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1. Moduli spaces of stable n-pointed curves

1.1. Reminds on regularity, smoothness and etaleness.

smdef Definition 1.1.1. (i) A scheme X is regular if all its local rings are noetherian and
regular.

(ii) A morphism f : Y → X is smooth if it is finitely presented, flat and has
geometrically regular fibers.

(iii) A morphism f is etale if it is smooth and of relative dimension zero.
(iv) A morphism f : Y → X is unramified if it is of finite presentation and for

any y ∈ Y with x = f(y) one has that my = mxOy and k(y)/k(x) is finite and
separable.

presrem Remark 1.1.2. In the first part of the course, one can assume that all schemes
are noetherian. Then finite presentation is the same as finite type.

etflunr Lemma 1.1.3. A morphism f : Y → X is etale locally at a point y ∈ Y if and
only if it is flat and unramified at y.

The proof is simple. The only slightly subtle point is that one should check (in
both directions) that y is discrete in its fiber over X.
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stretdef Definition 1.1.4. A morphism f : Y → X is strictly etale at y if it is etale at y
and induces an isomorphism of the residue fields.

etformprop Proposition 1.1.5. Let f : Y → X be a morphism of finite type between noether-
ian schemes, y ∈ Y and x = f(y). Then f is strictly etale at y if and only if it

induces an isomorphism f̂y : Ôy→̃Ôx of completed local rings.

Proof. To prove the direct implication we shrink Y so that y is the only preimage
of x. Since my = mxOy, the base change induces a strictly etale homomorphism
A = Ox/mn

x → Oy/mn
y = B of Artin local rings. The latter is automatically an

isomorphism: it is finite by the valuative criterion, hence B is A-finite, and then
An→̃B as A-modules by flatness of B. Since A/mA→̃B/mB→̃B/mAB by our
assumption, n = 1 and A→̃B.

Conversely, if f̂y is an isomorphism, then f is, obviously, unramified at y and its
flatness at y follows from the following algebraic fact for which we refer to texts on
commutative algebra by Bourbaki or Matsumura.

faltcompl Lemma 1.1.6. If A is a noetherian ring, I is an ideal and Â = proj limnA/I
n is

the I-adic completion of A, then the completion homomorphism φ : A→ Â is flat.
In particular, if A is local and I is the maximal ideal, then φ is faithfully flat.

�

1.2. Simple nodes. Nodal points (also called simple nodes) are simplest curve
singularities. Intuitively such a point P is a transversal self-intersection or a curve
which locally looks as the singularity O of the cross X = Spec(k[x, y]/(xy)), but
one should use étale locality rather than the Zariski one.

nodedef Definition 1.2.1. A simple node on a curve C over an algebraically closed field k
is a point P such that there exists a curve C ′ with a point P ′ and étale morphisms
C ′ → C and C ′ → X taking P ′ to P and O, respectively.

Exercise 1.2.2. Show that in the above definition one can take C ′ ↪→ C to be an
open immersion (i.e. work Zariski locally) if and only if C is reducible at P . In
particular, show that C = Spec(k[x, y]/(x2 − y2 − y3)) such a neighborhood does
not exist (Hint: send x and y to the local coordinates on the Zariski branches.)

Remark 1.2.3. In general, Zariski topology is not fine enough to separate the
branches. Sometimes one says that C has normal crossings (nc) at a nodal point,
and simple normal crossings (snc) if it is also reducible at the point.

Nodal points possess various equivalent characterizations in terms of normaliza-
tions or in terms of formal (or analytic when k = C) localization. Before formulating
them we give a few definitions.

semilocaldef Definition 1.2.4. Let C be a separated k-curve with a finite set P = {P1, . . . , Pn}
of closed points. The semi-local ring OP of P is defined as follows: take any affine
neighborhood U of P (we use that any separated curve is quasi-projective) and
define OP as the localization of O(U) by all functions invertible at the points of
P . The maximal ideals of OP are the preimages of mPi , and we define mP as the
intersection of all maximal ideals of OP .

This definition will be useful because the preimage P̃ of a point P ∈ C under

the normalization π : C̃ → C may be a finite set. Note normalization is compatible
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with localizations, hence OP̃ is the normalization of OP . Now, we can define the
following most basic invariant of a curve singularity:

Definition 1.2.5. The delta invariant of P is δP = dimk(OP̃ /OP ).

pushcurlem Lemma 1.2.6. If C is a reduced separated k-curve and P ∈ C a finite set of closed

points, whose preimage under the normalization π : C̃ → C is P̃ , then mP̃ contains
an ideal I such that I ⊆ OP .

Proof. For varieties over k normalization is a finite morphism, hence OP̃ is a finite
OP -module, the quotient OP̃ /OP is a finite torsion module and hence is killed by
some mn

P . In particular, I = mn
POP̃ is contained in OP . �

Note that one can take I = mn
P̃

for n � 0. As a corollary we obtain that δP is

an analytic invariant in the following sense:

deltacor Corollary 1.2.7. The delta invariant of P only depends on the formal completion

ring ÔP .

Proof. Note that δP is the dimension of the k-vector space

OP̃ /OP = (OP̃ /I)/(OP /I) = (ÔP̃ /Î)/(ÔP /Î) = ÔP̃ /ÔP

and the righthand side depends only on the ring ÔP because ÔP̃ = ⊕ni=1k[[ti]] is

normal and hence is the normalization of ÔP . �

In addition, the lemma implies that C can be obtained from C̃ by a special
pushout operation called pinching, when one replaces a closed subscheme by a
smaller one.

Corollary 1.2.8. Keep the above notation and consider the closed subschemes

Z = Spec(OP /I) ↪→ C and Z̃ = Spec(OP̃ /I) ↪→ C̃, then C̃
∐
Z Z̃ = C, that is, C

is the pinching of C̃ with respect to the morphism Z̃ → Z.

Proof. We should prove that a morphism C̃ → X with a given factorization of

Z̃ → X through Z factors through C uniquely. The problem is local on X, hence
we can assume that it is affine. Also, the question is local around P , hence we can

assume that C and C̃ are affine. Then the claim reduces to the observation that OC
is the preimage of OC/I under OC̃ � OC̃/I, and hence OC = OC̃×OC̃/IOC/I. �

Example 1.2.9. (i) Let C̃ be a smooth curve with points P̃1, . . . , P̃n identifying
them via the map

∐n
i=1 Spec(k) → P = Spec(k) one obtains a curve C with an

ordinary n-fold point P , which étale-locally looks as the union of coordinate axes
in An. On the level of function, one considers the subsheaf of functions attaining
the same level at each Pi.

(ii) The ordinary cuspQ ∈ C = Spec(k[t2, t3]) is obtained by pinching Spec(k([t]))
along Spec(k[t]/(t2))→ Q = Spec(k).

pushoutrem Remark 1.2.10. (i) In general, a pinching of a scheme X̃ along a schematically

dominant finite morphism Z̃ → Z with a closed subscheme Z̃ ↪→ X̃ always exists

when X̃Spec(Ã) is affine. Moreover, the pushout can be already computed in the

affine category, that is, Z = Spec(Ã ×B̃ B) where B ↪→ B̃ is the homomorphism
Γ(OZ)→ Γ(OZ̃). For example, one can always past two disjoint closed subschemes
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Y1, Y2 of X along any isomorphism φ : Y1→̃Y2. On the level of functions, we just
restrict to the functions f ∈ A which coincide on Y1 and Y2 (w.r.t. φ).

(ii) For non-affine schemes, it can be impossible to even past two disjoint iso-
morphic closed subschemes. For example, one cannot past two k-points without
common affine neighborhood (on a non-separated curve or a non-projective proper
surface). Also, one cannot past two isomorphic curves with different self-intersection
numbers on a projective surface.

(iii) However, we will see that these “missing” pushouts are defined perfectly
well in a larger category of algebraic spaces. In fact, one can also solve there some
other problems, such as constructing certain blow downs.

After these generalities let us return to the case we are interested at:

nodeprop Proposition 1.2.11. Let C be a reduced k-curve with a point P and let O be the
origin in X = Spec(k[x, y]/(xy)). Then the following conditions are equivalent:

(i) Étale equivalence: P is a simple node.

(ii) Formal equivalence: ÔP →̃ÔO.

(iii) P̃ = {P1, P2} and δP = 1.

(iv) P̃ = {P1, P2} and C is the pinching of C̃ along P̃ → P .

Proof. Étale morphisms of k-varieties are strictly étale over closed points, hence are
formal isomorphisms. Therefore (i) implies (ii). Since δP is an analytic invariant by

Corollary 1.2.7, (ii) implies (iii). Let P ′ be the image of P̃ in C ′ := C̃
∐
P̃ P . The

normalization morphism C̃ → C factors through C ′ and the morphism C̃ ′ → C is
an isomorphism if and only if the embedding OP ↪→ O′P is an isomorphism. The

latter happens if and only if the inequality δP ≥ δP ′ = |P̃ | − 1 is an equality, hence

(iii) is equivalent to (iv). Finally, if (iv) holds then taking a copy C̃ ′ of C and

pinching C̃ ′′ = C̃
∐
C̃ ′ by gluing P̃1 to P̃ ′2 and P̃2 to P̃ ′1 one obtains a reducible

nodal curve C ′′ with a finite two-fold étale cover C ′′ → C. Each node of C ′′ has a
neighborhood which possesses an étale morphism to X. �

Exercise 1.2.12. Generalize the proposition to the case of ordinary n-fold curves.

There are two important invariants of points: tangent space TP = (mP /m
2
P )′,

which is the k(P )-dual of the cotangent space T ′P = mP /m
2
P , and a finer invariant

called the tangent cone CP = Spec(⊕∞n=0m
n
P /m

n+1
P ). Note that CP is naturally

embedded into the tangent space Spec(k(P )[CP ]).

Exercise 1.2.13. (i) Let P be a node. Show that TP is two-dimensional and CP
is a cross V (xy) in TP , where x, y ∈ mP are such that xy ∈ m3

P .
(ii) Compute TP and CP for an ordinary n-fold point.
(iii) Compute TP and CP for a simple cusp x2 = y3.

embexer Exercise 1.2.14. (i) Let X be a variety over k and P ∈ X a closed point. The
number eP = dimk(P )(TP ) is an important invariant of P called the embedding
dimension. Prove that eP is the minimal dimension of a smooth k-variety M such
that a neighborhood of P can be embedded into M as a closed subscheme. In
particular, eP ≥ dimP (X) and the equality holds if and only if X is smooth at P .

(ii)* A finer invariant of P and its local ring OP is the whole Hilbert-Samuel
function fP (n) = dimk(P )(OP /mn

P ), so eP = fP (2)− 1. Show that fP is a polyno-
mial of degree d = dimP (X) for n � 0. It is called the Hilbert polynomial. Show
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that fP (n) ≥
(
d+n−1

d

)
and P is a smooth point if and only if the equality holds for

any n. Show that the leading coefficient of the Hilbert polynomial is of the form m
d!

with m ∈ N. The number m is called the multiplicity of P . In particular, check that
the multiplicity of simple nodes and cusps is 2, and the multiplicity of an ordinary
m-fold point is m.

1.3. Stable n-pointed curves over an algebraically closed field.

semistabledef Definition 1.3.1. (i) A curve C over an algebraically closed field k is nodal if all
its singularities are simple nodes.

(ii) A semistable curve over k is a connected proper nodal curve.
(iii) An n-pointed nodal curve is a pair (C,D), where C is a nodal curve and

D = (D1, . . . , Dn) is a an ordered set of n distinct smooth closed points of C.

semistablegen Lemma 1.3.2. If C is semistable and connected, then pa(C) = h1(C) =
∑
g(C̃i)+

h1(Γ), where we sum the genera of all irreducible components of the normalization
and h1(Γ) is the first Betti number of the incidence graph Γ of C (one vertex per
irreducible component and one edge (perhaps a loop) per node).

The lemma is deduced from a more general one.

curgen Lemma 1.3.3. If C is a proper reduced connected curve over k with normalization

π : C̃ → C, then pa(C) = h1(C) =
∑

(g(C̃i)− 1) +
∑
P δP − 1.

Proof. Compute dimensions in the long cohomological sequence corresponding to
the short exact sequence

0→ OC → π∗OC̃ → π∗OC̃/OC → 0

and use that Hi(C̃,OC̃)→̃Hi(C, π∗OC̃) because π is affine. �

lcilem Lemma 1.3.4. Any nodal curve C is lci (a locally complete intersection) at any
its point P .

Proof. If P is smooth then there is nothing to prove, so let P be a node, say,

ÔP →̃k[[x, y]]/(xy). We can assume that i : C → Z = Spec(A) is a closed im-
mersion, C = Spec(A/I), z = i(P ) and Z is smooth of dimension d at z. Then
mz/m

2
z = ⊕di=1zik for a regular family of parameters z1, . . . , zd ∈ Oz, and the

cotangent map φ2 : mz/m
2
z → mP /m

2
P = xk ⊕ yk is onto. So, we can find

f1, . . . , fd−2 ∈ I which generate the kernel of φ2. Replacing Z = Spec(A) with
the closed subscheme Z ′ = Spec(A/(f1, . . . , fd−2)), which is a smooth surface at z,
we achieve that d = 2. Then φ2 becomes an isomorphism, and we can assume that
φ2(z1) = x, φ2(z2) = y.

Now, let us dig deeper: the map φ3 : m2
z/m

3
z → m2

P /m
3
P sends z1z2 to xy = 0.

Therefore, there exists f ∈ I such that f ∈ z1z2 + m3
z. A simple induction on

n ≥ 3 shows that translating the coordinates zi by elements from mn−1
z one can

achieve that f = z1z2 + mn+1
z , hence in the limit we obtain a coordinate change

such that f = z1z2. In particular, k[[z1, z2]]/(f) is a reduced two-dimensional ring
and hence the surjection k[[z1, z2]]/(f) � k[[x, y]]/(xy) is an isomorphism. By
Proposition 1.1.5 this implies that the closed immersion C → Spec(A/(f)) is étale
at P . In particular, i is a flat closed immersion, hence a local isomorphism at P .
Thus, locally at P we can describe C as a closed subscheme cutoff by the single
element f from the smooth surface Z. In particular, C is l.c.i. at P . �
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Remark 1.3.5. In fact, the above argument was as follows: first, starting from
an embedding of C into a smooth variety M one uses a tangent space information
to cut the dimension of M to 2 = eP . This is a general argument that solves
Exercise 1.2.14(i). Then one uses the special form of the tangent cone via a concrete
computation.

Next, we are going to develop a theory of dualizing sheaves on nodal curves C,
but this will be done in a very ad hoc way. All what we really need as an outcome is
a natural construction of a very ample sheaf on C. First, recall the most standard
use of the Riemann-Roch theorem:

RRexer Lemma 1.3.6. Let C be a smooth proper connected curve over k of genus g, let
D =

∑n
i=1 liPi be an effective divisor of degree d and let L be an invertible sheaf such

that deg(L) > 2g−2+d. Then the restriction map φ : H0(L)→ kD = ⊕ni=1OC/m
li
Pi

is surjective.

Proof. By definition, Ker(φ) = H0(L(−D)), hence it suffices to prove that d =
dim(kD) = h0(L) − h0(L(−D)). Both h0 terms are computed by the Riemann-
Roch, and the h1 terms vanish as deg(KC +D − L) < 0. Therefore, the difference
of the h0 terms is precisely the difference of the degrees, which is d. �

This result can be used to produce sections on pinched curves.

projcur Lemma 1.3.7. Let C be a semistable curve with normalization π : C̃ =
∐n
i=1 C̃i →

C and let L be an invertible sheaf on C. Then L is ample if and only if L̃ = π∗(L)

is ample, and the latter happens if and only each restriction L̃i = L̃|C̃i has positive
degree.

Proof. If L is ample, then for n� 0 the sheaf Ln has enough sections to embed C

into PN . Pulling them back we obtain sections of L̃n non-trivial on all components

of C̃, hence the degrees are positive.

Conversely, assume that deg(L̃i) > 0. Let Csing = {P1, . . . , Pm} be the set of

nodal points of C, let π−1(Pj) = {P̃j , P̃ ′j} and let mi be the size of C̃i ∩π−1(Csing).

Choose n such that deg(L̃ni ) > 2gCi − 2 +mi + 2, and note that V = Γ(Ln) can be

identified with the subspace V ⊂ Γ(L̃n) of sections s such that s(P̃j) = s(P̃ ′j) for

any j, where we identify the fibers L̃ ⊗ k(P̃j) = L ⊗ k(Pj) = L̃ ⊗ k(P̃ ′j).

It easily follows from Lemma 1.3.6 that for any Q,R ∈ C̃ not mapped to the
same point in C there exists s1, s2 ∈ V with s1(P ) = 0, s2(Q) 6= 0. Similarly,
for any Q ∈ C and t ∈ mQL/m2

QL there exists s ∈ V mapped onto t. Indeed,

only the case when Q = Pj is a node needs an explanation. Then mQL/m2
QL is

two-dimensional and we should find s, s′ ∈ V with linearly independent images in
mQL/m2

QL. For example, one can take s such that s ∈ m2
P̃j

, s /∈ m2
P̃j

and s′ such

that s′ /∈ m2
P̃j

, s′ ∈ m2
P̃j

(their images are the two directions corresponding to the

tangent cone). Once we showed that Γ(L) distinguishes points and tangent vectors
of C, we obtain that L is very ample by [Har, Proposition II.7.3]. �

Exercise 1.3.8. Extend the above result and argument to arbitrary pinchings: any
reduced proper curve C over k is projective and an invertible sheaf on C is ample
if and only if each its pullback to a component of the normalization has positive
degree.
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We will need the following simple observation:

Exercise 1.3.9. We observed that for a nodal curve C and an invertible sheaf L, the

pullback L̃ comes equipped with isomorphisms of the fibers L̃⊗ k(P̃j) = L̃⊗ k(P̃ ′j).

Show that, conversely, any invertible sheaf L̃ on C̃ with such isomorphisms comes
from an invertible sheaf on C.

The trivial example of the above is obtained for the structure sheaves OC and
OC̃ : the identifications are clear because each fiber of OC̃ is canonically isomorphic
to k. The situation with the sheaves of differentials is more interesting. First, we
note that there is no natural identification of the fibers of ΩC̃ : clearly ΩC̃ ⊗k(Q) is

spanned by dtQ, where tQ is a uniformizer at Q ∈ C̃, but its choice is non-canonical,
for example it can be multiplied by an element of k×. However, the class of the

logarithmic differential
dtQ
tQ

in m−1
Q ΩC̃/ΩC̃ is canonical because for any u ∈ O×Q

the difference
dtQ
tQ
− d(utQ)

utQ
= du

u lies in ΩC̃,Q. In fact, sending this element to 1

induces the residue isomorphism resQ : m−1
Q ΩC̃/ΩC̃→̃k. Using the above exercise

we obtain:

omegalem Lemma 1.3.10. Let C be a nodal curve with normalization π : C̃ → C and D =
π−1(Csing). Then there exists a unique invertible sheaf ωC such that π∗(ωC) =

ΩC̃(D) and the identifications of the fibers k(P̃j) = k(P̃ ′j) are via the compositions
−resP̃ ′j

◦ resP̃j .

Remark 1.3.11. (i) The minus sign is important. In descent of OC̃ we identify
functions with equal values at the pairs of points over the nodes, while descending
ΩC̃(D) we identify forms with opposite residues at the pairs. In particular, this
guarantees that sums of residues are zero.

(ii) In fact, the sheaf ωC is the dualizing sheaf of C via the theory of Grothendieck-

Serre. Since ΩC̃ = ωC̃ is the dualizing sheaf of C̃ we see that the dualizing sheaves
are related in the most natural way ωC̃ = π∗ωC . See Exercise 1.3.13 below for
comparison with the sheaves of differentials.

Now, let us relate the sheaves ωC to the sheaves of usual differentials, obtaining
another characterization of ωC . Note that at any generic point η ∈ C we have the
canonical isomorphism of stalks ωC,η = ΩC̃,η = ΩC,η.

omega2lem Lemma 1.3.12. For any nodal curve C the isomorphism of the generic fibers ex-
tends to an embedding ΩC ↪→ ωC which is an isomorphism at any regular point and
satisfies ΩC,P = mPωC,P at any node. In particular, ωC is the smallest invertible
sheaf containing ΩC .

Proof. It suffices to study the situation at a node P . Moreover, it suffices to show
that ΩP ⊂ ωP and the quotient is isomorphic to k. This can be done using an
explicit embedding of C into a smooth surface via Lemma 1.3.4 (see below), or
by a formal computation with completed differentials, but we prefer an étale-local
argument. It is easy to see that for an étale morphism f : C ′ → C we have that
f∗ΩC = ΩC′ , in addition, the morphism of normalizations is étale, hence f∗ωC =
ωC′ . Finally, f is flat, hence the claim for C ′ at P ′ implies the claim for C at
P = f(P ′), and vice versa.

Recall that C and the model nodal curve X = Spec(k[x, y])/(xy) are étale-locally
isomorphic, hence it suffices to do the computations in this case. Let A = OX,O,
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then ΩA/k = (Adx + Ady)/A(xdy + ydx) and ωA/k is a free module with the

generator dx
x = −dyy . Clearly, ΩA/k = mAωA/k. �

Omegaexer Exercise 1.3.13. Show that π∗(ΩC) = ΩC̃ ⊕OC̃/mD, where D = π−1(Csing). So
not only the pullback is not locally free, it even has a non-trivial torsion.

Next, let us indicate how one can prove that ωC is the dualizing sheaf. Recall

that if C̃ is smooth, then the main part of the duality is that sum of residues induces
an isomorphism t : H1(ΩC̃)→̃k. In terms of the Godement resolution

ΩC̃ → Ωη → ⊕Q∈C̃Ωη/ΩQ

the latter means that a finite tuple of meromorphic parts (φQi) ∈ ⊕QΩη/ΩQi lifts
to a meromorphic form φ ∈ Ωη if and only if

∑
Q resQ(φQ) = 0.

Exercise 1.3.14. (i) For a nodal curve C use the above fact for the components of

C̃ to deduce that sum of the residues at the smooth points induces an isomorphism
t : H1(ωC) = Coker(Ωη → ⊕Q∈CΩη/ωQ)→̃k.

(ii) Deduce that ωC is the dualizing sheaf: for any invertible sheaf L the spaces
Hi(C,L) and H1−i(C,ωC ⊗ L−1) are naturally dual.

For the sake of completeness we show how ωC can be constructed from the
general theory of dualizing sheaves as developed in [Har, Chapter III]. The idea is
that ωC is obtained from an embedding C ↪→ Pn by (correct) restricting a dualizing
sheaf on Pn, and this can be computed explicitly since C is lci. Recall that any
reduced k-curve C is Cohen-Maucauley, hence possesses a dualizing sheaf ωC such
that Hom(F , ωC) is dual to Ext1(OC ,F)→̃H1(C,F) for any coherent sheaf F on
C. Moreover, if C is l.c.i., then ωC is locally free and for any closed immersion
i : C → P = Pn

k the conormal sheaf I/I2 is a locally free OC-sheaf of rank n − 1
(here I is the sheaf of ideals on P which defines the closed subscheme C), and
ωC→̃i∗ωP ⊗ det(I/I2)′, where as usual ωP = det(Ω1

P) and L∗ is the dual of L.

dualprop Proposition 1.3.15. Let C be a semistable curve with the set of nodes Csing and

normalization π : C̃ → C. Then π∗ωC→̃ωC̃(E) where ωC̃ = Ω1
C̃

is the dualizing

sheaf of C̃ and E = π−1(Csing) as a reduced subscheme.

Proof. By Lemma 1.3.7, there exists a closed immersion i : C → P = Pn
k . The

second fundamental sequence for i is

I/I2 d→ i∗Ω1
P → Ω1

C → 0

and pulling it back to C̃ we get an exact sequence

π∗(I/I2)
d̃→ ĩ∗Ω1

P → π∗Ω1
C → 0

where ĩ = i ◦ π. We claim that d̃ is injective and π∗Ω1
C→̃ΩC̃ ⊕OE/mE . It suffices

to check this claim on stalks at a point Q ∈ C̃, and only the case of Q ∈ E requires
an explanation. Set P = π(Q), then from Lemma 1.3.4 and the argument from its
proof, we know that there exist local parameters t1, . . . , tn−2, x, y ∈ OP,P such that
I is generated locally around P by elements ti, g = xy+ . . . (. . . means everything
involving ti’s and cubic expressions in x and y, and we leave it as an exercise to
worry for . . . in the sequel). Also, {dti, dx, dy} is a basis of (i∗Ω1

P)P , and dP (i.e.
the map induced by d on P -stalks) takes ti to dti and dg = xdy + ydx + . . . . We
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can assume that Q lies on a branch of C̃ where x is a uniformizer and y vanishes to

at least second order, then d̃Q maps a free OQ-module with a basis ti, g to a free
OQ-module with a basis dti, dx, dy, hence the map d is injective and its cokernel is
of the form

(dxOQ ⊕ dyOQ)/(xdy + ydx+ . . . )OQ→̃(dxOQ ⊕ dyOQ)/x(dy +
y

x
dx+ . . . )OQ→̃

dxOQ ⊕OQ/mQ→̃Ω1
C̃,Q
⊕OQ/mQ

Thus, we obtain an exact sequence

0→ π∗(I/I2)
d̃→ ĩ∗Ω1

P → ωC̃ ⊕OE/mE → 0

and taking the determinants we conclude that ĩ∗ωP→̃det(π∗I/I2)(E)⊗ωC̃ . (This
is clear when E = 0 because the sheaves are locally free, check that this is ok in
general.) Multiplying by the dual of det(π∗I/I2) we obtain that ωC̃(E)→̃ĩ∗ωP ⊗
det(π∗I/I2)∗, and the lemma now follows by applying π∗ to the isomorphism
ωC→̃i∗ωP ⊗ det(I/I2)∗ from [Har, III.7.11]. �

stabdef Definition 1.3.16. For an n-pointed nodal curve (C,D) define the dualizing sheaf
to be ωC,D = ωC(D). An n-pointed semistable curve is is stable if ωC,D is ample.
By the (arithmetic) genus of a stable curve C we mean pa = h1(C) = 1− χ(C).

stablem Lemma 1.3.17. A semistable n-pointed curve (C,D) is stable if and only if any

rational component of the normalization C̃ contains at least three points from

π−1(D ∪ Csing), and any component with g(C̃i) = 1 contains at least one such
point.

