useful property is being affine, and dealing with it makes use of much of the
preliminary work done in §6. Assume that Y is affine, so we can identify Y with an affine subset of PL/l, and
we can identify X with a subset of PK/k using the established descent of separatedness. The first step is to
reduce to the case when the extensions K/k and L/l are finitely generated. Choose a finite open covering
of the quasi-compact X by open affine subsets Xi = PK/k{Ai} with each Ai a finitely generated graded
k-subalgebra of K. Let K0 be the graded subfield of K generated by the Ai’s. Clearly X is the preimage of
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an open set X0 ⊆ PK0/k, so X is affine if X0 is affine. The natural morphism X → X0 is proper, so it induces
a proper morphism Y → X0. We can therefore replace X with X0, achieving that K/k is finitely generated.
At this stage we may and do rechoose the affine sets Xi’s so that K is the graded fraction field of each Ai.
(This is done by choosing a finite set of elements t1, . . . , tn ∈ K× such that K = FracG(k[t1, . . . , tn]) and
adjoining to the Ai’s various homogeneous elements tǫ11 , . . . , t

ǫn
n with ǫj = ±1.) Moreover, we can replace

each Ai with its graded integral closure Ai in K because this procedure does not affect Xi and Ai is finitely
generated over k by Lemma 6.6.

Similarly, Y is the preimage in PL/l of an affine subset Y0 ⊆ PL0/l for a finitely generated subextension
L0/l, so by replacing L0 with the composite L0K (which is also finitely generated over l) we achieve that the
morphism Y → X factors through Y0, and by Lemma 7.2(4) the resulting morphism Y0 → X is necessarily
proper. Thus, we can assume that L/l is finitely generated as well, and then by finiteness of graded integral
closures (Lemma 6.6) we have Y = PL/l{B} for an integrally closed finitely generated graded l-subalgebra
B of L (but FracG(B) can be smaller than L).

Next, we choose any transcendence basis {Tj}j∈J of l over k, and let l0 be the graded subfield of l generated
by k and the Tj ’s. Since l is algebraic over l0, the map ψL/l,L/l0 : PL/l → PL/l0 is a bijection by Theorem

7.4(3). Moreover, if B = l[b1, . . . , bm] with homogeneous b1, . . . , bm ∈ L× then the image of Y in PL/l0 is the
affine set Y0 = PL/l0{b1, . . . , bm}. We again get a natural proper morphism Y0 → X, so once again we can
replace Y with Y0, this time achieving that l is purely transcendental over k.

Note that the Tj’s are algebraically independent over K because of Theorem 7.4(1), so Corollary 6.12
applies to the Ai’s and l, giving that the graded rings lAi are integrally closed and have a common graded
fraction field FracG(lK). If Bi denotes the integral closure of lAi in L then ∩Bi is the integral closure
of ∩lAi in L by Corollary 6.5. Now we make a few observations: Yi = PL/l{Bi} is the preimage of Xi
in PL/l; B = ∩Bi because B is an integrally closed graded l-subalgebra and Y = PL/l(B) is equal to
∪Yi = ∪PL/k(Bi) ⊆ PL/l(∩Bi) (so B = ∩O∈YO ⊆ ∩O∈YiO = Bi for all i, and the containment B ⊆ ∩Bi is
an equality due to integrality of ∩Bi over B that follows from PL/l(B) lying in PL/l(∩Bi)); by Lemma 6.7,
∩lAi = lA for A := ∩Ai. Summarizing this, we obtain that B is integral over lA.

We have to be careful when working with A = ∩Ai: it could a priori happen (without taking Y into
account) that A is not finitely generated over k (e.g., for ungraded k one can construct such an example
using that there exists a k-variety X with H0(X,OX) not a finitely generated k-algebra). However, since the
graded l-subalgebra B in L is finitely generated, we can find a finitely generated graded k-subalgebra A0 ⊆ A
such that the integral closure of A0 in L contains B, hence coincides with it. Thus, Y = PL/l{B} is the
preimage in PL/l of PK/k{A0}, so we must have X = PK/k{A0} by the surjectivity of the map PL/l → PK/k
(in particular A, which is the integral closure of A0 in K, is finitely generated over k). �

9. H-strict analytic spaces

In principle, the material of this section should have been given in [Tem04], in particular, it is logically
independent of §2–§8. Note also that H-strict spaces were first introduced in the first version of this paper,
so we decided to keep this section despite the fact that nowadays most of its results are also proved in [Duc18,
Chapter 3]. From now on and until the end of the paper, we consider only R×

>0-gradings and H denotes a

subgroup of R×
>0 that contains |k×|.

Separated H-strict spaces. We say that a k-affinoid algebra A is H-strict if the spectral radius of any its
element either vanishes or belongs to the group

√
H . This is equivalent to either of the following conditions:

(1) there exists an admissible epimorphism k{r−1
1 T1, . . . , r

−1
n Tn}։ A with r1, . . . , rn ∈ H ; (2) there exists

an admissible epimorphism k{r−1
1 T1, . . . , r

−1
n Tn}։ A with r1, . . . , rn ∈ √

H . Obviously (1) implies (2), and
that (2) implies H-strictness is well-known for strictly k-affinoid algebras (i.e., H ⊆ √|k×|). The general
case is reduced to this one by making a ground field extension K/k so that |K×| contains all ri’s. Conversely,
H-strictness implies (2) because any admissible epimorphism k{r−1T }։ A with Ti 7→ ai ∈ A where ai has
spectral radius si factors through an admissible epimorphism k{s−1T }։ A . Finally, to see that (2) implies
(1), given (2) with rNi = hi ∈ H and Ti 7→ ai ∈ A we get a finite admissible map k{h−1X} ։ A with
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Xi 7→ aNi . Since proper affinoid maps are finite (admissible) maps, we then easily deduce (1) via integrality
and properness considerations.

