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ABSOLUTE DESINGULARIZATION IN CHARACTERISTIC

ZERO

MICHAEL TEMKIN

1. Introduction

1.1. Preamble. This paper is an expository lecture notes originally based on a
lecture on the results of [Tem1] given by the author at the workshop on Motivic
Integration in May 2008, at ICMS, Edinburgh. Since a substantial progress was
done since May 2008, it seemed natural to include the new results of [BMT], [Tem2]
and [Tem3] in this exposition. We will mainly concentrate on the functorial non-
embedded desingularization constructed in [Tem2] because it seems that the results
of [Tem3] on the embedded case can be improved further. We pursue expository
goals, so we will concentrate on explaining the results and the main ideas of our
method and we will refer to the cited papers for proofs and technical details. Also,
we try to include more examples and general remarks than in a pure research
paper. Thus, this survey can serve as a companion to or a light version of [Tem1]
and [Tem2]. I would like to warn the reader that the current situation described in
the paper can change soon (similarly to the change since 2008), but this is always
a danger with a survey on an active research area.

1.2. The history. In 1964 Hironaka proved many fundamental desingularization
results including strong desingularization of algebraic varieties in characteristic zero.
The latter means that any reduced variety of characteristic zero can be modified to a
smooth one by successive blow ups along nowhere dense smooth centers. Hironaka’s
method was extremely difficult for understanding (due to a complicated inductive
structure of the proof), and perhaps the main reason for this was that his method
was not constructive, canonical or functorial, unlike many new proofs. In particular,
unlike the new proofs, Hironaka could not work within the category of varieties since
some arguments with formal completions were involved. Probably for this reason,
Hironaka proved his desingularization for all schemes of finite type over local rings

R with regular completion homomorphism R → R̂.
A year later, Grothendieck introduced quasi-excellent (or qe) schemes in [EGA,

IV2, §7.9] in order to provide the most general framework for desingularization.
Grothendieck observed that the schemes studied by Hironaka were schemes of finite
type over a local qe scheme k, and proved that if any integral scheme of finite type
over a base scheme k admits a desingularization in the weakest possible sense then
k is qe. Grothendieck conjectured that the converse is probably true (i.e. any
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integral qe scheme admits a desingularization) and claimed without proof that
the conjecture holds true for noetherian qe schemes over Q as can be proved by
Hironaka’s method. The latter claim was never checked in published literature,
and its status is unclear until now. Nevertheless, this fact was occasionally used by
other mathematicians, for example for desingularizing affinoid spaces over Qp.

In [Tem1] the author proved that indeed, any noetherian integral qe scheme over
Q admits a desingularization. Moreover, the regular locus of the scheme can be
preserved by the desingularization and one can also resolve a closed subscheme to
a normal crossings divisor. The construction of [Tem1] uses any desingularization
of varieties as a black box input, but modifies it significantly. In particular, many
good properties were lost in the resulting algorithm, including functoriality and
regularity of the centers. Very recently the method was strengthened in [Tem2]
and [Tem3] in order to preserve the two above properties as well. In particular, a
desingularization F (resp. embedded desingularization E) of all generically reduced
qe schemes over Q (resp. closed subschemes in regular qe schemes) is now available
and F and E go by blowing up regular centers and are functorial with respect to
all regular morphisms. The functoriality property is a serious achievement since
it rigorously implies desingularization in many other categories in characteristic
zero, including Artin stacks, schemes acted on by regular group schemes, qe formal
schemes and complex or non-archimedean analytic spaces.

1.3. Motivation and applications. Non-functorial desingularization of qe schemes
in [Tem1] only allowed to desingularize affine formal schemes. In order to obtain
a global desingularization result for formal schemes one had to construct a desin-
gularization which is functorial at least with respect to formal localizations. These
are regular morphisms of not finite type and it seems that the most natural way
to ensure such functoriality is to achieve functoriality with respect to all regu-
lar morphisms, as was done in [Tem2] and [Tem3]. Already desingularization of
formal varieties over C[[T ]] is a new result, and currently it seems that desingu-
larization of formal varieties will be most useful for applications. Actually, it were
few requests about formal desingularization that convinced me to continue the re-
search of [Tem1]. In particular, it seems that desingularization of formal varieties
may have applications to motivic integration (see [Nic]), log canonical thresholds
(see [FEM]), desingularization of meromorphic connections (see [Ked]) and mo-
tivic Donaldson-Thomas invariants studied by Kontsevich-Soibelman. Finally, it
seems that the desingularization of rigid spaces and Berkovich analytic spaces (not
necessarily good) is also new.

1.4. Overview. We introduce all necessary terminology (e.g. qe schemes, blow
ups, regular locus, etc.) in §2. The reader can look through this section and return
to it when needed. In §3 we formulate our main results, explain how our method
works in general and divide it to two stages. Then, both stages are studied in
details in §4 and §5. In addition, we consider in §5.2 few examples that illustrate
our algorithm. Finally, in §6 we deduce similar results for other categories including
stacks, formal scheme and various analytic spaces both in compact and non-compact
settings.
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2. Setup

Throughout this paper all schemes and formal schemes are assumed to be locally
noetherian.

2.1. Varieties. Variety or algebraic variety in this paper always means a scheme
X which admits a finite type morphism X → Spec(k) to the spectrum of a field. If
such a morphism is fixed then we say that X is a k-variety and k is the ground field
of X . It is an easy fact (see [BMT]) that any reduced connected variety X possesses
a maximal (and hence canonical) ground field k ⊂ OX(X). Unfortunately, this is
not true for non-reduced varieties as the following example shows.

Example 2.1.1. Let k be a field of characteristic zero with an irreducible curve
C which is not reduced at its generic point η. Then Spec(OC,η) possesses various
structures of a zero-dimensional k(η)-variety, but none of them is ”better” than
another.

Remark 2.1.2. (i) The above example extends to formal varieties. Moreover, even
smooth formal varieties do not have to have a canonical ground field. For example,
already for k = Q(x) there exist many embeddings k →֒ k[[t]], which are as ”good”
as the obvious embedding, and, more generally, the field of coefficients in Cohen’s
theorem is not unique.

(ii) As we will see later, the above observation is responsible for the main obstacle
to proving functorial desingularization by our method. In addition, it indicates that
even for varieties it is more natural to study absolute algorithms rather than the
algorithms that take k into account (for example by working with k-derivations).
We will return to this discussion in §2.5.9.

2.2. Regularity.

2.2.1. Regular schemes. There are many equivalent ways to say that a local ring A is
regular and here are two possibilities: (a) the associated graded ring ⊕∞

n=0m
n/mn+1

is isomorphic to k[T1, . . . , Td], where m is the maximal ideal and k = A/m is the
residue field, (b) the dimension of A (i.e. the maximal length of a chain of prime
ideals decreased by one) equals to the dimension of the cotangent k-vector space
m/m2. We define the regular locus Xreg of a scheme X as the set of points x ∈ X
with regular OX,x and say that X is regular at each x ∈ Xreg. The singular locus
Xsing is defined as the complement of Xreg. Although regularity is an analog of
smoothness, it is an absolute property, while smoothness is a relative property. For
example, a variety of positive characteristic can be smooth and not smooth over
different fields of definition.

2.2.2. Monomial divisors. A divisor Z in a regular scheme X is called snc (or
strictly normal crossings) if its irreducible components are regular and transversal,
i.e. each Zi1 ∩ Zi2 ∩ · · · ∩ Zin is regular of codimension n in X (or empty). This
is equivalent to the condition that Zariski locally at each point x the divisor Z

is given by an equation
∏l

i=1 ti = 0 where t1, . . . , tn ∈ OX,x is a regular family
of parameters. If Z is given by an equation

∏n
i=1 t

mi

i = 0 then we say that it is
strictly monomial. Finally, if the above conditions hold only étale-locally (i.e. the
parameters can be chosen in the strict henselization Osh

X,x) then we say that Z is
normal crossings or monomial, respectively. Note that a closed subscheme Z →֒ X
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is a (strictly) monomial divisor if and only if it is a Cartier divisor whose reduction
is (strictly) normal crossing.

2.2.3. Regular morphisms. A morphism f : Y → X is called regular if it is flat
and has geometrically regular fibers. Since a finite type morphism is regular iff it is
smooth, this can be viewed as a generalization of smoothness to ”large” morphisms.
A homomorphism of algebras f : A → B is regular if Spec(f) is regular (Hironaka
calls regular morphisms ”universally regular”, but our terminology is the standard
one). It is well known that regular/singular locus is compatible with regular mor-
phisms, i.e. for a regular morphism f : Y → X we have that Ysing = f−1(Xsing) and
Yreg = f−1(Xreg). Similarly, one shows that the monomiality locus of a divisor is
compatible with regular morphisms. We warn the reader that the same is not true
for strictly monomial locus, since the preimage of a not strictly monomial divisor
under an étale morphism can be strictly monomial.

2.2.4. Equisingularity. We say that a scheme X is equisingular at a point x if its
reduction X0 is regular at x and Xred is normally flat along Xred at x. Recall
that the latter means that the OXred

-sheaves N i
X/N i+1

X are locally free at x, where
NX ⊂ OX is the radical. The set of all points x ∈ X at which X is equisingular will
be called the equisingular locus of X . Equisingular loci behave similarly to regular
loci. In particular, they are compatible with regular morphisms, etc.

Remark 2.2.1. We prefer the notion ”equisingular” since it is much shorter than
other alternatives. Also, it reflects the geometric meaning pretty well because in
some sense the singularity of an equisingular scheme along any irreducible compo-
nent is constant; that is, the singularity on the entire component is as bad as at its
generic point. Note also that an equisingular scheme is regular if and only if it is
generically reduced.