Proof. By Lemma 1.3.7 we should check that π∗ωC(D) = ωC̃(π−1(D ∪ Csing)) has

positive degree on any component C̃i of C̃. It remains to use that the degree of ωC̃
on C̃i is 2g(C̃i)− 2. �

stabrem Remark 1.3.18. (i) Another way to reformulate the stability condition in the

lemma is to say that 2g(C̃i) − 2 + n(C̃i) > 0 for any component C̃i ↪→ C̃, where

g(C̃i) is the genus and n(C̃i) is the number of marked points (i.e. points from
π−1(D ∪ Csing)).

(ii) One can show that a semistable (C,D) is stable if and only if its group of
automorphisms is finite. The inverse implication is almost obvious, but one has
to work to establish the direct one (in particular, one has to show that a smooth
projective connected curve of genus g ≥ 2 has finitely many automorphisms.)

The following is [DM, Theorem 1.2] (for D = 0).

ampleth Theorem 1.3.19. Let (C,D) be a stable curve. Then ω⊗m(C,D) is very ample for

m ≥ 3 and h1(ω⊗m(C,D)) = 0 for m ≥ 2.

Proof. By duality, h1(ω⊗m(C,D)) = h0(ωC ⊗ ω⊗−m(C,D)) = h0(ω1−m
C (−mD)). It follows

from Proposition 1.3.15 that the degree of the pullback of ω1−m
C (−mD) to any

component of C̃ is negative as soon as m > 1. This proves the second claim.
By [Har, Proposition II.7.3], to prove that Lm := ω⊗m(C,D) is very ample we should

establish surjectivity of H0(Lm)→ H0(L/mPmQLm) for any pair of points P,Q ∈
C. The latter would follow if h1(mPmQLm) = 0, hence by duality it suffices
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to prove that Hom(mPmQLm, ωC) = 0. Since π∗L1 is of positive degree on all

components of C̃, we have that deg(π∗L2) > deg(π∗ωC) on each component of C̃.
But the length of the skyscraper L/mPmQL cannot exceed 3 (3 is obtained when
P = Q is a node), hence deg(π∗(mPmQL5)) > deg(π∗ωC). Thus the first assertion
holds for m ≥ 5, and we refer to [DM], for a more pedantic check that m ≥ 3 is
also ok. �

amplerem Remark 1.3.20. In principle, it is only important that the theorem holds for
m ≥ m0 with a uniform m0 not depending on a curve (or depending only on
its genus). So, we did not tried to prove to the sharpest result m0 = 3.

amplecor Corollary 1.3.21. Any stable n-pointed curve (C,D) admits a tri-canonical em-

bedding into P
Ng,n
k , where Ng,n = 5g − 6 + 3n. The Hilbert polynomial of this

embedding is Pg,n(m) = 3(2g − 2 + n)m+ 1− g.

Proof. Since h1(ωC(D)⊗l) = 0, we obtain that

h0(ωC(D)⊗l) = deg(ωC(D)⊗l) + 1− g = l(2g − 2 + n) + 1− g
by the Riemann-Roch theorem, which follows from the duality precisely in the same
way as in the classical smooth case:

χ(L)− deg(L) = h0(L)− h1(L)

is constant and equal to 1 − g = h0(O) − h1(O). For l = 3 we obtain that h0 is
equal to 5g− 5 + 3n, hence the first assertion is clear. The second one follows from
the fact that

P (m) = h0(ωC(D)⊗3m) = 3(2g − 2 + n)m+ 1− g.
�

Note that the coefficient 2g−2+n appeared in remark 1.3.18(i), but the corollary
explains why it is very common to express the stability condition by an ”artificial”
inequality 2g − 2 + n > 0.

familyrem Remark 1.3.22. (i) The corollary implies that each stable n-pointed curve of

genus g can be realized as a curve C ↪→ P
Ng,n
k with divisor D such that the Hilbert

polynomial of C is Pg,n(m), OC(1)→̃ω(C,D) and (C,D) is an n-pointed nodal curve.
Moreover, any ambiguity is only up to the choice of a basis in Γ(OC(1)), and choos-
ing another basis we obtain a PGL(Ng,n + 1)-translate of the original C. So, fac-
torizing the above sets of data by the action of PGL we obtain the set Mg,n(k) of
all stable n-pointed curves of genus g over k.

(ii) From this description it is not so clear if this set can be naturally identified
with the set of k-points on a scheme Mg,n (a moduli scheme). The basic idea in
search for such a scheme (or a more refined creature, e.g. stack) is that though
a scheme is not defined by the set of its points, it is defined by the set of its
X-points for all schemes X. By Yoneda lemma it would suffice to know all sets
Hom(X,Mg,n) (and one can easily see that affine X’s would suffice). It is natural
to expect that Hom(X,Mg,n) should be the set of isomorphism classes of families
of stable n-pointed curves over X, so it is easy to define Mg,n as a functor. But
in order to construct Mg,n as a scheme, i.e. in order to prove representability of
the functorMg,n, we have to redo all steps of (i) scheme-theoretically and not just
on the level of sets. In particular, we will have to work with flat families of stable
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pointed curves, and we will have to check that one can make constructions, impose
restrictions and form the quotient scheme-theoretically.

We will need two more lemmas concerning stable curves over algebraically closed
fields. By an elementary contraction of n-pointed nodal curve (C,D) we mean a
map to another n-pointed nodal curve (C,D) which maps D onto D bijectively, con-
tracts one P1

k irreducible component of C and does not change anything else. The
following lemma admits an easy combinatorial proof, which is left as an exercise.
Check also that for g = 0 and g = 1, there is no canonical stable contraction.

contractlem Lemma 1.3.23. (i) Elementary contraction preserves genus and a rational compo-

nent can be contracted if and only if its preimage in C̃ contains at most two marked
points;

(ii) If C is semistable of genus g ≥ 2, then any maximal sequence of successive
elementary contractions leads to a canonical stable contraction of (Cst, Dst).

(iii) If C is nodal and we extend the set of marked point by including a non-empty
set C∞ of generic points (in other words, we forbid to contract some components),
then any sequence of successive elementary contractions leads to a unique n-pointed
nodal curve called the stable contraction with respect to C∞. In particular, this is
the case when there are non-rational components.

The last lemma concerns Fitting ideals of nodal curves. The definition and basic
facts about Fitting ideals are recalled in §1.4.5 below.

Fitsinglem Lemma 1.3.24. For a nodal k-curve C, the set Csing with the reduced scheme
structure is the scheme-theoretic support of the first Fitting ideal Fitt1Ω1

C of the
differential sheaf.

Proof. As in the proof of Lemma 1.3.12 both Ω and its fitting ideal are compatible
with the étale morphisms, and this reduces the claim to a computation for the
model curve X = Spec(k[x, y]/(xy)). The differential sheaf if locally free of rank
one at a smooth point P ∈ X, hence (Fitt1Ω1

X)P = OP . If P is the node, then we

have an exact sequence M
d→ L→ Ω1

C,P → 0, where M is locally free with a basis

xy, L is locally free with a basis dx, dy and dg = xdy + ydx. Then (Fitt1Ω1
C)P =

(x, y) = mP . �

The importance of the lemma is that it gives an algebraic (or a scheme-theoretic
a-la Remark 1.3.22) way to define Csing.

1.4. Flattening.

1.4.1. Monomorphisms. Recall that a morphism Y → X is a monomorphism if all
induced maps Hom(T, Y )→ Hom(T,X) are injective.

Exercise 1.4.1. (i) Prove that f : Y → X is a monomorphism if and only if its
diagonal is an isomorphism.

(ii) Show that any locally closed immersion is a monomorphism.
(iii) Show that a flat bijective monomorphism is an isomorphism.

There are plenty of examples of other monomorphisms of increasing nastiness. To
the best of my knowledge there is no reasonable classification or a simple description
of general monomorphisms.
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Example 1.4.2. (i) The morphism Pn
∐

An+1 → Pn+1 is a bijective monomor-
phism, which is not a locally closed immersion. It is a stratification, as defined
below.

(ii) Take X = Spec(k[x, y]/(xy)), X1 = Spec(k[x]) and X0 = Spec(k[y, y−1]).
Then X1

∐
X0 → X is a bijective monomorphism, which is only a weak stratifica-

tion in our sense.
(iii) Take the normalization X̃ → X and let X̃ ′ be obtained by removing of the

preimages of the node. Then X̃ ′ → X is a weak stratification only étale-locally on
X, that is, there is an étale cover Y → X, in fact any one separating the branches

to different irreducible components, such that the base change Ỹ ′ → Y is a weak
stratification.

1.4.2. Stratifications. It seems that the definitions of the notion of stratification
vary in the literature, so we suggest the following:

stratdef Definition 1.4.3. (i) By a stratification of X we mean a finite disjoint union X =
tXj of locally closed subschemes which cover X on the level of sets. If, in addition,

each closure X i is the union of the strata it contains, then we say that X is a strong
stratification of X.

(ii) Often we will not distinguish between X and the bijective monomorphism
iX : X → X, and say that X refines X ′ if iX factors through iX ′ (in particular, X
is a stratification of X ′).

The following lemma is a simple exercise on noetherian induction, so we skip the
argument.

refinlem Lemma 1.4.4. The family of all stratifications is filtered. If X is noetherian, then
any family of stratifications which admit a common refinement possesses a coarsest
mutual refinement.

1.4.3. Flattening.

Definition 1.4.5. Let f : Y → X be a morphism and let F an OY -module. A
morphism i : X ′ → X flattens F if the pullback of F to Y ′ = Y ×X X ′ is X-flat.
We say that i flattens f or Y if it flattens OY . If i is also a stratification, then we
say that it is a flattening stratification for F or Y .

As often happens, even if one is mainly interested in flattening X-schemes, flat-
tening modules provides an additional flexibility and makes it possible to argue in
the category of modules. This is well illustrated by the following proof.

generalflattenth Theorem 1.4.6. Let f : Y → X be a morphism of finite type between noetherian
schemes. Then for any coherent module F on Y there exists a flattening stratifica-
tion X → X.

Proof. We will tacitly use that the stratifications form a filtered family (use the fiber
products). In particular, throughout the proof we can replace X by its stratification
and update Y and F accordingly. By this argument we can replace X by its
reduction, making it reduced. Now, F is flat over a generic point η ∈ X, and it
suffices to find a neighborhood U of η such that F is flat over U because the theorem
will follow by noetherian induction. In particular, we can assume that X = Spec(A)
is integral. Also, since the family of stratifications is filtered, we can deal separately
with elements of an affine covering of Y , so assume that Y = Spec(B).
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Any finite B-module F is composed of modules of the form B/p for a prime
ideal p ↪→ B, hence it suffices to shrink X so that all B/p are flat. Therefore, we
can replace B with B/p achieving that it is a finitely generated integral A-algebra.
By Noether normalization, B ⊗A K is finite over a subring K[x1, . . . , xn], where
K = Frac(A) and n is the dimension of Yη, hence shrinking X (or localizing A) we
can achieve that B is finite over its subring C = A[x1, . . . , xn]. Then F is finite
over C and its composition series consists of Cd for d = [Frac(B) : Frac(C)], and
modules which are finite over X-schemes Y ′ with dim(Y ′η) < n. Hence it remains
to use induction on n. �

1.4.4. Universal flattening. The next natural question is if there exists a coarsest
flattening stratification, such that any other flattening stratification factors through
it. Similarly, one may wonder whether there exists a universal flattening morphism.
In general, the answer is negative.

Example 1.4.7. Consider the stratification

f : Spec(k[x])
∐

Spec(k[y, y−1])→ X = Spec(k[x, y]/(xy)).

Any stratification which flattens it should contain a closed stratum whose reduc-
tion is the origin. Set X1 = Spec(k[x, x−1), X2 = Spec(k[y, y−1]) and Yn =
Spec(k[x]/(xn)). Then each X1

∐
X2

∐
Yn is a flattening stratification for f and it

is easy to see that there exists no coarsest flattening strong stratification.

In the above example there exists a universal flattening morphism; it is f itself.
In particular, it is at least a stratification.

Exercise 1.4.8. (i) Construct a similar example using nastier monomorphisms to
show that even a coarsest flattening stratification may not exist.

(ii) Even worse, show that ifX = Spec(k[x, y]) = A2 and Y = Spec(k[x, x−1, y]/(y))
is the x-axis punctured at the origin, then the embedding Y ↪→ X has no universal
flattening morphism. (Hint: show that it is flattened by any Spec(k[x, y]/(xy, yn))
(the x-axis with an embedded component at the origin) and its complement Spec(k[x, y, y−1]).)

On the positive side, we will show that the universal flattening exists when X is
projective. The first case to deal with is when F is finite over OX , for example f
is finite. It will be solved using the theory of Fitting ideals.

fittsec
1.4.5. Fitting ideals. We only recall the definition and basic properties.

Fittdef Definition 1.4.9. Let R be a ring and M be a finitely presented module with a

given presentation F
d→ G → M → 0, where F and G are free of finite ranks and

G is of rank r. Then ideal Fittj(d) which is the image of ∧r−j(F )⊗ ∧r−jG∗ → R
is called the j-th Fitting ideal of d. (Then Fittr(M) = R, and we agree that
Fittj(M) = R for j > r.)

Fittth Theorem 1.4.10. (i) The Fitting ideal does not depend on the choice of a presen-
tation, so it is an invariant Fittj(M) of M .

(ii) The formation of Fitting ideals commutes with any base change R→ R′, i.e.
Fittj(M ⊗R R′) = Fittj(M)R′.

(iii) The sequence of Fitting ideals increases, and for a local R, a module M can
be generated by r elements if and only if Fittr = R.

(iv) A finitely presented module M is projective of constant rank r if and only if
Fittr(M) = R and Fittr−1(M) = 0.
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Exercise 1.4.11. Prove the theorem or read [E, §20.2]. (Hint: observe that the
Fittj(d) is generated by all (r− j)× (r− j) minors of the matrix representing d and
deduce (i) by comparing two presentations by embedding them into a third one;
(ii) follows from the right exactness of the tensor products; (iii) follows from the
linear algebra over the residue field and Nakayama’s lemma, and (iv) follows from
(iii).)

In particular, the formation of Fitting ideals is compatible with localizations,
hence for any scheme X with a coherent module OX -module M we can define the
ideals Fittj(M) ↪→ OX .

flatcoherent Proposition 1.4.12. For any coherent sheaf F on a noetherian scheme X there
exists a universal flattening morphism i : X → X. Moreover, i is a stratification of
X (hence the coarsest flattening stratification).

Proof. Since F is coherent on X, flatness is the same as projectivity. So, the
flattening should kill each Fitting ideal Ij = Fittj(M) by making it 0 on a union
of few components of the stratification and 1 on the complement. Killing Ij has
the obvious universal solution: Xj = Xj t X ′j , where Xj = Spec(OX/Ij) is the
vanishing locus of Ij and X ′j = X \X ′j is its complement. Hence the fiber product
over X of all Xi yields the universal flattening morphism i : X → X. Clearly, each
Xj → X is a stratification, hence X → X is a stratification too. �

Exercise 1.4.13. Show that the stratification X → X does not have to be strong.
(Hint: take X = Spec(k[x, y]/(xy)) and F = OX/xOX .)

1.4.6. The main flattening theorem. As we saw, this result cannot be extended
to non-finite affine morphisms of finite type. However, projective morphisms are
better controlled by coherent sheaves, so one might hope to repeat this argument
after twisting F enough by a very ample sheaf. Throughout this subsection we fix
a projective morphism f : Y → X, a very ample with respect to f sheaf O(1) on
Y , and a coherent OY -module F .

To simplify notation we will often assume that X = Spec(A) is affine. Then
instead of OX -module f∗F one can work with the A-module Γ(F). Recall that
([Har, Exercise II.5.9]) the category Coh(Y ) of coherent OY -modules is equivalent
to the category Coh(f∗OY (•)) of finitely generated graded ⊕nf∗OY (n)-modules
modulo the equivalence ∼ which identifies ⊕nGn with ⊕nG′n if Gn = G′n for n� 0.
For example, if X is affine, then one associates ⊕nΓ(F(n)) to F and reconstructs
F as follows: Y is covered by affines Ys for s ∈ H0(Y,O(1)) and

Γ(Ys,F) = colimn s
−nH0(Y,F(n)).

We will need two results about the equivalence Coh(Y )→̃Coh(f∗OY (•))/ ∼.

flatprojmod Lemma 1.4.14. Keep the above notation, then F is a flat OX-module if and only
if each Γ(F(n)) is OX-flat for n � 0. Moreover, in this case, the OX-modules
Γ(F(n)) are flat for each n such that Hi(Y,F(l)) = 0 whenever i > 0 and l ≥ n.

Proof. This is shown in the proof of [Har, 9.9], so we just outline the argument.
The problem is local on X, so we can assume X = Spec(A). If Γ(F(n)) are flat for
n� 0, then using that flatness is preserved by colimits we obtain that the sections
Γ(Ys,F) are flat, that is F is flat.

Assume now that F is A-flat and choose n as in the second assertion. Choose an
affine covering U of Y and consider the associated Čech complex C ·U (F(l)) which
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computes the cohomology of F(l). Its terms are direct sums of sections of F on
open subschemes, hence they are A-flat. For l ≥ m the higher cohomologies vanish
hence this complex provides an A-flat resolution of H0(Y,F(l)). Therefore the
latter A-module is flat. �

The following result essentially states that the equivalence between OY -modules
and equivalence classes of graded modules is compatible with base changes.

basechangelem Lemma 1.4.15. Let f : Y → X and F be as above, let g : X ′ → X be a morphism
and let f ′ : Y ′ → X ′ be the base change with the projection g′ : Y ′ → Y . Then
natural morphisms g∗f∗(F(n))→ f ′∗g

′∗(F(n)) are isomorphisms for n� 0.

Proof. Since the schemes are quasi-compact and we can enlarge n as we wish,
the question is local on X and X ′. So, we can assume that X = Spec(A) and
X ′ = Spec(A′) and should show that for a large n the map

H0(F(n))⊗A A′ → H0(F(n)⊗A A′)

induced, for example, by Čhech complexes is an isomorphism. Find a surjection

φ : F0 = ⊕mi=1OY (di)→ F .

Let G = Ker(φ) and find a map ψ : F1 = ⊕ni=1OY (li) → F0, whose image is G.
Then F = Coker(F1 → F0). Exactness of sequences of sheaves is preserved by
twists, so if H1(G(n)) = 0, then the sequence

Γ(G(n))→ Γ(F0(n))→ Γ(F(n))→ 0

is exact, and if in addition, H1(Ker(ψ)(n))) = 0, then the map Γ(F1(n))→ Γ(G(n))
is surjective and hence the sequence

Γ(F1(n))→ Γ(F0(n))→ Γ(F(n))→ 0

is exact too.
Pullback to Y ′ is right exact, hence F ′ = Coker(F ′1 → F ′0), where F ′0 =

⊕mi=1OY ′(di) and similarly for F ′1. As above, increasing n so that two first co-
homologies on Y ′ vanish we achieve also that

Γ(F ′1(n))→ Γ(F ′0(n))→ Γ(F ′(n))→ 0

is exact. By a direct inspection Γ(Fi(n))⊗AA′→̃Γ(F ′i(n)) for i = 0, 1, and since the
tensor product preserves cokernels (it is right exact), Γ(F(n))⊗AA′→̃Γ(F ′(n)). �

Remark 1.4.16. In general, using Čech complex one obtains base change mor-
phisms g∗Rif∗(F) → Rif ′∗g

′∗(F) which are isomorphisms if X ′ → X is flat (in
this case pulling back is exact and hence respects the cohomology of complexes).
However, in general it is not an isomorphism even when F is flat. In this case, the
modules in complexes are flat, but the base change does not respect the cohomology.
This situation is studied in [Har, §III.12] and will be used.

The two lemmas imply that if i : X ′ → X flattens F then there exists n0 such
that Γ(F ′(n)) = i∗Γ(F(n)) for n ≥ n0 and these sheaves are flat, that is, i flattens
each Γ(F(n)) for n ≥ n0. Moreover, once this happens we obtain from the first
lemma that F ′ is X ′-flat. So, the idea is very simple: choose n large enough and
flatten all OX -modules Γ(F(n)). The only issue is how to choose the bound n0.
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flattenth Theorem 1.4.17. Let X be a noetherian scheme and F be a coherent sheaf on an
X-projective scheme Y . Then there exists a universal flattening morphism i : X ′ →
X for F and i is a stratification.

Proof. The problem is local on X, so we can assume that X = Spec(A). Let us also
fix a very ample sheaf O(1). By Theorem 1.4.6 there exists a flattening stratification
i0 : X ′′ → X. Choosing n0 for j as in Lemma 1.4.15 we obtain that all F(n) with
n ≥ n0 can be flattened simultaneously, hence by Lemma 1.4.4 there exists a
coarsest flattening stratification X → X which flattens each F(n) with n ≥ n0 and
applying the two lemmas to X → X we obtain that it flattens F . Unfortunately,
this is not enough because an arbitrary flattening stratification X ′ → X flattens all
F(n) for n ≥ n′0, but this n′0 might be larger than n0. So, it remains to show that
if Xm → X is the coarsest flattening of all F(n) with n ≥ m then the sequence of
coarsenings Xn0

↪→ Xn0+1 ↪→ . . . stabilizes. In other words, the nilpotent structure
is bounded unlike what can happen in the non-projective case.

Remark 1.4.18. Is there an elementary argument, which shows that for any flat-
tening X → X which is coarser than X0 → X the same number n0 works – if
twisting by n0 suffices for the base change to X0 to be compatible with f∗, then
it also suffices for the base change to X ? This seems plausible and I would not be
surprised if the answer is positive, but the standard solution in the literature (after
Grothendieck and then Mumford) is to invoke a relatively heavy artillery about
higher direct images of flat modules.

In the sequel, for x ∈ X let

φX,x(l) : Γ(F(l))⊗A k(x)→ Γ(Fx(l))

denote the fiber base change map, where Fx is the pullback of F to the fiber Yx.
Claim: There exists m such that for any l ≥ m and a point x ∈ X the map

φX,x(l) is surjective.
First, let us deduce the theorem assuming the claim. Assume that X ′ → X is a

flattening stratification and to simplify notation we will work locally on X ′ using
the notation X ′ = Spec(A′). Then φX,x(l) is the composition of the base change
map φX,X′(l) : Γ(F(l)) ⊗A A′ → Γ(F ′(l)) tensored with k(x) and the base change
map φX′,x(l) : Γ(F ′(l)) ⊗A′ k(x) → Γ(Fx(l)), in particular, the latter is surjective
and hence an isomorphism by [Har, 12.11(a)] applied to F ′(l), which is A′-flat by
our assumption. By [Har, 12.11(b)] this implies that Γ(F ′(l)) is A′-flat. Thus any
flattening stratification of F automatically flattens each F(l) with l ≥ m, and the
universal flattening is the coarsest stratification X ′ → X which does this.

It remains to prove the claim, and to do so we will use a flattening X ′′ → X
which exists by Lemma1.4.15. Again just to simplify notation we work locally on
X ′′ = Spec(A′′). By Lemma1.4.15 there exists m such that for l ≥ m the base
change maps φX,X′′(l) are isomorphisms: Γ(F ′′(l)) = Γ(F(l))⊗AA′′. Since φX,x(l)
is composed from φX,X′′(l) ⊗A′′ k(x) and the fiber base change map φX′′,x(l), it
remains to show that the latter are isomorphisms for large enough l.

By [Har, Theorem III.8.8] there exists m such that Rif∗F ′′(l) = Hi(F ′′(l)) = 0
whenever i > 0 and l ≥ m. Fix an affine cover of Y and consider the associated
Čech complex C· of F(l). Its cohomologies vanish for i > 0, hence this complex
is an A′′-flat resolution of Γ(F ′′(l)), in particular, the latter is A′′-flat. Acyclic
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complexes of flat modules are preserved by any base changes, hence the complex

0→ Γ(F ′′(l))⊗A′′ k(x)→ C· ⊗A′′ k(x)

is acyclic. Without the first term this is nothing else but the Čech complex of
Fx, hence higher cohomologies of Fx vanish and the zero cohomology Γ(Fx) is
precisely the base change Γ(F ′′(l)) ⊗A′′ k(x), which means that φX′′,x(l) is an
isomorphism. �

Remark 1.4.19. In the classical works one uses heavier tools – uses existence of
X ′′ to show that only finally many Hilbert polynomials show up in the fibers and
proves a uniform bound on the twist, depending only on the Hilbert polynomial,
which suffices to kill all H1(Fx) at once. We will prove these bounds later, but
managed to avoid using them here.

Higher direct images were essentially used in the proof of the flattening theorem
and we conclude the section with a couple of remarks about them.

Remark 1.4.20. (i) The Hilbert polynomial P (l) =
∑
i(−1)ihi(F(l)) is locally

constant in flat projective families because the Euler-Poincare characteristic is lo-
cally constant. However, separate cohomology can jump on the fibers and con-
trolling this phenomenon to some extent is the main tool of the theory of higher
images.

(ii) There is one remarkable case, when it is easier to control jumping of hi. If
X is normal and Y → X is flat projective of relative dimension one, then hi(OY )
can jump only on the fibers with embedded components, as follows from Stein
factorization and constancy of Euler characteristic of Fx = F ⊗ k(x) for x ∈ X.