A k-affinoid space X = M (A ) is called H-strict if the k-affinoid algebra A is H-strict. Then for any
point x ∈ X , H-strict affinoid neighborhoods of x form a basis of its neighborhoods provided that H 6= 1.
Note that H-strictness is inherited by direct products and closed subspaces, so the intersection of finitely
many H-strict affinoid domains in any separated k-analytic space is H-strict. Also, an affinoid space X is
H-strict if and only if it admits a finite covering by H-strict affinoids Xi because ρX = maxi(ρXi). Thus,
the following definition makes sense: a separated k-analytic space is H-strict if it admits a covering (for the
G-topology on k-analytic spaces) by H-strict affinoid domains. As in the affinoid case, a finite intersection
of H-strict analytic domains in a separated k-analytic space is H-strict.

Lemma 9.1. Let H ⊆ R×
>0 be a non-trivial subgroup containing |k×|. A point x in a separated k-analytic

space W has an H-strict (resp. H-strict affinoid) neighborhood W ′ if and only if the reduction W̃x is an
H-strict (resp. H-strict affine) birational space.

Remark 9.2. The inverse implication of the lemma is false if H is trivial, but the following weaker version
still holds: if U is separated and H-strict and x ∈ U is a point, then any H-strict open birational subspace

W̃ ⊆ Ũx can be obtained as the reduction at x of an H-strict k-analytic domain W ⊆ U containing x. This
is proved similarly to the lemma, and one has only to modify the direct analysis in the affine case.

Proof. We start with the direct implications. Assume first that x has an H-strict affinoid neighborhood W ′.
So, W ′ = M (A ) and there exists an admissible epimorphism k{r−1

1 T1, . . . , r
−1
n Tn} ։ A with ri ∈ H . We

have that W̃x = W̃ ′
x = P

H̃ (x)/k̃
{f̃1, . . . , f̃n} by [Tem04, §4], where f̃i is the image of fi in H̃ (x) in degree

ri, so for each i either f̃i vanishes or ρ(f̃i) = ri ∈ H . We conclude that W̃x is H-strict affine, as stated.
In general, if x possesses an H-strict neighborhood W ′ then we cover W ′ by H-strict affinoid domains

Wi and note that the reduction of each Wi at x is H-strict by the above case. These reductions provide an

H-strict covering of the separated graded birational space W̃x, hence we obtain that W̃x is H-strict.

To prove the converse implications we, again, start with the affine case, so assume that W̃x is H-strict and
affine. By [Tem04, 5.1], x possesses an affinoid neighborhood W ′′ = M (A ). Fix an admissible epimorphism
k{r−1

1 T1, . . . , r
−1
n Tn} ։ A satisfying Ti 7→ fi ∈ A , and without loss of generality assume that ri ∈

√
H if

and only if i > m for some m. Then W̃x = W̃ ′′
x = P

H̃ (x)/k̃
{f̃1, . . . , f̃n}, where f̃i ∈ H̃ (x) is the image of fi

in degree ri, so each f̃i either vanishes or satisfies ρ(f̃i) = ri ∈
√
H by H-strictness of W̃x. (We use that if

f̃i 6= 0 then the H-strictness implies that f̃i is integral over the H-graded field H̃ (x)H , and if n is the degree

of the minimal homogeneous polynomial for f̃i over H̃ (x)H then the constant term of this polynomial is

nonzero with grading rni , and hence rni ∈ H .) It follows that f̃i = 0 for 1 ≤ i ≤ m; i.e. ri > |fi(x)| for
those i. Since H 6= 1,

√
H is dense in R×

>0. Thus, for each 1 ≤ i ≤ m there exist si ∈ √
H such that

ri > si > |fi(x)|. Then W ′ =W ′′{s−1
1 f1, . . . , s

−1
m fm} is an H-strict affinoid neighborhood of x, as required.

Finally, if W̃x is H-strict then we cover it by H-strict affine subspaces W̃1, . . . , W̃n ⊆ W̃x. By the affine

case, each W̃i is the reduction at x of an H-strict affinoid domainWi, and it remains to note that the H-strict
domain W ′ = ∪ni=1Wi is a neighborhood of x by [Tem04, 4.5]. �

H-strict structures. Recall that k-analytic spaces are defined using a topological notion of nets, see [Ber93,
§1.1]. In general (for possibly non-separated k-analytic spaces), H-strictness may not be preserved by
intersections of separated H-strict k-analytic domains, so we are led to the following definition in case H 6= 1:
by anH-strict structure on an arbitrary k-analytic spaceX we mean a net {Xi} of compact separatedH-strict
k-analytic domains. (The stronger condition that Xi’s are k-affinoid leads to an equivalent definition.) We
say that two H-strict structures {Xi}i∈I and {X ′

j}j∈J are equivalent if their union is an H-strict structure.
This condition is equivalent to all intersections Xi ∩X ′

j (which are separated but possibly non-compact k-

analytic domains in X) being H-strict. This really is an equivalence relation: if {X ′′
l }l∈L is a third H-strict

structure on X with each X ′
j ∩ X ′′

l also H-strict then for each pair (i, l) the separated k-analytic space
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Xi ∩X ′′
l is covered by the H-strict overlaps Xi ∩X ′

j ∩X ′′
l = (Xi ∩X ′

j) ∩ (X ′
j ∩X ′′

l ) in the H-strict spaces
X ′
j for varying j.

Remark 9.3. Let H ⊆ R×
>0 be a non-trivial subgroup containing |k×|.

(1) The notion of H-strictness depends only on the group
√
H .

