
p-adic numbers and non-archimedean world

M. Temkin

September 19, 2019

M. Temkin (Hebrew University) p-adic numbers and non-archimedean world 1 / 12



Introduction

A puzzle

Problem. Find a four-digit number xyzt such that
xyzt · xyzt = ∗ ∗ ∗ ∗ xyzt .
Solution.

The last digit satisfies t · t = 10 · u + t , hence t ∈ {0,1,5,6}.
It turns out that for each such t there exists a unique z such that
zt · zt = ∗zt , then there exists a unique y , etc. Prove this!
In the end we get four candidates 0000, 0001, 0625 and 9376, but
only 9376 is a four-digit number.
The answer: 9376*9376=87909376.

Hint: for each t , we want

∗zt = (10 · z + t)2 = 100 · z2 + 20 · z · t + t2 = . . .+ 20 · z · t + 10 · u + t .

So, 2 · t · z + u = ∗z and (2t − 1)z + u is divisible by 10. This
determines z uniquely (why?). Similarly for y , etc.
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Introduction

Arithmetic

Arithmetic studies numbers, especially 4 operations: +, −, ∗, /
Despite seeming simplicity it is one of the deepest areas of
mathematics, called the Queen of Mathematics by Gauss.
A famous example: Fermat claimed in 1637 that for any n ≥ 3 the
equation xn + yn = zn has only “trivial” rational (or integral)
solutions, where x = 0, y = 0 or z = 0. This was finally proved
only in 1994.
A typical example of a problem: find all rational (or integral)
solutions of a given polynomial equation (or a system).
Such problems can be very difficult and even unsolvable. There
are concrete systems which are provably(!) unsolvable.
For comparison, there are algorithms to describe the set of all real
solutions of such a system. Finding real solutions is much easier!
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Fields

Fields

In mathematics, a field is a set with elements 0,1, four arithmetic
operations and all usual properties: a(b + c) = ab + ac, 0 · a = 0,
etc. If only +, −, ∗ are defined, then the set is called a ring.
For example: integral numbers only form a ring Z. The minimal
field containing Z is the set of all rational numbers Q. Larger fields
are the sets of all real and complex numbers R and C.
Naturally, arithmetic “likes” to work with fields, for example, Q. As
we saw, it is often easier to solve problems in large fields.
Only R and C are really important for physics, because our
physical world (space, time) is continuous (at least in the first
approximation).
In arithmetic and mathematics there are other very important large
fields, so-called non-archimedean ones.
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Fields

Fields of residues

Example
Let F2 be the set of two elements 0,1, with all usual rules like
1 + 0 = 1, 1 ∗ 0 = 0, and the strange rule 1 + 1 = 0. This is a field!

The real meaning of F2 is parity: 0=“even”, 1=“odd”. Rules make
perfect sense and F2 reveals the arithmetic of residues modulo 2.
For any n ≥ 1 the set Z/nZ of residues modulo n is a ring, but not
always a field. E.g., in Z/10Z one has 2 6= 0 and 5 6= 0, but
2 ∗ 5 = 10 = 0.
In general, one cannot divide by 2 and 5 in Z/10Z. For example,
2 ∗ 0 = 0 = 2 ∗ 5 and 2 ∗ 1 = 2 = 2 ∗ 6 in Z/10Z.
A p > 1 is prime if it has no divisors between 1 and p, e.g.
2,3,5,7,11,13,17,19,23,29....

Theorem
The ring Z/pZ is a field (denoted Fp) if and only p is prime.
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P-adic numbers

Congruences

Solving equations modulo p often provides valuable information,
e.g. x2 − 3y2 = 5 has no solutions in Z because it has no
solutions even in F3 (modulo 3). Check that x2 is never 2 in F3.
It is also useful to look for solutions modulo pk . For example,
x2 ∈ {0,1,4} in Z/8Z, hence x2 + y2 + z2 = 8m + 7 has no
solutions for any m.
Typically, one finds all solutions modulo p, then lifts them modulo
p2, p3, etc.
In our puzzle we worked with p = 10 (which is not prime) and
solved x2 = x modulo 10, 100, 1000, etc.
In fact, we found 4 (!) series of solutions x = . . . x3x2x1x0:
two trivial ones: 0 and 1,
two strange ones: . . . 0625 and . . . 9376.
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P-adic numbers

10-adic numbers

Define the ring of 10-adic numbers Q10 to be the set of “numbers”
finite to the left and infinite to the right (!):

x = . . . x2x1x0•x−1 . . . x−k =
x−k

10k +. . .+
x−1

10
+x0+10x1+100x2+. . .