2.3. Quasi-excellent schemes.

2.3.1. The definition. For shortness, we will abbreviate the word quasi-excellent
as qe. Quasi-excellent schemes were introduced by Grothendieck in [EGA, IV2,
§7.9] though the word ”quasi-excellent” was invented later. These are locally noe-
therian schemes X satisfying the following conditions N and G (after Nagata and
Grothendieck): (N) for any Y of finite type over X the regular locus Yreg is open,

(G) for any point x ∈ X the completion homomorphism OX,x → ÔX,x is regular.
A qe scheme which is universally catenary (see §2.3.4) is called excellent.

2.3.2. Connection to desingularization. Obviously, the condition (N) is necessary
in order to have a universal desingularization theory over X (i.e. in order to be able
to desingularize schemes of finite type over X). Grothendieck proved the same for
the condition (G) in [EGA, IV2, 7.9.5]: if any integral scheme of finite type over X
admits a regular modification then X is qe. It was suggested by Grothendieck and
is believed by many mathematicians that the converse is also true. Moreover, it is
a common belief (or at least hope) that qe schemes admit much stronger variants
of desingularization discussed in §2.5.

2.3.3. Basic properties. Main properties of quasi-excellence and excellence are as
follows:

(1) They are invariant under many operations including passing to a scheme of
finite type, localization and henselization along a closed subscheme.
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(2) If a ring A is qe (i.e. Spec(A) is qe) and Â is its completion along any ideal

then the completion homomorphism A → Â is regular.
(3) It is a very difficult result recently proved by Gabber that a noetherian I-adic

ring A is qe iff A/I is qe. In particular, quasi-excellence is preserved under formal
completions. See Remark 2.6.1 below for more details.

(4) Basic examples of excellent rings are Z, fields, noetherian convergent power
series rings in complex and non-archimedean analytic geometries, and schemes ob-
tained from those by use of operations (1) and (2).

Remark 2.3.1. (i) Intuitively, general qe schemes have no ”floor” unlike the alge-
braic varieties. For example, one cannot fiber them by curves and many patholo-
gies can occur with the dimension, as we will see below. Usually, in the study
of qe schemes one uses that they are in a ”good relation with their roof” by the
G-condition; that is, their formal completions are regular over them in the affine

case (i.e. the homomorphism A → Â is regular when X = Spec(A)). For example,
the completion of a qe scheme X along a subvariety (e.g. a closed point) is a formal
variety X, and the desingularization theory for X is closely related to that of X

because of the G-condition.
(ii) Formal varieties, in their turn, can be studied by various methods. In particu-

lar, one can fiber them by formal curves (Gabber’s adoption of de Jong’s approach),
one can algebraize them in the rig-regular case (our adoption of Elkik’s theory),
and, very probably, one can generalize for them the algorithms for varieties by
switching to the sheaves of continuous derivations.

2.3.4. Caveats with the dimension theory. A scheme X is called catenary if for any
point x ∈ X with a specialization y all maximal chains of specializations between
x and y have the same length. A scheme X is universally catenary if any scheme of
finite type over X is catenary. Actually, it is the catenarity condition which makes
dimension theory reasonable. The following simple example from [EGA, IV2] shows
that non-catenary schemes can be not as horrible as one might expect.

Example 2.3.2. Let k be a field with an isomorphism φ : k→̃k(t) (so, k is of
infinite absolute transcendence degree, and one can take k = F (t1, t2 . . . ), where
F is any field). Let z be a closed k-point in An

k = Spec(k[x1, . . . , xn]) and y be

the generic point of an affine line not containing z. Let X̃n be a localization of
An

k with n ≥ 2 on which both y and z are closed points and let Xn be obtained

from X̃n by gluing y and z via φ (i.e. we consider only functions f ∈ OX̃n
with

f(y) = φ(f(z))). Note that Xn is a ”nice” qe scheme; for example, its normalization

is a localized variety X̃n. However, our operation obviously destroys the dimension
theory on Xn, and indeed one can easily show that Xn is not catenary for n ≥ 3
and is catenary but not universally catenary for n = 2.

Remark 2.3.3. (i) The above example is in a sense the most general one. Namely,

it follows from §2.3.3(2) that a local qe ring A is normal if its completion Â is normal,
and one can use this to show that any normal qe scheme is catenary. Thus, the only
source of non-catenarity on qe schemes is that sometimes branches of different codi-
mension on the same irreducible component can be glued on non-normal schemes.
In particular, non-catenarity is close in nature to local non-equidimensionality.
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(ii) If A is normal (or even regular) but not qe then it can happen that Â is
not normal or even is not reduced. Also, there are normal but non-catenary not qe
schemes.

Another danger with qe schemes is that even an excellent ring can be infinite
dimensional (by famous Nagata’s example). In particular, one cannot argue by
induction on dimension and should use noetherian induction or induction on codi-
mension instead.

Remark 2.3.4. The reader may wonder why these pathological examples are worth
any discussion. I agree that the schemes from the above examples are curious
but seem to be absolutely useless. However, the necessity to have them in mind
seems to be very useful from my point of view. It makes one to argue correctly
and allows to quickly reject approaches that could work for varieties but will not
work for qe schemes (including the reasonable ones). For example, the main in-
duction in our desingularization method will be by codimension. Also, the non-
catenary example indicates that one must be extremely careful when dealing with
non-equidimensional morphisms and schemes (including varieties!). We will discuss
this caveat in §2.5.10.

2.3.5. Caveats with derivatives and bad DVR’s. In all examples from §2.3.3(4) one
establishes excellence by constructing a good theory of derivatives (algebraic or
continuous). The latter does not have to exist on regular not qe schemes, and this
can be interpreted as non-existence of global tangent space – the spaces mx/m

2
x do

not glue to a nice sheaf. The source of the problem is that although the cotangent
sheaf Ω1

X is always quasi-coherent, it can be very large (e.g. Ω1
C/Q is a C-vector

space of continual dimension), and then its dual sheaf DerX = HomOX
(Ω1

X ,OX)
can be arbitrarily bad (e.g. not quasi-coherent, or even a non-zero sheaf in a
neighborhood of a point x but with zero stalk at x). Moreover, the following
example shows that this can happen already for a qe trait, which is a very innocently
looking scheme. (Recall that a trait X is the spectrum of a DVR, that is equivalent
to X being regular, local and of dimension one.)

Example 2.3.5. Let k be a field and let y =
∑∞

i=0 aix
i ∈ k[[x]] be an element

transcendental over k[x]. Then the field K = k(x, y) embeds into k((x)) and O :=
k[[x]] ∩K is a DVR with fraction field K and completion k[[x]].

(i) If char(k) = p and y ∈ k[[xp]] then k((x)) = K̂ is not separable over K because
it contains y1/p. In particular, the generic fiber of the completion homomorphism
O → k[[x]] is not geometrically reduced. This proves that the DVR O is not a qe
ring.

(ii) Though one can show that O is excellent when char(k) = 0, it still can
have nasty differentials. For example, let us assume in addition that the derivative
y′ =

∑∞
i=1 iaix

i is transcendental over K. Consider the elements yi = x−n(y −∑n−1
i=0 aix

i) ∈ O. An easy computation shows that O = k[x, y0, y1, y2, . . . ](x) and

Ω1
O/k is the O-submodule of Ω1

K/k→̃Kdx⊕Kdy generated by dx, dy0, dy1, . . . . Then

it follows that actually Ω1
O/k = Ω1

K/k. (Note also that in the case when y′ ∈ K,

the same computation shows that Ω1
O/k is obtained from the free O-module with

generators dx and dy by adjoining the elements x−n(dy − y′dx) for all natural n.)
In particular, we obtain that Derk(O,O) = HomO(K2,O) = 0 while Derk(K,K) =
HomK(K2,K)→̃K2 (and one shows similarly that Derk(O,O)→̃O when y′ ∈ K).
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This shows that the sheaf of k-derivations on Spec(O) is not quasi-coherent and
even has zero stalk at the closed point of Spec(O). Thus, there is no good theory
of derivations on O.

Remark 2.3.6. (i) We saw that DerX can behave wildly even for a regular qe
scheme X . Since all current desingularization algorithms over fields are based on
derivatives, it is not clear if they can be extended to all qe schemes without serious
modifications. On the other hand one might hope that they can be straightfor-
wardly generalized to schemes that admit a closed immersion into a regular qe
scheme ”with good theory of derivations”. See, [Tem2, 1.3.1(iii)] for a precise con-
jecture.

(ii) The ring O from Example 2.3.5(i) is a simplest example of a non-excellent
ring. In addition, O is a very naively looking ring – it is a DVR, and so it is regular,
local and of dimension one. As an additional demonstration of wildness of O we
note that its normalization in k(x, y1/p) is a DVR which is integral but not finite
over O.

2.4. Blow ups.

2.4.1. Basics. Basic facts about blow ups can be found in [Tem1, §2.1] or in the
literature cited there. Recall that the blow up f : BlV (X) → X along a closed
subscheme V is the universal morphism such that V ×X X ′ is a Cartier divisor. In
particular, f = IdX iff V is a Cartier divisor, BlX(X) = ∅, and f is an isomorphism
over X \ V . Also, X \ V is dense in BlV (X) and so f is birational if V is nowhere
dense in X . The blow up always exists and it is the projective morphism given
by BlI(X)→̃Proj(⊕In) where I ⊂ OX is the ideal of V (we use our convention
that X is locally noetherian and so I is locally finitely generated). Conversely,
any projective modification is a blow up if X possesses an ample sheaf, and in
any case, blow ups form a very large cofinal family among all modifications of a
scheme (though the center of a typical blow up is highly non-reduced). A blow up
Bl∅(X)→̃X is called empty or trivial.

Remark 2.4.1. Even empty blow ups play important role in functorial desingu-
larization – they are responsible for synchronization.

In the sequel we adopt the convention of [Tem2] that a blow up of X consists
of a morphism f : BlV (X) → X and a center V , i.e. the blow up ”remembers”
its center. This approach is finer than the approach of [Tem1], where a blow up
was defined as a morphism isomorphic to a morphism of the form BlV (X) → X for
some choice of V . As one may expect, we will see that the first approach is much
better suited for studying functorial desingularization.