(2) If H ⊆ √|k×| then H-strictness is the usual k-analytic strictness.
(3) Berkovich defined in [Ber93, §1.2] a general notion of Φ-analytic space, where Φ is a (suitable) family of

k-affinoid spaces. His definition was mainly motivated by the case of strictly k-analytic spaces, but one checks
immediately that, more generally, the class ΦH of all H-strict k-affinoid spaces satisfies the conditions (1)–
(5) of loc.cit., and the corresponding ΦH -analytic spaces are exactly the k-analytic spaces with an H-strict
structure.

Remark 9.4. (1) We exclude the case H = 1, which can only happen for trivially-valued k, because 1-strict
affinoids do not satisfy the density condition from [Ber93, §1], so they do not form a net in the sense of
[Ber93, §1.1]. (Briefly, the trivial group

√
H is too small to provide a sufficiently large collection of positive

real numbers in the definition of H-strict k-analytic subdomains.) However, one can weaken our definition by
removing the density condition in the definition of a net. The resulting definition of H-strictness then makes
sense and becomes the usual notion of strict k-analyticity from [Ber93, 1.2] in the case of a trivially-valued
field k.

(2) The case of H = 1 seems to be much less important. For completeness, we will indicate in remarks
which results hold true in this case, and which modifications in the proofs are required.

(3) One can, more generally, define H-strictness for any submonoid H ⊆ R×
>0 containing |k×|. We do not

study this case because some basic results are proved in [Tem04] only when H is a group. However, it seems
very probable that every result stated for a group H (resp. a non-trivial group H) holds true for submonoids
(resp. submonoids with an element r < 1).

Theorem 9.5. Let H ⊆ R×
>0 be a non-trivial subgroup containing |k×|. If a k-analytic space X admits an

H-strict structure then the intersection of any two separated H-strict k-analytic domains (not assumed to be
compatible with the structure on X) is H-strict. In particular, all H-strict structures on X are equivalent
and the maximal such structure consists of all compact separated H-strict k-analytic domains.

Using Remark 9.2, this theorem and its proof can be extended to the case H = 1.

Proof. Given separated H-strict k-analytic domains U and V in X , we have to prove that W = U ∩ V is

H-strict, and by Lemma 9.1 this reduces to showing that W̃x is H-strict for a point x ∈ W . By the same

lemma, the reductions Ũx and Ṽx are H-strict and the H-strict structure {Xj}j∈J on X induces an H-strict

structure {(̃Xj)x}j∈J on X̃x. Since X̃x is H-strict, [Tem04, 2.7] asserts that H-strictness of its subspaces is

preserved by intersections, and hence W̃x = Ũx ∩ Ṽx is H-strict. �

Theorem 9.5 excludes any ambiguity from the following definition for any (possibly trivial) subgroup
H ⊆ R×

>0 containing |k×|: a k-analytic space is H-strict if it admits an H-strict structure.

H-strict germs. If H 6= 1 then a germ (X, x) is called H-strict if x admits an H-strict neighborhood in X .
(The latter definition makes no sense for trivial H since in that case the existence of such a neighborhood
does not imply the existence of a base of such neighborhoods, so the concept is not intrinsic to the germ
(X, x).) Now, since the notion of an H-strict germ is defined, we can generalize Lemma 9.1 as follows.

Theorem 9.6. Fix a non-trivial subgroup H ⊆ R×
>0 containing |k×|, then

(1) A k-analytic space X is H-strict if and only if the germ (X, x) is H-strict for any x ∈ X.

(2) A germ (X, x) is H-strict if and only if its reduction X̃x is H-strict.

The theorem is of local nature, so it does not make sense for the trivial H .

Proof. We start with (2). We saw in the proof of Theorem 9.5 that an H-strict germ has an H-strict

reduction, so now assume that X̃x is H-strict. Find a finite covering of (X, x) by separated germs (Xi, x)
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such that their reductions X̃i ⊆ X̃x are H-strict (one finds such a covering of X̃x and then lifts it to the
germ). By [Tem04, 4.8] we can shrink each Xi to make them separated. Set Xij = Xi ∩ Xj, so each germ

(Xij , x) has H-strict reduction X̃i ∩ X̃j , and by Lemma 9.1 we can find an open X ′
ij ⊆ Xij around x that

is H-strict. Again using Lemma 9.1, we can shrink the Xi’s once again so that all Xi’s are H-strict and
Xi ∩Xj ⊆ X ′

ij for any choice of i, j.
We claim that X ′ = ∪Xi is an H-strict neighborhood of x. Only H-strictness needs a proof, and by

definition it suffices to check that each Xi ∩ Xj is H-strict. Notice that by the construction Xi ∪ X ′
ij is

separated, so H-strictness is inherited by the intersection Xi ∩X ′
ij . By similar reasoning, Xi ∩X ′

ij ∩Xj is
H-strict, but we have chosen Xi’s so that the latter intersection is just Xi ∩Xj.

Now, let us prove (1). The direct implication is obvious, so assume that all germs are H-strict. Then
X can be covered by H-strict domains, so we should only prove that if U, V ⊆ X are separated H-strict

domains then the intersection W = U ∩ V is H-strict. For any point x ∈W , the reduction W̃x = Ũx ∩ Ṽx is

H-strict by the H-strictness of X̃x, Ũx and Ṽx. So, (2) implies that the germ (W,x) is H-strict, that is, x
possesses an H-strict neighborhood inside W . Since W is separated, this implies that it is H-strict. �

Finally, for any (possibly trivial) subgroup H ⊆ R×
>0 containing |k×|, one can define a suitable notion

of morphism to make a category of H-strict k-analytic spaces similar to the category of strictly k-analytic
spaces. One possibility for H 6= 1 is to apply Berkovich’s definition of morphism of Φ-analytic spaces with
Φ = ΦH being the class of all H-strict k-affinoid spaces. We prefer a more ad hoc equivalent definition
(which has the merit of “working” for H = 1 as well): an H-strict morphism Y → X between H-strict
k-analytic spaces is a k-analytic morphism for which the preimage of any H-strict k-analytic subdomain of
X is H-strict in Y . Note that in case H = 1 this recovers the notion of a strictly k-analytic morphism for a
trivially-valued field.

