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Introduction

The goals

Fix a complete real-valued algebraically closed field k .
A finite morphism f : Y → X of smooth k -analytic Berkovich
curves can be pretty complicated in the non-tame case and our
goal is to provide a satisfying description. In particular, we will
describe the topological ramification locus of f .
Main tools will be the following two invariants of f :

The different function δf : Y → [0,1] given by δf (y) = δH(y)/H(f (y)).
A finer profile function φf : Y → P[0,1] whose values are piecewise
monomial bijections of [0,1] onto itself. It is related to the higher
ramification theory.
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Introduction

The sources

The different function is studied in a work [CTT14] of
Cohen-Temkin-Trushin.
The profile function is studied in a work [Tem14].
There is a short overview of the two works at [Tem15].
These slides are available at
www.math.huji.ac.il/∼temkin/lectures/wild_covers.pdf.
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Introduction

Plan

1 Basic results on Berkovich curves

2 Basic results on morphisms of curves

3 The different function and the genus formula

4 The profile function and the topological ramification locus
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Introduction

Conventiones

If not assumed otherwise, a valued field K is a real-valued one,
and the valuation | | : K → R≥0 is written multiplicatively. Also, K ◦

denotes the ring of integers and K̃ denotes the residue field.
We fix a complete real-valued algebraically closed ground field k .
A k -analytic curve X will be called nice if it is smooth, proper and
connected. (For simplicity, we do not consider rig-smooth curves
with boundaries in this talk.) In particular, X = X an is the
analytification of an algebraic k -curve X .
f : Y → X denotes a finite morphism of nice k -analytic curves.
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Basic results on Berkovich curves

Analytification

In general, points of k -analytic spaces correspond to real
valuations of k -affinoid algebras, and to any point x one assigns a
completed residue field H(x).
For any k -variety X Berkovich functorially defines an
analytification X = X an and a surjective map π : X → X . The fiber
π−1(z) consists of all real valuations | |x on k(z) that extend | |k ,
and H(x) is the completion of k(z) with respect to | |x .
For any closed point z ∈ X we have that k(z) = k and hence
π−1(z) = {x}. Such an x is called a rigid point (or a classical
point).
Thus, if X is an algebraic integral k -curve then set-theoretically X
consists of the closed points of X , called points of type 1, and the
points given by valuations on k(X ).
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Basic results on Berkovich curves

Points of k -analytic curves

Points on k -analytic curves are divided to four types:

(1) Rigid points: H(x) = k .

(2) k̃ ( H̃(x). In this case, |H(x)×| = |k×| and H̃(x) is the function
field of a k̃ -curve that we denote Cx .

(3) |k×| ( |H(x)×|. In this case, |H(x)×|/|k×| = Z and k̃ = H̃(x).
(4) H(x)/k is a non-trivial immediate extension.

Points of type 4 are the main obstacle for proving the semistable
reduction theorem, but they are not essential for this work, so we will
mainly ignore them.
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Basic results on Berkovich curves

The affine line

Let X = A1
k with a fixed coordinate t , then

For any x of type 1, 2 or 3 there exist a ∈ k and r ≥ 0 such that∣∣∣∣∣∑
i

ci(t − a)i

∣∣∣∣∣
x

= max
i
|ci |r i .

x is of type 1 iff r = 0, and so it is given by t = a.
Otherwise x is the maximal point pa,r of the disc E(a, r) given by
|t − a| ≤ r , and x is of type 2 iff r ∈ |k×|.
pa,r = pb,s iff |a− b| ≤ r = s. Thus, X is a graph that can be
visualized pretty well.
(Points of type 4 correspond to intersections of sequences of discs
E1 ) E2 ) . . . without common rigid points.)
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Basic results on Berkovich curves

Skeletons

Definition
By a subgraph Γ ⊂ X we mean a finite connected subgraph whose
vertexes v ∈ Γ0 are of types 1,2. Such a Γ is a skeleton if X \ Γ0 is a
disjoint union of open discs Di and (semi-)annuli A1, . . . ,An and the
edges of Γ are the central chords (or skeletons) of A1, . . . ,An.