2.4.2. Operations with blow ups. Blow ups are compatible with flat morphisms f :
X ′ → X in the sense that BlV (X) ×X X ′→̃BlV ′(X ′) where V ′ = V ×X X ′.

If f : BlV (X) → X is a blow up and Z →֒ X is a closed subscheme, then the
scheme-theoretic preimage Z ×X BlV (X) is called full or total transform, and we
will denote it as f∗(Z).

If f : BlV (X) → X is a blow up, Z →֒ X is a closed subscheme and Z \V denotes
the open subscheme of Z obtained by removing V , then Z \ V lifts to a subscheme
in BlV (X) and its schematical closure is called the strict transform of Z under f
and will be denoted f !(Z). For example, f !(Z) = ∅ iff |Z| ⊂ |V |. Strict transforms
are compatible with blow ups in the sense that f !(Z)→̃BlV |Z (Z).
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If i : U →֒ X is a locally closed immersion then any blow up f : BlW (U) → U
can be canonically pushed forward to a blow up i∗(f) : BlV (X) → X where V
is the schematic closure of W in X (W can be not reduced, so we must take the
schematical closure, i.e. the minimal subscheme V →֒ X with V |U = W ). Note
that such extension is canonical because the blow up remembers its center. The
restriction of i∗(f) over U is f itself, i.e. BlW (U)→̃BlV (X) ×X U – this is obvious
for open immersions and this follows from the properties of the strict transforms
for a general locally closed immersion. Note that even if f is an isomorphism (i.e.
U is a Cartier divisor) i∗(f) does not have to be an isomorphism.

2.4.3. Blow up sequences. Although a composition of blow ups is known to be
isomorphic to a blow up, it is not clear how to choose a center in a canonical
way. If one ignores the centers one can study desingularizations by a single blow
up, as it is done in [Tem1]. However, for the sake of a more explicit description
of a desingularization one usually keeps all centers, i.e. considers whole blow up
sequences X ′ = Xn → · · · → X1 → X0 = X with the centers Vi →֒ Xi. Usually
we will use the notation X ′

99K X for blow up sequences. All operations with blow
ups described above can be generalized to the blow up sequences straightforwardly
(just iterate the construction step by step). We say that a blow up sequence f =
fn−1 ◦ · · · ◦ f1 ◦ f0 is Z-supported for a closed subset Z ⊂ X if all centers lie over Z.

2.5. Desingularization.

2.5.1. Weak desingularization. A weak desingularization of an integral scheme X is
a modification f : X ′ → X with regular source. If in addition Z×XX ′ is monomial
for a closed subscheme Z →֒ X then we say that f is a weak desingularization of
the pair (X,Z).

Remark 2.5.1. (i) Weak desingularization suffices to characterize qe schemes via
[EGA, IV2, §7.9.5].

(ii) Weak desingularization of varieties of characteristic zero can be proved by
direct induction on dimension. One fibers X by curves and uses semi-stable modi-
fication theorem of de Jong and toroidal quotients, see [AdJ].

(iii) The essential weakness of weak desingularization is that it does not control
the modification locus (i.e. the set of points of X over which the modification is not
an isomorphism). In particular, a desingularization which modifies Xreg cannot be
canonical.

(iv) The same result makes sense for any reduced scheme, but this generalization
is not interesting since we can simply use normalization to separate the irreducible
components.

2.5.2. Desingularization. By a (non-embedded) desingularization of a generically
reduced scheme X we mean a blow up sequence f : X ′

99K X with regular source
and such that f is Xsing-supported. If all centers are regular then we say that f is
a strong desingularization.

Remark 2.5.2. (i) Currently, all proofs of (not weak) desingularization go through
embedding varieties into smooth ambient varieties and establishing an embedded
desingularization, see §2.5.5. In its simplest form such approach leads to a non-
strong desingularization, see [BM3, §8.2].

(ii) An additional strengthening of the notion of desingularization is to require
that each blow up center is contained in the Hilbert-Samuel stratum of the largest



ABSOLUTE DESINGULARIZATION IN CHARACTERISTIC ZERO 9

order, where we naturally normalize the Hilbert-Samuel function by codimension
(so that it becomes constant on regular schemes) and use the natural partial order
on the set of all such functions. The methods of Hironaka, Bierstone-Milman and
Villamayor provide such stronger desingularization, but currently it is not achieved
for qe schemes.

2.5.3. Desingularization of pairs. By a desingularization of a pair (X,Z) we mean
a (Z ∪ Xsing)-supported blow up sequence X ′

99K X with regular X ′ and mono-
mial Z ′ = Z ×X X ′. Classically one splits desingularization of (X,Z) to usual
desingularization X ′′ → X of X and subsequent embedded desingularization of
Z ×X X ′′ →֒ X ′′, but such splitting is not necessary and sometimes seems to be
not natural, see §2.5.6.

2.5.4. Non-reduced schemes. As defined above, the desingularization is rather mean-
ingless for generically non-reduced schemes since it just kills the generically non-
reduced components. In particular, it can be easily obtained from desingulariza-
tion of generically reduced schemes, and hence does not involve anything new. A
”right” desingularization of such schemes is making them equisingular and it is
usually achieved in the framework of strong desingularization. In particular, it was
established in the works of Hironaka, Bierstone-Milman and Villamayor.

2.5.5. Embedded desingularization. Let X be a generically reduced variety of char-
acteristic zero. Excluding special cases (e.g. low dimension), all known construc-
tions of a desingularization X ′ = Xn 99K X0 = X go by embedding X into a
regular ambient variety M and successive blowing up M so that the strict trans-
form of X becomes regular. Various embedded desingularization algorithms have
many similar features which we only outline here.

(1) The boundaries. One has to take the history of the process into account, see
for example [Kol, §3.6]. This is done by considering on each Mi a boundary Ei,
which is the accumulated exceptional divisor of the blow up sequence Mi 99K M0.
More concretely, Ei is an ordered set of divisors on Mi, which are called components
of Ei and are numbered by the history function. The i-th boundary consists of the
componentwise strict transform of the (i − 1)-th boundary and the exceptional
divisor of the blow up Mi → Mi−1. The pair (Mi, Ei) is called the ambient variety
with boundary, and the basic objects of the embedded desingularization are the
triples (Mi, Ei, Xi). In classical embedded desingularization the boundary is always
snc, that is, its components are regular and meet transversally. In applications one
starts with E0 = ∅ but any choice of an snc E0 is fine (see below).

(2) Permissible centers. The center Vi of the blow up Mi+1 → Mi is permissible
in the sense that it is regular and has simple normal crossings with Ei, i.e. for
any component D ∈ Ei we have that locally at each point x ∈ Vi ∩D either Vi is
transversal to D or is contained in D. This ensures that each Mi is regular and
each Ei is snc.

(3) Principalization. Probably, the main paradigm of embedded desingular-
ization is to replace the desingularization problem with a very close problem of
principalization of the ideal IX ⊂ OM corresponding to X . Instead of the strict
transform, one studies a principal (controlled or weak) transform of I = IX un-
der a blow up M ′ → M along a permissible center. This transform is obtained
from the full transform IOM ′ by dividing by an appropriate exceptional divisor.
The ultimate aim of the principalization is to find a permissible blow up sequence
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f : M ′
99K M such that the principal transform of I is OM ′ and hence I ′ = IOM

is an exceptional divisor. In particular, f induces a desingularization of the pair
(M,X). Embedded desingularization, is obtained from principalization by omitting
the blow ups along components of the strict transform of X .

Remark 2.5.3. (i) The main advantage of the principalization is that it replaces
a geometric problem with an algebraic one. In particular, it is much easier to
compute principal transforms than the strict ones. In addition, all algorithms
deform I severely in the process of principalization. This is done so that the
ideal is replaced by an equivalent one, which has the same principalization. No
geometric interpretation of this procedure is known so far. For example, X with
an isolated singularity a is usually replaced with a highly non-reduced subscheme
of M supported at a.

(ii) There are qe schemes that cannot be embedded into regular schemes (e.g.
any non-catenary qe scheme). For this reason one should separately establish non-
embedded and embedded desingularization of qe schemes. The first task was ac-
complished in [Tem2]. There are partial results on the embedded desingularization
of qe schemes in [Tem3]. In particular, the centers are regular but not transversal
to the boundary. Nevertheless, functorial desingularization of pairs is proved in
[Tem3].

2.5.6. Non-embedded desingularization with boundary. For the sake of complete-
ness we note that one can generalize boundaries to the non-embedded setting. A
boundary E on a scheme X is an ordered set of locally principal closed subschemes
of X (with possible repetitions). A finer form of desingularization of pairs is a
desingularization of schemes with boundaries. The latter seems to be a very recent
notion, which was studied only in [CJS] (for qe surfaces of all characteristics) and
[Tem3] (for qe schemes over Q). To argue why non-embedded desingularization
with boundary might be a natural object to study we note that the embedded
desingularization with boundary of (M,E,X) induces a non-embedded desingular-
ization with boundary of (X,E|X) rather than just non-embedded desingularization
of X .

2.5.7. Functorial desingularization. For the sake of concreteness we consider the
non-embedded case in §§2.5.7–2.5.9. If f : Y → X is a regular morphism then
desingularizations g′ : Y ′ → Y and g : X ′ → X are compatible with respect to f if
g′ is obtained from g×XY by skipping empty blow ups and, moreover, g′ = g×XX ′

whenever f is surjective (so, we even take the empty blow ups into account). If
C is a class of schemes (e.g. varieties, or qe schemes of characteristic zero) then
by a functorial desingularization on C we mean a rule F which to each X ∈ C

assigns a desingularization F(X) : X 99K X in a way compatible with all regular
morphism between schemes from C, i.e. for any such morphism f : X ′ → X the
desingularizations F(X) and F(X ′) are compatible with respect to f .