Where xi are arbitrary digits from 0 to 9.
+, −, ∗ are defined by usual arithmetic. Similarly to Z/10Z, the set
Q10 is a ring, but not a field.
For example, we have found 4 solutions of x2 = x in Q10:
0,1,y = . . . 0625 and z = . . . 9376. One has y 6= 0, y − 1 6= 0, but
y(y − 1) = y2 − y = 0. So, Q10 is not a field.

M. Temkin (Hebrew University) p-adic numbers and non-archimedean world 7 / 12



P-adic numbers

p-adic numbers

Why not to replace 10 by any n > 1? For example, in programming
one represents numbers in base-2 or base-16 system.
For any n > 1 define the ring of n-adic numbers Qn to be the set of
base-n numbers finite to the left and infinite to the right (!):

x = . . . x2x1x0•x−1 . . . x−k =
x−k

nk + . . .+
x−1

n
+x0 +x1n+x2n2 + . . .

Where xi are arbitrary digits from 0 to n − 1.
+, −, ∗ are defined by the usual base-n arithmetic, so Qn is a ring.
Similarly to Z/nZ, it is a field if and only if n is prime.
From now on we only consider p-adic numbers with a prime p.
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P-adic numbers

The p-adic absolute value

Does the formal sum x = . . . x2x1x0 = x0 + x1p + x2p2 + . . . make
sense?
If |p| < 1, then yes! It converges as a geometric sequence!
The p-adic absolute value | |p is chosen so that |p|p < 1 < |p−1|p.
The formula is very strange: any x ∈ Q can be presented as
x = ±pk a

b with a,b prime to p and then |x |p = p−k .
The absolute value is non-archimedean: |n|p ≤ 1 for any integral
n.
Nevertheless, |xy |p = |x |p|y |p and it satisfies the strong triangle
inequality |x + y |p ≤ max(|x |p, |y |p) ≤ |x |p + |y |p.
Exercise: deduce that any point in the p-adic disc of radius r
around x is a center of the disc.
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P-adic numbers

Advertisement

Similarly to the reals R, the field of p-adic numbers Qp is a
completion of Q – any reasonable (Cauchy) sequence from Q
converges to an element in Qp. In particular, one can study
analysis in Qp as over the reals!
It is easier to do arithmetic in Qp – no signs needed, and no
double presentations like 1.0 = 0.99999 . . . show up.
For example, −1 = . . . 11111 in Q2 because
1 + 2 + 4 + . . . = 1

1−2 = −1. What is −1 in Q5?

Example

Real roots can be computed by
√

1 + t = 1 + 1
2 t − 1

8 t2 + 1
16 t3 − . . .

when |t | < 1. The same formula allows to compute roots in Qp. The
most subtle (but not too difficult) case is Q2. For example, |16|2 = 1

16
and
√

17 = 1 + 8− 32 + 256− . . . converges in Q2, but
√

5 does not
exist in Q2 (|4|2 is not small enough and 1 + 2− 1

2 + 4− . . . diverges).
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P-adic numbers

Two famous theorems

Are these p-adic numbers so natural? Yes!
Can one find zillions other strange completions and absolute
values? No!

Theorem (Ostrowski)
The usual and p-adic absolute values are the only absolute values on
Q (up to equivalence), and R and Qp are the only completions of Q.

Solving polynomial equations in R and all Qp can be done effectively
(there are algorithms). In ideal situations, this tells us a lot about
rational solutions. Here is the most famous example:

Theorem (Hasse-Minkowski)

A quadratic equation (like x2 + 3xy − 2x − 5yz + 7z2 = 2019) has a
solution in Q if and only if it has solutions in each Qp and in R.
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P-adic numbers

Conclusions

p-adic numbers are as central for number theory as real numbers.
There even are computations of certain numbers (rational or
algebraic) via p-adic approximations, which work better/faster than
computations via real approximations.
Many areas of mathematics, such as analysis, dynamics, etc.,
were developed both for real and p-adic numbers.
For a mathematician, there is no doubt that p-adic numbers are
very natural and useful “god given” objects of the “mathematical
world”.
Physics is based on real numbers. Probably, number theory and
p-adic numbers will never be essentially used to study our
“physical world”.
Nevertheless, there are applications to “real life” – computer
science and cryptography.
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