Theorem 9.7. If H ⊆ R×
>0 is a subgroup containing |k×| then the subcategory of H-strict k-analytic spaces

with H-strict analytic morphisms is full in the category of all k-analytic spaces.

The particular case H = |k×| (including the case H = 1) was proved in [Tem04, 4.10]. That proof applies
verbatim to the more general situation in Theorem 9.7 as soon as one replaces strict analyticity (i.e., |k×|-
strictness) with H-strictness. The special case H = 1 for good k-analytic spaces is a part of GAGA over a
trivially-valued field [Ber90, 3.5.1(v)].

H-graded reduction and H-strict G-topology. In view of Theorem 9.7, when working within the cate-
gory of H-strict analytic spaces it is natural to provide each H-strict analytic space X with the G-topology
of H-strict analytic subdomains. We call the latter the H-strict G-topology and denote the associated G-
topological space by XH . In particular, the usual G-topological space XG coincides with XH for H = R×

>0.
We will freely view XH as a Grothendieck category. By a point of XH we mean a prime filter of H-strict
subdomains of X as defined in [vdPS95, p. 83, (p1)–(p3),(p4)’]. Intuitively, these are all domains ”contain-
ing” the point. Conditions (p1)–(p3) define a filter; they are standard. The last condition means that if V
is in the filter and V = ∪iVi is a Tate covering then at least one Vi is in the filter. This is a subtle condition
making use of the G-topology. We will not need this, but it is easy to see that this definition agrees with
the classical one from [sga72], i.e., there is a one-to-one correspondence between the set of points of XH and
the set of isomorphism classes of points of the topos associated with XH .

By |XH | we denote the set of all points of XH topologized as follows. For any H-strict analytic subdomain
V ⊆ X one can identify |VH | with the subset of |XH | consisting of points x such that V ∈ x. In particular,
if U is another H-strict subdomain then |(U ∩ V )H | = |UH | ∩ |VH | and we obtain that the sets |WH |, where
W runs through all H-strict subdomains, form a topology base for |XH |. We call |XH | the topological
realization of XH , and our next aim is to describe it in terms of germ reductions.

Remark 9.8. In fact, |XH | is the topological realization of the topos of XH as defined in [sga72]. In addition,
it follows easily from Deligne’s theorem (see [Tem16, §2.2] for details) that the topoi of XH and |XH | are
canonically equivalent. Thus, it is safe and often natural to work with |XH | instead of XH . It is deduced

from Deligne’s theorem in [Tem16, §2.2] that |XH | = ∐
x (̃X, x)H , but we will give below an elementary
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direct proof of this fact, not using Deligne’s theorem. The fact that XH has enough points will be obtained
as a corollary.

If X is an H-strict analytic space and x ∈ X is a point then X̃x is an H-strict birational space with

associated graded field H̃ (x), hence it is the pullback of a uniquely defined birational space with associated

graded field H̃ (x)H = ⊕g∈HH̃ (x)g. We denote this latter space (̃X, x)H and call it the H-graded reduction

of the germ (X, x). Note that this reduction can be constructed directly from (X, x) as follows: if (X, x) is

good we can assume that X is an H-strict k-affinoid space, say X = M (A ), and we define (̃X, x)H to be

the affine birational space associated with the image of the H-graded reduction ÃH = ⊕g∈HÃg in H̃ (x)H .
In general, the reduction is defined through gluing.

Theorem 9.9. Assume that X is an H-strict k-analytic space and x ∈ X is a point. Then the H-graded
reduction functor establishes a one-to-one correspondence between the H-strict subdomains of (X, x) and

H-graded birational subspaces of (̃X, x)H .

Proof. By [Tem04, Theorem 4.5], this is true when H = R×
>0. The general case follows since a subdomain

of (X, x) is H-strict if and only if its reduction is H-strict, see Theorem 9.6(2). �

For any H-strict analytic space X consider the set X̂H :=
∐
x∈X (̃X, x)H , and topologize X̂H as follows.

For any H-strict analytic subdomain V ⊆ X we can identify V̂H with a subset of X̂H , and if U is another

H-strict subdomain and W = U ∩V then ŴH = ÛH ∩ V̂H because the germ reduction functor is compatible

with finite intersections. In particular, the sets ŴH with W running through all H-strict subdomains of X
form a topology base.

Given a point (x ∈ X, y ∈ (̃X, x)H) of X̂H consider the set Fx of all subdomains W ⊆ X such that x ∈W

and y ∈ (̃W,x)H . It is easy to see that Fx is a prime filter and hence we obtain a map φX : X̂H → |XH |.
Theorem 9.10. Assume that X is an H-strict k-analytic space, then

(1) For any point x ∈ X, the map (̃X, x)H →֒ X̂H is a topological embeddings.

(2) The topological space X̂H is sober.

(3) The map φX : X̂H → |XH | is a homeomorphism.

(4) The inclusion X →֒ X̂H induces equivalence of the topoi associated with XH and X̂H . In particular,
XH has enough points.

Proof. (1) The topology X̂H induces on (̃X, x)H is generated by the sets Ŵx∩ (̃X, x)H = W̃x, where W runs

through the H-strict domains containing x. By Theorem 9.9, it coincides with the topology of (̃X, x)H .