Example 1.4.21. (i) Here is an example of a flat family of curves, where jumping
happens. Let S = Spec(k[π]) and let C be a family of curves in P3

S given para-
metrically by (πt, t2, t3). For a 6= 0 the curve Ca is a rational space curve and
h0(Ca) = 1, h1(Ca) = 0. At a = 0 it degenerates to a cuspidal plane curve with
an embedded component pointing outside the plane (so the resulting curve is also
non-plane). It has h0(C0) = 0 (the global sections are constants and nilpotents at
0) and h1(C0) = 1 because the delta invariant of the cusp is 1. Note that the Euler
characteristic is 1 everywhere.

(ii) A careful study of this example is very instructive as it illustrates all basic
pathologies that can happen if the conditions of [Har, Theorem III.12.11] are not
satisfied. The first base change R1f∗OC ⊗ k → H1(OC0

) is surjective (the highest
one is always surjective), hence R1f∗OC is not locally free. In fact, it is a skyscraper
at 0. The base change f∗OC⊗k → Γ(OC0) is not surjective as there are no nilpotents
in OC .

1.5. Hilbert schemes. Thanks to the flattening results one can build a universal
family of subschemes of Pn with a fixed Hilbert polynomial. More, specifically, we
will prove representability (compare to Remark 1.3.22(ii)) of a functor HilbX/S,P ,
where P is a polynomial and X → S is a projective morphism with a fixed relatively
ample sheaf O(1) on X.

Hilbdef Definition 1.5.1. The functor HilbX/S,P on the category of S-schemes is defined
by setting HilbX/S,P (T ) equal to the set of subschemes ZT ↪→ XT = X×S T which
are T -flat and have Hilbert polynomial equal to P on each T -fiber.

The main goal of this section is to represent the Hilbert functor by a scheme.
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repdef Definition 1.5.2. A functor F : C → Sets is represented by an object X if there
is an isomorphism of functors ε : F → Hom(·, X). Since any choice of ε is uniquely
determined by the object f = ε−1(IdX) ∈ F (X), we say that a pair (X, f ∈ F (X))
represents F .

The idea how to represent Hilb is very simple: if Y = Pn
X and I is the ideal

defining ZT in YT , then for large enough m the sheaf I(m) is generated by its
pushforward to T (the relative the global sections), which is a T -family of vector
subspaces of OZT (m) of fixed dimension. Therefore HilbPnX/X,P is represented
by a subscheme of the corresponding Grassmannian in this case, and in general,
HilbY/X is a closed subscheme of HilbPnX/X

. The main obstacle to working out this
program is the cohomology groups, and we have to control them uniformly for all
closed subschemes with a given Hilbert polynomial P – by cohomology base change
properties it suffices to control the fibers over the closed points.

1.6. Mumford’s regularity. The following notion is introduced by Mumford, it
turns out to be very convenient for inductive proofs of vanishing results for coho-
mologies.

mregdef Definition 1.6.1. Let k be a field. A coherent OPnk
-sheaf F is called (Castelnuovo-

Mumford) m-regular if Hi(Pn
k ,F(m− i)) = 0 for any i > 0.

The logic of the definition is clear: since higher cohomologies are ”responsible
for obstructions of higher order”, we want them to die earlier. Here is an indication
that the notion is working well:

mregprop Proposition 1.6.2. If F is m-regular then for any l ≥ m:
(i) F is l regular;
(ii) F(l) is generated by global sections;
(iii) the map

φ : H0(Pn
k ,F(l))⊗H0(Pn

k ,O(1))→ H0(Pn
k ,F(l + 1))

is onto.

Proof. Since cohomologies commute with flat base change, we can extend k and
assume that it is infinite. Then the key idea is to consider a general hyperplane H
with a restriction FH of F and to apply the induction hypothesis to FH .

genex Exercise 1.6.3. (i) Show that for a general choice of H and any i the following
sequence is exact

0→ F(i)→ F(i+ 1)→ FH(i+ 1)→ 0.

(Hint: The genericity is needed for the injectivity of F(i)→ F(i+1). If H is locally
given by the vanishing of s, this amounts to s being a non-zero divisor in F . Show
that this happens if and only if H does not contain associated points of F (locally
these are points corresponding to ideals p such that the composition series of an
A-module F contains A/p). Since Ass(F) is a finite set and k is infinite, such an
H exists.)

(ii) Use the corresponding long exact sequence for an appropriate i to check that
FH is m-regular, and apply the induction assumption for FH to deduce that F is
l-regular for any l ≥ m.
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To show surjectivity of φ we consider the commutative diagram whose bottom
line is a part of the long exact sequence.

H0(Pn
k ,F(l))⊗H0(Pn

k ,O(1))
f //

φ

��

H0(H,FH(l))⊗H0(H,OH(1))

φH

��
H0(Pn

k ,F(l))
h // H0(Pn

k ,F(l + 1))
g // H0(H,FH(l + 1))

Note that f is surjective because H1(F(l)) = 0 by the l-regularity and φH is
onto by the induction assumption on n. Hence the image of φ is mapped onto
H0(H,FH(l + 1)), and by exactness in the middle term, the images of φ and h
span H0(F(l + 1)). Since the first image obviously contains the second one, φ is
surjective, as claimed.

Consider the submodule E ↪→ F(l) generated by the global sections of F(l).
The surjectivity of φ implies that the embedding H0(E(1)) ↪→ H0(F(l + 1)) is an
equality. Since any F(m) is l-regular for m ≥ 0, twisting by m we obtain that
Γ(E(m)) = Γ(F(l+m)) and hence E = F(l) by the equivalence of the categories of
modules. Thus, F(l) is generated by global sections. �

Definition 1.6.4. Let S be a noetherian schemes and F be an OS-flat OPnS
-

coherent module. We say that F is m-regular if its restrictions to S-fibers are
so.

The following result follows from Lemma 1.6.2 by applying the theorem on direct
images [Har, III.12.11].

mregcor Corollary 1.6.5. Keep the above notation, and let f : Pn
S → S denote the projec-

tion and F be an m-regular OX-coherent sheaf, then for any l ≥ m:
(i) Rif∗F(l − i) = 0 for i > 0;
(ii) f∗f∗F(l)→ F(l) is onto;
(iii) the map

f∗F(l)⊗ f∗O(1)→ f∗F(l + 1)

is onto;
(iv) the sheaf f∗F(l) is locally free and taking this direct image commutes with

any base change: given a morphism g : S′ → S, the product X ′ = X ×S S′ and the
projections f ′ : X ′ → S′ and g′ : X ′ → X the base change morphism g∗f∗F(l) →
f ′∗g
′∗F(l) is an isomorphism.

Finally, we prove that there exists a uniform m-regularity bound depending only
on the Hilbert polynomial.

mregth Theorem 1.6.6. Let F ↪→ OPnk
be a sheaf of ideals on Pn

k and let P be its Hilbert
polynomial. Then there exists a number mP depending only on P such that F is
mP -regular.

Proof. We use the same construction with induction on n as earlier, with the case of
n = 0 being trivial. Choose a general hyperplane H and let FH be the induced ideal
sheaf on H and PH be its Hilbert polynomial. Then PH(m) = P (m)− P (m− 1),
hence by induction assumption FH is m′-regular for a number m′ depending only on
P . From the long exact sequence for each i > 1 we have thatHi(F(l))→̃Hi(F(l+1))
for any l ≥ m′, hence all these groups vanish by the Serre’s vanishing. For i = 1, we
still have a map H1(F(l)) → H1(F(l + 1)), but this time its kernel, which equals
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to the image of H0(FH(l + 1)), can be non-trivial. Moreover, the kernel is trivial
if and only if the map H0(F(l + 1)) → H0(FH(l + 1)) is onto, and then all maps
H0(F(L))→ H0(FH(L)) would be onto for L > l because the maps

H0(FH(L))⊗H0(OH(1))→ H0(FH(L+ 1))

are onto by the m′-regularity of FH . In particular, it would follow that all maps
H1(F(l))→̃H1(F(l + 1)) have no kernels, and hence are isomorphisms. Since the
latter would contradict Serre’s vanishing, each map H1(F(l))→ H1(F(l+ 1)) with
l ≥ m′ has a non-trivial kernel, unless its source is zero. In particular, H1(F(m)) =
0 for any m ≥ m′ + h1(F(m′)). So, it only remains to bound h1(F(m′)). But

h1(F(m′)) = h0(F(m′))− P (m′) ≤ h0(OPn(m′))− P (m′) =

(
m′ + n

n

)
is bounded by a function of P , n = deg(P ) and m′ = m′(P ). �

Now we are prepared to prove the main result of this section.

Hilbth Theorem 1.6.7. Let f : X → S be a projective morphism of Noetherian schemes
with a relatively ample sheaf O(1) and P be a fixed polynomial. Then the functor
HilbX/S,P is represented by a projective S-scheme Hilb(X/S, P ) of finite type with
a universal subscheme Univ(X/S, P ) ↪→ X ×S Hilb(X/S, P ).

Proof. Step 1. Embedding into Grassmannian functor. Embed X into P = Pn
S

using O(1) and let g : P→ S be the projection. The main task will be to represent
the functor HilbP/S,P . Let S′ be any S-scheme with the projection g′ : P′ =
S′×S P→ S′ and a closed subscheme Z ′ ↪→ P′ such that the Hilbert polynomial of
the fibers is P . Consider the ideal sheaf I ′ ↪→ OP′ which defines Z ′, then we have
a short exact sequence 0→ I ′ → OP′ → OZ′ → 0 hence the Hilbert polynomials of
I ′ on the S′-fibers are all equal to Q(m) =

(
m+n
n

)
−P (m). By Theorem 1.6.6, there

exists m = mQ such that I ′ is m-regular. Replacing m with max(m, 0) we achieve
that OP′ is m-regular (see [Har, III.5.1]), and then OZ′ also has to be m-regular,
as can be seen from the long cohomological sequence.

Twisting the short exact sequence by m we kill all higher direct images by
Corollary 1.6.5 and hence obtain the exact sequence

0→ g′∗I ′(m)→ g′∗OP′(m)→ g′∗OZ(m)→ 0.

Moreover, by 1.6.5(iv) the sheaves in the sequence are locally free and by 1.6.5(ii)
the submodule I ′(m) ↪→ OP′(m) is generated by relative global sections in the sense
that g′∗g′∗I ′(m)→ I ′(m) is onto. In particular, to any Z ′ we can attach the locally
free subsheaf L′ = g′∗I ′(m) of g′∗OP′(m) which defines Z ′ uniquely (Exercise 1.6.8
below) and such that g′∗OP′(m)/L′ is locally free. In particular, we have embedded
the functor HilbP/S,P into the Grasmann functor GrassS,g∗OP(m),Q(m) recalled
below.

embedex Exercise 1.6.8. Check that Z ′ = Proj(Coker(g′∗L′(−m)→ OP′)).

Step 2. Representation of the Grassmannian.

grassdef Definition 1.6.9. Given a scheme S with a locally free sheaf E of rank n and a
number 0 ≤ m ≤ n, the Grassmannian functor GrassS,E,m is defined as follows.
For a morphism f : S′ → S the set GrassS,E,m(S′) consists of all rank m locally
free subsheaves L′ ↪→ f∗E with a locally free quotient f∗E/L′.
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Remark 1.6.10. (i) Our definition is dual to the definition from [EGA I’, 6.9].
(ii) The sheaves are finitely presented, hence local freeness is equivalent to flat-

ness. The subtlety here is in requiring that the quotients also form a flat family.

Exercise 1.6.11. (i) Let E = Spec(OS [E ]) be the vector bundle attached to E ,
and E∗ = Spec(OS [E∗]) be its dual. Identify GrassS,E,m(S′) with the set of vector
factor-bundles in E ×S S′ of rank m, and with the set of vector subbundles of
E∗ ×S S′ of rank m.

(ii) Show that GrassS,∧mE,1 is represented by the projective fiber P(∧mE∗).
(iii) Represent GrassS,E,m by a closed subscheme Grass(S, E ,m) ↪→ P(∧mE∗).
(iv) Show that Grass(S, E ,m) is equipped with a universal rank m locally free

subsheaf LS,E,m ↪→ f∗E , where f : Grass(S, E ,m)→ S is the structure map.
(v) Check that if S = Spec(A) and E ≈ OnS is free, then Grass(S, E ,m) is given

by quadratic equations in P(∧mE∗).

Step 3. Hilbert schemes of P/S.
To simplify the notation set X = Grass(S, g∗OP(m), Q(m)) and PX = Pn

X .
Let h : X → S and gX : PX → X be the natural projections, and let LX ↪→
h∗g∗OP(m)→̃(gX)∗OPX (m) be the universal subsheaf of rank Q(m). The co-
herent subsheaf of OPX (m) generated by LX is the image of the map g∗XLX →
g∗X(gX)∗OPX (m) → OPX (m), hence the closed subscheme ZX ↪→ PX defined by
vanishing of LX can be described as Proj(Coker(g∗XLX(−m)→ OPX )). So far, we
have the right part of the following diagram:

Z ′� _

��

// ZX� _

��
P′

g′

��

// PX

gX

��

// P

g

��
S′

φ // X
h // S

Let now S′ and a closed subscheme Z ′ ↪→ P′ = Pn
S′ be as in Step 1. By the

universal property of the Grassmannian, the locally free sheaf L′ = g′∗I ′(m) is
induced from LX via a uniquely defined map φ : S′ → X. Then it follows from
the formula in Exercise 1.6.8 and the fact that the direct image (gX)∗IX(m) is
compatible with the base change with respect to φ by Corollary 1.6.5(iv) that Z ′ is
induced from ZX , i.e. Z ′ = ZX×X S′ and all squares in the diagram are Cartesian.

Let X → X be the flattening stratification for the X-scheme ZX (or its struc-
ture sheaf) whose existence is guaranteed by Theorem 1.4.17. Let, furthermore,
Hilb(P/S, P ) be the union of strata of X where the Hilbert polynomial of ZX is
equal to P . Then just by the definition of the flattening stratification, φ : S′ → X
factors through Hilb(P/S, P ), and Z ′ is induced from the Hilb(P/S, P )-flat sub-
scheme Univ(X/S, P ) := Hilb(P/S, P )×XZX of Hilb(P/S, P )×SP. It proves that
the embedding HilbP/S,P ↪→ GrassS,g∗OP(m),Q(m) of functors is actually induced
from a locally closed immersion i : Hilb(P/S, P ) ↪→ Grass(S, g∗OP(m), Q(m)) of
S-schemes.

Step 4. The immersion i is a closed immersion, in particular, Hilb(P/S, P ) is S-
projective. It suffices to show that Hilb(P/S, P ) is proper, and this can be done by
the valuative criterion (since the schemes are noetherian, it even suffices to consider
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only discrete valuations, but we do not need this observation). By the functorial
definition of Hilb(P/S, P ) the valuative criterion reduces to the following: if R is a
valuation ring with fraction field K, then any closed subscheme ZK ↪→ Pn

K extends
to an R-flat closed subscheme of Z ↪→ Pn

R.

Exercise 1.6.12. Prove this statement using that an R-module is flat if and only
if it has no non-zero π-torsion for any non-zero π ∈ mR.

Step 5. Hilbert schemes of X/S.

Exercise 1.6.13. Check that the natural embedding of functors HilbX/S,P ↪→
HilbP/S,P is induced from a closed immersion of schemes Hilb(X/S, P ) ↪→ Hilb(P/S, P )

�

Remark 1.6.14. It is an important feature that the flattening stratification, and
hence Hilbert schemes, can be non-reduced. A famous example by Mumford shows
that the Hilbert schemes of curves of degree 14 and genus 24 in P3 is non-reduced
at the generic point of one of its irreducible component. Actually, it is a typical
situation that Hilbert schemes are very singular schemes with many irreducible
components of various dimensions. In fact, there is a theorem of Vakil that Mur-
phy’s law holds for Hilbert schemes – any isomorphism class of a singularity on
varieties over Q occurs on some Hilbert schemes.

Exercise 1.6.15. (i) If X is a smooth projective scheme of a field k, then the
Hilbert scheme of n-points Hilb(X/k, n) admits a natural map φ(X,n) to the sym-
metric power X(n) = Xn/Sn.

(ii) If X is a curve, then φ(X,n) is an isomorphism, but in larger dimensions the
fibers over the diagonal of X(n) are not zero-dimensional.

Here is an important corollary of the representability of Hilbert functors.

Exercise 1.6.16. Use graph of a morphism to prove that if X and Y are S-
projective and X is S-flat, then the functor HomS(X,Y ) is represented by a scheme
of locally finite type over S.

Finally, we note that although we have defined the Hilbert scheme over any
scheme, if S is equicharacteristic, then the Hilbert scheme of P is induced from the
prime field and hence forms a constant family over S. The situation in the mixed
characteristic is different, as there might be components of the moduli spaces (e.g.
supersingular K3 surfaces) which are special for the characteristic. In particular,
the Hilbert schemes over Z does not have to be even flat.

Exercise 1.6.17. (i) Show that for any scheme S and polynomial P one has that
Hilb(Pn

S/S, P ) = Hilb(Pn
Z/Z, P ) ×Z S and deduce that the Hilbert schemes of

projective spaces are S-flat if S is equicharacteristic.
(ii)* Give an example of a Hilbert scheme Hilb(Pn

Z/Z, P ) which is not Z-flat.

1.7. Relative stable curves.

1.7.1. An explicit description.

relstabdefin Definition 1.7.1. A relative curve is a flat finitely presented morphism f : C → S
of relative dimension one. An n-pointed S-curve is an S-curve C provided with an
ordered n-tuple of closed subschemes D1, . . . , Dn which are mapped isomorphically
onto C. An n-pointed curve is called nodal, proper of genus g, semistable, or stable
if all its geometric fibers (Cs, Ds) are so.
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Note that it suffices to consider geometric points of the form Spec(k(s)) → S,
where s ∈ S is a usual point. In particular, a nodal curve C over a field is a
curve such that C ⊗k k is nodal. Each its singularity P gives rise to [k(P ) : k]
geometric nodes (which are taken into account in the definition of stability), but
even if k(P ) = k it can happen that the tangents at P are not defined over k.

nodex Exercise 1.7.2. (i) Let P be as above and assume that k(P ) = k. Prove that one
of the following possibilities hold:

(a) ÔP →̃k[[x, y]]/(xy), and then P is obtained by pasting two different k-points

in the normalization, i.e. C is the pushout of C̃ which contracts its closed subscheme

as P̃ = Spec(k⊕k)→ Spec(k) = P . The tangent cone consists of two affine k-lines
in this case.

(b) ÔP →̃k[[x, y]]/(Q(x, y)) where Q(x, y) is a quadratic form over k whose roots

lie in a quadratic extension l/k, and then C is the pushout of C̃ which contracts

its closed subscheme as P̃ = Spec(l)→ Spec(k) = P . The tangent cone is an affine
l-line with k-rational origin (e.g. Spec(R[x, y]/(x2 + y2))).

(ii) Prove that each node contributes k(P̃ )×/k(P )× to Pic(C). In particular, the
contribution is k× or l×/k×, depending on the type of the node.

Now, let us consider an arbitrary relative nodal curve f : C → S. It follows from
our definition of smoothness that on the level of sets the singular locus (C/S)sing

of f coincides with the set of nodes in the fibers.

nodsinglem Lemma 1.7.3. The zero locus of the first Fitting ideal Fitt1(Ω1
C/S) is unramified

over S and coincides with (C/S)sing set-theoretically. In particular we obtain a
natural (may be non-reduced) scheme-structure on (C/S)sing.

Proof. Since the formations of differentials and Fitting ideals are compatible with
any base changes, it suffices to check this claim on the geometric fibers. The latter
has already been done in Lemma 1.3.24. �

Now, we can describe the local structure of relative nodal curves. Only the
situation at a point of the singular locus requires such a description. The following
proposition generalizes Exercise 1.7.2, though we will use the exercise in the proof.

nodsingprop Proposition 1.7.4. Let f : C → S be a nodal curve with noetherian base, s ∈ S
be a point and x be a nodal point in the s-fiber and such that k(x) = k(s). If

B = Ôx and A = Ôs denote the completed local rings, then B is A-isomorphic to
a ring A[[u, v]]/(Q(u, v)− h0), where h0 ∈ mA and Q(u, v) = au2 + buv + cv2 is a
quadratic form over A with invertible discriminant.

Proof. The local structure of the s-fiber of f at x was described in Exercise 1.7.2:

B/mAB→̃ÔCs,x→̃k(s)[[u, v]]/(q(u, v)). Lift q to a quadratic form Q(u, v) with
coefficients in A and lift the homomorphism k(s)[[u, v]] → B/mAB to a homo-
morphism φ : A[[u, v]] → B, then φ is onto and we obtain an exact sequence
0 → I → A[[u, v]] → B → 0. By flatness of B tensoring this sequence with A/mA

we obtain an exact sequence 0→ I/mAI → k(s)[[u, v]]→ B/mAB → 0. So, I/mAI
is a free k(s)[[u, v]]-module generated by q(u, v), hence I/(mAI+uI+vI) is of rank
one and the Nakayama lemma implies that I is generated by an element z. We can
take z to be a lifting of q and then z ∈ Q+mAA[[u, v]]. So, A[[u, v]]/(Q−h)→̃B for
some h = h0 +huu+hvv+ . . . with hu ∈ mA, and a direct computation shows that
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replacing the coordinates u and v we can achieve that the element Q− h rewrites
as Q(u′, v′)− h′0 with h′0 ∈ mA. In particular, A[[u′, v′]]/(Q(u′, v′)− h′0)→̃B. �

nodeexer Exercise 1.7.5. (i) Keep the notation of the proposition. Show that locally at the
node x the scheme (C/S)sing with the Fitting scheme structure is S-isomorphic to
a closed subscheme of S which is the zero locus of h0.

(ii) Let R be a ring. Show that an R-scheme C is a nodal relative curve if and
only if étale-locally it is equivalent to R-schemes of the form Spec(R[x, y]/(xy−h))
for h ∈ R. (Hint: split the quadratic form by an étale cover, also achieve that the
branches in the fiber belong to two different irreducible components locally given
by the vanishing of x and y, e.g. lift an appropriate étale cover of the fiber.)

Remark 1.7.6. Actually the lemma proves that the universal deformation of a
node is smooth and one-dimensional: if k is a field and k[[u, v]]/(uv) is a completed
local ring of a k-node, then the universal deformation of the node is given by the
homomorphism k[[h]]→ k[[h]][[u, v]]/(uv − h).

Let us also briefly discuss possible generalizations to higher dimensions. This
will not be used in the sequel.

Remark 1.7.7. (i) If S is a curve, then the notion of semistability naturally extends
to higher dimensions: a morphism f : X → S is semistable if étale-locally it is of
the form Spec(R[x1, . . . , xn]/(x1 · · ·xn − h)) → Spec(R). It is not difficult to see,
that this is equivalent to requiring that f is flat, its fibers are normal crossings
divisors, and each irreducible component of the fiber is a Cartier divisor. The
latter condition is automatic in the relative curve case, but cannot be omitted in
general. One explanation for this phenomenon is that the singularities are not
isolated anymore, so the deformations are of infinite dimensions.

(ii) If S is not a curve, then the above definition is not general enough and a
better version is of polystable S-schemes which are locally a fiber product of S-
semistable ones: such a morphism X → S is étale-locally isomorphic to

Spec(R[x1, . . . , xn]/(x1 · · ·xn1
− h1, xn1+1 · · ·xn2

− h2, . . . ))→ Spec(R).

In particular, a series of very recent results on resolution of morphisms shows that
any dominant morphism between varieties of characteristic zero can be modified
to a polystable one by blowing up the base and the source. On the other hand,
already the polystable morphism Spec(k[x, y, z, t]/(xy− u, zt− v))→ Spec(k[u, v])
cannot be modified to a semistable one.

1.7.2. The dualizing sheaf. Next we want to generalize sheaves ωC to the relative
situation. In [DM] a dualizing sheaf ωC/S is defined using general Grothendieck’s
duality. We will use a bit more elementary approach.

rellcilem Lemma 1.7.8. Any nodal curve f : C → S is locally a complete intersection: for
any closed immersion C → An

S (which always exist locally on C and S), the ideal
I ↪→ OAn

S
which defines C is locally generated by n− 1 elements and the OS-ideal

I/I2 is locally free of rank n− 1.

Proof. Proposition 1.7.4 provides a local description of C/S. Using it one can
describe the generators of I as in the proof of Lemma 1.3.4. �

relprojcur Lemma 1.7.9. Any proper nodal curve C → S is projective locally over S, i.e for
any point s ∈ S it is projective over a neighborhood of s.
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Proof. Choose points P1, . . . , Pn on each component in the smooth locus of the fiber
Cs and shrink S so that the closed immersions Pi → Cs extend to closed subschemes
Di ↪→ C (i.e. Di×C Spec(s)→̃Spec(k(Pi))). Shrinking S, we can achieve that each
Di is a Cartier divisor and D is contained in the smooth locus of C/S and hits
all irreducible components of the S-fibers. Then the restriction of L = OC(D) to
each fiber is ample by Lemma 1.3.7. Hence L itself is ample by the criterion of
ampleness [EGA, III.4.7]. �

Exercise 1.7.10. Read the proof of [EGA, III.4.7] (straightforward but computa-
tional), or deduce this result using (much more advanced) results of [Har, III.12].
(Hint: using semi-continuity find n such that h1(L⊗ns ) vanishes for each s ∈ S
(here L⊗ns = L⊗n ⊗ k(s) is the restriction to the s-fiber), and deduce that f∗(L⊗)
commutes with any base change S′ → S; enlarge n so that each L⊗ns is very ample
and observe that one obtains a morphism i : C → P(f∗(L⊗)) whose restrictions to
the S-fibers are closed immersions; deduce that i is a proper monomorphism, hence
a closed immersion.)

Let (C,D) be a semistable n-pointed S-curve. If C embeds into P = Pn
S and

I ↪→ OP is its ideal, then we set ωC/S = (ωP/S⊗OC)⊗(∧n−1I/I2)∗ and ω(C,D)/S =
ωC/S(D). Clearly, these sheaves are locally free.