Any skeleton gives a good combinatorial approximation of X :

Fact
(i) X \ Γ is a disjoint union of open discs, so a retraction qΓ : X → Γ
arises.
(ii) Any larger subgraph Γ′ ⊇ Γ is a skeleton.
(iii) g(X ) =

∑
x∈X g(x) + h1(X ) =

∑
v∈Γ0 g(v) + h1(Γ), where

g(x) = g(Cx ) for x of type 2 and g(x) = 0 otherwise.
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Basic results on Berkovich curves

Semistable reduction

Theorem
Any nice curve possesses a skeleton.

This is a, so-called, skeletal formulation of the famous semistable
reduction theorem.
The classical formulation, which is equivalent to the skeletal one,
is that X possesses a semistable formal model X over Spf(k◦) (or
even over Spec(k◦), since we assume that X is proper).
The relation between the two formulations is as follows: if
π : X → Xs is the reduction (or specialization) map then π−1(x) is:

a single point if x is generic,
an open annulus if x is a node,
an open disc if x is a smooth closed point.

So, the incidence graph Γ = Γ(Xs) is a skeleton with
Γ0 = π−1(Xgen

s ).
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Basic results on Berkovich curves

The local structure

The following local description of a nice curve Y is (mainly) a
consequence of the semistable reduction. On the other hand, it is not
difficult to deduce the semistable reduction from it. (I used this method
to give an analytic proof of the semistable reduction.)

Y is a (huge) graph.
Any y ∈ Y of type 1 or 4 lies in an open disc D ⊂ Y .
Any y ∈ Y of type 3 lies in an open annulus A ⊂ Y .
A point y ∈ Y of type 2 is locally embeddable in A1

k iff g(x) = 0. In
general, the branches v at y are parameterized by the closed
points of Cy .
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Basic results on Berkovich curves

The metric

Fact
Any curve Y possesses a canonical minimal metric dY such that each
function log |f | is pl with integral slopes.

We will work with the exponential (or radius) metric
rY ([a,b]) = expdY ([a,b]). Then each |f | is pm (piecewise monomial)
of integral degrees on intervals I ⊂ Y with radius parametrization.
On Y = A1

k it is given by the usual radius: rY ([pa,s,pa,t ]) = s
t .

Given a skeleton Γ ⊂ Y we denote by rΓ : Y → [0,1] the inverse
exponential distance from Γ. In fact, if D is a connected
component of Y \ Γ and y ∈ D then rΓ(y) is the radius of y in D,
where the open disc D is normalized to be of radius 1.
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Basic results on morphisms of curves

The multiplicity function of f

The multiplicity function nf : Y → N of f is given by
nf (y) = [H(y) : H(f (y))] for types 2,3,4 and nf (y) equals to the
ramification index ey for rigid points.
Fact: f is a local isomorphism at y iff nf (y) = 1.

Definition: f is topologically tame at y if nf (y) ∈ k̃×.
One of our aims is to describe the multiplicity loci
Nf ,≥d = {y ∈ Y | nf (y) ≥ d}, including the top. ramification locus
Nf ,≥2. This controls the metric properties of f due to the following

Fact
For any interval I ⊂ Y the set f (I) is a graph, the map f |I : I → f (I) is
pm and |deg(f |I)| = nf on I (with upper semicontinuity at the corners).
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Basic results on morphisms of curves

Simultaneous semistable reduction

Definition
A skeleton of f : Y → X is a pair Γf = (ΓY , ΓX ) of skeletons such that
ΓY = f−1(ΓX ) and Ram(f ) ⊂ Γ0

Y .

Theorem
Any finite morphism between nice curves possesses a skeleton.

Since any enlarging of a skeleton is a skeleton, this theorem is not
essentially stronger than the semistable reduction of curves.
It is more or less equivalent to existence of a finite formal model
f : Y→ X with semistable Y and X.
Y \ ΓY → X \ ΓX is a disjoint union of finite étale covers of discs by
discs.
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Basic results on morphisms of curves

Description of tame morphisms

Any top. tame étale cover of a disc by a disc splits, and any top.
tame étale cover of an annulus by annulus is Kummer: t 7→ te.
Thus, if f is top. tame then nf = 1 outside of ΓY and on any edge
e ⊂ ΓY we have that nf = ne is constant.
In particular, the map Γf : ΓY → ΓX of graphs with multiplicities
nv ,ne is a good combinatorial approximation of f . It satisfies:
Constancy of multiplicity:

∑
v∈f−1(u) nv = deg(f ) for any u ∈ Γ0

X .
Local constancy of multiplicity: nv =

∑
e∈f−1(h)∩Br(v) ne for any

vertex v ∈ Γ0
Y and an edge h ∈ Br(f (v)) in ΓX .