(2) Assume that Z is an irreducible closed subset in X̂H . We should prove that it has a single generic
point. Assume first that Z contains points (x, y) and (x′, y′) with x 6= x′. Let U and V be disjoint open

neighborhoods of x and x′ in X . Then T = X̂H − V̂H and T ′ = X̂H − ÛH are closed subsets of X̂H such that

T ∪ T ′ = X̂H , (x, y) ∈ T and (x′, y′) ∈ T ′. Therefore, Z ∩ T and Z ∩ T ′ are non-empty closed sets whose

union is Z, and this contradicts the irreducibility of Z. This proves that Z ⊂ (̃X, x)H for a single x ∈ X ,

and it remains to use that the space (̃X, x)H is sober as was recalled in the Terminology and notation.
(3) First, we claim that a family {Xi}i∈I of H-strict subdomains of X form a Tate covering of X if and

only if ∪i∈I (̂Xi)H = X̂H . Indeed, if they form a Tate covering then for any x ∈ X there exists a finite subset

J ⊆ I such that x ∈ ∩i∈JXi and ∪i∈JXi is a neighborhood of x. In this case, ∪i∈J (̃Xi, x)H = (̃X, x)H
and therefore the spaces (̂Xi)H with i ∈ I cover X̂H . Conversely, assume that (̂Xi)H cover X̂H . For any

point x ∈ X we have that ∪i∈I (̃Xi, x)H = (̃X, x)H and by the quasi-compactness of (̃X, x)H , we already

have that ∪i∈J (̃Xi, x)H = (̃X, x)H for a finite subset J ⊆ I. But then ∪i∈JXi form a neighborhood of x by
Theorem 9.9, and we obtain that Xi form a Tate covering.
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Next, we claim that φX is a bijection. Since X̂H is sober, its points are the prime filters of open subsets

of X̂H . So, we should show that prime filters F on XH correspond to prime filters F̂ on X̂H . The sets of

the form ŴH , where W runs through H-strict analytic domains, form a base of topology of X̂H . Therefore,

each F̂ is determined by all sets ŴH it contains, and using that Tate coverings in XH correspond to the

usual coverings in X̂H , we obtain the bijective correspondence of filters.

Finally, the topologies of X̂H and |XH | are generated by the bases {ŴH} and {|WH |}, where W runs
through H-strict analytic domains, hence the bijection φX is a homeomorphism.

(4) By the definition, the category XH is cofinal in the category of open subsets of X̂H . We have shown

above that the coverings in XH and X̂H are the same, i.e. the Grothendieck topologies agree. It follows
immediately, that the topoi are naturally equivalent. �

Remark 9.11. In the extreme cases one obtains the following spaces: if H =
√
|k×| then X is strictly analytic

and |XH | is (the topological space of) the Huber’s adic space, see [Hub94], corresponding to X , if G = R×
>0

then |XG| is the reified adic space of Kedlaya, see [Ked15].

10. Applications to boundaryless descent

As a first application of the theory of graded birational spaces we can now handle descent of goodness
and H-strictness (allowing the case H = 1) through morphisms with surjective interior.

Theorem 10.1. Let f : X → Y be a surjective k-analytic morphism without boundary , and let H ⊆ R×
>0

be a subgroup containing |k×|. The following properties hold for Y if and only if they hold for X: (i) good,
(ii) locally separated, (iii) locally separated and H-strict, (iv) locally separated and strictly k-analytic.

Proof. We start with (i). The very definition of a morphism being without boundary includes the requirement
that the fiber product X ×Y Z is good whenever Z is good, so in particular if Y is good and f is without
boundary then it is a tautology that X is good. For the more interesting descent claim, we can assume that
X is good. To prove that Y admits a k-affinoid neighborhood around an arbitrary y ∈ Y , first choose x ∈ X

over y. By [Tem04, 5.2] the reduction morphism X̃x → Ỹy is proper in birk̃, so by Theorem 8.1 the birational

space X̃x is affine if and only if Ỹy is so. But goodness for the germ (X, x) is equivalent to affineness for the

birational space X̃x by [Tem04, 5.1], and similarly for (Y, y) and Ỹy, so we are done.
It now suffices to deal with (iii), since (ii) and (iv) are the extreme special cases H = R×

>0 and H = |k×|,
respectively. First we assume that H is non-trivial, so Theorem 9.6 may be invoked. For each x ∈ X the

map X̃x → Ỹf(x) in birk̃ is proper by [Tem04, 5.2], so in particular it is separated. Hence, by [Tem04, 4.8(iii)]
the map f is separated near x, so if Y is locally separated then so is X . If in addition Y is H-strict then

Ỹf(x) is H-strict by Theorem 9.6, yet X̃x = Ỹf(x) ×P ˜H (f(x))/k̃
P

H̃ (x)/k̃
(by properness) so X̃x is H-strict too.

Hence, by Theorem 9.6(2) we deduce that (X, x) is H-strict, and then X itself is H-strict by part (1) of the
same theorem.

For the converse when H 6= 1, we assume that X is locally separated and H-strict, and we wish to deduce
the same two properties for Y . As above, Theorem 9.6(1) implies that our problem is intrinsic to each germ

(Y, y) for y ∈ Y . Pick x ∈ X over such a y. Once again the reduction morphism X̃x → Ỹy is proper in birk̃
and X̃x is H-strict and separated. The H-strictness and separatedness of the germ (Y, y) is equivalent to

H-strictness and separatedness of the birational space Ỹy (again using Theorem 9.6 for the H-strictness),

and this pair of properties is inherited from X̃x by Theorem 8.1. Once again, taking H = |k×| settles the
case of strict k-analyticity when k is not trivially-valued.