Remark 2.5.4. (i) Functoriality is a very strong property. It automatically im-
plies desingularization in other categories including equivariant desingularization,
desingularization of stacks, analytic spaces, etc. Moreover, in a seemingly paradox-
ical way it is usually easier to prove functorial desingularization since there is no
problems with gluing local desingularizations.

(ii) When proving functorial desingularization one must be very careful with
synchronizing various blow ups. For example, to construct F(X ⊔ Y ) from F(X)



ABSOLUTE DESINGULARIZATION IN CHARACTERISTIC ZERO 11

and F(Y ) we must compare the singularities of X and Y and decide which one
is blown up earlier (or simultaneously). In other words, we amplify F(X) and
F(Y ) with synchronizing empty blow ups and then combine them into F(X ⊔ Y ).
This illustrates the role of the empty blow ups and explains why we worried for
them in the definition of compatibility. See also [Tem2, Lem. 2.3.1, Rem. 2.3.2].
In addition, it is shown in [Tem2, Rem 2.3.4] how the idea of synchronization
allows to represent any functorial desingularization as an algorithm governed by a
desingularization invariant.

(iii) Since Hironaka’s foundational work many improvements and simplifications
were made, and one of the main achievements is that one obtains functorial desin-
gularization. We try to outline (to some extent) the history of the subject in §2.5.8
below. Here we only note that in the recent papers [W l], [Kol] and [BM3] one estab-
lishes functorial desingularization of varieties over a fixed field k of characteristic
zero. Due to our convention from §2.5.7, this amounts to compatibility with all reg-
ular k-morphisms between k-varieties, which are precisely all smooth k-morphisms.
As for the class of all varieties of characteristic zero and all regular morphisms
between them, in addition to smooth morphisms these works only checked compat-
ibility with the ground field extensions, i.e. with the regular morphisms of the form
X ⊗k l → X for a field extension l/k. It seems that full functoriality for varieties
was established only in [BMT].

2.5.8. On the history of desingularization of varieties of zero characteristic. It is
very difficult to present a complete history of the field. So, I will only describe three
stages and will not even try to give all credits (including the very important contri-
butions by Zariski and Giraud). The original Hironaka’s proof in [Hir1] was purely
existential. The proofs of the second generation started with the works [Vil1] and
[Vil2] of Villamayor and [BM1] and [BM2] of Bierstone-Milman. The main focus
in these (and many further) works is on constructing a canonical iterative desin-
gularization algorithm (with history) controlled by an appropriate invariant (or a
set of invariants). Canonicity of the algorithm was mainly understood as the fact
that the constructed desingularization of a k-variety depended only on that variety
and was compatible with open immersions, which simplified the proofs a lot. Note
that the new methods heavily relied on some ideas (but not results) of Hironaka
from [Hir1] an [Hir2], and, in addition, Villamayor used Hironaka’s results on ide-
alistic presentation of Hilbert-Samuel function to obtain strong desingularization.
Starting with the recent work [W l] of Wlodarczyk (who builds a self-contained
non-strong desingularization algorithm but, again, heavily relies on the ideas of
his predecessors), the main accent shifted to functoriality of the desingularization
and to recursive description of the algorithm, sometimes making it unnecessary to
introduce an invariant. In particular, it was shown in [BM3] how the algorithm of
[BM2] can be rewritten in a recursive form, and it was checked that this algorithm
is functorial with respect to all equidimensional smooth morphisms. Probably, all
known canonical desingularization algorithms become functorial with respect to all
smooth (or even regular) morphisms after minor adjustments (see, for example,
§2.5.10(2)), but this was not checked for most of the algorithms yet.

2.5.9. Absolute desingularization of varieties. Intuitively it is clear that the func-
torial desingularization of varieties should be of absolute nature in the sense that a
ground field k should not be taken into account. On the other hand, all known algo-
rithms make extensive use of the sheaves of k-derivations DerX/k, and in principle
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this may be an obstacle. More concretely, the embeddings (or infinite localizations)
like

An−1
Q(xn)

= Spec(Q(xn)[x1, . . . , xn−1]) →֒ Spec(Q[x1, . . . , xn]) = An
Q

may be incompatible with the corresponding embedded desingularizations because
we work with the Q(xn)-derivatives in the source and with all Q-derivatives in the
image. For example, for an ideal I ⊂ A = Q(xn)[x1, . . . , xn−1] the derivative ideals
DerA/Q(I) and DerA/Q(xn)(I) used for these desingularizations are often different
because the derivation along the ”constant direction” xn = 0 has a non-trivial
effect. For this reason, it is not clear if all known algorithms are of absolute nature
and are compatible with all regular morphisms (though, probably they are).

It was checked in [BMT] that the algorithm of Bierstone-Milman is of absolute
nature. However, the proof used strong properties of the algorithm which are not
known for some other algorithms. Moreover, it was shown in loc.cit. that the
algorithm admits an absolute description if one replaces the k-derivations sheaves
DerX/k with the quasi-coherent absolute derivations sheaves DerX/Q (which can be
very large). On the other hand, the following interesting result from [BMT] shows
that any existing algorithm can be used to produce an absolute algorithm just by
using only its ”Q-component”. In other words, an absolute algorithm for varieties
is the same as an algorithm for Q-varieties.

Theorem 2.5.5. Any functorial desingularization for Q-varieties extends uniquely
to a functorial desingularization of all varieties of characteristic zero, their local-
izations and henselizations.

This slightly surprising theorem is rather simple. The main idea is to use the
approximation theory from [EGA, IV2, §8] to approximate arbitrary varieties and
regular morphisms between them with Q-varieties and smooth morphisms between
them. In general, such approximation is possible for any noetherian scheme over
Q, but, obviously, this is useless. So, the main observation about approximation of
varieties was that each variety is a projective limit of Q-varieties with smooth and
affine transition morphisms. The latter smoothness condition is very special, and it
reduces the problem to a standard juggling with references to [EGA, IV2, §8]. Note
that localizations and henselizations of varieties are also such special projective
limits, and so we can treat them in the same theorem. It is an interesting question
if there are other natural schemes which can be represented as such limits.

2.5.10. Caveats with non-equidimensional schemes and morphisms. In the desingu-
larization theory one should be very careful when dealing with non-equidimensional
varieties and morphisms. We illustrate this by two examples.

(1) Usually, functorial embedded desingularization of X in M essentially depends
on X and its codimension in M . For example, the resolution of (M,X) will run
faster than that of (A1

M , X) when we run them simultaneously (i.e. desingularize
the disjoint union). Actually, for the algorithm from [Kol, Ch. 3] one can show that
if j : M →֒ M ′ is a closed immersion with regular M ′ then E(M ′, X) and E(M,X)
induce the same desingularization of X only when j is of constant codimension.
Probably, the same is true for many other algorithms.

(2) It was recently noted by O. Gabber that the algorithm of Bierstone-Milman
in [BM3] is only functorial with respect to equidimensional smooth morphisms. A
simple modification in the algorithm proposed in [BMT, §6.3] made the algorithm
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functorial with respect to all smooth (and regular) morphisms. Actually, one just
adjusts the synchronization slightly (in a sense, one replaces synchronization by
dimension with synchronization by codimension).

2.5.11. Strict desingularization and a caveat with non-monomial locus. By a strict
desingularization of a pair (X,Z) in [Tem1] one means a desingularization X ′ → X
that modifies only the non-monomial locus of (X,Z). This definition seemed natural
to me but it turned out that it does not make much sense. A detailed analysis can be
found in [Tem3, §A.1.3]. Here we only note that functorial strict desingularization
does not exist even for varieties, and the assertion of [Tem1, Th. 2.2.11] should be
corrected as explained in [Tem3, Rem. A.1.1].

2.6. Formal schemes.

2.6.1. Quasi-excellent formal schemes. By a formal variety we mean a noetherian
formal scheme X whose special fiber Xs (defined by the maximal ideal of definition)
is a variety. An important stage of our method is desingularization of formal vari-
eties of characteristic zero, so we will explain briefly how the desingularization setup
extends to formal varieties. Formal varieties are excellent by results of Valabrega,
see [Val]. That is, for any affine formal variety Spf(A) the ring A is excellent.
Since everything applies to general qe formal schemes, we will work in such larger
generality.

Remark 2.6.1. (i) To have a reasonable theory of qe formal schemes (other than
formal varieties) one has to invoke Gabber’s theorem from §2.3.3(iii). Otherwise,
one does not even know that quasi-excellence is preserved by formal localizations.
Also, it is Gabber’s theorem that implies that (quasi-) excellence is preserved by
formal completion.

(ii) The main intermediate progress towards Gabber’s theorem was done in the
paper [NN] by Nishimura-Nishimura, where the same result was proved condition-
ally assuming weak resolution of singularities for local qe schemes. In particular,
this settled the case of characteristic zero by using Hironaka’s theorem (which
covers local qe schemes). Alternatively, one can use the results of [Tem1] as the
desingularization input.

(iii) Gabber strengthened the proof of [NN] so that desingularization of local qe
schemes is replaced with a regular cover in the topology generated by alterations
and flat quasi-finite covers. This argument is outlined in Gabber’s letter to Laszlo.
The existence of such a regular cover for any qe scheme is a subtle and important
result by Gabber whose written version will (hopefully) be available soon. Actually,
it is the only desingularization result established for all qe schemes.