Exercise 1.7.11. (i) Check that this definition is independent of the projective
embedding (Hint: dominate two embeddings by a third one).

(ii) Check that the so-defined ω(C,D)/S (with projective C → S) commutes with
base changes.

Using the exercise we can extend the definition to an arbitrary (C,D): by Lemma
1.7.9 C → S is projective locally on the base, so we can define ω(C,D)/S over small
pieces of S, but these sheaves are canonically isomorphic, so we can glue them to a
global sheaf. Clearly the formation of the sheaves ω(C,D)/S is compatible with any
base change.

relampleth Theorem 1.7.12. Let (C,D) be a stable S-curve. Then ω⊗m(C,D)/S is relatively very

ample for m ≥ 3 and R1f∗(ω
⊗m
(C,D)/S) = 0 for m ≥ 2, where f : C → S is the

structure morphism.

Proof. By Theorem 1.3.19 h1(ω⊗m(C,D)/S ⊗ k(s)) = 0 for m > 1 and any point s ∈ S.

It follows from the theorem on cohomology base change that R1f∗(ω
⊗m
(C,D)/S) = 0

and f∗(ω
⊗m
(C,D)/S) is locally free for m ≥ 2. So, for m ≥ 3 we have that (i) the sheaf

ω⊗m(C,D)/S ⊗ k(s) is very ample, (ii) its push-forward with respect to f commutes

with any base change S′ → S, (iii) the restrictions of this sheaf to the fibers are
very ample. It follows that i : C → P(f∗(ω

⊗m
(C,D)/S)) is a proper morphism which

induces closed immersions on S-fibers. Hence i is a closed immersion and ω⊗m(C,D)/S

is relatively very ample. �

1.7.3. Rigidified stable curves. The theorem implies that any stable curve admits a
tri-canonical embedding C → PS(f∗(ω

⊗3
(C,D)/S)), where PS(V ) = ProjS(Sym(V )),

is the projective S-bundle defined by L. In general, this bundle depends on

(C,D) via f∗(ω
⊗3
(C,D)/S), but locally it is just isomorphic to P

Ng,n
S , where Ng,n =

5g − 6 + 3n by Corollary 1.3.21. So, working locally on S we can fix a trivial-

ization PS(f∗(ω
⊗3
(C,D)/S))→̃P

Ng,n
S . In a sense we just fix the coordinates on the
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trivial projective bundle. Equivalently, one can rigidify the vector bundle: by a
twisted trivialization of the vector bundle f∗(ω

⊗3
(C,D)/S) we mean an isomorphism

f∗(ω
⊗3
(C,D)/S)→̃LNg,n+1, where L is a line bundle on S. Note that L does not have

to be trivial.

Exercise 1.7.13. Construct a natural bijection between trivializations of a vector
bundle V on S and twisted trivializations of the associated projective bundle PS(V ).

Once a trivialization of PS(f∗(ω
⊗3
(C,D)/S)) is fixed we obtain a closed immer-

sion C → P
Ng,n
S . Since C is S-flat and the Hilbert polynomial on the fibers

is Pg,n by Corollary 1.3.21, the latter immersion gives rise to a morphism S →
Hilb(P

Ng,n
Z /Z, Pg,n(m)), whose target will be denoted Hilb for simplicity. We can

also formulate this observation in the language of functors: there is a natural mor-
phism of functors Hg,n → Hilbg,n, where we identify the Hilbert scheme with the
corresponding functor and the source functor is defined below.

Hdef Definition 1.7.14. Define Hg,n to be a functor which assigns to a scheme S
isomorphism classes of n-pointed S-schemes (C,D) of genus g with trivialized
f∗(ω

⊗3
(C,D)/S) (where isomorphisms should respect the trivializations).

Let Z ↪→ PN × Hilbg,n be the universal subscheme and let Zsm be the smooth
locus of the projection Z → Hilbg,n. The scheme Hilbng,n obtained from the n-th
fiber power of Zsm over Hilbg,n by removing the diagonal represents the functor
which assigns to S a subscheme ZS → PN

S with Hilbert polynomial Pg,n and n
disjoint sections S → ZS whose image lies in the smooth locus of the projection
ZS → S. In particular, the morphism Hg,n → Hilbg,n lifts to φg,n : Hg,n → Hilbng,n
and the latter morphism is already injective. Thus, we embedded Hg,n into a
representable functor and our aim now is to show that this embedding identifies
Hg,n with the functor attached to a closed subscheme of Hilbng,n. Note that the
image of φg,n is a subfunctor of Hilbng,n which assigns to each S the set of subschemes

C ⊂ P
Ng,n
S with Hilbert polynomial Pg,n(m) and n sections S→̃Di ↪→ C such that

the following three conditions are satisfied:

(1) (C,D)→ S is a stable n-pointed curve,
(2) OC(1) ⊗ f∗L→̃ω⊗3

(C,D)/S for an invertible OS-sheaf L, where OC(1) is in-

duced from the projective embedding and f : C → S is the structure map,
(3) C spans PN

S in the sense that the homomorphism f∗OC(1) → pr∗OPN (1)
is onto for the projection pr : PN

S → S (it is equivalent to requiring that
C is not contained in a smaller linear subspace Pm

S , or that C is embedded
by a complete linear system of OC(1)).

Theorem 1.7.15. The functor Hg,n is represented by a locally closed subscheme
Hg,n of Hilbng,n.

Proof. We should check that the above three conditions define a locally closed
subscheme in Hilbng,n. Let (C,D) be the universal n-pointed curve over Hilbng,n.
The first condition defines an open subscheme, because the set of points x ∈ Hilbng,n
with stable fiber (Cx, Dx) is open (use Proposition 1.7.4). On the open locus defined
by (1) both f∗OC(1) and pr∗OPN (1) are of the same rank, hence the condition is
that the map between is an isomorphism. This is an open condition, so (1) and (3)
just define an open subscheme X ⊂ Hilbng,n.
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The last condition is more subtle, because it defines a closed subscheme in X
(hence one has to worry about the scheme structure). One way to do this is to
note that the invertible sheaves OC(1) and ω⊗3

(C,D)/S define maps h1, h2 : S →
PicC/S , and by the universal property of Picard schemes, condition (2) defines the
maximal closed subscheme Hg,n ↪→ X such that h1 = h2 over Hg,n (check that
it exists!). An alternative argument which avoids the use of Picard schemes is
based on the observation that Hg,n is the maximal closed subscheme such that

f∗(OC(1) ⊗ ω⊗−3
(C,D)/S) and f∗(OC(−1) ⊗ ω⊗3

(C,D)/S) are locally free of rank one on

Hg,n. �

Remark 1.7.16. (i) The scheme Hg,n classifies stable n-pointed curves of genus
g with a trivialization of the cohomology of the tri-canonical sheaf. Unlike the
moduli stack Mg,n, it is obtained rather straightforwardly from Hilbert schemes,
that is a great advantage. Its disadvantages with respect to the moduli stack are as
follows: not any stable curve (C,D)→ S is induced from Hg,n, but only those for

which the sheaf f∗(ω
⊗3
(C,D)/S) is of the form Ln; and if the sheaf is free then there

are many possible trivializations (corresponding to the action of PGL(N + 1) on
PN ), and some of them can lead to a compactification of the initial stable family,
while others can admit no compactification. All these problems will be solved in
the moduli space Mg,n: the space is proper and each stable curve is induced from
the universal stable curve over Mg,n in a unique way.

(ii) Actually, it is a standard situation that a problem of classifying certain
objects admits a ”covering” when one classifies an object with an extra-structure,
which is very often a trivialization of some data canonically assigned to an object.
Then the moduli spaceM which classifies the initial problem is covered by a larger
moduli space M′ which classifies the extended problem, and the group Aut of
automorphisms of the trivialized data acts onM′ so thatM′/Aut→̃M. Very often
one trivializes etale cohomology groups (or Jacobian torsion subgroups) obtaining
finite etale covers of M – these are standard level structures. In our case, we
trivialized a coherent cohomology group (canonically attached to a stable curve).
To build the moduli spaceMg,n we should now just forget about the trivialization.
Namely, we will build Mg,n as Hg,n/PGL(N + 1).

Since we have built a moduli space Hg,n which classifies stable curves with triv-
ialized cohomology of the tri-canonical sheaf, it seems we are just one step from
the construction of the moduli space Mg,n of stable n-pointed curves of genus g.
However this a huge step because we have to leave the category of schemes. On the
level of functors the definition is simple, but malfunctioning:

Mdef Definition 1.7.17. We define a set-valued functorMg,n on the category of schemes
by requiring that Mg,n(S) is the set of isomorphism classes of n-pointed stable S-
curves of genus g.

nonrepex Exercise 1.7.18. (i) Give an example of a non-constant hyperelliptic family C →
S which becomes trivial after an etale base change of S′ → S of rank 2. (Hint: take
S = Spec(k[t, t−1]) and C given by tx2 = (y − a)(y − b) . . . .)

(ii) Give an example of a discrete valuation ring R with fraction field K and a
stable and smooth K-curve which does not extend to a stable R-curve, but does
extend to a stable smooth curve over a discrete valuation ring R′ finite over R.
(Hint: extend the above example to the punched origin of S.)
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(iii) Deduce from either (i) or (ii) that Mg,n is not representable.

nonreprem Remark 1.7.19. (i) The fact thatMg,n is not representable was a striking disap-
pointing discovering in 60ies. Historically, a partial salvation from this conundrum
was an observation that there exists a scheme Mg,n called the coarse moduli space
which approximates the functor in a best possible way, in the sense that any mor-
phism from Mg,n to a scheme (we mean the natural transformation of functors)
factors through Mg,n. Moreover, the geometric points of Mg,n are exactly what we
want (the isomorphism classes of stable n-pointed curves), so it can be considered
as a reasonably good moduli space. Unfortunately, Mg,n does not admit a univer-
sal family (just by definition), so it is much less useful than the fine moduli space
would be. In particular, it is useless for our application to de Jong’s theorems. A
better approach would be to extend the category of schemes so that certain good
functors, including Mg,n, become representable in the extended setting.

(ii) Another way to introduceMg,n is to define it as a quotient Hg,n/PGL(Ng,n+
1). However, we should decide what is a quotient of a scheme X by a group scheme
G with respect to an action G × X → X (i.e. a group object in the category of
schemes and a categorical action). One can give at least two definitions of quotient
schemes: categorical quotient and geometric quotient. The first states that X/G
is the coequalizer of the diagram G × X ⇒ X, where one map is the projection
and another map is the action. The second definition is more geometric and we
refer to [GIT, Ch. 0] for the definition (it requires that X/G is the set of orbits on
the level of geometric points, X → X/G is the topological quotient, and few more
things). In addition, both notions can be not stable under base changes so there
are universal analogs of these notions. Using these approaches one should be able
(up to many technical difficulties) define Mg,n. Instead of trying to stick to one of
these definitions, we will invent one more definition. It is the most natural one, but
its drawback is that we have to leave the category of schemes.

(iii) In the context of moduli spaces, a natural attempt to define the quotient
Hg,n/PGL(Ng,n+1) is just to take the quotient of functors. However, this does not
works out well because we do not get Mg,n: for example, some stable curves over
a base S have non-free f∗ω

⊗3, so they do not admit a trivialization, and cannot
appear in the quotient functor. From this description it is clear that the difficulty
is thatMg,n is a sheaf in the Zariski topology, while the quotient is not. Moreover,
taking the sheafification of the functor Hg,n/PGL(Ng,n + 1) we get Mg,n.

In the next chapter we will study sheafified quotients as described in (iii). More-
over, the sheafification should be done with respect to étale covers, as becomes clear
from the above bad example.

2. Stacks

2.1. Descent and Hironaka’s example. We start with a very important example
by Hironaka. Let X be a smooth proper threefold over a field k with two smooth
curves C,C ′ meeting transversally at points P and P ′. Locally over P we blow
up C and the blow up the strict transform of C ′, locally over P ′ we reverse the
order, and at each other point we just blow them up simultaneously. The result
is a threefold Y with over P consisting of two projective lines l and m, where l
appears after the first blow up, and the fiber over P ′ is a union of l′ and m′, where
l′ appeared first.
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Hirexer Exercise 2.1.1. (i) Show that l′+m is numerically equivalent to zero and deduce
that Y is not projective.

(ii) Use this to construct an example of a semistable curve C → S with S a
surface and such that C → S is not projective (note that C → S is projective
locally over S by lemma 1.7.9).

(iii) Show that no affine subscheme of Y intersects both l′ and m.
(iv) Find an example of Y as above and with an action of G = Z/2 (i.e. G =

Spec(k ⊕ k) as a k-scheme) which is free and switches l′ and m, and deduce that
the geometric quotient Y/G does not exist.

The problem in the above example is that Zariski topology is not fine enough,
in particular, it can happen that two points do not have a common affine neigh-
borhood. This problem is resolved by passing to etale (or finer) topology on the
category of schemes, so in the sequel we will work with etale topology on the category
of schemes. The idea is to replace open immersions with a wider class of morphisms
(e.g. etale, flat and finitely presented, flat and quasi-compact; note that fpqc topol-
ogy is mainly considered in the case when non-Noetherian schemes are allowed) and
to define what are the covering sets of morphisms (in all the above cases a covering
is just the set of morphisms Ui → X whose images cover X). Few natural com-
patibility conditions are required (e.g. transitivity of coverings and stability under
base changes). One of the main motivations for introducing Grothendieck topol-
ogy on categories was the fact that one can easily define sheaves on such ”spaces”
(in particular, one can introduce cohomology). A presheaf is just a contravariant
functor (to sets, groups, rings, etc.) and a sheaf is a presheaf F such that for any
covering U → X (we assume that the category possesses disjoint unions, otherwise
an obvious modification must be done) the sequence F(X)→ F(U)⇒ F(U ×X U)
is exact (i.e. F(X) is the equalizer of the double arrow).

Exercise 2.1.2. Read about Grothendieck topologies, sheaves on them and the
sheafification (you can take any book on etale cohomology). In particular, find out
the definitions of the topologies Zar, Et, fppf and fpqc corresponding to the above
examples.

Since we have decided to switch to etale (or finer) topology, the first natural
question is if any representable functor is an etale sheaf. The answer is yes, but
it is not so easy to see this: this fact is proved in the framework of the theory of
descent. We refer to [Ful, §A] for a detailed exposition of the theory, and give here
only a very brief exposition.

Let us first discuss the usual Zariski topology. Any scheme is pasted from affine
ones, so it can be described by a covering X = ∩Ui. Then X is defined by Ui’s
and their intersections, and the best way to encode this information is as follows:
a covering map U = tUi → X and gluing datum p1, p2 : U ×X U ⇒ U (first and
second projections). Then X is the coequalizer of the gluing datum. Note that any
gluing datum must satisfy a natural compatibility condition (the cocycle condition
usually written as p∗13i = p∗23i ◦ p∗12i for the involution i : U ×X U → U ×X U and
the projections pij : U ×X U ×X U V U ×X U).

pastrem Remark 2.1.3. (i) Note that the category of all schemes is obtained from the
category of affine schemes (opposite to the category of rings) by adding certain
pushouts: coequalizers of gluing datum. Beware however, that they the same
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pushout problem can have different solution in the category of affine schemes, so
one has to use locally ringed spaces to define the pushouts.

(ii) Actually, it usually happens that one can easily work with projective limits
(including fibred products) in the category of schemes, but injective limits (includ-
ing pushouts and coequalizers) are much more subtle. For example, one can define
a union of closed subschemes (using intersections of ideals), but it is not stable
under base changes and where is no unique way to decompose a subscheme as a
union of irreducible ones.

(iii) In many cases, it is a very subtle question if a certain pushout exists (e.g.
contraction of a closed subscheme or a scheme pasted from other schemes along
closed subschemes). However, some pushout operations become possible when we
enlarge the category of schemes to algebraic spaces. See next section for such
examples.

Almost any local construction on a scheme X is done through an atlas corre-
sponding to a gluing datum R = U ×X U ⇒ U → X. For example, a sheaf F on
X is defined as a sheaf FU (i.e. collections of sheaves Fi’s on Ui’s) with a gluing
isomorphism p∗1F→̃p∗2F subject to a natural cocycle condition.

Now, let us switch to other topologies: we will be mainly interested in Et and
fppf. The above definition of locality makes sense for any topology because we
have not use any specific property of open immersions in the above discussion. For
example, a local construction in a flat topology is done by specifying a faithfully
flat covering U → X (we automatically assume that it is either fppf or fpqc) and
performing a construction on U and R = U ×X U such that natural compatibility
(gluing isomorphism and cocycle condition) are satisfied. In general one calls state-
ments about such constructions descent statements, because they state that certain
constructions/properties descent from an atlas R ⇒ U to a scheme X. One says
that a descent datum (for a sheave or scheme) is effective if it instead leads descents
to an object on X. Obviously, this makes sense for sheaves (in the corresponding
topology), but the descent theory does much more: any quasi-coherent Zariski sheaf
is also an fpqc sheaf, any descent datum for a Zariski quasi-coherent sheaf is ef-
fective and descent datum is effective for morphisms of quasi-coherent sheaves. In
other words, the category of quasi-coherent sheaves Coh(X) is equivalent to the
category of descent datum Coh(R⇒ U).

Exercise 2.1.4. Prove this, or read a proof in the literature (e.g. [Ful]).

Since the descent works perfectly for quasi-coherent modules, it works perfectly
for X-affine schemes (i.e. affine morphisms Y → X) and, therefore, for quasi-affine
morphisms to X. A very important property is that for any fppf or fpqc covering
U → X with R = U ×X U one has that X is the coequalizer of R ⇒ U (in the
category of sets this claim is true for any surjection U → X, so flat covers behave as
surjections). In particular, any representable functor hZ = Hom(·, Z) is a sheaf in
the fppf and fpqc (hence etale) topologies. It follows that descent works perfectly
for morphisms of X-affine schemes, and therefore for morphisms between any pair
of X-schemes. However, using Hironaka’s example it is easy to construct a non-
effective descent datum for an X-proper scheme, i.e. proper morphisms YU → U
with a gluing datum YU ×U,p1 R→̃YU ×U,p2 R subject to a cocycle condition. It
turns out nevertheless that one can descent X-projective schemes with a fixed ample
sheaf.
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Exercise 2.1.5. Prove this, or read a proof in the literature (e.g. [Ful]).

Remark 2.1.6. Note that the whole theory of descent is based on descent of
modules. That is why we can descent X-affine schemes and X-projective ones with
fixed ample sheaves.

2.2. Algebraic spaces. The classical reference for the theory of algebraic spaces is
the book [Knu] of Knutson. The category of algebraic spaces extends the category
of schemes with respect to etale-local constructions in the same way as the cate-
gory of schemes extends the category of affine schemes with respect to Zariski-local
constructions. In the category of algebraic spaces there is enough room to perform
some operations impossible in the category of schemes: any descent datum is effec-
tive (even fppf and fpqc) and quotients by free actions of finite groups always exist
(e.g. Hironaka’s quotient from 2.1.1(iv) is an algebraic space). A general algebraic
space X should be the coequalizer of an etale gluing datum p1, p2 : R ⇒ U (it
will help to your intuition to think that R = U ×X U) with etale pi’s and which
satisfies certain compatibility conditions described below. An equivalent way is to
talk about equivalence relations.

Exercise 2.2.1. (i) Check that p : R⇒ U is an equivalence relation of sets if and
only if R→̃U ×X U for the coequalizer X if p. Show that it happens if and only if
R→ U×U is an injection, R is symmetric, i.e. there exists an involution i : R→ R
which switches pi’s, and R is transitive (a cocycle condition on R ×p1,U,p2 R =
U ×X U ×X U).

(ii) Define a categorical equivalence relation R ⇒ U by the condition that all
maps Hom(Z,R)⇒ Hom(Z,U) are equivalence relations. Show that R→ U ×U is
a monomorphism. Give an equivalent definition of categorical equivalence relation
using a symmetrization i : R→ R and a cocycle condition.

We can now define algebraic spaces as quotients (or coequalizers) of etale equiv-
alence relations, but we have also to decide what are the morphisms in the new
category: we saw in 2.1.3(i) that the passage from affine schemes to schemes re-
quired to use locally ringed spaces. In our case the trick is somewhat similar: we
know that the category of schemes embeds faithfully into the category of etale
sheaves, and coequalizers exist in that larger category (they are sheafifications of
presheaf coequalizers). So, we have just one possibility to define morphisms be-
tween algebraic spaces so that they form a full subcategory in the category of etale
sheaves. If p : R ⇒ U is an etale equivalence relation and X is the quotient alge-
braic space, then we say that p is an atlas for X and write X = U/R. The parts (i)
and (ii) of the following exercise show that it actually suffices to work with sheaves
on affine schemes and with affine atlases.

algspexer Exercise 2.2.2. (i) Check that the category of algebraic spaces embeds faithfully
into the category of etale sheaves on the category of affine schemes.

(ii) Check that any algebraic space admits an affine atlas in the sense that U is
affine (R can be not affine already when U/R is a non-separated scheme).

(iii) Prove that if X = U/R for an etale equivalence relation R ⇒ U , then
R→̃U ×X U .

(iv) Prove that if U ′ → U is an etale covering and p : R′ = U ′ ×U,p1 R ×p2,U U ′
(often one simply writes R′ = R×U×U (U ′×U ′)), then p′ : R′ ⇒ U ′ is an equivalence
relation with U ′/R′→̃U/R. One says that the atlas p′ for X is a refinement of p.



32

(v) If X is an S-scheme and G is an etale S-group with a categorically free
S-action µ : X ×S G → X (i.e. X ×S G → X ×S X is a monomorphism), then
pr, µ : X ×S G → X is an etale equivalence relation. In particular, the quotient
X/G (we will use this notation instead of X/(X × G)) is defined as an algebraic
space. For example, the Hironaka’s quotient is an algebraic space.

artinrem Remark 2.2.3. (i) One could make similar construction for other topologies, e.g.
the fppf topology. Surprisingly, it would lead to equivalent category. However, the
only published proof of that is based on Artin’s theorem about stacks. It is an
interesting question, if one can prove it directly with reasonable efforts.

(ii) Usually, one also requires that the diagonal R→ U ×U is quasi-compact (if
X = U/R is a scheme, then this means that X is quasi-separated). Since we work
with noetherian schemes in this part of the course, we do not care about this point.

There are few equivalent conditions which describe algebraic spaces among all
etale sheaves. Usually, one of those conditions is taken for the definition of alge-
braic spaces (instead of our definition with an atlas). Actually, almost all local
constructions work with atlases (similarly to schemes with the Zariski topology).

atlaslem Lemma 2.2.4. Any morphism of algebraic spaces X ′ → X admits an affine atlas
(R′ ⇒ U ′)→ (R⇒ U).

Note that the map of atlases defines the map of quotients, and the map (U ′ →
X ′) → (U → X ) defines a map on relations (so that everything fits into one
commutative diagram). Using the language of functors one just checks this on the
level of sets.

Proof. Accordingly to the intuition coming from the experience with schemes and
Zariski topology, we start with arbitrary atlases, and we will see that it suffices to
refine U ′. If U ′ → X factors through U then the map of atlases exists even without
refining because the map (U ′ → X ′)→ (U → X ) defines the map of R’s. In general,
we note that U → X is a surjection of etale sheaves. So, even if the map U(U ′)→
X (U ′) is not surjective, there exists an etale covering U ′′ → U ′ such that the map
U(U ′′)→ X (U ′′) is surjective. Replacing R′ ⇒ U ′ with R′ ×U ′×U ′ U ′′ × U ′′ ⇒ U ′′

we obtain the required refinement because U ′′ → X factors through U . �

atlasex Exercise 2.2.5. Construct fibred products of algebraic spaces using atlases (or
read [Knu, II.1.5]).

algspprop Proposition 2.2.6. The following conditions on an etale sheaf F are equivalent
(we identify schemes and algebraic spaces with their functors):

(i) F is an algebraic space;
(ii) there exists a scheme U and an etale covering U → F which is schematic or

representable in the sense that for any morphism from a scheme V to F the base
change morphism U ×F V → U is a surjective etale morphism of schemes;

(iii) the diagonal F → F × F is schematic (i.e. its base change to any scheme
is a morphism of schemes) and there exists an etale sheaf-theoretic epimorphism
from a scheme f : U → F (f is automatically schematic and etaleness means that
any its base change to a scheme is an etale morphism);

(iv) any map V → F from a scheme is schematic and there exists an etale
sheaf-theoretic epimorphism from a scheme f : U → F .
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Proof. Equivalence of (iii) and (iv) follows from the fact that any fibred product
over F is obtained from the direct product by base change with respect to the
diagonal ∆ : F → F ×F , i.e. U ×F V →̃U ×V ×F×F F (thus ∆ is schematic iff any
morphism from a scheme to F is schematic). To deduce (ii) from (iii) we should
only prove that the base changes of U → F are surjective, but the latter follows
from the fact that an etale map f : U → V is surjective if and only if it induces
surjection of sheaves (use that can one split f by an etale base change so that it
admits a section).

Remark 2.2.7. This surjectivity is of crucial importance. It explains why one has
to consider etale sheaves instead of Zariski sheaves to be able to define algebraic
spaces. Similarly, if one wants to define ”flat” algebraic spaces by use of flat equiv-
alence relations, see remark 2.2.3(i), then one must work with fppf sheaves (though
the resulting category will be the same).