To handle the case H = 1 (so k is trivially-valued and H-strictness means strict k-analyticity), the above
arguments permit us to restrict attention to the case when X and Y are separated. To move the property of
strict k-analyticity between Y and X , we can use the preceding arguments by replacing Theorem 9.6 with
Remark 9.2. �

Theorem 10.1 immediately implies the following slightly more general claim.
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Corollary 10.2. The direct implications in Theorem 10.1 hold whenever f is only assumed to be a morphism
with a surjective interior.

Proof. If X satisfies one of the properties (i)–(iv), then its open subspace Int(X/Y ) satisfies them too and
we can apply Theorem 10.1 to the surjective boundaryless morphism Int(X/Y ) → Y . �

11. Descent with respect to extensions of the ground field

The main problem with descent through a ground field extension K/k are issues related to G-surjectivity,
and the main obstacle can be easily pointed at: it is not clear at all that the maps XK = X⊗̂kK → X are
G-surjective. We will first prove a key lemma that settles the problem, and then apply it to construct the
descent.

Test points. The most straightforward attempt to prove G-surjectivity of h : Y = XK → X is for any point

x ∈ X to choose a lift y ∈ Y and consider the map h̃y : Ỹy → X̃x. Surprisingly, it often happens that h̃y is

not proper: although Ỹy → P
H̃ (y)/K̃

is the set-theoretic base change of X̃x → P
H̃ (x)/k̃

by [Tem04, 5.3], the

map ψy = ψ
H̃ (y)/K̃,H̃ (x)/k̃

does not have to be surjective. So, our main task is to show that there always

exists a lift y = xK of x such that ψy is onto, and by Theorem 7.4(1) this amounts to taking y so that H̃ (y)
is “generic enough”. Naturally, such points xK will later be used to descent properties: we will see that X
satisfies a property P at x if and only if XK satisfies P at xK , while the descent may fail for other points
of h−1(x). Unlike the descent results of §3 based on a family of quasi-Cartesian diagrams, this time it is
critical to use a single test point xK , but its existence follows easily from what we have already proved.

Lemma 11.1. Let X be a k-analytic space with a point x, K/k an analytic field extension, and Y = X⊗̂kK.
Then,

(1) There exists a point y ∈ Y over x such that the graded subfields H̃ (x) and K̃ of H̃ (y) are in general

position over k̃.

(2) For any point y as in (1), the induced morphism Ỹy → X̃x is proper in bir
R

×

>0
.

(3) The map h : Y → X is G-surjective.

Proof. (1) By Remark 7.3(2) there exists a point t ∈ SpecG(H̃ (x)⊗k̃ K̃) such that the images of H̃ (x) and

K̃ in k(t) are in general position over k̃. By Theorem 2.7, t possesses a lift y in M (H (x)⊗̂kK) = h−1(x).

(2) The map ψ
H̃ (y)/H̃ (x),K̃/k̃

is surjective by Theorem 7.4(1) and Ỹy → P
H̃ (y)/K̃

is the base change of

X̃x → P
H̃ (x)/k̃

by [Tem04, 5.3].

(3) For any x ∈ X find y as in (1) and use that Ỹy → X̃x is onto by (2). �

It sounds plausible that in the strictly analytic caseH =
√
|k×| the analogue of claim (iii) for |YH | → |XH |

can be easily established using adic spaces, but we could not find such a result in the literature. Let us also
give two typical examples of the fiber h−1(x), which show that it can be rather complicated.

Example 11.2. Let X = M (k{r−1T }) be a closed disc of radius r > 0, let x be its maximal point (cor-
responding to the spectral norm on k{r−1T }), and let K = H (x). The relative boundary ∂(X/M (k))
consists of the single point x, and the relative boundary of XK = M (K{r−1T }) over M (K) consists of a
single point xK lying over x. The fiber Z of XK over x is isomorphic to M (K⊗̂kK), so it has many points
in general. For example, if r /∈ √|k×| then K = k{r−1T } and Z is isomorphic to a closed disc over K, but
if r = 1 then Z is large but not K-affinoid: as a subset of the closed unit K-disc it is “not defined over
k”. In both cases xK is a point of the fiber over x that is “as generic as possible” and one can easily check

that ψxK is proper. For any other choice of y ∈ h−1(x), the space Ỹy is proper while X̃x is not. In view of

Lemma 7.2(4), h̃y is not proper and hence ψy is not surjective.

Example 11.3. Let X = M (k{r−1T }) be a disc. Assume for simplicity that k is algebraically closed and let
x ∈ X a point of type 4 (see [Ber90, §1]) equal to the intersection of closed discs whose radii tend to some
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s from above. (The arithmetic of the field H (x) depends on whether or not s ∈ √|k×|.) Let K = H (x)
over k. It is easy to see that H (x)⊗̂kK ≃ K{s−1S} for S = T ⊗ 1 − 1 ⊗ T , so the fiber of XK over x is

a disc over K. Note that the graded residue fields k̃ and K̃ = H̃ (x) are isomorphic, but the graded field

(H (x)⊗̂kK)∼ is not algebraic over k̃.

Properties of spaces. Now, we will use the points constructed in Corollary 11.1 to descend properties of
analytic spaces.

Theorem 11.4. Let K/k be an analytic field extension and H ⊆ R×
>0 any (possibly trivial) subgroup

containing |K×|. A k-analytic space X is good (resp. H-strict and locally separated) if and only if the
K-analytic space XK is good (resp. H-strict and locally separated). In particular, if |K×|/|k×| is a torsion
group then X is strictly k-analytic and locally separated if and only if XK is strictly K-analytic and locally
separated.