2.6.2. Regularity for qe schemes. The underlying topological space of a formal
scheme is too small to hold enough information even about reduced formal sub-
schemes. For this reason we define the singular locus of a formal scheme X as a
closed formal subscheme rather than as a subset in |X| (in particular, no regular
locus is defined, though we remark for the sake of completeness that one could
work set-theoretically at cost of considering also a generic fiber of X in one of the
non-archimedean geometries). If X = Spf(A) then we take for the singular (resp.
non-reduced or non-equisingular) locus the ideal defining Spec(A)sing (or other loci),
and it turns out that for qe formal schemes such definition is compatible with for-
mal localizations and hence globalizes to general qe formal schemes. Obviously,
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we use here that formal localization morphisms are regular on qe formal schemes.
Most probably, regularity and even reducedness does not make sense for general
noetherian formal schemes. We say that X is regular (resp. reduced or equisingular)
if the singular (resp. non-reduced or non-equisingular) locus is empty. We say that
X is rig-regular if the singular locus is given by an open ideal, and hence is a usual
scheme. Intuitively, the latter means that the generic fiber of X is regular (and this
makes precise sense in non-archimedean geometry).

Regular and reduced loci are preserved by formal completions. Also, one uses a
similar definition to introduce the notion of regular morphisms between qe formal
schemes and shows that the regular and reduced loci are compatible with regular
morphisms similarly to the case of schemes.

2.6.3. Blow up sequences. The notion of the formal blow up B̂lV(X) along a closed
formal subscheme V can be defined similarly to the case of schemes. Then the
formal blow up sequences are defined obviously. These notions are compatible with

formal completions, i.e. the I-adic completion of BlV (X) is B̂lV(X), where V and
X are the I-adic completions of V and X , respectively. All properties of usual blow
ups are generalized straightforwardly to the formal case, see [Tem1, §2.1].

2.6.4. Formal desingularization. Since regular formal schemes and formal blow ups
are defined, one defines desingularization of formal schemes similarly to desingular-
ization of schemes (including embedded desingularization, etc.).

3. The method and the main results

3.1. Results.

3.1.1. The non-embedded case. The main result of [Tem2] is that the class of all qe
schemes over Q admits a strong non-embedded desingularization. Here is a detailed
formulation of this result.

Theorem 3.1.1. For any noetherian quasi-excellent generically reduced scheme
X = X0 over Spec(Q) there exists a blow up sequence F(X) : Xn 99K X0 such that
the following conditions are satisfied:

(i) the centers of the blow ups are disjoint from the preimages of the regular locus
Xreg;

(ii) the centers of the blow ups are regular;
(iii) Xn is regular;
(iv) the blow up sequence F(X) is functorial with respect to all regular morphisms

X ′ → X, in the sense that F(X ′) is obtained from F(X) ×X X ′ by omitting all
empty blow ups.

Remark 3.1.2. An algorithm F will be constructed from an algorithm FVar for
varieties, and we saw in §2.5.9 that FVar is completely defined by its restriction
FQ onto the Q-varieties. So, in some sense F is defined over Q. Note, however,
that F is obtained by ”breaking FVar to pieces” and reassembling them into a new
algorithm, so it differs from FQ even on Q-varieties. This is necessary in order to
have functoriality on all qe schemes.
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3.1.2. The embedded case. Here is the main result of [Tem3] formulated in the
language of embedded desingularization, see [Tem3, Th. 1.1.6]. Up to the non-
embedded desingularization Theorem 3.1.1, this can be reformulated in the lan-
guage of non-embedded desingularization with boundary. We do not discuss such
approach in this survey and refer to [Tem3] for details.

Theorem 3.1.3. For any quasi-excellent regular noetherian scheme X of charac-
teristic zero with an snc boundary E and a closed subscheme Z →֒ X there exists
a blow up sequence f = E(X,E,Z) : X ′

99K X such that
(i) X ′ is regular, the new boundary E′ is snc and the strict transform Z ′ = f !(Z)

is regular and has simple normal crossings with E′,
(ii) each center of f is regular and for any point x of its image in X either Z is

not regular at x or Z has not simple normal crossings with E at x,
(iii) E is functorial in exact regular morphisms; that is, given a regular morphism

g : Y → X with D = E ×X Y and T = Z ×X Y , the blow up sequence E(Y,D, T )
is obtained from g∗(E(X,E,Z)) by omitting all empty blow ups.

Remark 3.1.4. The main weakness of this result is that the functor E does not
possess two important properties satisfied by classical embedded desingularization
functors.

(1) The centers of E do not have to have normal crossings with the intermediate
boundaries. In particular, intermediate boundaries can be not snc, and even the
iterative definition of these boundaries given in §2.5.5(2) should be corrected by
replacing strict transform with principal transform (see [Tem3, §2.2]).

(2) E does not resolve the principal transform of Z. In particular, this cannot be
used to obtain a classical principalization of IZ as defined in §2.5.5(3). However,
if Z is a Cartier divisor (this situation is classically called ”the hypersurface case”)
then E induces a principalization.

3.1.3. Desingularization of pairs. The strong principalization from §2.5.5(3) is not
achieved for qe schemes so far. However, the functors F and E can be used to
obtain a functorial desingularization of pairs.

Theorem 3.1.5. For any quasi-excellent noetherian generically reduced scheme X
of characteristic zero with a closed subscheme Z →֒ X there exists a (Z ∪ Xsing)-
supported blow up sequence P(X,Z) : X ′

99K X such that X ′ is regular, Z ×X X ′

is strictly monomial and P is functorial in exact regular morphisms.

The proof is very simple. First we blow up X along Z achieving that the full
transform of Z becomes a Cartier divisor (this is an obvious principalization). Set
X ′ = BlZ(X) and Z ′ = Z ×X X ′. Then we apply F to desingularize X ′. Note that
this step is needed even if we started with regular X . Let F(X ′) : X ′′

99K X ′ and
Z ′′ = Z ×X X ′′. Finally, we apply E(X ′′, ∅, Z ′′) to monomialize Z. Note that a
non-functorial desingularization of pairs is the main result of [Tem1], and Theorem
3.1.5 is a major strengthening of that result which was proved in [Tem3].

Remark 3.1.6. The main disadvantage of our construction is that even when X
is regular P can blow up a non-regular center at the first step. This is only needed
when Z is not a Cartier divisor.

3.1.4. Semi-stable reduction. In this section we just repeat the arguments from
[KKMS, Ch. II, §3]. Assume that O is an excellent DVR of characteristic zero and
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S = Spec(O). Let η and s be its generic and closed points, respectively. Assume
that X is a reduced flat S-scheme of finite type and with smooth generic fiber Xη.
It is well known that using a desingularization Y → X of the pair (X,Xs) one
can construct a DVR O′ with a quasi-finite morphism S′ = Spec(O′) → S and a
modification X ′ → X ×S S′ such that the morphism X ′ → S′ is semi-stable (i.e.
étale-locally X ′ is of the form Spec(O′[t1, . . . , tn]/(t1 . . . tm − π′)) for a non-zero
π′ ∈ O′). Indeed, due to the assumption on the characteristic, Y is étale-locally of
the form Spec(O[t1, . . . , tn]/(te11 . . . temm − π)) for a non-zero π ∈ O. Hence one can
choose any O′ whose ramification degree e over O is divided by all ei and take X ′

to be the normalization of Y ×S S′. Note that X ′ as above is regular if and only
if π′ is a uniformizer. A complicated but purely combinatorial method to achieve
that X ′ is also regular is described in [KKMS]. It involves few blow ups along the
strata of the reduction of X ′

s and its preimages (note that they are snc divisors)
and an additional extension of the DVR. The algorithm is described in terms of the
simplicial complex formed by the strata and the multiplicities of these strata in the
closed fiber. In particular, although originally formulated in the context of varieties,
it applies to our situation verbatim. This establishes the following theorem.

Theorem 3.1.7. Assume that O is an excellent DVR of characteristic zero, S =
Spec(O) and X is an S-scheme of finite type and with smooth generic fiber. Then
there exists a DVR O′ with a quasi-finite morphism S′ = Spec(O′) → S and a
modification X ′ → X ×S S′ such that X ′ is regular and the special fiber Xs′ is an
snc divisor (in particular, X ′ is semi-stable over S′).

Remark 3.1.8. The first step in our construction used P , so it is functorial.
Functoriality of the whole construction depends, thereby, only on the functoriality
of the combinatorial algorithm. The algorithm from [KKMS, Ch. III] seems to be
not functorial (or canonical), but it seems very probable that functorial algorithms
for this problem should exist. So, I expect that the ramification degree of O′/O
and the modification X ′ → X ×S S′ (for a fixed S′ with correct ramification) can
be chosen functorially.

3.2. The method. A very general idea of desingularizing qe schemes was discussed
in Remark 2.3.1: one wants to pass to formal varieties by completion along subva-
rieties and desingularize the obtained formal varieties either by algebraization or
by generalizing the algorithms for algebraic varieties. The technical background is
provided by the following easy lemma.

Lemma 3.2.1. Let X be a qe scheme such that Xsing is contained in a closed
subvariety Z →֒ X (e.g. Z = Xsing) and let X be the formal completion of X along
Z. Then X is a rig-regular formal variety and the formal completion induces a
bijective correspondence between desingularizations of X and X.

The main point of the proof is that Xsing is given by an open ideal and hence
any desingularization of X blows up only open ideals. Since open ideals live on a
nilpotent neighborhood of Xs they algebraize to closed subschemes of X and hence
the entire blow up sequence algebraizes as well. The lemma (and few more sim-

ilar claims) implies that any functorial desingularization F̂Var of formal varieties
algebraizes uniquely to a functorial desingularization Fsmall on the class of all qe
schemes such that their singular locus is a variety. Now we can explain very gen-
erally what are the two main stages of our method, and we will describe them in
more details in §§4–5.
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Stage 1. Algebraization. The aim of this stage is to extend FVar to Fsmall. As we

explained above this reduces to constructing a desingularization functor F̂Var for
rig-regular formal varieties. The main tool is Elkik’s theory which provides an al-
gebraization of affine rig-regular formal schemes with a principal ideal of definition.
It allows to easily extend desingularization of varieties to rig-regular formal vari-
eties in a non-canonical way, see [Tem1, Th. 3.4.1]. In [Tem2], much more delicate
arguments were used in order to make this construction partially functorial. For

technical reasons related with Elkik’s theory, F̂Var was only constructed for formal
varieties with a fixed invertible ideal of definition and for regular morphisms that
respect these ideals.