Also, (i) follows from (ii) because R = U ×F U is a scheme and p : R⇒ U is an
equivalence relation of sheaves, hence p is an equivalence relation of schemes and
it is etale by etaleness of f . It remains to deduce (iv) from (i). So, we assume
that p : R ⇒ U is an etale equivalence relation with U/R→̃F and we have to
prove that if V1 and V2 are two schemes with a morphism to F then V1 ×F V2 is a
scheme. First, let us assume that the morphisms Vi → F factor through U . Then
V1 ×F V2→̃V1 ×U U ×F U ×U V2→̃V1 ×U,p1 R×p2,U V2 is a scheme. In general, we
apply lemma 2.2.4 to find etale covers Wi → Vi such that the morphisms Wi → F
factor through U . In particular, we obtain morphisms of the quotient sequences
(Wi ×Vi Wi ⇒ Wi → Vi)→ (R ⇒ U → F) (it is a triple of morphisms compatible
with all the rest). Set Ti = Wi ×Vi Wi for simplicity, then by the above particular
case W1 ×F W2 and T1 ×F T2 are schemes and, in particular, the monomorphisms
W1 ×F W2 → W1 ×W2 and T1 ×F T2 → T1 × T2 are quasi-affine morphisms of
schemes. It remains to apply descent of quasi-affine morphisms to obtain that
V1 ×F V2 is a scheme quasi-affine over V1 × V2. �

Remark 2.2.8. (i) Note that the implication (i)⇒(iv) is rather subtle (we used
descent in the proof). Its analog for affine atlases does not hold because a product
of affine schemes over a non-separated scheme does not have to be affine.

(ii) Representability of the diagonal and existence of an etale covering (as in
parts (iii) or (iv) of 2.2.6) are often taken for the definition of an algebraic space,
though Knutson uses 2.2.6(ii) as his definition.

Now we will briefly outline a further development of the theory of algebraic
spaces. We will not make too much use of it, but it will serve as a simple analog
of the theory of stacks we will discuss later. Also, we will discuss few examples of
concrete algebraic spaces, so that the reader can built some intuition of working
with such objects.

bfpdef Definition 2.2.9. Let P be any property of a morphism which is stable under
base changes and is etale-local on the base (i.e. f satisfies P iff its base change
with respect to a surjective etale map does so). Actually, P can be almost every-
thing except (quasi-) projectivity, see [Ful, 5.5] for a list of 30 properties including
monomorphism, (locally) closed immersion, etale, radiciel, affine, etc. We say that
a schematic morphism Y → X of algebraic spaces satisfies P if it is so etale-locally
on the base (i.e. the base change with respect to an etale covering of X by a scheme,
which is automatically a morphism of schemes, satisfies P).
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Using this definition we can talk about (surjective) etale and flat morphisms and
open immersions, hence the category of algebraic spaces is naturally provided with
the topologies Zar, Et and fppf. The most natural topology for algebraic spaces
is the etale topology (an analog of the Zariski topology for schemes). Each repre-
sentable functor is an etale sheaf in the category of algebraic spaces. A structure
sheaf OX is defined as the etale sheaf satisfying OX (U) = OU (U) for any morphism
U → X from a scheme. A quasi-coherent sheaf is a sheaf of OX -modules which is
etale-locally quasi-coherent. The topology Zar can be convenient for some applica-
tions, but one should remember that it does not describe X completely (see exercise
2.2.12 below). Namely, a point p of X is a monomorphism p→ X with p being the
spectrum of a field. The set of points |X | is a topological space which adequately
describes the Zariski topology of X (i.e. there is a one-to-one correspondence be-
tween open subspaces of |X | and the isomorphism classes of open immersions into
X ). The structure sheaf OX restricts to a sheaf of rings on |X | making it to a lo-
cally ringed space. Using Zariski topology, one can define the notions of closed and
universally closed morphisms. Since we want to be able to talk about separatedness
and properness in the case of algebraic spaces which are not necessarily schemes,
we have to give the following definition (instead of 2.2.9).

bfp2def Definition 2.2.10. (i) A morphism Y → X is called (locally) separated if its diago-
nal Y → Y×X Y (which is always a monomorphism) is a (locally) closed immersion.

(ii) A morphism is proper if it is of finite type and universally closed.
(iii) A morphism is (quasi-) projective if it is a composition of a (locally) closed

immersion Y → PX with the projection PX → X .

Remark 2.2.11. One can generalize to non-schematic morphisms the notions of
etaleness, smoothness, flatness, and any other property P which is etale-local on
the source (i.e. Y → X satisfies P if and only if Y ′ → X satisfies P for an
etale covering Y ′ → Y ). For example, the Hironaka’s quotient is a smooth proper
three-dimensional algebraic space which is not a scheme.

algspex Exercise 2.2.12. (i) Let X be an affine scheme with a closed subscheme Y and a
complement U . Define a non-separated scheme X obtained from X by doubling Y
via the gluing datum X11 tX22 t U12 t U21 ⇒ X1 tX2.

(ii) Assume, more generally, that X admits a non-trivial finite etale covering
X ′ → X such that the preimage of Y is Y ′. Imitate the above construction to
build a non-separated algebraic space X obtained from X by inserting Y ′ instead
of Y .

(iii) Show that one can always ”multiple” a closed subscheme Y in X with respect
to a finite etale covering Y ′ → Y obtaining an algebraic space X (you can assume
that the etale covering Y ′ → Y locally extends to X).

(iv) Assume that Y = Spec(k) is a closed point and Y ′ = Spec(k′) is a larger
point. Show that X and X have equal Zariski locally ringed spaces (we feel non-
separatedness only etale locally), hence the functor X → (|X |,OZar

X ) is not full.
Show that if k′/k is Galois, then X has a non-trivial automorphism over X, hence
the functor is not faithful.

(v) If X is a surface over C and Y ′ → Y is a non-split etale covering of a curve,
then X from the above exercise is not a scheme, but its analytification can be
defined as a (non-Hausdorff) analytic space because Y ′ → Y is a local isomorphism
in analytic topology.
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Despite (iv) above, Zariski topology can be useful for some applications. The
following exercise provides such an example. An etale equivalence relation p : R⇒
U is called effective if U/R is a scheme.

Exercise 2.2.13. Prove that if U = ∪Ui is an open covering and pi : Ri = Ui×U,p1
R ×p2,U Ui ⇒ Ui are the induced equivalence relations, then the algebraic spaces
Ui/Ri form a Zariski covering of U/R. In particular, effectivity of an equivalence
relation is Zariski local on U , in the sense that p is effective iff all pi’s are.

There is one important case when effectivity is granted.

genscheme Exercise 2.2.14. (i) Show that any affine finite etale equivalence relation Spec(B)⇒
Spec(A) is effective and the quotient equals to Spec(Ker(A ⇒ B)). (Hint: refine
the atlas so that it splits as Spec(A)×G→ Spec(A) for a discrete finite group G,
then the quotient will be Spec(AG)).

(ii)* Deduce that any algebraic space is generically a scheme, i.e. contains a
Zariski dense open subscheme. (Hint: starting with an atlas R ⇒ U one should
find an open affine U ′ ↪→ U such that the induced equivalence relation R′ ⇒ U ′ is
finite. Though this is obviously so over the generic points of U , it is not so easy to
find U ′.)

Remark 2.2.15. (i) Chow lemma holds for separated morphisms of algebraic
spaces, in particular any X of separated and of finite type over a scheme S can
be modified to a scheme X ′ quasi-projective over S. The proof of this is not easy,
see [Knu, IV.3.1].

(ii) An important theorem by Artin states that any contraction of a subvari-
ety can be performed in the category of algebraic spaces if and only if it can be
contracted formally (in other words, formal blow downs can be algebraized in the
category of algebraic spaces). For example, a curve on a proper surface can be con-
tracted (using algebraic spaces!) if and only if its self-intersection matrix is totally
negative.

(iii) Artin’s theorem plays an important role in the proof that any Moishezon ana-
lytic space (i.e. proper n-dimensional space with n algebraically independent mero-
morphic functions) algebraizes by an algebraic space over C. A non-archimedean
analog of this was proved very recently by B. Conrad.

We finish this section with few more examples of algebraic spaces.

Exercise 2.2.16. (i) Let X be a scheme with a closed subscheme Y and Y → Y ′

be a finite morphism. Construct the pushout X ′ of X ← Y → Y ′ in the category
of algebraic spaces. Give an example when X ′ is not a scheme (e.g. when we glue
curves on a surface with different self-intersections).

(ii) Let X be an affine line with doubled origin (the most typical example of a
non-separated scheme), Y be the doubled origin (just two points) and Y ′ be one
point (the origin). Show that X ′ (i.e. the scheme obtained by gluing the twin points
together) is not locally separated. Show that this gives an equivalent description
of the example of a not locally separated space in the book of Knutson (Example
1 in chapter I). Intuitively this example looks like affine line with doubled tangent
direction at the origin.

(iii)* Show that an algebraic space over C admits an analytification if and only if
it is locally separated. (Hint: you should prove that if an etale equivalence relation
on analytic spaces has a locally closed diagonal then it is effective, and that the
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analytification depends only on the algebraic space, i.e. does not depend on the
atlas).

It was recently proved by B. Conrad and me that any separated algebraic space
of finite type over a non-archimedean field admits an analytification (as a Berkovich
analytic space or as a rigid space).

Exercise 2.2.17. (i)* Give an example of a non-analytifiable locally separated
algebraic space over Qp. (Hint: use that Qp is not algebraically closed).

(ii)** Construct an analogous example over Cp. (Hint: it is much more difficult
to invent such example in the framework of rigid geometry (using admissible covers);
switch to the analytic language and use that on Berkovich analytic spaces there exist
points defined over larger fields.)

2.3. Groupoids. Algebraic spaces are a first step towards constructing group quo-
tients in the category of schemes. They work well for categorically free finite group
actions (including a Galois action on a field), but cannot treat the non-free case
because X×G⇒ X is not an equivalence relation then. Actually, the problem can
be tracked already on the level of sets: for a non-free group action X ×G→ X the
map φ : X ×G → X ×X/G X is not an isomorphism (let us say that the quotient
is fine if φ is an isomorphism). Since we would like to define fine quotients in the
category of schemes, it is natural first to extend the category of sets so that fine
quotients exist in a larger category C, and then embed the category of set-valued
functors (where algebraic spaces form a full subcategory) into the category of C-
valued functors or, more specifically, into the category of C-valued sheaves. This
plan works out fine with one serious complication: a natural definition of C makes
it into a 2-category rather than a usual category.

A natural generalization of an equivalence relation R ⇒ U is a groupoid s, t :
X1 ⇒ X0 which consists of two maps s, t, a multiplicationm : X2 = X1×s,X0,tX1 →
X1, an inverse i : X1 → X1 which switches s and t and an identity e : X0 → X1.
An equivalent way to give groupoid is to give a category X where all morphisms are
isomorphism (often groupoid means category, and we will use both interpretations):
Ob(X ) = X0, Mor(X ) = X1, s and t are the source and the target of morphisms,
m is the composition law and i is the inverse of morphisms (all morphisms are
invertible by our assumption).

Exercise 2.3.1. (i) Using the categorical interpretation of groupoid write down
all axioms s, t, i,m, e should satisfy.

(ii) Show that an equivalence relation is a groupoid.
(iii) Attach to any group action a groupoid X ×G⇒ X.

In particular, for G = e we obtain a banal groupoid IdX : X ⇒ X which will
be freely identified with X. So, by saying that a groupoid is a set we mean that it
is strictly isomorphic to such a groupoid. Next we have to define the category of
groupoids. It is clear how to define morphisms: a map φ : (X1 ⇒ X0)→ (Y1 ⇒ Y0)
is a pair of maps φ0 : X0 → Y0, φ1 : X1 → Y1 which satisfies natural compatibility,
and such a map is called a strict isomorphism if φi’s are isomorphisms. The latter
notion is too restrictive, because we would like also to define isomorphism (or
equivalence) of groupoids which corresponds to an isomorphism of the quotients at
least when the quotients are sets. The natural definition of equivalence is based
on the interpretation of groupoid as a category: there is a rather useless notion of
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isomorphism of categories and there is a notion of equivalence of categories. Let us
switch therefore to the categorical interpretation of groupoids.

2catdef Definition 2.3.2. Groupoids (and, more generally, all categories) form a 2-category
Grp (resp. Cat). Its objects are groupoids, but Hom’s are categories denoted
HOM(X ,Y). The objects of HOM(X ,Y) are functors F : X → Y and they are
called 1-morphisms; for two such functors F and G the natural transformations
form a set Hom(F ,G) and they are called 2-morphisms. Since we consider only
groupoids in Grp, any natural transformation is invertible, i.e. any 2-morphism is
an isomorphism in our case. A 1-morphism F is an isomorphism (or equivalence)
if there exists an inverse G (going in opposite direction) such that the compositions
G ◦F and F ◦G are 2-isomorphic to identities (note that these 2-isomorphisms can
be non-unique). For 2-morphisms two types of compositions are defined: a so-called
vertical composition g ◦ g : F → H for f : F → G and f : G → H and a so-called
horizontal composition f ′ ∗ f : F ◦ F ′ → G ◦ G′ for f : F → G and f ′ : F ′ → G′. A
diagram

X

φ⇒

f //

g

��

Y

h
��

Z
t // T

is called 2-commutative (resp. strictly 2-commutative) if φ : t ◦ g → f ◦ h is a 2-
isomorphism (resp. an identity). Sometimes, one can omit φ to ease the language,
but such 2-isomorphisms must be taken into account in almost any diagram chasing
(e.g. in order to establish two commutativity of other cycles in complicated dia-
grams one has to compose 2-morphisms using vertical or horizontal composition).

grex Exercise 2.3.3. (i) Reformulate everything in the non-categorical language. For
example, for two 1-morphisms F ,G : X → Y a 2-morphism F → G is given by a
map X0 → Y1 which satisfies certain compatibility conditions.

(ii) For any group G let BG denote the groupoid pt × G ⇒ pt. Show that any
groupoid is equivalent to a uniquely defined groupoid tiBGi, and the groupoid is
a set iff all groups are trivial. (Hint: take the skeleton of the groupoid.)

(iii) Given two groups G and H describe the category HOM(BG,BH). What
are the isomorphism classes of objects of this category?

Note that the above interpretation of 2-morphisms provides a very close analogy
between 2-morphisms and homotopies (in some sense a 2-morphism is a homotopy
between 1-morphisms).

Definition 2.3.4. Let φ : Y → X and ψ : Z → X be two 1-morphisms, then the
fibred product groupoid T = Y ×X Z is defined as follows: T0 is the set of triples
t = (y ∈ Y0, z ∈ Z0, f ∈ Mor(φ(y), ψ(z)) and Mor(t, t′) (i.e. the preimage of (t, t′)
under the map T1 → T0 × T0) is the set of pairs a : y → y′, b : z → z′ such that
f ′ ◦ φ(a) = ψ(b) ◦ f . Note that the map T0 → X1 which takes (y, z, f) to f induces
a 2-isomorphism of the composed maps T → Y → X and T → Z → X . A strictly
2-cartesian diagram is the 2-commutative diagram

T
f⇒

//

��

Y

��
Z // X
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Note that if Y and Z are sets, then Y ×X Z is always a set.

fibex1 Exercise 2.3.5. (i) Show that the fibred product satisfies the following strict uni-
versal property: for any pair of morphism a : T ′ → Y and b : T ′ → Z with a
2-isomorphism f ′ between the compositions T ′ → Y → X and T ′ → Z → X , there
is a unique morphism (a, b) : T ′ → T such that a and b factor through it and f ′ is
induced from f in the sense that f ′ = Id(a,b) ∗ f .

(ii) Check that pt ×BG pt→̃G. In particular, one cannot just take product of
atlases to obtain product of groupoids (unlike the case when the groupoids are
equivalence relations).

(iii) More generally, consider the covering of a groupoid X by the set X0 (i.e. a
morphism (e, IdX0) : (X0 ⇒ X0) → (X1 ⇒ X0)). Show that X0 ×X X0→̃X1 as a
set (i.e. category with on. (Yes!)

(iv) Even more generally, show that for morphisms X ′ → X and X ′′ → X of
groupoids X = (R⇒ U), X ′ = (R′ ⇒ U ′) and X ′′ = (R′′ ⇒ U ′), the fibred product
X ′ ×X X ′′ is the groupoid R′ ×R R′′ ⇒ U ′ ×U,s R×t,U U ′′.

(v) Let X → Y → T and Z → T be morphisms of groupoids. Show that the
natural map X ×Y (Y ×T Z)→ X ×T Z is an isomorphism which does not have to
be a strict isomorphism.

The last part of the exercise indicates that it is much more useful to weaken the
strict cartesianity condition as follows.

Definition 2.3.6. A 2-commutative diagram

T
f⇒

b //

a

��

Y

��
Z // X

is called 2-cartesian if the morphism (a, b) : T → Y ×X Z is an isomorphism.

fibex2 Exercise 2.3.7. (i) Show that T = Y ×X Z possesses a natural universal property
or read [Ful, §C.5.4]; this is a good example of a 2-commutative diagram chasing
with vertical and horizontal compositions of 2-morphisms. (Hint: loosely speaking,
the property states that for any pair of morphism f : T ′ → Y and g : T ′ → Z with
a 2-isomorphism between the compositions T ′ → Y → X and T ′ → Z → X , both
f and g factor through a morphism f ×X g : T ′ → T up to a 2-isomorphism and
f ×X g is unique up to a unique 2-isomorphism.)

(ii) Show that Y ×X Z depends only on isomorphism classes of X ,Y and Z up
to a 2-isomorphism.

(iii) Establish 1-isomorphisms Y ×X Z→̃(Y × Z) ×X×X X and X ×Y (Y ×T
Z)→̃X ×T Z.

Definition 2.3.8. A morphism f : Y → X is a (strict) monomorphism if it is
(injective and) fully faithful, and it is a (strict) epimorphism if it is essentially
surjective (resp. surjective).

It follows immediately that f is a (strict) isomorphism iff it is a (strict) monomor-
phism and a (strict) epimorphism.

fibex3 Exercise 2.3.9. Prove that the following conditions for a morphism f : Y → X
are equivalent:
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(i) f is faithful;
(ii) the diagonal ∆Y/X : Y → Y ×X Y is a monomorphism;
(iii) f is representable in the sense that for any morphism X → X with X

isomorphic to a set the base change X ×X Y is isomorphic to a set.
(Hint: use exercise 2.3.3(ii) and for any homomorphism of groups G → H and

induced morphism BG → BH compute the map ∆BG/BH : BG → BG ×BH BG,
in particular, deduce from exercise 2.3.5(iv) or compute directly that BG ×BH
BG→̃G \H/G is isomorphic to the factor of H by the left-right action of G × G,
i.e. it is (even strictly) isomorphic to the groupoid G×G⇒ H.)

Remark 2.3.10. We see that the behavior of a morphism f between groupoids
is very different from the behavior of a usual map of sets if and only if f is not
faithful, i.e. f kills automorphism.

2.4. CFGs. Since we cooked up the replacement for the category of sets, we can
try to generalize etale sheaves and algebraic spaces by stacks and algebraic (Artin
or Deligne-Mumford) stacks, respectively. The idea is clear: stack is an etale sheaf
of groupoids and algebraic stack should be defined either by a groupoid atlas or
by some conditions analogous to proposition 2.2.6. Naturally, we should start with
presheaves because many constructions on sheaves use presheaves. At this point
we are going to feel the difference between sheaves of sets and sheaves of groupoids,
namely, it is possible to give a direct definition of such a presheaf, but it should
involve 2-morphisms: a presheaf F consists of a groupoid F(U) for any scheme U ,
a 1-morphism fU,V : F(U)→ F(V ) for any morphism V → U and a 2-isomorphism
γU,V,W : fV,W ◦ fU,V → fU,W for any tower W → V → U . The usual transitivity
condition (whose role is played here by γ) must be replaced with a generalized
transitivity condition on γ’s.

Exercise 2.4.1. Write down the compatibility conditions γ’s should satisfy for any
tower T →W → V → U , or see [Ful, p. 39].

There is, however, a standard way to reformulate this definition in essentially
equivalent way, and it leads to a notion of categories fibred in groupoids. Since
moduli problems data can be interpreted in the language of CFG’s, one usually
prefers to work in that language.

Definition 2.4.2. Let S be a category (normally, it will be the category of S-
schemes). A category fibred in groupoids or CFG over S is a functor p : X → S
such that

(i) if f : Y → X is a morphism and X = p(x), then there exists a morphism
f : y → x with p(f) = f (in particular, p(y) = Y );

(ii) if f : y → x and g : z → x are two morphisms, then any morphism h : p(y)→
p(z) with p(g) ◦ h = p(f) admits a unique lifting h : y → z with g ◦ h = f .

A 1-morphism of CFGs is a functor F : X → Y such that pX ◦ F = pY , and a
2-morphism of CFGs is a natural transformation of functors. A 1-morphism is a
1-isomorphism if it is an equivalence of categories.

Clearly, F is a 1-isomorphism iff it has an inverse G up to 2-isomorphisms, i.e.
such that both F ◦ G and G ◦ F are 2-isomorphic to identity functors.

CFGexam Example 2.4.3. In moduli problems CFG’s appear as follows. If we want to clas-
sify certain objects over S-schemes (e.g. stable n-pointed curves), then we can
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define a moduli CFG X → S as follows: x with p(x) = X corresponds to an object
over X and f : y → x with p(f) = f : Y → X corresponds to an isomorphism
f : y → f∗x where f∗x is the pullback of x with respect to f .

The above example provides a good source of intuition for working with CFG’s.
Also, it explains some notation we are going to introduce. For any object U in S
let XU be the category whose objects live over U and morphisms live over IdU .

Exercise 2.4.4. Prove that XU is a groupoid.

Naturally, one can think about XU as the value of X on U . To make X to a
presheaf we have to define the restriction functors γU,V for a morphism f : V → U .

It is done as follows: for any u over U let us fix a lifting f : f∗u → u of f (use
condition (i)). Though f∗u is not defined uniquely, it is defined uniquely up to a
unique isomorphism (use condition (ii)). Moreover, thanks to (ii) any morphism
u1 → u2 lifts uniquely to a morphism f∗u1 → f∗u2, hence we obtain a change of
base functor γU,V = f∗ : XU → XV (which depends on our choice, but is unique up
to a unique isomorphism regardless to the choices). It is natural to interpret XT as
S-points of X , however it is a category unlike the case of algebraic spaces.

Exercise 2.4.5. Let T be an object in S and T be the category of T -objects.
Then T has a natural structure of a CFG over C and the evaluation on (T, IdT )
induces a functor HOM(T ,X )→ XT . Check that it is surjective and fully faithful,
in particular, it is an equivalence of categories.

Few more constructions are done exactly as in the case of groupoids, so we omit
the details. (The informal reason is that a CFG behaves as a relative groupoid.)
The reader can consult [Ful, §§2.4-2.5] for a very detailed exposition of this subject.
Given two 1-morphisms Y → X and Z → X of CFGs over S one defines a fibred
product T = Y×XZ with 1-projections to the factors and a 2-isomorphism between
T → Y → X and T → Z → X . This data possesses the same strict universal
property as the fibred product of groupoids. A diagram

T
f⇒

//

��

Y

��
Z // X

is called (strictly) 2-cartesian if the induced map T → Y ×X Z is a (strict) 1-
isomorphism. The diagram is called (strictly) 2-commutative if f is a 2-isomorphism
(resp. identity), and 2-commutativity of triangular diagrams is defined similarly.
The universal property of the fibred product gives rise to the diagonal morphisms
∆X : X → X ×X and ∆Y/X : Y → Y ×X Y.

Exercise 2.4.6. Formulate and prove the analogs of the properties from exercises
2.3.5 and 2.3.7.

Note that to each presheaf of sets F on S (i.e. a set-valued contravariant func-
tor) one can attach a CFG F by setting FT = F (T ) and defining the morphisms
as follows: for a morphism f : V → U and u ∈ F (U), v ∈ F (V ) the set Mor(u, v)
contains one element if u is mapped to v by F (f), and is empty otherwise. Con-
versely, if F is a CFG such that each groupoid FT is a set then we can define the
presheaf of sets with F (U) = FU and F (U) → F (V ) coming from the change of
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base functor. So, by slight abuse of language we will say that F is a presheaf of
sets.

Exercise 2.4.7. (i) Show that a CFG X is 1-isomorphic to a presheaf of sets X if
and only if its objects have no non-trivial automorphisms. (Hint: take X to be the
set of isomorphism classes of objects from X .)

(ii) Formulate and prove the analog of the claim of exercise 2.3.9

In particular, to each algebraic space (including schemes) we can associate a
CFG. As usually, an interesting property is that a CFG is 1-isomorphic to an
algebraic space or scheme rather than strictly isomorphic.

stackPdef Definition 2.4.8. (i) A morphism Y → X is representable (resp. schematic) if for
any algebraic space (resp. scheme) X and a morphism X → X the CFG X ×X Y
is isomorphic to an algebraic space (reps. scheme).

(ii) Let P be a property of morphisms of algebraic spaces (resp. schemes) which
is stable under base changes and etale-local on the base (see definition 2.2.9). Then
we say that a representable (resp. schematic) morphism Y → X possesses P if any
its base change X ×X Y → X with X being an algebraic space (resp. a scheme)
possesses P.

2.5. Stacks. As we discussed earlier, a stack should be defined as a CFG which is
a sheaf. In particular, if we want to be able to talk about stacks, then the category
S should be provided with a Grothendieck topology. For the sake of simplicity
we assume in the sequel that S is the category of schemes over S provided with
the etale topology. Since we are working with presheaves of groupoids, the sheaf
condition should hold both for the objects and for the morphisms, and this is
reflected in the following definition. Note that for any T ∈ S and t, t′ ∈ XT the
presheaf Isom(t, t′) = Mor(t, t′) on the category of T -schemes can be defined as
Isom(t, t′)(Z) = Isom(f∗t, f∗t′) for any morphism f : Z → T .

stackdef Definition 2.5.1. (i) A CFG X is a prestack if each presheaf Isom(t, t′) is a sheaf.
(ii) A prestack X is a stack if any descent datum on its objects is effective: if

p : T ′ → T is an etale covering with p1,2 : T ′′ = T ′ ×T T ′ ⇒ T ′ and (t′ ∈ XT ′ , φ :
p∗1t
′→̃p∗2t′) is a descent datum (satisfying the cocycle condition p∗23φ◦p∗12φ

∗ = p∗13φ),
then there exists t ∈ XT with an isomorphism ψ : p∗t→̃t′ such that p∗2ψ = φ ◦ p∗1ψ.