Local Riemann-Hurwitz:
2g(v)− 2− 2nv (g(u)− 1) =

∑
e∈Br(v)(ne − 1).

Proofs are by the usual reduction (or formal models) technique,
e.g. we use the RH formula for the map Cv → Cu corresponding
to the extension H̃(v)/H̃(u).
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Basic results on morphisms of curves

Problems with the wild case

An étale cover of a disc by a disc can be pretty complicated.

The extension H̃(v)/H̃(u) can be purely inseparable, making the
reduction Cv → Cu rather non-informative.

Even if H̃(v)/H̃(u) is separable, the local term of e involves the
different and exceeds ne − 1 if char(k̃)|ne.
The non-splitting set Nf ,>1 can be huge, e.g. it is the metric
neighborhood of [0,∞] of radius |p|1/(p−1) for the map
fp : P1

Cp
→ P1

Cp
given by t 7→ tp.

An even stranger picture is for the covering fλ : E → P1
C2

given by
y2 = t(t − 1)(t − λ) with |λ− 1| = 1 ≤ |λ| < |2|−4 (this is the
supersingular reduction case since |j | = |24λ| < 1 and so j̃ = 0).
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The different function and the genus formula

The different

The point with local terms calls for the different. In addition, the
different is the main invariant to measure wildness of the extension, so
this is the most natural thing we can look at when H̃(v)/H̃(u) is
inseparable.

Definition
The different of a separable algebraic extension of valued fields L/K is
δL/K = |Ann(ΩL◦/K◦)| ∈ [0,1].

We use the multiplicative language, while the usual different is
δadd

L/K = − log(δL/K ).
This definition is the "right" one only when ΩL◦/K◦ is of “almost
rank one" (i.e. almost isomorphic to a subquotient of L◦). It is ok
for H(v)/H(u) on curves (our case) or for extensions of DVF’s
with perfect residue fields, but in general one should use the
zeroth (almost) Fitting ideal of ΩL◦/K◦ or something similar.
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The different function and the genus formula

The log different

One can similarly define the logarithmic different
δ

log
L/K = |Ann(Ωlog

L◦/K◦)|.

If K is discretely valued then δlog
L/K = δL/K |πL|/|πK |, and

δ
log
L/K = δL/K otherwise.

The classical RH formula for a morphism f : Y → X of algebraic
curves of degree n is

2g(Y )− 2− 2n(g(X )− 1) =
∑
y∈Y

δadd
y/x =

∑
y∈Y

(δlog,add
y/x + ny − 1).
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The different function and the genus formula

The different function

Let Y hyp denote the set of points of Y of types 2, 3 (and 4).
We assign to a generically étale f : Y → X the different function
δf : Y hyp → (0,1] by δf (y) = δH(y)/H(f (y)).
Since H(y) is not discretely valued, there is no difference between
δf and δlog

f . But, in fact, few places in the sequel where discrete
valuations show up (e.g. the limit behavior at type 1 points)
indicate that δf is the log different function.
δf measures the wildness of f . In particular, if f is top. tame at y
then δf (y) = 1.
δf easily explains all phenomena we saw in the examples fp and
fλ. For example, for fp the different equals to |p| along [0,∞] and it
is monomially increasing of degree p − 1 in all directions outside
of [0,∞].
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The different function and the genus formula

Main properties of δf

Theorem
δf is pm on intervals.
δf extends to a pm function δf : Y → [0,1] and for y of type 1
slopey (δf ) = δ

log,add
y/x . In particular, δf is not constant near y iff

δf (y) = 0 iff f is wildly ramified at y.
Balancing condition at y ∈ Y of type 2 with x = f (y):

2g(y)− 2− 2ny (g(x)− 1) =
∑

v∈Cy

(−slopevδf + nv − 1).

In particular, almost all slopes of δf at y equal to ni
y − 1, where ni

y

is the inseparability degree of H̃(y)/H̃(f (y)).
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The different function and the genus formula

Balancing condition: the method

Our proof of the balancing condition is simple and we roughly outline it
here.