Remark 3.2.2. (i) It is difficult to control functoriality since the algebraization
procedure is absolutely non-canonical. Much worse, as we observed in Remark
2.1.2(i) even the ground field of algebraization is not canonical. The latter turns out
to be the main trouble since it is not easy to show that the existing desingularization
algorithms for varieties essentially depend only on the formal completion viewed
as an abstract formal scheme (i.e. without fixed morphism to a ground field).
To illustrate the problem we note that our formal algorithm must be equivariant
also with respect to the automorphisms not preserving any ground field, and such
automorphisms do not have to be algebraizable by étale morphisms of varieties
(compare with [Kol, 3.56] where all morphisms are defined over some ground field).

(ii) Most probably, F̂Var is fully functorial. The main problem of this stage is in

establishing the properties of F̂Var rather than in constructing it.

Stage 2. Localization The aim of this stage is to reduce the general case to the
case of schemes whose singular locus is a variety, that is, to construct a functorial
desingularization F using a desingularization functor Fsmall as an input. In a sense,
we localize the desingularization problem at this stage. Although, we cannot reduce
to the case of a local scheme with an isolated singularity, we will only use Fsmall(X)
for rather special schemes X such that Xsing is a variety. Namely, it will be enough
to know Fsmall(X) for a scheme X which can be represented as a blow up of a local
scheme Y such that Xsing is contained in the preimage of the closed point of Y
(and hence Xsing is a variety).

Remark 3.2.3. The algorithm Fsmall is an extension of FVar, i.e. both agree
on varieties. During the localization stage a new algorithm F is produced from
Fsmall. We will see in §5.2 that FVar and F differ already on algebraic curves. The
construction of FVar uses derivatives and embedded desingularization, so it seems
that it cannot be generalized to all qe schemes. On the other hand, we have to
build F for all qe schemes in a ”uniform way”. Thus, it seems almost unavoidable
that F differs from FVar on varieties.

4. Algebraization

Unless said to the contrary, we assume until the end of the paper that the
characteristic is zero, i.e. all schemes are Q-schemes. The algebraization stage is
rather subtle and technical and it is the bottleneck of the method. In particular,
it is ”responsible” for most of the cases that elude from our method, including
generically non-reduced varieties, etc.



18 MICHAEL TEMKIN

4.1. Non-embedded rig-regular case. Elkik’s Theorem [Elk, Th. 7] implies
that rig-regular formal varieties of characteristic zero with an invertible (or locally
principal) ideal of definition are locally algebraizable in the sense that they are locally
isomorphic to completions of varieties. For this reason we consider the pairs (X, I)
where X is a rig-regular formal variety and I is an invertible ideal of definition.

We will be only able to construct a formal desingularization F̂Var(X, I) : Xn 99K X

associated to such a pair and functorial with respect to regular morphisms X′ → X

such that I′ = IOX′ . Most probably, F̂Var is independent of I and is fully functorial,
but this was not proved. For shortness, let us say that X is a principal formal variety
if it is rig-regular, affine, and with fixed principal ideal of definition. Morphisms
between such objects must be compatible with the fixed ideals.

Since we are going to establish functorial desingularization, it is enough to work
locally. So, we can assume that X is principal and then X is algebriazable by [Elk,

Th. 7] and [Tem1, 3.3.1], in the sense that X = X̂ and I = Î for an affine variety
X with a principal ideal I. In particular, the desingularization FVar(X) induces

a desingularization F̂Var(X, I) of X. The only thing we should do is to check that

F̂Var(X, I) is well defined (i.e. is independent of the choice of the algebraization)
and functorial. The main idea beyond the argument is that all information about
X can be read off already from an infinitesimal neighborhood Xn := (X,OX/I

n) =
Spec(OX/In) with large n. This is based on [Tem2, 3.2.1] which is an easy corollary
of Elkik’s theory. Roughly speaking, this result states that if X and X′ are principal
formal varieties and n = n(X) is sufficiently large then any isomorphism X ′

n→̃Xn

lifts to an isomorphism X′→̃X.
Thus, it is clear that all information about the desingularization of X should be

contained in some Xn, though it is not so easy to technically describe this; especially
because we want to prove functoriality of the entire blow up sequence but only the
first center is contained in Xn. We refer to [Tem2, §3.2] for a realization of this
plan. To illustrate some technical problems that one has to solve we note that if X
is an algebraization of X and f : X(p)

99K X(0) = X is its desingularization then

the sequence of n-th fibers fn : X
(p)
n 99K X

(0)
n is not determined by X

(0)
n = Xn (for

any n). However, one can show that for sufficiently large numbers k, n with n ≫ kp
the tower

Fn,k(X(0)
n , In) : X

(p)
n−kp → · · · → X

(1)
n−k → X(0)

n

is uniquely determined (up to a unique isomorphism) only by X
(0)
n with the ideal

In = IO
X

(0)
n

and, moreover, is functorial in X
(0)
n with respect to all regular mor-

phisms. The above Fn,k is a functor of sequences of morphisms (not blow ups!) on
certain non-reduced schemes with fixed principal ideal which are called Elkik fibers

in [Tem2], and Fn,k is the heart of the technical proof that F̂Var is a well defined
functor.

4.2. Limitations. The limitations of our algebraization method are related to the
assumptions in Elkik’s theory. For example, in the algebraization theorem [Elk, Th.
7] one assumes that the formal scheme is rig-smooth over the base and possesses
a principal ideal of definition. In addition, no result for algebraization of a pair
(X,Z), where Z →֒ X is a closed subscheme, is known. Let us discuss what is the
impact of these assumptions on our method.
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4.2.1. Closed subschemes. I do not know if algebraization of pairs is possible under
reasonable assumptions (say, X is regular and Z →֒ X is rig-regular). I hope that
some progress in this direction is possible and this should be studied in the future.
Currently, the lack of algebraization of pairs is the main reason that our embedded
desingularization theorem is much weaker than its classical analog. In [Tem3] one
only uses algebraization of pairs (X,Z), where X is rig-regular and Z is supported
on the closed fiber (and hence is a scheme).

4.2.2. Rig-regularity. Simple examples show that rig-smoothness is necessary in
order for algebraization to exist. Localization stage reduces desingularization of
generically reduced schemes to desingularization of rig-regular varieties, and rig-
smoothness is equivalent to rig-regularity in characteristic zero (see, for example,
[Tem1, §3.3]). Thus, the algebraization stage as it is works only in characteristic zero
(even if resolution of varieties would be known). Over Q the only limitation imposed
by the rig-regularity assumption is that our method does not treat generically
non-reduced schemes. To deal with the latter case on should desingularize rig-
equisingular formal varieties (i.e. formal varieties whose non-equisingular locus is
given by an open ideal), but the latter formal schemes are not locally algebraizable
in general.

4.2.3. Principal ideal of definition. I do not know if this assumption in Elkik’s
theorem is necessary. It causes to certain technical difficulties in our proofs and
extra-assumptions in intermediate results, but does not affect the final results. Step
1 in the localization stage (see §5) is needed only because of this assumption. Also,

it is this assumption that makes us to define the functor F̂Var(X, I) rather than a

functor F̂Var(X).

5. Localization

The localization stage is very robust, and can be adopted to work with almost all
types of desingularization, including embedded desingularization, and desingular-
ization of non-reduced schemes. Also, it is not sensitive to the characteristic. For
simplicity, we will stick with the non-embedded case which is established in [Tem2,
§4.3].

5.1. Construction of F . Consider the category Csmall whose elements are pairs
(X,D) where X is a noetherian generically reduced qe scheme, D →֒ X is a closed
subvariety which is a Cartier divisor, and morphisms (X ′, D′) → (X,D) are regular
morphisms f : X ′ → X such that D′ = f∗(D). By the algebraization stage and
Lemma 3.2.1, the original desingularization functor FVar extends to a desingular-
ization functor Fsmall on Csmall. The aim of the localization stage is to construct a
desingularization F of qe schemes using Fsmall as an input.

The construction of F goes by induction on codimension, i.e. we will construct
inductively a sequence of blow up sequence functors Fd which desingularize X over
X≤d, where the latter denotes the set of points of X of codimension at most d.
Intuitively (and similarly to §2.4.2), each Fd(X) is the pushout of the desingular-
ization F(X)|X≤d under the embedding X≤d →֒ X , i.e. it is the portion of Fd(X)
defined by the situation over X≤d. More specifically, each center of Fd(X) has a
dense subset lying over X≤d and F(X) is obtained from Fd(X) by inserting (in
all places) few new blow ups whose centers lie over X>d := X \ X≤d. Thus, the



20 MICHAEL TEMKIN

resulting algorithm works as follows. Take empty F0(X). That is, start with X ,
which is the canonical desingularization of itself over X≤0 (we use that X is gener-
ically reduced by our assumption). First we resolve the situation over the points of
X of codimension one by a functor F1 (without caring for other points). Then we
improve F1 over finitely many points of codimension two and leave the situation
over the codimension one points unchanged. This gives a functor F2 which agrees
with F1 over the codimension 1 points and resolves each generically reduced qe
scheme X over X≤2. We proceed similarly ad infinitum, but for each noetherian
X the process stops after finitely many steps by noetherian induction.

Now let us describe how Fd is constructed from Fd−1 and Fsmall. Given a blow
up sequence f : X ′

99K X by its unresolved locus fsing we mean the set of points of
X over which f is not a strong desingularization. In other words, fsing is the union
of the images of the singular loci of both X ′ and the centers of f . By the induction
assumption, Fd−1(X)sing is of codimension at least d and hence it contains only
finitely many points x1, . . . , xm of exact codimension d. We should only improve F
over these points, and the latter is done as follows.