As we will later see many naturally arising CFGs are actually prestacks, while
the second condition is more subtle and is less ”automatic”. It is instructive to see
how these conditions apply in the particular case of presheaves of sets.

Exercise 2.5.2. Let F be a CFG isomorphic a presheaf of sets. prove that F
is a prestack (resp. a stack) if and only if for each etale covering T ′ → T with
T ′′ = T ′ ×T T ′ the map F(T )→ Ker(F(T ′)⇒ F(T ′′)) is injective (resp. bijective)
(i.e. F is a separated presheaf (resp. a sheaf) of sets).

A very important example of prestacks is obtained from quotients by group
actions or, more generally, from groupoid schemes.

Definition 2.5.3. A groupoid scheme is a groupoid object in the category of
schemes. It consists of a pair of morphisms s, t : X1 ⇒ X0, an involution i :
X1 → X1 which switches s and t, an identity e : X0 → X1 and a multiplication
m : X1×s,X0,tX1 → X1 which satisfy natural compatibility conditions. A groupoid
scheme is etale or flat if s and t are so.
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Exercise 2.5.4. (i) Formulate the compatibility conditions or read [Ful, §3.1].
(ii) Check that any group action induces a groupoid scheme X ×G⇒ X.

To any groupoid scheme X1 ⇒ X0 we can associate a CFG X = [X1 ⇒ X0]pre

by evaluating on S-schemes, i.e. objects of XU are elements of X0(U) and its
morphisms are elements of X1(U). More generally, if f : V → U is a morphism,
u ∈ X0(U) and v ∈ X0(V ), then a morphism f : v → u is an element of X1(V )
with s(f) = v and t(f) = f∗u (we have a canonical map f∗ : X0(U) → X0(V )).
The composition of the so-defined morphisms is defined using the groupoid multi-
plication (see the diagram in definition [Ful, 3.11]).

Exercise 2.5.5. Check that X is a prestack.

Usually, the prestack X as above is not a stack. It is clear already in the case
of atlases for algebraic spaces or even a finite free group action. The reason is
that in the definition of the etale sheaf quotient U/R we first define a presheaf
(U/R)pre and then apply the sheafification. Similarly, we saw in remark 1.7.19(iii)
that the moduli functor Mg,n can be obtained from the Hilbert functor by taking
the presheaf quotient and applying sheafification. Let us consider one more example
of the same kind.

Example 2.5.6. Let G be a group scheme over S acting trivially on the base
scheme S. Then the prestack BGpre is defined by the atlas G ⇒ S with s and t
being the structure morphism and the multiplication given by the multiplication
m : G×S G→ G. Each category BGpreT contains exactly one object and the group
of automorphisms is G(T ).

Remark 2.5.7. We can identify the object of BGpreT with the trivial G-bundle
G ×S T → T (its automorphisms are as required). The prestack BGpre is not a
stack because the descent datum is not effective in general: indeed, any G-torsor,
which is not trivial but can be trivialized by an etale covering, can arise from such a
datum. The stack BG which classifies G-torsors can be obtained from the prestack
BGpre via a stackification operation (i.e. we add ”solutions” for any descent datum
on BGpre).

Definition 2.5.8. Let f : X0 → X be a morphism of CFGs with X being a
stack. Then f is called the stackification of X0 is for any stack Y the functor
HOM(X ,Y)→ HOM(X0,Y) is an equivalence.

Stackification can always be constructed by first ”correcting” the morphisms in
order to satisfy the first condition and second ”correcting” the objects by adding
the solutions for descent data. Since interesting CFGs are usually prestacks, the
second stage is more useful (actually, we will not need the first stage). Using the
stackification we can attach to any groupoid scheme X1 ⇒ X0 a stack [X1 ⇒ X0]
by stackifying the prestack [X1 ⇒ X0]pre.

Exercise 2.5.9. (i) Prove that any prestack X̃ admits a stackification X and then

the functors X̃U → XU are fully faithfully (actually, X is obtained from its full

subcategory X̃U by adding solutions to non-effective descent data).
(ii) Check that BG is the stackification of BGpre.

Note also that any stack [R ⇒ U ] with a quasi-affine relative diagonal (s, t) :
R → U × U can be described as a classifying stack of (R ⇒ U)-torsors, see [Ful,
§4.3].
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2.6. Algebraic stacks. Starting with stacks one defines algebraic stacks in the
same way as algebraic spaces are defined starting with etale sheaves (or, as one
sometimes says, spaces).

algstackdef Definition 2.6.1. A stack X is called algebraic or Artin stack (resp. Deligne-
Mumford or DM stack) if it satisfies the following two conditions:

(i) Presentation: there exists a surjective smooth (resp. etale) morphism U → X
with U being an algebraic space.

(ii) Representability of the diagonal: the diagonal ∆X : X → X ×X is separated,
representable and quasi-compact.

Remark 2.6.2. Sometimes (e.g. in [Ful]) one defines algebraic stacks in a more
restrictive way by requiring that the diagonal is schematic.

Since our base category S is fixed we can use the notation X × X , but if the
dependence on S (or the scheme S) must be emphasized, then one uses the notation
X ×S X (or X ×S X ). As usually, we do not have to care for quasi-compactness
of the diagonal until we leave the noetherian world. The 1-morphisms between
algebraic stacks are just the morphisms of stacks (i.e. the morphisms of CFGs),
and the 2-morphisms are defined similarly.

stacktospace Exercise 2.6.3. Prove that the following conditions on an algebraic stack X are
equivalent:

(i)* X is isomorphic to an algebraic space (the only difficult claim is that X
admits an etale presentation; you can try to prove it or use theorem 2.7.1 from the
next section);

(ii) X is isomorphic to a sheaf of sets;
(iii) the diagonal ∆X is a monomorphism;
(iv) for any x ∈ XT the group Aut(x) (the stabilizer) is trivial.

Similarly to the case of algebraic spaces (parts (iii) and (iv) of proposition 2.2.6)
there are few reformulations of the diagonal property which are easily seen to be
equivalent.

algstex Exercise 2.6.4. Prove that the following properties of a stack X are equivalent:
(i) ∆X is representable (resp. schematic);
(ii) each fiber product Y ×X Z with Y and Z isomorphic to algebraic spaces

(resp. schemes) is isomorphic to an algebraic space (resp. scheme);
(iii) for any scheme T in S and objects x, y ∈ ST the sheaf Isom(x, y) is isomor-

phic to an algebraic space (resp. scheme).
(Hint: the isomorphism

Isom(x, y)→̃T ×x,X ,y T→̃T ×(x,y),X×X ,∆X X
where Isom(x, y) is considered as a stack.)

The essential implication in proposition 2.2.6 (which required descent) was (i)⇒(iii).
In the same way, a more involved (and usually more useful, at least for explicit
constructions) characterization of algebraic stacks involves atlases via groupoid
schemes.

atstackprop Proposition 2.6.5. Let s, t : X1 ⇒ X0 be a smooth (resp. etale) groupoid scheme
with quasi-compact separated diagonal X1 → X0 ×X0, then the stack X = [X1 ⇒
X0] is algebraic (resp. DM) and X1→̃X0 ×X X0.
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Proof. By exercise 2.6.4(iii), it suffices to prove representability of IsomX (x, y) for
a scheme T and x, y ∈ XT . Recall that X is the stackification of the prestack

X̃ = [X1 ⇒ X0]pre. If x, y ∈ X̃T ↪→ XT then we can interpret them as ele-
ments of X0(T ), but in general we have to refine T : there exists an etale covering

f : T ′ → T such that f∗x, f∗y ∈ X̃T ′ , hence f∗x, f∗y ∈ X0(T ′). Note that

IsomX (f∗x, f∗y)→̃IsomX̃ (f∗x, f∗y) because X̃ is a prestack. The righthand sheaf
is represented by (or isomorphic to) an algebraic T ′-space X1 ×(s,t),X0×X0,(f∗x,f∗y)

T ′, hence the isomorphism sheaf for the pullbacks with respect to the morphism
T ′ ×T T ′ → T is also represented by an algebraic space. Using that the descent
datum for an algebraic space over T ′ is effective, we obtain that IsomX (x, y) is
represented by an algebraic T -space. �

atstackex Exercise 2.6.6. In the situation of proposition 2.6.5, prove that if the the diagonal
of X1 ⇒ X0 is quasi-affine then the stack X has schematic diagonal. (Hint: use
descent for quasi-affine T ′-schemes.)

The immediate corollary from the proposition is that we can now define fine
group quotients for non-finite groups and non-free actions. Recall, that this feature
was our main motivation for introducing stacks.

Corollary 2.6.7. If a smooth (resp. etale) S-group scheme G acts on an S-scheme
X, then the quotient stack X/G = [X ×G⇒ X] is an Artin (resp. DM) stack and
X ×G→̃X ×X/G X.

stackexam Example 2.6.8. (i) For any smooth S-group G the stack BG = S/G is algebraic.
(ii) For each g, n with 2g + n ≥ 3, the (Z-) stack Mg,n = Hg,n/PGL(Ng,n + 1)

from remark 1.7.19 is algebraic.
(iii) Note that considering Mg,n as a stack we enrich the defined earlier etale

sheaf structure on Mg,n to a stack structure as follows: objects of (Mg,n)T are
stable n-pointed T -curves of genus g (instead of the isomorphism classes) and the
morphisms are isomorphisms. The latter definition makes sense for all g and n,
though we have yet to check if Mg,n is algebraic for 2g + n < 3.

Exercise 2.6.9. In this exercise we work over S = Spec(Z).
(i) For any n ≤ 3 let Hn be the subgroup of G = PGL(2,Z) which fixes n points

(i.e. H0 = G, H1 is a parabolic subgroup (e.g. the upper triangular subgroup), H2

is a torus (e.g. the diagonal subgroup) and H3 = e). Prove that M0,n→̃H/G, in
particular, M0,0→̃BG and M0,3→̃S.

(ii) Show that for any n ≥ 3 the stack M0,n is representable (i.e. isomorphic to
an algebraic space). (Hint: show that the stabilizers are trivial.)

(iii) Show that the stacks Mg,n with g > 0 are not representable. (Hint: find
non-trivial stabilizers in the geometric fibers.)

(iv) Show thatMg,n has Zariski open substack which classifies smooth n-pointed
curves of genus g. Prove that this substack is a scheme for n� g.

stackPdef2 Definition 2.6.10. If a property P from definition 2.4.8 is also a smooth-local
(resp. etale-local) on the source, then we extend it to non-representable morphisms
of Artin (resp. DM) stacks as follows: Y → X satisfies P if for any algebraic
space X with a morphism X → X where exists a smooth (resp. etale) covering
Y → X ×X Y such that the composition Y → X satisfies P.

In particular, the definition allows to talk about non-representable smooth (resp.
etale) morphisms of Artin (resp. DM) stacks. A Zariski point of a stack X is an
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isomorphism class of morphisms i : Spec(k) → X such that k is a field and i does
not factor through Spec(k′) with k′  k. As in the case of algebraic spaces, we
obtain a topological space |X | of Zariski points, where the topology comes from
open immersions (check that any monomorphism of stacks induces an embedding
of underlying topological spaces). Caution: the morphism i does not have to be a
monomorphism (e.g. S = Spec(k) and i : S → BG). The Zariski topology is used
to define properness and separatedness.

propsepdef Definition 2.6.11. Let f : Y → X be a morphism of Artin stacks, then
(i) f is separated if its diagonal ∆Y/X is universally closed.
(ii) f is proper if it is separated, of finite type and universally closed.

2.7. Two theorems about DM stacks. Our aim in this section is to find a
finite scheme covering of the stacks Mg,n with 2g + n > 2. It will be done in two
stages: first we will show that they are DM, though the presentation with Hilbert
scheme is smooth but not etale! Then we will prove that any DM stack admits
such a covering. We saw in exercise 2.6.3 that algebraic spaces are characterized
by ”small” diagonal (i.e. the diagonal is a monomorphism). It turns out that the
DM stacks for a next level in this hierarchy: their diagonal can be larger than a
monomorphism, but is unramified (in particular, it is quasi-finite). Intuitively, it
means that the automorphisms groups (or stabilizers of points) are small in DM
stacks.

DMth Theorem 2.7.1. Let X be an Artin stack. Then the following conditions are equiv-
alent:

(i) X is a DM stack;
(ii) the diagonal ∆X is unramified;
(iii) for any scheme T with x, y ∈ XT the scheme Isom(x, y) is unramified over

T ;
(iv) the any scheme T with x ∈ XT the scheme Aut(x) is unramified;
(v) for any geometric point T → X with x ∈ XT the scheme Aut(x) is isomorphic

to a disjoint union of finitely many copies of T .

Proof. We leave as an exercise to prove that the last three claims are equivalent.
Equivalence of (ii) and (iii) follows from the fact that each isomorphism T -scheme
as above can be obtained as the base change of the diagonal with respect to the
morphism (x, y) : T → X ×X . To prove the implication (i)⇒(ii) assume that there
exists an etale presentation p : U → X . Then ∆X is unramified if and only if its
base change with respect to the etale covering U ×U → X ×X is unramified. But
the latter is the relative diagonal R = U×X U → U×U which is unramified because
p1,2 : R⇒ U is etale.

The deep implication of the theorem is that (iii) or (ii) implies (i). Naturally,
we can start with any smooth presentation p : U → X with affine U . Intuitively, it
should suffice to replace U with its ”generical” closed subscheme U ′, i.e. to find an
etale quasi-section X 99K U ′ of p (we refer to [Ful, 5.3.1] for such approach). We
prefer a similar but faster method from [LMB, §8]. Set R = U ×X U and note that
the relative diagonal (s, t) : R→ U ×U is non-ramified because it is a base change
of ∆X . Therefore the morphism s∗Ω1

U ⊕ t∗Ω1
U → Ω1

R is surjective and there exists
a natural morphism t∗Ω1

U → Ω1
s (the target is Ω1

R/U with respect to s). Consider

the following diagram with a 2-cartesian right square and where the left square is
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cartesian with respect to either top or bottom morphisms

R×U R
µ //

pr1
//

pr2

��

R

⇒

t //

s

��

U

p

��
R

s //

t
// U

p // X

Probably the best way to understand the diagram is to recall that R×s,U,tR→̃U×X
U ×X U and the maps pr1,pr2, µ (where µ is the action map) are the three pro-
jections p12, p23, p13. If X is a scheme then we set Ω1

p = Ω1
U/X and using the base

change with respect to p we obtain that t∗Ω1
p→̃Ω1

s. In addition, applying the base

changes corresponding to the left square we also obtain that µ∗Ω1
s→̃Ω1

pr2
→̃pr∗1Ω1

s.

The latter isomorphism gives a descent datum which allows to define Ω1
p. Moreover,

even if X is not a scheme we still have a locally free sheaf Ω1
s with a descent da-

tum µ∗Ω1
s→̃pr∗1Ω1

s (check the cocycle condition: it requires to extend the diagram
by one more cartesian square). Therefore, for any Artin stack X with a smooth
presentation p we have a locally free sheaf Ω1

p on U . The crucial property of DM

stacks is that for them the natural map ψ : Ω1
U → Ω1

p (defined using descent) is

onto because we have already seen that the map t∗Ω1
U → Ω1

s→̃t∗Ω1
p is onto (so the

surjectivity follows from the descent along t).
From now on we will work Zariski locally on X , so let us fix a point y : Spec(k)→

X with a lifting x : Spec(k′) → U . By surjectivity of ψ we can find functions
f1, . . . , fn on X such that df(x) is the basis of Ω1

p(x) (in particular, n is the rank of

Ω1
p at x). Then fi’s induce a morphism f : U → AX := X ×An (by our convention,

the latter means X ×SAn
S). We claim that f is etale at x as can be verified smooth-

locally after the base change with respect to An
U → An

X . So, replacing U with a
neighborhood U ′ of x and replacing X with the image of U ′ we can assume that f
is etale.

Exercise 2.7.2. (i) Define the image of U ′ as a Zariski open substack of X . (Hint:
use atlases.).

(ii) Show that if Ui’s cover U then their images cover X . (Hint: they form a
smooth covering.)

We claim that there exists an S-etale subscheme V ↪→ An
S such that the sub-

scheme V × X ↪→ An
X contains a preimage of y (more precisely, its underlying

Zariski space contains a preimage of y). To prove this set Uy = U ×p,X ,y Spec(k).
Then we have a sequence of morphisms Uy → An

k → An
k(s), where the first one is

etale and s is the image of x in S. Clearly, there exists a point z ∈ An
k(s) with finite

separable extension k(z)/k(s) and extending it to a subscheme of An
S we can find

V as required. Now, let W be the preimage of V , i.e. W = U ×An
X
V × X . Then

W is a scheme (immersion of a subscheme is a schematic morphism), W is etale
over X (morphisms W → V ×X → X are etale) and its image contains y (a direct
computation shows that Wy 6= ∅). �

We will need one more theorem about DM stacks.

DMcov Theorem 2.7.3. Let X be a noetherian DM stack. Then there exists a scheme X
and a morphism f : X → X which is finite and surjective. If X is reduced then f
can be chosen generically etale.
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Note that the reducedness assumption is redundant, see [LMB, 16.6], but it
allows us to give a simpler proof.

Proof. We can replace X with the disjoint union of its irreducible components. So,
it suffices to prove the theorem for an irreducible X . Furthermore, we replace X
with its reduction, achieving that it is reduced (this stage can produce a morphism
which is not generically etale). Let U → X be an etale presentation of X and set
R = U ×X U with p : R ⇒ U . Clearly, we can take U to be a scheme and let
Spec(K)→ U be a generic point of U . The idea of finding f is very simple: take X
to be the normalization of X in L for a sufficiently large separable extension L/K.
A good way to think about this is to think about X as a scheme given by the atlas
R⇒ U and to construct N rL(X ) in terms of R and U .

Let R0 and U0 be the sets of the generic points of R and U , then R0 ⇒ U0 is
a groupoid scheme whose stack quotient X 0 should be thought off as the generic
point of X : it is the intersection of all dense Zariski open substacks (even without
the irreducibility assumption).

Exercise 2.7.4. (i) Prove that X 0 is isomorphic to a stack Spec(k)/G where k is a
field and G is a finite group acting trivially. (Hint: start with an atlas R0 ⇒ U0 and
refine it so that U0 = Spec(L) is a point (it is possible because X is irreducible),
then refine the atlas further by extending L so that R0→̃ tg∈G R0

g becomes a

disjoint union of copies of U0. Show that the last groupoid scheme R0 ⇒ U0

reduces to a homomorphism φ : G → Aut(L) with a finite group G via the action

U0 t−1

→ R0
g
s→ U0. Then Spec(LG)/H→̃X 0 for H = Ker(φ).

(ii)* Deduce the following generalization of exercise 2.2.14(ii): an integral DM
stack X contains an open dense substack of the form V/G where V is a scheme and
a finite group G acts trivially. (Hint: approximate the generic points of the atlas
from (i) with a finite etale groupoid R′ ⇒ U ′ where R′ and U ′ are X -etale.)

Let k be as in the first part of the exercise (we will not use part (ii)). Any
point of U0 is of the form Spec(Ki) for a finite extension Ki/k. Let L/k be a
Galois extension which contains all Ki’s and set X0 = Spec(L), U0 = X0 ×X U
and R0 = X0 ×X R, then it follows that R0→̃U0 ×U,p1 R→̃U0 ×U,p2 R. Note that
L contains any field k(r) for r ∈ R0, hence U0 and R0 are disjoint unions of copies
of X0 and it follows that the atlas R0 ⇒ U0 for X0 is trivial, i.e. U0→̃X0 ×G and
R0→̃X0 × G2 for a finite discrete set G. Let U := N rU0

(U) be the normalization
of U in U0 in the following sense. We have that U0 = tg∈Gug with ug→̃Spec(L).

Consider the Zariski closure of the image of ug in U , and let Ug be its normalization

in L. Then we set U := tg∈GUg and define R = N rR0(R) = th∈G2Rh similarly.

The maps R0 ⇒ U0 then extend to the maps p : R→ U .

Exercise 2.7.5. (i) Prove that if Y → X is an etale morphism between reduced
schemes and N r(X) is the normalization of X, then N r(Y )→̃N r(X)×X Y .

(ii) Deduce that p1 is the base change of p1, i.e. R→̃U ×U,p1 R and similarly for
p2.

Let X be the stack with the atlas p, then the map of atlases p → p consists
of integral morphisms R → R and U → U . For the sake of simplicity we assume
that these morphisms are finite since this is always the case for ”non-pathologic”
noetherian schemes, e.g. excellent schemes. (The general case can be done using the
fact that the normalization is always the projective limit of finite modifications. It is
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a typical application of projective limits, and we will study this technic later in the
course.) Since the map of atlases is finite, it induces a finite morphism f : X → X
(prove the finiteness!). Also, the maps pi are etale and generically isomorphisms,
hence they are open immersions. Moreover, the groupoid R0 ⇒ U0 is trivial, i.e.
components of the equivalence relation can induce only trivial automorphisms on
the components of U0, hence R0 ⇒ U0 is actually a usual Zariski gluing data. The
latter implies that X is a scheme, as required. (Actually, X = N rL(X ).) �

As a corollary we can prove valuative criteria for noetherian DM stacks. (There
are much more general valuative criteria whose proofs are more involved however.)

Corollary 2.7.6. A noetherian DM S-stack X is separated (resp. proper) over S
if and only if for any field K with a DVR R ↪→ K and compatible morphisms
Spec(K) → X and Spec(R) → S the following condition is satisfied: for any
finite extension R′/R of DVR’s the morphism Spec(R′) → S admits at most
one (up to an isomorphism) lifting Spec(R′) → X compatible with the morphism
Spec(Frac(R′))→ X (resp. and there is such a lifting for some choice of R′).

Exercise 2.7.7. (i) Prove that X is separated/proper over S iff a scheme X from
theorem 2.7.3 is so.

(ii) Deduce the corollary.

2.8. Application to moduli spaces of stable n-pointed curves.

Theorem 2.8.1. The moduli stacks Mg,n for 2g + n ≥ 3 are DM stacks.

Proof. By theorem 2.7.1, it suffices to check that the groups AutT (x) are T -
unramified, and the latter can be checked on geometric points. So we can assume
that T = Spec(k) for an algebraically closed field k and x corresponds to a stable
n-pointed curve of genus g, and our aim is to prove that the scheme Autk(C) is a
disjoint union of copies of T . Let z ∈ Autk(C) be a k-point corresponding to the
identity, then it suffices to prove that the tangent space to z is zero-dimensional be-
cause it would imply that the point is discrete and reduced, and the local structure
at all points is the same. The tangent space can be identified with R-points which
agree with z, where R = Spec(k[ε]/(ε2)). Therefore it can be identified with a ring
automorphism ofOC⊕εOC which is trivial onOC , i.e. acts as (a, b) 7→ (a, ∂(a)ε+b),
and the latter automorphism is completely defined by a derivation ∂ : OC → OC .
To give a derivation is the same as to give a homomorphism Ω1

C/T → OC , or to

give a vector field on C (given by a dual map). The vector field must vanish at
all singular and marked points (because the automorphism must be trivial above
marked points), hence to give the vector field is the same as to give a vector field

Ω1
C̃/T

→ OC̃ which vanishes on all marked points D̃ (preimages of D and Csing),

i.e. to give a homomorphism Ω1
C̃/T

(D̃) → OC̃ . A direct computation shows that

the degree of the source is positive on each irreducible component of C̃, hence the
latter homomorphism must vanish. �

Remark 2.8.2. (i) An important corollary of the theorem is that any stackMg,n

for 2g + n ≥ 3 admits a finite covering M → Mg,n by a scheme. There is a
much more canonical way to construct M , but it involves etale cohomology (or, at
least, relative Picard’s schemes). Namely, it turns out that a good way to kill all
automorphisms of a non-rational smooth proper curve over an algebraically closed
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field is to trivialize the cohomology group H1
et(C,Z/lZ) for l ≥ 3 and prime to the

characteristic. (Compare to the construction of the schemes Hg,n, where coherent
cohomology was trivialized.) So, consider a functor Msm,l

g,n which classifies smooth

stable n-pointed S-curves (C,D) with an isomorphism R1
etf∗(Z/lZ)→̃(Z/lZ)2g of

etale S-sheaves, where f : C → S is the structure morphism and l is invertible on S.
Then Msm,l

g,n is representable by a proper Z[l−1]-scheme which is an etale covering

of Msm
g,n ⊗Z Z[l−1]. (Note also, that one usually considers a smaller etale covering

ofMsm
g,n which classifies trivializations compatible with the symplectic structure on

H1
et(C,Z/lZ) coming from the cup product.
(ii) It turns out (see [AO, §14] that Msm,l

g,n extends to a finite covering Ml
g,n of

the whole Mg,n ⊗Z Z[l−1] which is a scheme but does not have to be smooth (just
normalize Mg,n in the generic point of Msm,l

g,n ). In particular, Ml
g,n does not have

a nice moduli description. Moreover, using two such schemes with different l’s one
can construct a (non-etale) finite covering of Mg,n (take its normalization in the
composite of the fields of rational functions of two Ml

g,n’s).

Exercise 2.8.3 (*). Construct the scheme Msm,l
g,n . (Hint: first construct the

corresponding etale cover Hsm,l
g,n → Hsm

g,n of the Hilbert scheme Hsm
g,n ↪→ Hg,n

parametrizing smooth stable n-pointed curves (use proper base change theorem
instead of the results on coherent direct images), then constructMsm,l

g,n as the quo-

tient Hsm,l
g,n /PGL(Ng,n + 1) and check that this stack is a scheme by showing that

all automorphism schemes are trivial. Note that the level structure is trivial when
n = 0, but M0,n is already a scheme for n ≥ 3.)

Here is another very important result about the stacks Mg,n.

properM Theorem 2.8.4. The moduli stacks Mg,n for 2g + n ≥ 3 are proper.