Idea: δf is a family of differents, so sheafify the definition of δL/K .
The “lattice" Ω�X = O◦X d(O◦X ) of ΩX is a version of ΩO◦

X/k◦ .
Ω�Y/f

∗Ω�X is a torsion sheaf of k◦-modules, its stalk at y is almost
cyclic with absolute value of the annihilator equal to δf (y).
Choose a ∈ k◦ with |a| = δf (y). Reductions of Ω�Y and a−1f ∗Ω�X at
y induce a non-zero meromorphic map λ : f̃ ∗ΩCy → ΩCx , where

f̃ : Cy → Cx is the map of k̃ -curves associated with H̃(y)/H̃(x).
The balancing condition boils down to computing the degree of
ΩCy ⊗ f̃ ∗Ω−1

Cx
via poles and zeros of λ.
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The different function and the genus formula

Minimal skeletons

Definition
A branch v at a point y of type 2 is δf -trivial if slopevδf = nv − 1.

Theorem

Let ΓX be a skeleton of X and ΓY = f−1(ΓX ). Then (ΓY , ΓX ) is a
skeleton of f if and only if Ram(f ) ⊆ Γ0

Y and for any point y ∈ ΓY all
branches at y pointing outside of ΓY are δf -trivial.

Thus, the different function controls the minimal skeleton of f
containing a fixed skeleton Γ of X and allows to construct it
algorithmically.
Also δf controls the set Nf ,p when deg(f ) = p, but it does not
control the sets Nf ,p, Nf ,p2 , etc., in general.
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The profile function and the topological ramification locus

Radial sets

Definition
A closed subset S ⊆ X is called Γ-radial of radius r , where r : Γ→ R, if
S consists of all points x ∈ X satisfying rΓ(x) ≥ r(qΓ(x)).

Theorem
There exists a skeleton of f such that ΓY radializes the sets Nf ,≥d and
then any larger skeleton does so. Moreover, any skeleton of f
radializes these sets in each of the following cases: (1) f is a normal
covering (e.g. Galois), (2) f is tame, (3) f is of degree p.

Example

If f is of degree p then Nf ,p is Γ-radial of radius δ1/(p−1)
f |Γ for any

skeleton (Γ, ΓX ) of f .
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The profile function and the topological ramification locus

The splitting method

The following method is often used to prove results about extensions
of valued fields:

Prove the result for tame extensions and wild extensions of
degree p. Often this is simpler and can be done by hands.
Extend the result to compositions, obtaining the case of Galois
extensions.
Use some form of descent to deduce the non-normal case.

The radialization is proved by running this method locally over X . This
works since the category of étale covers of a germ (X , x) is equivalent
to the category of étale covers of Spec(H(x)) by a theorem of
Berkovich.

M. Temkin (Hebrew University) Wild coverings of Berkovich curves 24 / 27



The profile function and the topological ramification locus

The profile function

Choose Γ that radializes all sets Nf ,≥d . Then ΓY contains each
Nf ,d with d /∈ pN and our last goal is to express the radius
rn : ΓY → R of Nf ,≥pn in classical terms.
For y ∈ ΓY of type 2 the list rf (y) = (r1(y), r2(y), . . . ) is a bad
invariant because it is hard to compute compositions rf◦g .
This motivates the following definition: choose any interval
I = [c, y ] with a rigid c and I ∩ΓY = {c}, and identify I and f (I) with
[0,1] via the radius parametrization. Then f |I induces an element
φf (y) ∈ P[0,1] (a pm bijection [0,1]→ [0,1]) independent of c that
we call the profile function of f at y . Obviously, φf◦g = φf ◦ φg .
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The profile function and the topological ramification locus

Relation to the higher ramification

Theorem
If f : Y → X is generically étale then for any point y ∈ Y of type 2 with
x = f (y) the profile function φy coincides with the Herbrand function
φH(y)/H(x) of the extension H(y)/H(x).

Even to formulate the theorem, one has to extend the higher
ramification theory to non-discrete setting and almost
monogeneous extensions.
Once this is done, the proof is, again, by a simple use of the
splitting method.

Theorem
The family {φy} extends uniquely to a pm function φ : Y → P[0,1].
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The profile function and the topological ramification locus

Happy Birthday Arthur!
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The profile function and the topological ramification locus
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