Step 1. As a first blow up we insert the simultaneous blow up at all new points
x1, . . . , xm (we act simultaneously in order to ensure functoriality). Then the preim-
age of each xi on any intermediate blow up of the sequence is a Cartier divisor
(which will be needed later in order to use Fsmall).

Step 2. Next, we improve all centers of Fd−1(X)sing over xi’s by resolving the
singularities of these centers over xi’s. We use here that these singularities are of
codimension at most d−1 in the centers and so we can apply the functor Fd−1. To
summarize, before blowing up each center Vj of Fd−1 we insert a blow up sequence
which desingularizes Vj over xi’s.

Step 3. At the last step we obtain a sequence X ′
99K X of blow ups whose

centers are regular over X≤d, but X ′ may have singularities over xi. Observe
that the singular locus of the scheme Xxi

= Spec(OX,xi
) ×X X ′ is contained in

the preimage of xi, and the preimage of xi is a Cartier divisor Ei (thanks to
Step 1) which is a variety over k(xi). So, Xxi

can be resolved by a blow up
sequence fi = Fsmall(Xxi

, Ei). It remains to extend all fi’s to a blow up of X ′

and to synchronically merge them into a single blow up sequence X ′′
99K X ′. The

composition Fd(X) : X ′′
99K X is a required desingularization of X over X≤d

which coincides with Fd−1 over X≤d−1.

Remark 5.1.1. The center of a blow up is often reducible, and in Step 3 of the
construction of Fd we often obtain a center with many components that are regular
over xi’s but probably have non-empty intersections over X>d. Thus, it is important
that in Step 2 of the construction of Fd we are able to desingularize the reducible
blow up centers inherited from F i with i < d. In particular, even if we are only
interested to desingularize integral schemes, we essentially use in our induction that
the desingularization is constructed for all reduced schemes.

5.2. Examples. We will compare F and FVar in the case of few simple varieties.
For FVar we take the desingularization functor of Bierstone-Milman, which is func-
torial in all regular morphisms by [BMT].

5.2.1. Plain curves. Assume that X is a generically reduced plain algebraic curve.
A strong desingularization is uniquely defined up to synchronization because one
has to blow up the singular points until the curve becomes smooth. On the other
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hand, synchronization of these blow ups depends on various choices. Note that the
Hilbert-Samuel strata of X are the equimultiplicity strata because X embeds into
a smooth surface. It follows easily that FVar is synchronized by the multiplicity.
Namely, one blows up the points of maximal multiplicity at each step until all points
are smooth. The synchronization of F is slightly different. Because of Step 1 in the
localization stage we simultaneously blow up all singular points once. After that
we skip Step 2 and use FVar at Step 3. To summarize, we blow up all singularities
once, and then switch to the synchronization by multiplicity, similarly to FVar.

Remark 5.2.1. The same description holds true for varieties with isolated singu-
larities. At the first stage, F blows up all these singularities. One obtains a blow up
X ′ → X and then simply applies FVar(X

′). Thus, F blows up the same centers as
FVar but the synchronization can be different when X has more than one singular
point.

5.2.2. Surfaces. Let us consider examples of the next level of complexity. Namely,
let X be a surface such that C = Xsing is a curve with the set of generic points
η = {η1, . . . , ηn}. The functor F1 acts as follows. On the semi-local curve Xη, which
is the semi-localization of X at η, F1 acts as was explained in §5.2.1. We extend the
blow up sequence F1(Xη) : X ′

η 99K Xη to a blow up sequence F1(X) : X ′
99K X

in the natural way (that is, the centers of F1(X) are the Zariski closures of the
centers of F1(Xη)). After that we produce F(X) = F2(X) by inserting new blow
ups into F1(X). This is done in three steps described in §5.1. All new blow ups
will be inserted over the set b = (b1, . . . , bm) such that F1(X) is not a strong
desingularization precisely over the points of b. In particular, the first blow up is
along b.

Example 5.2.2. If a ∈ X is a ”generic point” of C then F(X) = F1(X) over
a neighborhood of a. For example, this is the case of any surface of the form
X = A1

k ×Y for a curve Y . One easily sees that in this case F and FVar differ only
by synchronization, as in the case of curves.

Next we consider two examples of a Cartier divisor in A3
k = Spec(k[x, y, z])

with a non-isolated and ”non-generic” singularity at the origin a. For the sake
of comparison, we will show how FVar resolves the same examples. For reader’s
convenience, a brief explanation of how FVar can be computed in these examples
will be given in §5.2.3.

Example 5.2.3. Whitney umbrella X is given by y2 + xz2 = 0. In this case C is
the x-axis, and blowing it up resolves all singularities. So, F(X) = F2(X) = F1(X)
just blows up C. However, a is not a ”generic point” of the singular locus and other
algorithms feel this. In particular, FVar first blows up a. The blow up X1 = Bla(X)
is covered by two charts: the x-chart X1x and the z-chart X1z. Since X1x is defined
by y21 + x1z

2
1 = 0 for x1 = x, y1 = y/x and z1 = z/x, we see that it has the same

singularity as X . Namely, the singular locus C1 is the line y1 = z1 = 0 (which is the
strict transform of C). Since X1z is defined by y21+x1z1 = 0 for x1 = x/z, y1 = y/z,
z1 = z (for simplicity we denote the local coordinates by the same letters as earlier),
the singularity of X1z is the isolated orbifold point c1 given by x1 = y1 = z1 = 0.
Because of a synchronization issue, C1 is dealt with first (a non-monomial ideal N
has order two along C1 and order one at c1, see §5.2.3 for a similar computation).
The second blow up is, again, at the pinch point a1 ∈ C1. The same computation
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as above shows that the singular locus of X2 consists of C2, which is the strict
transform of C (and C1), an orbifold point c′2, which sits over a1 and an orbifold
point c2 which is the preimage of c1. The third blow up is along C2, so the singular
locus of X3 consists of two orbifold points c3 and c′3 sitting over c2 and c′2, and
the last blow up is along {c3, c

′
3}. This resolves X completely. Note also that for

0 ≤ i ≤ 2 the local structure of Xi along Ci is similar. Nevertheless, the algorithm
blows up the pinch point twice and then decides to blow up the whole singular line
C2 because of the history of the process.

Example 5.2.4. Let Y be given by y2 + xz3 = 0. The entire resolution process is
too messy, so we will only work with a sequence of affine charts. As we saw in the
previous example, there might be (and there are) blow ups on the other charts that
may (but do not have to) be simultaneous with the blow ups on our charts. In this

case, we also have that C = Ysing is the x-axis and F1(Y ) : Ỹ → Y is the blow up

along C. Let us describe an affine chart Yn 99K Y0 = Y of F(Y ) : Y n 99K Y 0 = Y .
It is obtained by choosing each time an appropriate affine chart of the blow up and
restricting the remaining sequence over that chart. In particular, n < n because of
the synchronization with other charts, which we ignore for simplicity.

Note that Ỹ has an isolated orbifold singularity above a locally given by y21 +
x1z1 = 0, where x1 = x, z1 = z and y1 = y/z. Thus, F(Y ) 6= F1(Y ), b = {a}
and Step 1 inserts the blow up at a as the first blow up. So, Y 1 = Bla(Y ) and
we will study how F proceeds on the (most interesting) x-chart Y1 defined by the
equation y21 +x2

1z
3
1 = 0, where x1 = x, y1 = y/x and z1 = z/x. Note that the strict

transform of C is the x1-axis, which we denote by C1. Since C1 is regular, no blow
up is inserted at Step 2, and so the second blow up is along C1. Thus, BlC1(Y1) has
only one chart Y2 given by y22 + x2

2z2 = 0, where x2 = x1, y2 = y1/z1 and z2 = z1.
In particular, Y2 is a Whitney umbrella, and (Y2)sing is contracted to the point a
by the projection Y2 → Y . The singularity of Y2 is resolved at Step 3 by applying
FVar(Y2), which is the same as FVar(X) from Example 5.2.3. So, the pinch point
of Y2 is blown up twice and the fifth blow up blows up the entire line, which is the
strict transform of (Y2)sing (note that this singular line appeared for the first time
as the preimage of a under Y1 → Y ).

Now, let us describe FVar(Y ) : Zn 99K Z0 = Y . The first two blow ups are at the
origin (similarly, to Whitney umbrella). Thus Z1 = Y1 and for Z2 we take the (most
interesting) x-chart, so Z2 is given by y22 + x3

2z
3
2 = 0, where x2 = x1, y2 = y1/x1

and z2 = z1/x1. Note that the singularities of Y2 and Z2 are different. The third
blow up is along the line y2 = z2 = 0 (which is the strict transform of the original
singular line C), hence its only chart is Z3 given by y23 + x3

2z2 = 0, where x3 = x2,
y3 = y2/z2 and z3 = z2. The next blow up is along the line x3 = y3 = 0 and Z4 is
given by y24 + x4z4 = 0. Finally, the last blow up is at the point x4 = y4 = z4.

We summarize by saying that (up to our matching of affine charts, which is sort
of informal) F blows up point, old line (the strict transform of C), point, point,
new line, while FVar blows up point, point, old line, new line, point.

Remark 5.2.5. (i) We saw that when the singularities are not isolated, the two
algorithms can blow up different centers. Unlike the synchronization issues, this
makes the algorithms very different because they deal with different singularities
after the first choice of different centers. In particular, it is unclear to me how one
can compare the algorithms in general (or match affine charts).
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(ii) Although these two examples do not give enough intuition for deciding which
algorithm is faster, I would expect that in general F produces more complicated
desingularizations than FVar. Nevertheless, the tendency of F to blow up curves
(and other higher dimensional centers) at first occasion can shorten the desingular-
ization process in some cases.