Proof. We already know that the stacks are DM and of finite type over Z. By
corollary 2.7.1, it suffices to check the valuative criterion. Since we will not prove it
here, we leave it to the reader to formulate the corresponding statement. Currently,
we only note that the uniqueness part (the separatedness) is much easier though
requires some work, while the existence part is the famous stable reduction theorem
of Deligne-Mumford (which loosely speaking states that any stable curve over a
fraction field of a DVR extends to a stable curve over a finite extension of the
DVR). For expository reasons we postpone any further discussion on the stable
reduction theorem until the next chapter. �

Finally, we have all ingredients to prove the main theorem of this chapter. The
following definition is due to de Jong (though the theorem after the definition was
well known much earlier).

Definition 2.8.5. Let S be an integral scheme with a generic point η = Spec(K).
Then an alteration S′ → S is a proper dominant generically finite morphism with
integral source.

extth Theorem 2.8.6 (Stable extension theorem). Let S be an integral scheme with a
generic point η = Spec(K) and (Cη, Dη) be a stable n-pointed curve over η. Then
there exists a generically etale alteration S′ → S with η′ = Spec(K ′) the generic
point of S′ such that the stable curve (Cη ×η η′, Dη ×η η′) extends to a stable n-
pointed curve over S′.
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Proof. The curve (Cη, Dη) induces a morphism η →Mg,n (where g is the genus of
Cη) which factors through the reductionM ofMg,n (the latter stack is actually Z-
smooth but we did not prove it). By theorems 2.7.3 and 2.8.4, there exists a proper
scheme M ′ with a finite surjective generically etale morphism M ′ → M. Hence
we obtain a finite separable K-scheme η×MM ′ and there exists a finite separable
extension K ′/K such that the morphism η′ := Spec(K ′) → η factors through
η ×M M ′. In particular, the n-pointed curve (C ′η, D

′
η) := (Cη ×η η′, Dη ×η η′) is

induced from the n-pointed curve (C ′M , D
′
M ) corresponding to the mapM ′ →Mg,n.

Exercise 2.8.7. Show that there exists an alteration S′ → S such that η′ is the
generic point of S′ and the map η′ → M ′ extends to a map φ : S′ → M ′. (Hint:
first take S′ = N rK′(S) so that φ is defined as a rational map, then refine S′ by
replacing it with the Zariski closure of the diagonal image of η′ in S′ ×Spec(Z) M

′.)

Taking S′ and φ : S′ →M ′ as in the exercise we can simply take (C ′, D′) to be
the n-pointed curve induced via φ from (C ′M , D

′
M ). �

Remark 2.8.8. (i) The stable reduction theorem is just the particular case of
the stable extension theorem obtained when S is a trait, i.e. the spectrum of a
DVR. (Strictly speaking the classical stable reduction theorem does not requires
that S′ → S is finite, but it is easily achieved.) In particular, the whole machinery
of Hilbert schemes and stacks is used in the de Jong’s proof only in order to show
that theorem 2.8.6 follows from its particular case (which should be proved by a
different method).

(ii) We will see that (using Riemann-Zariski spaces) one can easily deduce the
stable extension (and more general stable modification) theorem from a slightly
more general variant of the stable reduction theorem when S can be the spectrum
of an arbitrary valuation.

3. RZ spaces and stable modification theorem

In this chapter we will introduce Riemann-Zariski spaces of valuations and apply
them to prove the stable modification and reduction theorems. However, we will
discuss first another approaches which do not involve the RZ spaces.

3.1. On semistable modification theorem. The following theorem (in a larger
generality) is the main theorem of [dJ2].

Theorem 3.1.1 (Semi-stable modification theorem). Let C → S be a dominant
proper morphism between integral noetherian schemes whose generic fiber Cη → η is
a curve and D ↪→ C be a reduced closed subscheme which is the Zariski closure of a
smooth zero-dimensional η-scheme Dη ↪→ Cη. Assume that (Cη, Dη) is a semistable
n-pointed η-curve. Then there exists an alteration f : S′ → S with a semistable n-
pointed S′-curve (C ′, D′) which admit an alteration (C ′ → C,D′ → D) compatible
with f and such that (C ′η′ , D

′
η′)→̃(C,D)×η η′ where η′ is the generic point of S′.

Later we will prove a more general stable modification theorem using only stable
reduction theorem and RZ spaces. The original de Jong’s proof uses a very nice
three point lemma trick (which, as I think, becomes more clear when one works
with RZ or analytic non-Archimedean spaces). In the following exercise we outline
this proof in the particular case when all irreducible components of the S-fibers of
C have at least three smooth points. See [AO, §§4.8-4.9] for details.
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Exercise 3.1.2. During the proof we can replace S and (C,D) with their alter-
ations until (C,D) becomes semistable.

(i)* Use flattening theorem to prove that after a modification of S we can achieve
that C and D are S-flat.

(ii) Replace D with a larger divisor D which hits any irreducible component Ci
in any fiber Cs over s ∈ S in at least three smooth points. (Actually, it suffices to
hit only rational components. Note that we achieve, in particular, that (Cη, Dη)
becomes stable.)

(iii) Apply the stable extension theorem to S and (Cη, Dη) to get an alteration

f : S′ → S with a stable n′-pointed S′-curve (C ′D
′
) with (C,D)×η η′→̃(C ′η′ , Dη′).

(iv)* The point! (or the three point lemma). Prove that (C ′, D′) is an alteration
of (C,D) compatible with f .

Remark 3.1.3. (i) The suggested proof is due to de Jong. The stable extension
theorem with the redundant assumption on three smooth points appeared in [dJ1].
Already this particular case sufficed for proving the famous theorem of de Jong that
using alterations one can desingularize any integral algebraic variety.

(ii) In [dJ2], de Jong gets rid of this assumption. The trick is to first replace C
with its Galois covering C such that the irreducible components of the S-fibers of C
are of genus at least 2 (then no extension of D is required) and to find a semistable
modification Cst → C (after a sufficiently large alteration of S) which is equivariant
with respect to the action of the Galois group G = GalC/C on C. Then one can

show that the quotient Cst/G is a semistable modification of the original C.

Here we give material which was covered/reviewed on lectures 17-20.
Lecture 17. The desingularization theory for surfaces, including factorization

of birational morphisms between smooth surfaces, minimal model and minimal
desingularization theorems, local desingularization and its equivalence to local uni-
formization, and reduction of desingularization to local uniformization.

Lecture 18. Riemann-Zariski spaces RZK(X) attached to a scheme X with
a dominant point Spec(K) → X. Equivalence of valuative and projective limit
descriptions, and quasi-compactness. (A reference is [Tem, §3.1].)

Lecture 19. Approximation theory of [EGA, IV §8]. The main results are exis-
tence of filtered projective limits S = proj limα Sα in the case when the transition
morphisms Sα → Sβ are affine, and its realization by the projective limit in the
category of locally ringed spaces; and equivalence of the categories of finitely pre-
sented S-schemes (resp. quasi-coherent OS-modules) to the projective limit of their
Sα-analogs.

Lecture 20. Valuation theory. Definitions of valuations and valuation rings,
height, invariants of algebraic and transcendental extensions of valued fields. Cri-
teria for unramifiedness of extensions (completion criterion for h = 1 and composi-
tion criterion for h > 1, see [Tem], 2.4.1 and 2.4.2). The problem of uniformization
of valued fields, its connection to local uniformization and their equivalence for
algebraic surfaces.

We saw that desingularization of algebraic surfaces reduces to local uniformiza-
tion, and the latter reduces to uniformization of valued fields of transcendence
degree 2. I do not know a reasonable direct proof of the latter results when the
characteristic is positive (surely, one can deduce it from the global desingulariza-
tion, which is known), but at least the proof in the zero characteristic case is easy.
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I present it here because it is similar to the argument we will use to prove the sta-
ble reduction theorem. For simplicity, we work over an algebraically closed ground
field.

surfunifth Theorem 3.1.4. Let k be an algebraically closed field of characteristic zero and
provided with the trivial valuation, and let K/k be a finitely generated extension
with tr.deg.k(K) = 2. Then K is uniformizable over k, i.e. K is unramified over a
subfield k(x, y).

Proof. If K/k is Abhyankar, i.e. there EK/k + FK/k = 2 and there is no transcen-

dental defect, then |K×|→̃ZF . In particular, we can find a transcendence basis x, y
whose image generates |K×|. Then K/k(x, y) is a finite unramified extension, as
required. It remains to treat the case when DK/k = 1. Since, we have that F ≥ 1
for a non-trivial valuation on K, we must have E = 0, F = D = 1.

Exercise 3.1.5. Construct examples of valuations on the field of rational functions
of P2

k with D = F = 1. So, |K×| is a subgroup of Q. Give an example when |K×|
coincides with Q, in particular it is not discrete.

The exercise illustrates the obvious intuition that the defect is a bad guy. In
particular, we cannot give a nice receipt how to choose an unramified transcendence
basis x, y. Fortunately, the ramification theory is easy in our case because there is
only tame ramification (unlike the positive characteristic case, where one often has
to struggle with algebraic defect). Note that h ≤ 1 and where is nothing to prove
when h = 0, so we can assume that h = 1. Choose any transcendence basis x, y ∈ K
with |x| 6= 1. Since K is finite over L = k(x, y), K̃ = k is algebraically closed and
the extension is tame (by our assumption on the characteristic), fL/K = [K : L].
We will need the following well known result

Exercise 3.1.6. Show that if F is a complete valued field of height one and such

that F̃ is algebraically closed and of characteristic zero, then π ∈ F is an n-th power
if and only if |π| is an n-th power in |F×|. In particular, if

√
|F×|/|F×| ⊆ Q/Z

(e.g. |F×| ⊗Z Q = Q), then any finite extension of F is of the form F (π1/n).

The exercise implies that the completion K̂ is generated over k̂(x, y) by an el-

ement x1/n, i.e. K̂ = ̂k(x1/n, y) is topologically generated by two elements. It

remains to approximate the topological generators of K̂ with algebraic generators
of K because x1/n does not have to be in K. There are two possible solutions of
this problem which we outline in exercises.

Exercise 3.1.7. (i) Show that L = K(x1/n) is unramified over both k(x1/n, y) and
K. In particular, L is uniformizable.

(ii)* Deduce thatK is uniformizable. (Hint: extend the etale morphism Spec(L◦)→
Spec(K◦) to an etale morphism of local schemes of essentially finite type over k,
and use that L◦ is locally uniformizable to prove that the source can be taken
essentially smooth over k.)

The direct algebraization method has to separate the cases accordingly to the

topological dimension of K̂.

Exercise 3.1.8. (i)* Show that if x is not in the completion of k(y)a (i.e. K̂ is

two-dimensional), then r = infc∈k(y)a |x1/n − c| is positive and for any x′ ∈ K̂ with
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|x′ − x1/n| < r one has that K̂ = ̂k(x1/n, y) = k̂(x′, y). Deduce that taking such x′

in the dense subfield K, one obtains a required transcendence basis x′, y of K.

(ii)* Establish the case when x lies in the completion of k(y)a, i.e. K̂ is one-
dimensional (currently I do not see a way to do it directly without any use of
analytic geometry over k((y)), but I expect this to be possible).

�

3.2. Stable modification theorem: reduction to uniformization of one-
dimensional extensions of valued fields. Let us recall the formulation of the
stable modification theorem (though it was mentioned in lecture 17). We start with
few definitions.

Definition 3.2.1. (i) A multipointed curve (C,D) over a base scheme S is an S-
curve C, i.e. a flat finitely presented S-scheme, with an S-divisor D, i.e. a closed
subscheme that is flat and finitely presented over S.

(ii) A semistable modification is a multipointed curve (C ′, D′) with a modification
(C ′, D′) → (C,D), C ′ → C and D′ → D are modifications, and such that the S-
fibers of (C ′, D′) are semistable.

(iii) If S is integral with generic point η, when an η-modification is a modification
which does not changes η-fibers.

(iv) A semistable modification is stable if the fibers C ′s for s ∈ S have no excep-
tional irreducible components, i.e. rational curves with at most two marked points
(points from Ds ∪ (Cs)sing) and contracted in C to a point.

Theorem 3.2.2 (Stable modification theorem). If S is integral and qcqs and (C,D)
is a multipointed S-curve with semistable η-fiber, then there exists a separable al-
teration S′ → S such that (C ′, D′) = (C,D) ×S S′ admits a stable η-modification
(C ′st, D

′
st). If S′ is normal, then the stable η-modification is the minimal semistable

modification of (C ′, D′), in particular it is unique up to a unique isomorphism and
is compatible with automorphisms of S and (C,D).

Remark 3.2.3. (i) Unlike the stable extension theorem, one allows non-proper
and even non-separated curves.

(ii) Unlike semistable modification theorem, the theorem states that there exists
a canonical modification. This canonicity is heavily used in the process of proof.
As a matter of fact, it happens often that canonicity (or functoriality) makes a
desingularization proof easier, even though one proves a stronger statement.

Exercise 3.2.4. (i) Deduce the theorem from its particular case when C is normal.
(Hint: show that to find a semistable modification of (C,D) is equivalent to find a
semistable modification of the multipointed curve (C ′, D′) where C ′ = Nor(C) and
D′ is the union of the preimage of D and the modification locus of C ′ → C).

(ii) Deduce the theorem from its particular case when S is of finite type over Z.
(Obvious hint: use approximation.)

Though it is not necessary, it will be convenient to work with irreducible C’s
in the sequel. So, we will always assume that C is irreducible. As was explained
earlier, the theorem is an analog of the minimal desingularization of surfaces, and
our proof will be similar. First we localize the problem by reducing it to a kind of
local uniformization problem. However, unlike the case of surfaces we can localize
both on C and on S. The latter is much easier and is accomplished in the following
proposition.
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3.2.1. Localization on the base.

loconbase Proposition 3.2.5. The stable modification theorem follows from its particular
case when the base scheme is Spec(R) and R is a valuation ring with a separably
closed fraction field K.

Proof. First we will establish minimality. So, let us assume that S is normal,
(C ′, D′) → (C,D) is a semistable modification and (Cst, Dst) → (C,D) is a stable
one. We know that if R is a valuation ring of the separable closure Ks of the field of
fractions K = k(S) of S, and T := Spec(R)→ S extends Spec(Ks)→ S, then the
semistable modification C ′×S T → C×S T refines the stable modification Cst×S T .
Now, the minimality follows from the following lemma.

refinlem2 Lemma 3.2.6. Assume that S is normal, and let X be an integral S-curve with
normal modifications X ′ and X ′′. If for any valuation ring R ∈ RZKs(S) we have
that X ′ ×S Spec(R) is a refinement of X ′′ ×S Spec(R), then X ′ refines X ′′.

Proof. Let us assume on the contrary that X ′ does not refines X ′′. Note that the
minimal refinement X of X ′ and X ′′ is constructed as follows: let ε be the generic
point of X, then X is the Zariski closure of the diagonal image of ε in X ′ ×X X ′′.
By our assumption, X is a non-trivial modification of a normal scheme X ′, hence
the map X → X ′ has a non-discrete fiber over a closed point x′ ∈ X ′. Let x be a
generic point of a non-zero dimensional component over x′ and x′′ be its image in
x. We claim that x′′ is not closed in its S-fiber, because otherwise the fiber over
(x′, x′′) in X ′ ×X X ′′ were discrete in its S-fiber. So, x′′ is the generic point of
an irreducible component in the fiber X ′′s over a point s ∈ S. Now the following
exercise provides a contradiction to our assumption, thus proving the lemma.

Exercise 3.2.7. For a valuation ring R ∈ RZKs(S) centered on s set T = Spec(R),
X ′T = X ′×S T , X ′′T = X ′′×S T , and let XT be the minimal refinement the T -curves
of X ′T and X ′′T .

(i) Show that XT is the Zariski closure of ε in X ×S T .
(ii) Show that for an appropriate choice of R, there exists points x′T ∈ X ′T ,

x′′T ∈ X ′′T and x ∈ XT sitting over x′, x′′ and x, respectively.
(iii) Show that x′T is closed in the closed T -fiber, x′′T is not closed in its T -fiber,

and xT is mapped to x′T and x′′T .
(iv) Deduce that X ′T cannot be a modification of X ′′T oppositely to our assump-

tions.

�

Minimality of stable modification will be very important in tuning RZ-local (or
valuation-local) solutions. For any valuation ring R ∈ RZKs(S) with T = Spec(R),
the multipointed curve (CT , DT ) = (C,D) ×S T admits a stable modification
(CT,st, DT,st) by our assumption. Let Sα be the family of all separable alterations

of S and sα be the centers of R on Sα’s, and set Sα = Spec(OSα,sα). Since we know
that the R = ∪OSα,sα , the approximation implies that the stable modification over

T is induced from a modification (C ′α, D
′
α) of (Cα, Dα) = (C,D)×S Sα.

Exercise 3.2.8. (i) Show that for large enough β ≥ α we have that (C ′α, D
′
α)×Sα

Sβ) is a stable modification of (C,D)×S Sβ .

(ii) Deduce that the stable modification (C,D)×S Sβ extends to a stable modi-

fication of (C,D)×S S̃β , where S̃β is an open neighborhood of sβ .
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(iii) Use quasi-compactness of RZKs(S) to show that there exists finitely many

Sβi ’s with open subschemes S̃βi such that (C,D)×S S̃βi) admit stable modifications

and the preimages of all S̃βi cover RZKs(S).
(iv) Enlarge βi’s so that they all are equal to some β and Sβ is normal, ob-

serve that in this case S̃βi form an open covering of Sβ , and show that the stable

modifications of (C,D) ×S S̃βi)’s agree over the intersections Sij = Sβi ∩ Sβj by
uniqueness of the stable modification over a normal base Sij . Deduce, that there
exists a stable modification of (C,D)×S Sβ .

�

3.2.2. Reduction to semistable modification. In previous section we reduced the
proof of the stable modification theorem to the case when S = Spec(R), where R
is a valuation ring of finite height and with separably closed fraction field K. Also,
we reduced to the case of normal Cη.

Exercise 3.2.9. Show that it is enough to establish the case when the valuation
of R is finite. (Hint: use approximation.)

blowdownprop Proposition 3.2.10. Let S = Spec(R) be as above. If (C,D) is a semistable
modification of an S-curve (C0, D0), then there exists a unique way to blow (C,D)
down to a stable modification of (C0, D0).

Proof. By our assumption S is a finite chain of points s0 = η � s1 � · · · � sh.
Let Xi be any proper irreducible component in Ci := Csi and X be its Zariski
closure, and assume that X is S-proper. We claim that the arithmetic genus of
the non-empty S-fibers of X is constant. Indeed, it is known for noetherian bases,
but C (and hence X) is induced from a curve over a noetherian base. Similarly,
the fact that Xi is geometrically connected implies that the non-empty fibers are
connected. So, h1(Xj) = h1(Xi) for any fiber Xj with j ≥ i.

Exercise 3.2.11. (i) Deduce that if Xi is an exceptional component, then each
Xj is an ”exceptional tree” (i.e. a tree of P1’s with at most two outer marked
points coming from the intersections with D or outer irreducible components). In
particular, each Xj contains an exceptional component.

(ii) Deduce that (C ′, D′) is not stable if and only if it contains an exceptional
component X which is closed. (Hint: if X ′ is exceptional, then it is contracted to
a point in C; hence any X ′i is contracted in C, in particular, X ′i is proper.)

Now, our proof runs as follows: we must show that any closed exceptional com-
ponent can be blown down, and we must show that it leads to a semistable mod-
ification again. Then uniqueness of the final blow down will follow from an easy
combinatorics with exceptional trees.

Let X be a closed exceptional component. Since the question is local on the
images x0 ∈ C0 and s ∈ S of X, we can shrink them both achieving that s is closed
and C0 is affine. Then it will be convenient to compactify C0, so we can assume
that C0 and C are S-proper. Find Cartier divisors P and Z which are disjoint,
do not contains components of Cs and hit (both P and Z) all components of Cs
except X. The following exercise is similar to the computations on curves we have
done in the beginning of the course.
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Exercise 3.2.12. Show that for sufficiently large natural number m the invertible
sheaf L = OC(mZ − P ) satisfies h1(Ls) = 0 and there is a non-zero section fs ∈
H0(Cs,Ls).

Choose L as in the exercise. By semi-continuity h1(Lη) = 0, and by the theorem
on direct images, the map H0(C,L)→ H0(Cs,Ls) is onto, in particular we can lift
fs to f ∈ H0(L). We claim that f provides a function on C which is constant on X
and is not constant on other components. So, if we take a neighborhood C ′1 of X
where f has no poles, we obtain a morphism C ′1 → C1 ↪→ C0×A1

S which contracts
X. Clearly, we can extend it outside by an isomorphism obtaining a contraction
C ′ → C which is an isomorphism over Cs \x where x is the image of X. It remains
to check that C is semistable at x because if C is semi-stale along Cs, then it is
semistable. Since h1(Cs) = h1(Cη) = h1(C ′s), the formula for h1 of curves implies
that δx = 1, i.e. Cs is semistable at x. �

3.2.3. Reduction to the height one case. Let h be the height of R. Our aim is to
establish induction on h assuming that the main case of h = 1 is known. We know
that if h > 1, then R is composed from valuation rings A and B of positive height,
where A is a localization of R and B is a valuation ring of k = A/mA. In particular,
mA ⊂ R, B = R/mA and R is the preimage of B under A → k. Then Spec(R) is
pasted from U = Spec(A) and T = Spec(B) along ε = Spec(k), in particular

Exercise 3.2.13. Prove that the following ”gluing” diagram is bi-Cartesian

ε

��

// U

��
T // S

Moreover, we will see that U -admissible S-schemes (resp. quasi-coherent OS-
modules) can be glued from T -schemes and U -schemes (resp. modules). Given
a quasi-coherent OS-module M , which we identify with an O-module, set MU =
M ⊗R A, MT = M ⊗R B = M/mAM and Mε = M ⊗R k. We say that M is U -
admissible if the localization homomorphism M →MU is injective. Note that any
O-module M defines a descent datum consisting of MU ,MT and an isomorphism
φM : MU ⊗A k→̃MT ⊗B k, and a similar claim holds for S-schemes. The corre-
sponding categories of descent data are defined in an obvious way, and, naturally,
we have the following gluing lemma.

gluelem Lemma 3.2.14. Keep the above notation.
(i) The natural functor from the category of U -admissible quasi-coherent OS-

modules M to the category of descents data (MU ,MT , φM ) with quasi-coherent MU

and quasi-coherent ε-admissible MT is an equivalence of categories.
(ii) The natural functor from the category of qcqs U -admissible S-schemes X to

the category of descents data (XU , XT , φX) with qcqs XU and qcqs ε-admissible XT

is an equivalence of categories.
(iii) a qcqs U -admissible S-scheme X is of finite type (resp. finite presentation)

if and only if XU and XT are so.

Proof. The assertion (iii) of the lemma is exactly Step 1 from the proof of [Tem,
2.4.3]. To prove (i) we note mAMU = mAM , hence MT = M/mAM embeds into
Mε = MU/mAMU . So, MT is ε-admissible and the embedding M ↪→MU identifies
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M with the preimage of MT under the projection MU → Mε. In particular, an
exact sequence 0→M →MU ⊕MT →Mε → 0 arises. Conversely, given a descent
datum as in (i), we can define an O-module M = Ker(MU ⊕ MT → Mε), and
one easily sees that MU and MT are the base changes of this M . We constructed
maps from OS-modules to descent data and vice versa, and one immediately sees
that these maps extend to functors. Then it is obvious from the above that these
functors are actually equivalence of categories which are essentially inverse one to
another.

We proved (i) and similarly to the classical case one deduces quasi-affine descent
rather automatically. Indeed, it follows obviously that the category of affine U -
admissible S-schemes is equivalent to the category of affine descent data. In order
to extend this equivalence to the categories of all qcqs schemes, the only non-obvious
claim is effectivity of descent. So, let assume that ε ×T XT →̃Xε→̃ε ×U XU is a
descent data as in the assertion of (ii). We know that the descent holds in the
affine case, and the case of quasi-affine descent data follows because XT (resp. XU )
is an open subscheme of its affine hull XT = Spec(Γ(OXT )) (resp. XU ) and one
easily checks that ε ×T XT →̃ε ×U XU . Hence affine hulls define an affine descent
data which gives rise to an S-scheme X, and the desired scheme X is realized as
an open subscheme in X. Finally, in our case the general descent follows from
the quasi-affine one because one can easily construct open quasi-affine coverings
XT = ∪ni=1XT,i and XU = ∪ni=1XU,i with ε×T XT,i→̃Xε→̃ε×U XU,i for each i (use
that open subschemes of Xε extend to open subschemes in XU and XT ). �

Exercise 3.2.15. Deduce that if semistable modification holds over T and U , then
it holds over S. In particular, it suffices to prove the semistable modification when
h = 1.

Remark 3.2.16. Note that in the above reduction we used the case when the
generic fiber is not normal, because even if the generic fiber of CU is normal, the
closed fiber of its stable modification can be non-normal, and then we have to apply
the theorem to a a curve C ′T with not normal generic fiber.

In the sequel, we assume that h = 1, so S has two points: the generic point η
and the closed point s. We also use the following notation: L = k(C) (recall that
Cη is smooth, so it is harmless to assume that C is integral), S = Spec(R) and
K = Frac(R) is a valued field with K◦ = R.

redlusec
3.2.4. Reduction to local uniformization. Throughout §3.2.4 we will be concerned
with the case when D = ∅, and only in the very end we will show how to treat
the divisor. Let C = RZL(C) be the Riemann-Zariski space of C. Note that C
admits a natural projection to S (which is the Riemann-Zariski space of itself) and
the generic fiber Cη is just Cη because the latter is a smooth curve (so it does not
admit non-trivial modifications and its local rings are already valuation rings). The
interesting part of C is its closed fiber Cs.

Exercise 3.2.17. (i) Prove that any generic point x ∈ Cs possesses finitely many
preimages in C.

(ii) Prove that if C is normal then the local ring OCs,x is a valuation ring, we
can identify x with its preimage in C.