Proof. Let P be the property of being good (resp. H-strict and locally separated) and P̃ be the property of an
R×
>0-graded birational space being affine (resp. H-strict and separated). If X satisfies P then XK obviously

satisfies P too. Conversely, assume that X does not satisfy P locally at a point x. By Corollary 11.1, we

can find a preimage y ∈ Y := XK of x so that Ỹy → X̃x is proper. By Theorem 8.1, Ỹy satisfies P̃ if and

only if X̃x does. Also, by [Tem04, 4.8(iii), 5.1] for local separatedness and goodness and Theorem 9.6 (which

requires H 6= 1) for H-strictness, X (resp. Y ) satisfies P locally at x (resp. y) if and only if X̃x (resp. Ỹy)

satisfies P̃, at least if we require H 6= 1. Hence, assuming H 6= 1, X satisfies P at x if and only if Y satisfies
P at y, and since we assumed that X is non-P at x we conclude that XK is non-P at y, so XK does not
satisfy P. Taking H = |k×| settles the case of strict analyticity when k is not trivially-valued and |K×|/|k×|
is a torsion group.

It remains to show that if K is trivially-valued and XK is strictly K-analytic and locally separated then
X is strictly k-analytic and locally separated. The preceding argument with local separatedness shows that
X is locally separated, so we can assume X is separated. We may then replace Theorem 9.6 with Remark 9.2
to carry over the above argument in the case of trivially-valued k and K. �

Properties of morphisms. Finally, we use a similar technique to descend properties of morphisms.

Theorem 11.5. Let K/k be an analytic field extension, let g : X → Y be a morphism of k-analytic spaces,
and let gK : XK → YK be the induced K-analytic morphism. Each of the properties (i)–(xx) from the
Introduction holds for g if and only if it holds for gK.

Proof. The argument closely copies the proof of Tate-flat descent in Theorem 4.7 and only the G-set-theoretic
block (v)–(viii) requires a (substantial) additional effort. Let us first briefly indicate the easier arguments.
To avoid subscripts, it will be convenient to denote gK also by g′ : X ′ → Y ′.

One descends properties (i)–(iv) similarly to the proof of Theorem 3.4. This time one uses that the
map YK → Y is surjective and diagonals and differentials are compatible with the ground field extension:
ΩXG/YG

⊗̂kK = ΩX′

G/Y
′

G
and δg′ = (δg)K .

One descends properties (ix)–(xiv) similarly to the proof of Theorem 3.13. This time one uses the obvious
fact that the map XK → X is properly surjective.

One descends properties (xv)–(xx) similarly to the proofs of Theorems 4.6 and 4.7. This time one uses
that flatness descends through ground field extensions by [Duc18, 4.5.6].

Finally, let us consider properties (v)–(viii). As in the proof of Theorem 3.8, it suffices to deal with
G-surjectivity and being without boundary. The former is clear since the map YK → Y is G-surjective by
Corollary 11.1(3). So, it remains to show that if g′ is without boundary then so is g, and the latter can be
checked locally at a point x ∈ X . Choose a lift x′ ∈ X ′ of x as in Corollary 11.1(1), and set y = g(x) and

y′ = g′(x′). Since the subfields K̃ and H̃ (x) of H̃ (x′) are in general position over k̃, we also have that

the subfields K̃ and H̃ (y) of H̃ (y′) ⊆ H̃ (x′) are in general position over k̃. Indeed, any subset T ⊂ K̃×

algebraically independent over k̃ is also algebraically independent over H̃ (x), and hence also over H̃ (y).
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This shows that the lift y′ of y also satisfies the condition of Corollary 11.1(1), and by Corollary 11.1(2)

we obtain that the reduction maps X̃ ′
x′ → X̃x and Ỹ ′

y′ → Ỹy are proper. The map X̃ ′
x′ → Ỹ ′

y′ is proper by

[Tem04, 5.2], hence the composition X̃ ′
x′ → Ỹ ′

y′ → Ỹy is proper by Lemma 7.2(iii), and the map X̃y → Ỹy is

proper by Lemma 7.2(iv). Using [Tem04, 5.2] again we obtain that g has no boundary at x. �

An application. As an application of Theorem 11.5, we can use the rigid-analytic theory of ampleness
[Con06] to set up a parallel theory in the k-analytic case (without imposing goodness requirements). We
begin with a definition, in which P(V ) for a finite-dimensional k-vector space V is the k-analytic space
associated to the algebraic projective space Proj(Sym(V )); it represents the functor of invertible sheaves L

for the G-topology (on a varying k-analytic space X) equipped with a surjection V ⊗k OXG → L .

Definition 11.6. An invertible sheaf L for the G-topology XG on a proper k-analytic space X is ample if
there exists an n > 0 such that the map Γ(XG,L

⊗n)⊗kOXG → L ⊗n of coherent OXG -modules is surjective
and the resulting morphism X → P(Γ(XG,L

⊗n)) is a closed immersion.
If f : X → S is a proper map of k-analytic spaces then an invertible OXG -module L is relatively ample

with respect to f if Ls = L |Xs is ample on the fibral H (s)-analytic space Xs for every s ∈ S.

For a k-analytic space S and a coherent OSG -module E , we will use the S-proper k-analytic space P(E )
that classifies invertible OXG -modules equipped with a surjection from E ⊗OSG

OXG (where X is a varying

k-analytic space over S), exactly as for schemes. Via the universal property and gluing for the G-topology
[Ber93, 1.3.3], to construct P(E ) it suffices to do this for k-affinoid S provided that it is compatible with k-
affinoid base change. Relative analytification over affinoid algebras in the sense of [Ber93, 2.6.1] provides such
a construction over an affinoid base M (A ) by using the corresponding algebraic construction over Spec(A ).
Via the universal property and the behavior of relative analytification with respect to closed immersions,
the formation of P(E ) commutes with any base change on S and surjections E ′ → E on SG induce closed
immersions P(E ) →֒ P(E ′) over S. In particular, this shows that P(E ) admits a closed immersion into a
standard projective space locally over SG. Hence, P(E ) is S-proper since this property is clear when S is
k-affinoid, so it holds locally for the G-topology on S in general, and properness is local for this topology
[Tem04, 5.6].