5.2.3. Computing FVar. Let X and Y be as in Examples 5.2.3 and 5.2.4. We will
compute FVar(Y ) and FVar(X) can be found similarly. We apply the algorithm
from [BM3, §5], so the reader is advised to consult [BM3] for more details. Since
Y is a hypersurface in M = A3, we can take the equimultiple stratum of Y →֒ M
as a presentation of the maximal Hilbert-Samuel stratum of Y . Thus, it suffices to
resolve the marked ideal (y2 +xz3) with d = 2 on M . We can take the (xz) plane P
given by y = 0 as the hypersurface of maximal contact. Restricting the coefficient
ideal Cd−1

∅ = (y2 + xz3) + (2y, 3zx2, z3)2 on P gives the ideal I = (z6, xz3) with
dI = d = 2 (we refer to [BM3] and especially its §3.4, §4 and Case A of Step II
in §5). To resolve (y2 + xz3) on M is the same as to resolve I on P , and for the
latter we go to Case B of Step II in [BM3, §5]. The monomial part M of I is
trivial (no history) and the non-monomial part is N = (z6, xz3) with dN = 4. So,
the companion ideal G is N with dG = 4 and it easy to see (via further maximal
contact reduction) that G is resolved by blowing up the origin. Hence the first blow
up in the resolution of I is along the origin a (and similarly for the resolution of
Y ). Consider the x-chart P1 of Bla(P ). The principal transform of I on this chart
is I1 = (x2

1z
3
1 , x

4
1z

6
1) = (x2

1z
3
1) (it is obtained from the full transform by dividing

by zd1 = z21). Now, I1 = M1N1 for monomial M1 = (x2
1) and non-monomial

N1 = (z31). It follows that G1 = (z31) with the exceptional divisor V (x1). Hence
G1 is resolved by two blow ups: first we blow up the point x1 = z1 = 0 due to
Case B of Step I in [BM3, §5] in order to separate the singular locus V (z1) from
the old boundary. This gives G2 = (z32) on the x-chart, and then we blow up the
line V (z2). Tracking the effect on the principal transforms of I1 under these two
blow ups we see that I2 = x−2

2 (x5
2z

3
2) = (x3

2z
3
2) and I3 = (x3

3z3). The latter ideal
is monomial because the exceptional divisor is V (x3z3) at this stage. So, Step II
in [BM3, §5] deals with it by Case A. It is easy to see that I3 is resolved by two
additional blow ups. First one blows up the line V (x3), obtaining I4 = (x4z4), and
then one blows up the remaining singular point V (x4, z4), resolving I completely.
Thus, I is locally resolved by an affine chart of a blow up sequence of length five,
and its centers are as follows: the point V (x, z), the point V (x1, z1), the line V (z2),
the line V (x3) and the point V (x4, z4). Therefore the centers of the corresponding
”affine chart” of FVar(Y ) are as follows: the point V (x, y, z), the point V (x1, y1, z1),
the line V (y2, z2), the line V (x3, y3) and the point V (x4, y4, z4).

6. Desingularization in other categories

We will show that the main Theorems 3.1.1, 3.1.3 and 3.1.5 imply analogous
desingularization theorems in many other categories, including qe stacks, formal
schemes and various analytic spaces in characteristic zero. Also, we will show that
desingularization of non-compact objects follows as well.

6.1. Stacks. Let X be an Artin stack with a smooth atlas p1,2 : R ⇒ U , so U → X

is a smooth covering and R = U×XU . If V →֒ X is a closed substack then we define
the blow up BlV(X) using the chart BlW (R) ⇒ BlV (U) where V = V ×X U and
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W = V ×X R (we use here that the blow ups are compatible with flat morphisms
and so BlW (R) = BlV (U) ×U,pi

R for i = 1, 2). We say that a stack is regular or
qe if it admits a smooth cover by such a scheme. A strong desingularization is now
defined as in the case of schemes.

Theorem 6.1.1. The blow up sequence functors F , E and P extend uniquely to
noetherian qe stacks over Q.

To prove this theorem for F we take any stack X as above and find its smooth
atlas R ⇒ U . Then F(R) ⇒ F(U) is an atlas of a blow up sequence F(X). An
interesting case is when X = X/G for an S-scheme X acted on by an S-smooth
group scheme G. Then the above theorem actually states that X admits a G-
equivariant desingularization. Other functors are dealt with similarly.

6.2. Formal schemes and analytic spaces. In the categories of qe formal schemes,
complex analytic spaces, rigid analytic spaces and analytic k-spaces of Berkovich
the notions of regularity and blow ups are defined. So, one can define strong desin-
gularization similarly to the case of schemes. Hironaka proved desingularization of
complex analytic spaces, but this required to insert major changes in his method
(and the main reason is that his method is not canonical). The new algorithms
are known to work almost verbatim for complex analytic spaces, though strictly
speaking, one should repeat the entire proof word by word. The desingularization
of affine formal schemes was deduced in [Tem1] from non-functorial desingulariza-
tion of affine schemes, but this approach did not yield global desingularization of
formal schemes.

It turns out that functorial desingularization of qe schemes is so strong that it
rigorously implies functorial desingularization of all above objects. The strategy is
always the same, so let us stick with the non-embedded desingularization. We cover
a generically reduced object X (i.e. the non-reduced locus is nowhere dense) by
compact local subobjects X1, . . . , Xn (e.g. affinoid subdomains, affine formal sub-
schemes or Stein compacts) and observe that Ai = OX(Xi) are qe rings and for any
smaller object Xijk ⊂ Xi∩Xj the localization homomorphisms Ai → OX(Xijk) are
regular (e.g. formal localization is regular on qe formal schemes). Thus, comple-
tion/analytification of the desingularization F(Spec(Ai)) yields a desingularization
of Xi, and these local desingularizations glue together because F is compatible with
all regular morphisms.

Remark 6.2.1. (i) Recall that F is of absolute nature, and actually it is con-
structed from a functor FQ on Q-varieties. Thus, the obtained desingularization
of all above objects is algebraic, and even defined over Q in some sense. The latter
might look surprising since there are non-algebraizable analytic singularities, so we
illustrate below the differences between our method and ”naive algebraization”.

(ii) First of all, thanks to the localization stage we only have to algebraize rather
special classes of singularities, which generalize in some sense the isolated singu-
larities. Furthermore, even when x ∈ X is an isolated complex singularity, we
do not algebraize a complex neighborhood of x but only its formal neighborhood

X̂x = Spf(ÔX,x). This operation is ”too local” at x, so it does not have to extend
to an analytic neighborhood of x. Moreover, for the sake of functoriality we had to

study all algebraizations of X̂x, including those that induce embeddings C →֒ ÔX,x

not landing in OX,x.
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6.3. Non-compact objects and hypersequences. Because of functoriality of
the algorithms from §6.2, one immediately obtains a functorial desingularization of
non-compact qe schemes, formal schemes, and various analytic spaces. However,
this time the desingularization is just a projective morphism X ′ → X because its
functorial splitting into a sequence of blow ups can be infinite. One can often
perform few blow ups simultaneously to obtain a finite splitting X ′ = Xn 99K X0 =
X , or an infinite splitting

· · · → Xn → · · · → X1 → X0 = X

that reduces to a finite sequence (and infinitely many empty blow ups) over any
relatively compact subspace of X , but this is not functorial. Moreover, despite
some claims in the literature, even such an infinite splitting does not always exist.

Example 6.3.1. For concreteness, let us work complex-analytically and fix a strong
desingularization algorithm F . It is easy to construct a complex surface S with an
irreducible curve C ⊂ Ssing and a point an ∈ S such that the following condi-
tions hold. At a generic point η ∈ C one can locally describe S by the equation
f(x, y, z) = y2+z2 = 0 (i.e. S consists of two smooth branches meeting transversally
along C), but an is a so special point that the resolution F(S) on the appropriate
charts over an looks as follows: at least n times one blows up the preimage of an
on the strict transforms of C, and only then one blows up the strict transform of C
(thus resolving the generic points of C). For example, an easy computation shows
that both for our algorithm F and for the algorithm FVar of Bierstone-Milman one
can define the germ of S at an by y2 + z2 + x2n+3 = 0. Clearly, we can construct a
non-compact surface with a curve C and an infinite sequence of points a1, a2, . . . as
above (use an infinite pasting procedure). If a factorization of F(S) into an infinite
sequence · · · → S1 → S0 = S would exist, then the strict transform of C would
be a component of the center of some blow up, say Sn+1 → Sn. And this would
contradict the assumption that the composition is F(S) over an+1.

Nevertheless, there is a functorial way to split the desingularization. Instead of
infinite blow up sequences ordered by N, one should consider their generalization,
which is called blow up hypersequences in [Tem2]. The latter are sequences ordered
by a countable ordered set (the set of invariants of the algorithm in this case)
and such that over each relatively compact subobject Y →֒ X the hypersequence
reduces to the finite blow up sequence F(Y ) saturated with infinitely many empty
blow ups. Existence of such a splitting is more or less a tautology and we refer to
[Tem2, §5.3] for details.

References

[AdJ] Abramovich, D.; de Jong, A.J.: Smoothness, semistability, and toroidal geometry., J.
Alg. Geom. 6 (1997), no. 4, 789–801.

[BM1] Bierstone, E.; Milman, P.: A simple constructive proof of canonical resolution of singu-

larities, Effective methods in algebraic geometry (Castiglioncello, 1990), 11–30, Progr.
Math., 94, Birkhuser Boston, Boston, MA, 1991.

[BM2] Bierstone, E.; Milman, P.: Canonical desingularization in characteristic zero by blowing

up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302.

[BM3] Bierstone, E.; Milman, P.: Functoriality in resolution of singularities, Publ. Res. Inst.
Math. Sci. 44 (2008), 609–639.

[BMT] Bierstone, E.; Milman, P.; Temkin M.: Q-universal desingularization, preprint,
arXiv:[0905.3580].



26 MICHAEL TEMKIN

[CJS] Cossart, V.; Jannsen, U.; Saito, S.: Canonical embedded and non-embedded resolution

of singularities for excellent two-dimensional schemes, preprint, arXiv:[0905.2191].
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