(iii)* Generalize the above claims to any flat finitely presented morphism X → S.
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Remark 3.2.18. One should be careful with normalizations because a priori it is
not clear why normalization of C is a curve, i.e. is of finite presentation. We will
see later that normalization is finite in our situation (and, more generally, over any
valuation ring with a separably closed fraction field).

Exercise 3.2.19. Give an example of a valuation ring R and a curve C over R
with non-finite normalization. (Hint: use that already normalization of R in its
finite extensions does not have to be finite.)

Let Γ(C) ⊂ C be the preimage of the set of generic points of Cs. Note that
any element x ∈ Γ(C) is a valuation Ox on k(C) which extends R (i.e. Ox ∩K =
R) and such that if L is provided with the valuation corresponding to Ox, then
FL/K = 1. Actually, Ox is a direct analog of divisorial valuations on the field of
rational functions of a surface.

Exercise 3.2.20. Show that for two normal modifications C ′ and C ′′ of C, one
has that C ′ is a refinement of C ′′ if and only if Γ(C ′′) ⊂ Γ(C ′). (Hint: use the
argument from lemma 3.2.6, i.e. find the minimal mutual refinement of C ′ and C ′′

and show that its Γ coincides with the union Γ(C ′′) ∪ Γ(C ′).)

We know from exercise 1.7.5 that C at x is etale-locally isomorphic to an S-curve
Spec(R[x, y]/(xy−π)) where π ∈ R. But it will be convenient to consider a special
class of nodal curves as follows.

Definition 3.2.21. An S-curve C is a called strictly nodal at a point x if a Zariski
neighborhood of x admits an etale morphism to some Spec(R[u, v]/(uv − π)).

Exercise 3.2.22. (i) Prove that any strictly nodal S-curve is normal.
(ii) Prove that any nodal S-curve is normal.

nodmodprop Proposition 3.2.23. Assume that C is strictly nodal. Then the family of strictly
nodal modifications of C is cofinal in the family of all its modifications.

Proof. It suffices to show that if x is an element of C such that Ox/mx is transcen-
dent over R/mR, then there exists a modification C ′ → C such that C ′ is nodal
and x is centered on a generic point of C ′s. Let x ∈ C be the center of x. We will
show that a required modification can be chosen so that it does not modify C \{x}.
This stronger problem is local at x, so we can localize C. In particular, we can
assume that C is etale over C = Spec(R[u, v]/(uv−π)) and then it suffices to solve
the problem for C with the image x ∈ C of x. So, we can assume that C = C.
Provide L with the valuation corresponding to x. Assume first that x is the origin.

blowex Exercise 3.2.24. Find ω ∈ R with |u| = |ω| and show that after blowing up the
ideal (ω, x) we obtain a strictly nodal modification of C such that x is centered on
its smooth point. (Hint: |K×| is divisible, hence |K×| = |L×|.)

Now we can assume that x is smooth, and using etale map to Spec(R[u]) we can
now assume that C = Spec(R[u]) and x is the origin. Then the following exercise
finishes the proof.

Exercise 3.2.25. Show that L̃ is generated by the residue of an element (T −a)/ω
with a, ω ∈ R, and then blowing up the ideal (a, ω) we obtain a strictly nodal
modification C ′ of C such that x ∈ Γ(C ′). (Hint: use that any polynomial in R[u]
factors as a product of pn-th powers of linear terms (T−a)p

n

, and moving it slightly
(w.r.t. the valuation of L) we can achieve that all factors are linear.)
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In the following proposition we deduce semistable modification from that local
uniformization for the R-curve C (with empty divisor).

locunifprop Proposition 3.2.26. Assume that for any valuation ring x ∈ C there exists a
semistable R-curve C ′x with a separated morphism C ′x → C which induces an open
immersion (C ′x)η ↪→ Cη and such that x is centered on C ′x (i.e. the morphism
Spec(Ox)→ C factors through C ′x). Then C admits a semistable modification C ′.

Proof. By quasi-compactness of C, we need only finitely many points xi such
that the corresponding curves, let us denote them C ′i, induce a covering of C.
Then a standard argument about RZ spaces implies that there exists modifications
C ′′i → C ′i such that all C ′′i ’s glue to a single scheme C ′′, which is automatically a
modification of C. The only our problem is that we can loose semi-stability of C ′i’s.
By proposition 3.2.23, each C ′′i admits a semistable modification, hence it admits a
stable modification Ci by proposition 3.2.10. Moreover, all stable modifications of
C ′′i are isomorphic because they are dominated by a larger semistable modification
(by using 3.2.23 again). It follows that the stable modifications Ci → C ′′i agree
over intersections C ′′i ∩ C ′′j , hence we obtain a stable modification C → C ′′ and a

semistable modification C → C. �

It remains to treat the divisors, and it is done in the following exercise.

Exercise 3.2.27. Let C be a semistable R-curve with smooth Cη and a divisor D
whose generic fiber Dη is K-smooth (i.e. the generic point of D are Spec(K)).

(i) Show that there exists a semistable modification C ′ of C which separates the
irreducible components of D. (Hint: first find any modification which separates the
components, and then refine it.)

(ii) Show that the strict transform D′ ↪→ C ′ of D is isomorphic to the disjoint
union of copies of Spec(K) and Spec(R) (Spec(K) can appear only if C is not
proper).

(iii) Show that if a component Di = Spec(R) hits the singular locus of Cs at a
point x, then by an additional blow up at x one can achieve that C is still semistable
and Di lies in the smooth locus of C/S. (Hint: use the same blow up as in exercise
3.2.24.)

Combining this exercise with the above propositions, we see that to prove semistable
modification theorem for (C,D) it suffices to prove that any valuation ring Ox ∈ C
can be uniformized by a strictly semistable R-curve C ′ with C ′η ↪→ Cη. Clearly, it
suffices to prove this for points x ∈ Cs.

3.2.5. Reduction to uniformization of one-dimensional valued fields over K. Any
point x ∈ Cs provides L with a structure of valued K-field, which is also finitely
generated and of transcendence degree one. We say that such an L is uniformizable
if it is unramified over its subfield of the form K(x).

Proposition 3.2.28. Let x ∈ Cs be such that the field L provided with the valuation
corresponding to x is uniformizable. Then there exists a strictly semistable curve
C ′ and a separated morphism C ′ → C which induces an open immersion on generic
fibers and such that x is centered on C ′.
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Proof. We have an etale homomorphism φ : K(t)◦ → L◦ = Ox. Let Ci be the
family of all strictly semistable affine models of K(t) such that K(t)◦ is centered
on a point xi ∈ Ci. This family is obviously non-empty, and then it follows from
proposition 3.2.23 that K(t)◦ = ∪iOi for Oi = OCi,xi . By approximation, for

i ≥ i0 we have etale homomorphisms φi : Oi → Oi which induce φ, in particular,
∪Oi = Ox. Let x be the center of x on C, and find f1, . . . , fn such that OC,x is a
localization of its subring R[f1, . . . , fn]. If we take i large enough then f1, . . . , fn ∈
Oi, and therefore OC,x ⊂ Oi.

Exercise 3.2.29. Deduce that for sufficiently small neighborhood C
′
i of xi, φi

extends to an etale morphism C ′ → C
′
i where C ′ is a model of L such that x is

centered on C ′ and the isomorphism of the generic points extends to a morphism
C ′ → C with C ′η ↪→ Cη.

Since C
′
i is strictly semistable, C ′ is strictly semistable, and shrinking C ′ around

the center of x we can achieve that the morphism C ′ → C is separated. �

The proposition reduces the local uniformization of C to uniformization of one-
dimensional valued extensions of K. So, we actually reduced the stable modification
theorem to a purely valuation theoretic problem.

3.3. Uniformization of one-dimensional valued fields.

3.3.1. Reduction to uniformization of analytic fields. Note that the completion K̂
is separably closed, but any complete separably closed field is algebraically closed:
indeed any inseparable polynomial becomes separable after an arbitrary small per-

turbation. So, in the sequel k = K̂ denotes an algebraically closed analytic field.
By a one-dimensional analytic field over k we mean any analytic k-field l finite over

a subfield k̂(x). We say that l is uniformizable if one can achieve that l/k̂(x) is
unramified.

Proposition 3.3.1. Let K be a separably closed valued field of height one and L/K
be a finitely generated separable extension of valued fields of transcendence degree

one. The valued K-field L is uniformizable if and only if the analytic K̂-field L̂ is
uniformizable.

Proof. The direct implication follows from the criterion of unramifiedness. The
same criterion implies that to prove the opposite it is enough to find x ∈ L such

that l is unramified over k̂(x) and such that L is separable over k(x). By our

assumption, l is unramified over k̂(x) and x can approximated with any precision
by elements y ∈ L and such that L/K(y) is separable. So, proving the following
claim will finish the proof: for any y ∈ l with |y − x| < infa∈k |a− x| the extension

l/k̂(y) is unramified. We will prove below even a more general lemma. �

Lemma 3.3.2. Assume that l is one-dimensional over an algebraically closed an-

alytic field k. Then for any x ∈ l with x /∈ k the extension l/k̂(x) is finite, and for

any y ∈ l with |y − x| < infa∈k |a − x| the fields k̂(x) and k̂(y) are isomorphic l is
of the same degree over both these fields.

We outline the proof in the exercise.
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Exercise 3.3.3. Choose r < 1 such that |y − x| < r infa∈k |a− x|.
(i) Prove that for any rational function f(T ) one has that |f(x)−f(y)| < r|f(x)|,

and deduce that there is a unique isomorphism φ : k̂(x)→̃k̂(y) taking x to y, and

this φ satisfies |z − φ(z)| < r|z| for any z ∈ k̂(x).

(ii) Find a basis z1, . . . , zn of l over k̂(x) which is orthogonal up to a factor of r′

with r < r′ < 1, or r′-orthogonal, in the sense that |
∑n
i=1 aizi| ≥ r′max1≤i≤n |aizi|.

(iii) Prove that zi generates l over k̂(y), hence [l : k̂(x)] ≥ [l : k̂(y)], and by
symmetry this is actually an equality.

To explain the importance of r-orthogonality we give one more easy exercise.

Exercise 3.3.4. Show that a finite extension l/k of analytic fields is defectless (i.e.
satisfies ef = n) if and only if it admits an orthogonal basis (with r = 1).

The exercises imply that if there exists a non-trivial defect, then we cannot find
an orthogonal basis (which describes the extension in the best possible way), but
at least there exist arbitrary close approximations to such a basis. Sometimes, one
says that l/k is Cartesian if it admits an orthogonal basis, and it is weakly Cartesian
if it admits r-orthogonal basis for any r < 1.

Exercise 3.3.5. Let L/K be an extension of valued fields of height one, and
assume that the valuation of K admits exactly one extension to L (i.e. L◦ =

N rL(K◦)). Prove that L/K is weakly Cartesian if and only if L⊗K K̂ is a field (it

is automatically local, but can be non-reduced if K̂/K is not separable).

3.3.2. Analytic uniformization: setup and stability theorem. In the sequel k is an
algebraically closed analytic field and l is a one-dimensional field we want to uni-
formize. There are three possibilities which we will call E, F and D cases ac-
cordingly to the non-zero invariant of l/k. Clearly, the first two cases should be
somewhat easier, but we will see that not too much easier. We will see that all three
cases are proved by controlling the defect, but the control will be different. We also

remark that in E and D cases the uniformization actually means that l = k̂(x)

because l̃ = k̃ is algebraically closed. In the E and F cases, the uniformization
theorem is equivalent to the following stability theorem.

onedimstab Theorem 3.3.6. If k is an algebraically closed analytic field and l is a one-dimensional
field of type E or F , then l is stable.

Indeed, if the stability theorem is known then to uniformize l we simply choose
x such that |x| generates |l×| in the E-case and x̃ is the separable transcendence

basis of l̃ in the F -case. The converse follows from the following exercise.

Exercise 3.3.7. Check by a direct computation that if l is uniformizable, x ∈ l \ k
and we are in E or F case, then the extension l/k̂(x) is defectless.

The above argument shows that if p = char(k̃) is zero, then E and F cases

are established. Also, in the D case there is nothing to prove because k̂(x) is
algebraically closed for any x ∈ l (any its algebraic extension is immediate), hence

automatically l = k̂(x) for any x /∈ k. In general, however, type D field are not
algebraically closed.

Exercise 3.3.8. Construct examples of non-stable l’s of type D both in mixed and
positive characteristics.
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3.3.3. How to gain a certain control on immediate extensions. Though the result
and the method of this section are very natural, I consider them as one of two
central results in the uniformization of one-dimensional analytic extensions. In this
section we give a fine enough description of an immediate extension of analytic
fields l/k of degree p. The idea is very simple: although l/k does not have an
orthogonal basis, at least it has r-orthogonal ones, and taking r close enough to 1
we should obtain a good description of l.

Exercise 3.3.9. Let l/k be of degree p (maybe not immediate) and α ∈ l\k. Prove
that by choosing c ∈ k such that |c− α| is close enough to rα := infc∈k |c− α| one
achieves that 1, α, . . . , αp−1 is an r-orthogonal basis for any given r < 1. Show that
r = 1 is achieved if and only if |c − α| is the infimum and the latter is possible if
and only if l/k is defectless.

It turns out that the minimal polynomial fc(T ) of α − c becomes of a rather
special form as |α − c| approaches rα. The following proposition generalizes the
obvious case when l/k is defectless.

Proposition 3.3.10. Let l/k and α be as above, and for c ∈ k let fc(T ) be of the
form T p + · · · − aT + b. Then for c ∈ k with |α− c| close enough to rα one of the
following possibilities hold:

(i) |αp + a| < s = infc∈k |cp + a| and |pa| < s;

(ii) |αp − bα+ a| < s = infc∈k |cp − bc+ a|, |b| = s
p−1
p and |pa| < s.

Moreover, in the second case l contains a root of T p − bT + a, so l→̃k[T ]/(T p −
bT + a).

Remark 3.3.11. The condition on |pa| is essential only in the mixed characteristic
case. It requires that already taking c = 0 we are close enough to the infimum (or,
that can be shown to be equivalent, |α| is already nearly orthogonal to k, i.e. |α−c|
cannot be too much smaller than |α|). This condition is very important in the mixed
characteristic case because it allows to work with p-th powers in the additive form:
(c1 + c2)p = cp1 + cp2 + p(. . . ), and we can remove all terms involving p because the
absolute value is does not exceed s.

The proposition is proved by a rather straightforward studying of the coefficients
of fc(T ) given by the binomial formula. We leave it as a difficult exercise to complete
the details, or consult [Tem, 2.1.3] instead. Note that it was natural to expect that
a field k admits an immediate extension is there exists a polynomial f(T ) such that
infc∈k |f(T )| is not achieved, but we obtain that one can take f(T ) to be of a very
special form.

holecor Corollary 3.3.12. A field k admits an immediate extension of degree p if and only
if one of the following is true:

(i) there exists a ∈ k such that s = infc∈k |cp + a| is not achieved and |pa| < s.

(ii) there exists a, b ∈ k such that s = infc∈k |cp−bc+a| is not achieved, |b| = s
p−1
p

and |pa| < s.

Exercise 3.3.13. Assume we are in the situation of the second case.
(i) Show that it never happens that |b| > s

p−1
p . (Hint: assume it does and deduce

that the polynomial T p − aT + b has a solution in k then.)

(ii) Show that if |b| < s
p−1
p , then one can simply remove the bα term, in the

sense that already the infimum |kp + a| is not achieved.
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Remark 3.3.14. The exercise explains the role of the condition on |b|. Actually,
this is indeed a boundary case in the sense that one can show that the extension l/k
has zero different (or is almost etale as defined by Faltings) iff the case (ii) holds.

3.3.4. On the proof of stability theorem. The idea in both E and F cases is very
simple: we should show that any one-dimensional k-field l of type E or F does
not have ”holes” described in 3.3.12. In other words, we should prove that for any
element a the infimum infc∈l |a + cp| is achieved and similarly for infimum of the
form infc∈l |a− bc+ cp|.

Exercise 3.3.15. Show that if l contains b1/(p−1) (as in our case), then it suffices
to consider the case when b = 1. (Hint: replace T with b1/(p−1)T .)

Theorem 3.3.16. If l is of one-dimensional of E or F type over an algebraically
closed analytic field k, then l is stable.

Proof. It suffices to prove that a field k̂(x) of E or F -type is stable. If it is not,

then there exists a Cartesian extension K/k̂(x) with an immediate extension L/K
of degree p. Moreover, by the above exercise replacing K with a tame extension we
can find a ∈ K such that either s = infc∈K |a + cp| or 1 = s = infc∈K |a + c + cp|
is not achieved for c ∈ K and also |pa| < s. Now, the strategy of the proof is very
simple: we start with any a ∈ K and modify it by replacing it with elements a+ cp

or a+c+cp of smaller absolute value until the infimum is achieved: we may do that
because cp is additive up to terms of negligible magnitude (if |a + cp| < |a| then

|pcp| = |pa| < s). The E case is technically easier because k̂(x)→̃k{r−1T, rT−1} for
r = |x| /∈ |k×| (i.e. any element of this field is of the form

∑∞
i=−∞ aix

i with |aixi|
tending to zero in both directions). It is obvious that removing from a =

∑
aix

i all
terms with p|i we obtain an element that cannot be decreased by adding a power
of p, and a similar argument shows that by adding some element of the form cp− c
we can get rid of all elements with p|i. Since the remainder is still of absolute value
larger than 1, it cannot be reduced further by adding elements of the form cp − c,
and we obtain that the infimum is attained. The F case is outlined in the following
exercise, or you may consult [Tem, 2.2.4].

Exercise 3.3.17. (i)* Assume that L is Cartesian over an F field of the form k̂(x).

Show that there exists a Schauder basis B = {1} t U t Up t Up2 . . . of L over k
(i.e. any subset of B is orthogonal over k and B topologically spans L over k) and
such that U is orthogonal to Lp (i.e. |u− cp| ≥ |u| for any u ∈ U and c ∈ L).

(ii) Deduce that L has no immediate extensions similarly to the E case. (Note
that in the E case we used the Schauder basis TZ with U = TZ \ pZ).

�

4. Desingularization by alterations

4.1. The main theorem. Using the stable modification theorem it is not difficult
to prove that any integral algebraic variety can be desingularized by alteration.
Moreover, we will work in a greater generality which which covers schemes over
excellent curves such as Spec(Z) or Spec(Zp) (and surfaces if we know (or trust)
that excellent surfaces admit desingularization). Let S be a noetherian base scheme
and X be an integral S-scheme of finite type and with a closed subset Z ( X. We
say that the pair (X,Z) is desingularized by an alteration f : X ′ → X if X ′ is
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regular and Z ′ = f−1(Z) is a normal crossing divisor. The following theorem (in a
slightly different formulation) was proved by de Jong in [dJ2].

Theorem 4.1.1. Assume that any S-pair (X,Z) as above and such that X is gener-
ically S-finite can be desingularized by an alteration (for example, X is excellent of
dimension not exceeding 1). Then any S-pair (X,Z) as above can be desingularized
by an alteration.

Proof. Step 1. Application of the stable modification theorem. We can replace S
with the Zariski closure of the image of X (with the reduces scheme structure), so
assume that the structure morphism φ : X → S is dominant. In particular, S is
integral with generic point η. By Chow lemma we can modify X so that it becomes
quasi-projective over S. In particular, φ factors into a composition of a dominant
morphism X → S′ and a dominant morphism S′ → S such that S′η is a curve. If we
would know that S′ satisfies the same assumption as S does, then the theorem would
follow by induction on the dimension of the generic fiber Xη, because the generic
fiber of X over S′ has smaller dimension. Thus it suffices to prove the theorem
for X’s that are generically finite over S′, and we can assume that Xη is a curve.
Find a finite purely inseparable extension K/k(S) such that NorK(Xη) is a smooth
K-curve (the normalization of Xη is regular but can be non-smooth). Replace S
and X with NorK(S) and NorKk(X)(X), and update Z accordingly (the preimage
of the original Z), then we achieve that Xη is normal but the new S satisfies the
assumption of the theorem as well. By the same argument we can achieve that
the divisor Zη = Z ∩ Xη is η-smooth. Blowing up X along Z we achieve that Z
is a divisor, and then we decompose it to a vertical component Zv, which is the
preimage of a divisor on S, and a horizontal component Zh, which is the Zariski
closure of Zη. By the flattening theorem, replacing S with its modification and
replacing X and Zh with their strict transforms, we can achieve that (X,Zh) is a
multipointed S-curve, i.e. the structure morphisms become flat. Note also that we
replace Zv with its preimage, and then the new Z is the preimage of the old one.
Since we worried to make the generic fiber (Xη, Zη) nodal, the stable modification
theorem implies that we can alter the base and then modify the multipointed curve
so that (X,Zh) becomes nodal over S.

Step 2. Explicit resolution of few mild singularities. Consider the vertical divisor
Zv and the singularity locus φsing = (X/S)sing of φ, and let D = φ(Zv ∪ φsing).
Enlarging Zv we can assume that it is the preimage of D. By our assumption on
S, there exists an alteration S′ → S such that S′ is regular, the preimage of D is a
normal crossing divisor. Replacing S with S′ and updating all the rest we achieve
the following situation: S is regular, (X,Zh is S-nodal, Zv = φ−1(D) for a normal
crossing divisor D and φsing ⊂ Zv is a normal crossing divisor. We will see that
the singularities of the pair (X,Z) are very mild and can be resolved explicitly
(actually, they are already very special toric singularities).

The singular locus of X is contained in the singular locus φsing which is unram-
ified over S by lemma 1.7.3 and lives over D. So, X is regular in codimension one
and Z. Since Zh is disjoint with φsing, it is an S-etale scheme contained in the
regular locus of X. Moreover, it follows that Z is a normal crossing divisor at each
point of Zh. Since, we will modify in the sequel only the singular locus φsing, we
can forget about Zh starting with this moment.

Exercise 4.1.2. Show that altering S one can achieve that
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(i) φsing splits over S in the sense that any irreducible component of φsing → S
is mapped isomorphically onto a closed subscheme of S;

(ii) the self-intersection points in the S-fibers have rational tangent cone.

Let x ∈ φsing be a point and s = φ(x). Then by proposition 1.7.4 we have

that ÔX,x→̃ÔS,s[[u, v]]/(uv − π) for an element π which vanishes only along D. It
follows that π = a

∏
πnii where πi define the irreducible component of D locally at

s and a is a unit. Replacing u with u/a we can get rid of a. We will first resolve
singularities in codimension two; these are exactly the singularities a semistable
curve over a DVR can have. This will be done by blowing up the components of D
until ni = 1. Choose a component D1 of φsing and let X ′ be the blow up of X along
D1 taken with the reduced scheme structure. For any point x ∈ D1 etale-locally the
S-scheme C looks as Y = Spec(OS,s)[u, v]/(uv − πn1

1 . . . πnmm ). Note that n1 is an
invariant of the singularity along D1 because it is the same at x and at the generic
point of D1, moreover n1 > 1 if and only if there is a singularity at the generic
point ε of D1, i.e. D1 ∈ Xsing. (Note that OS,φ(ε) is a DVR with an uniformizer
π1 and the fiber over Spec(OS,φ(ε)) is a nodal curve with singularity at ε, so we
are actually dealing with resolving singularities on nodal curves over DVR’s; the
singularity type at ε is actually Aε). Since blow ups are compatible with blow up,
the preimage of x in X ′ etale-locally looks as the blow up of Y along (u, v, π1).

Exercise 4.1.3. Describe the blow up of Y by an explicit computation with charts
of the blow up, and show that it is nodal over S, smooth over S\D and the invariant
n1 on the preimage of D1 drops.

The exercise implies that by successive blowing up irreducible components of
Xsing we achieve that there are no singularities in codimension 2, or, that is equiv-
alent, the singularity at x is described etale-locally as uv = t1 . . . tm.

The remaining procedure will go by blowing up the ideals of the form (u, ti). It
turns out that the geometry of such blow ups is rather funny, so we prefer to work
out the simplest example in the the following exercise.

Exercise 4.1.4. Let X = Spec(k[u, v, x, y])/(uv − xy) and p be its origin (i.e.
mp = (u, v, x, y)).

(i) Show that blowing up the maximal ideal of p one obtains a desingularization
X ′ → X where the preimage of p is a surface.

(ii) Show that X has two smaller desingularizations X1 and X2 (usually called
small) obtained by blowing up the Weil divisors (u, x) (or that is the same (v, y))
and (u, y), which are not Cartier divisors. Show that the preimage of p in Xi is
a line, in particular, Xi cannot be obtained by a blow up of a subscheme sitting
supported at p, even though Xi is mapped isomorphically on X outside of p.

(iii) Show that X ′ is the minimal mutual refinement of Xi’s.
Note that X1 and X2 are absolutely symmetric, and the procedure of passing

from X1 to X2 is a typical example of a flop (a birational transformation which is
an isomorphism in codimension 1).

The desingularization of a general X is similar. Find a singularity x which is
locally-etale of the form uv = π1 . . . πm with maximal possible m. Let Di be the
component of D defined by vanishing of πi, set D′ = ∩mi=1Di and let E be the
component of the preimage of D′ in φsing that contains x. Then the singularity
of X along E is etale-locally of the form Y = Spec(OS,s)[u, v]/(uv − π1 . . . πm), in
particular m is an invariant of the singularity.
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Exercise 4.1.5. Describe the blow up of Y by an explicit computation with charts
of the blow up, and show that it is nodal over S, smooth over S\D and the invariant
m on the preimage of E drops.

Blowing up such E’s successively we obtain in the end the situation with reg-
ular X. It remains to check that Dv is a normal crossing divisor, and we can
check that φ−1(D ∪ Dv) is so. Locally D is given by π1 . . . πm = 0 and etale-
locally the pair X looks as SpecOS,s)[u, v]/(uv−πj) and Zv is given by π1 . . . πm =
uvπ1 . . . πj−1πj+1 . . . πm = 0. Since u, v and πi’s excluding πj form a regular family
of parameters, Zv is a normal crossing divisor, as claimed. �
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