Corollary 11.7. Let f : X → S be a proper map of k-analytic spaces and L be an invertible OXG-module.

(1) The set UL of s ∈ S such that Ls is ample on the H (s)-analytic space Xs is open and its formation
commutes with k-analytic base change on S and with any analytic extension of the ground field.

(2) If L is relatively ample then locally on S there exists n0 > 0 such that f∗(f∗(L
⊗n)) → L ⊗n is

surjective and the natural map ιn : X → P(f∗(L
⊗n)) is a closed immersion for all n ≥ n0.

Proof. The crucial fact we have to show is that if S = M (k) and K/k is an analytic extension field then L

is ample on X if and only if the associated coherent pullback LK is ample on XK . A ground field extension
does not affect whether or not a map between coherent sheaves for the G-topology is surjective, and by
Theorem 11.5 the property of a morphism being a closed immersion is likewise unaffected. Hence, the only
problem is to show that for a coherent OXG -module F (such as L ⊗n for a fixed n > 0) the natural map
K ⊗k Γ(XG,F ) → Γ((XK)G,F ) is an isomorphism. More generally, we claim that K ⊗k Hi(XG,F ) →
Hi((XK)G,FK) is an isomorphism for any i ≥ 0. Observe that the ordinary tensor products here may be
replaced with completed tensor products, since the cohomology is finite-dimensional (the infinite-dimensional
case is considered in [MP17, Theorem A.5]). It suffices to prove that the maps in the Čech complex associated
to a finite affinoid covering of a proper analytic space and a coherent sheaf for the G-topology are admissible
(in the sense of having closed images whose subspace and quotient topologies coincide). This property is
unaffected by a ground field extension (using completed tensor products), so by the relationship between
strictly analytic spaces and rigid spaces [Ber93, 1.6.1] we may pass to the strictly analytic case and hence to
coherent sheaves on proper rigid spaces (the equivalence with rigid-analytic properness is [Tem04, 4.5]). In
this case the desired property of the Čech complex was proved by Kiehl [Kie67, 2.5] in his proof of coherence
of higher direct images.
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Now we prove the first part of the corollary. It follows from the invariance under a ground field extension
that the formation of the set UL is compatible with a ground field extensionK/k in the sense that π−1(UL ) =
ULK where π : SK → S is the canonical map. Since π is also topologically a quotient map (it is even a compact
surjection), it therefore suffices to solve the problem after a ground field extension. The formation of UL ⊆ S
is certainly local for the G-topology on S, so by using a compact k-analytic neighborhood of an arbitrary
point s ∈ S we see that it suffices to treat the case when S is compact (so X is compact). Hence, by using
a ground field extension we can assume that |k×| 6= {1} and X and S are strictly k-analytic. In this case
there is a proper map of quasi-compact and quasi-separated rigid spaces f0 : X0 → S0 corresponding to f
and an invertible sheaf L0 on X0 corresponding to L . By [Con06, 3.2.9], there is a subset UL0 ⊆ S0 that
is a Zariski-open subset in a canonical Zariski-open subset WL0 ⊆ S such that the points of UL0 are exactly
the s ∈ S such that L0 has ample pullback to (X0)s = (Xs)0 (in the sense of rigid geometry) and such that
the formation of WL0 and UL0 is compatible with arbitrary ground field extension K/k. Since ampleness
on a fiber is unaffected by passage between the rigid-analytic and k-analytic categories, it follows that if we
let WL ⊆ S be the Zariski-open subset corresponding to WL0 ⊆ S0 then the Zariski-open subset of WL

corresponding to UL0 is equal to UL . This establishes the openness of UL , and so finishes the proof of the
first part.

To prove the second part we may again reduce to the case when S is compact. The formation of higher
direct images with respect to f (using the G-topology) is compatible with any ground field extension, by
essentially the same argument we used above for cohomology over a field: we may pass to the case of an
affinoid base, and we use that Kiehl’s results on Čech complexes are valid in the relative setting over an
affinoid base (not just over a ground field as base). Thus, once again using Theorem 11.5 for the property of
being a closed immersion, we may assume |k×| 6= {1} and that S and X are strictly k-analytic. The analogue
of our desired result was proved locally on S0 in the rigid-analytic case in [Con06, 3.1.4, 3.2.4, 3.2.7]. (The
ability to get the closed immersion property for all large n is shown in the proof of [Con06, 3.2.7].) Since
S0 is quasi-compact, we therefore get a single n0 such that L

⊗n
0 is generated by (f0)∗(L

⊗n
0 ) = (f∗(L

⊗n))0
and the resulting map (ιn)0 is a closed immersion for all n ≥ n0. Passing back to the k-analytic category
gives the desired result over S. �

An immediate consequence of the second part of the preceding corollary is that locally on SG (or locally
on S when S is good) a high power of a relatively ample line bundle is the pullback by O(1) relative to a
closed immersion into a standard projective space over the base. In particular, locally on S a sufficiently
high power of a relatively ample line bundle satisfies the familiar cohomological vanishing and generation
properties for higher direct images against a fixed coherent sheaf on XG. In the rigid-analytic case this is
[Con06, 3.2.4], but note that the present approach does not reprove this result in the rigid-analytic case since
that result is a crucial part of the rigid-analytic ingredients used in the proof of Corollary 11.7.
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