p-adic numbers and non-archimedean world

M. Temkin

September 19, 2019

A puzzle

Problem. Find a four-digit number $\overline{x y z t}$ such that $\overline{x y z t} \cdot \overline{x y z t}=\overline{* * * * x y z t}$.

Solution.

- The last digit satisfies $t \cdot t=10 \cdot u+t$, hence $t \in\{0,1,5,6\}$.
- It turns out that for each such t there exists a unique z such that $\overline{z t} \cdot \overline{z t}=\overline{* z t}$, then there exists a unique y, etc. Prove this!
- In the end we get four candidates 0000, 0001, 0625 and 9376, but only 9376 is a four-digit number.
- The answer: 9376*9376=87909376.

Hint: for each t, we want
$\overline{* z t}=(10 \cdot z+t)^{2}=100 \cdot z^{2}+20 \cdot z \cdot t+t^{2}=\ldots+20 \cdot z \cdot t+10 \cdot u+t$.
So, $2 \cdot t \cdot z+u=\overline{* z}$ and $(2 t-1) z+u$ is divisible by 10 . This determines z uniquely (why?). Similarly for y, etc.

Arithmetic

- Arithmetic studies numbers, especially 4 operations:,,$+- *$, / Despite seeming simplicity it is one of the deepest areas of mathematics, called the Queen of Mathematics by Gauss.
- A famous example: Fermat claimed in 1637 that for any $n \geq 3$ the equation $x^{n}+y^{n}=z^{n}$ has only "trivial" rational (or integral) solutions, where $x=0, y=0$ or $z=0$. This was finally proved only in 1994.
- A typical example of a problem: find all rational (or integral) solutions of a given polynomial equation (or a system).
- Such problems can be very difficult and even unsolvable. There are concrete systems which are provably(!) unsolvable.
- For comparison, there are algorithms to describe the set of all real solutions of such a system. Finding real solutions is much easier!

Fields

- In mathematics, a field is a set with elements 0,1 , four arithmetic operations and all usual properties: $a(b+c)=a b+a c, 0 \cdot a=0$, etc. If only,,$+- *$ are defined, then the set is called a ring.
- For example: integral numbers only form a ring \mathbb{Z}. The minimal field containing \mathbb{Z} is the set of all rational numbers \mathbb{Q}. Larger fields are the sets of all real and complex numbers \mathbb{R} and \mathbb{C}.
- Naturally, arithmetic "likes" to work with fields, for example, \mathbb{Q}. As we saw, it is often easier to solve problems in large fields.
- Only \mathbb{R} and \mathbb{C} are really important for physics, because our physical world (space, time) is continuous (at least in the first approximation).
- In arithmetic and mathematics there are other very important large fields, so-called non-archimedean ones.

Fields of residues

Example

Let \mathbb{F}_{2} be the set of two elements 0,1 , with all usual rules like $1+0=1,1 * 0=0$, and the strange rule $1+1=0$. This is a field!

- The real meaning of \mathbb{F}_{2} is parity: $0=$ "even", $1=$ "odd". Rules make perfect sense and \mathbb{F}_{2} reveals the arithmetic of residues modulo 2.
- For any $n \geq 1$ the set $\mathbb{Z} / n \mathbb{Z}$ of residues modulo n is a ring, but not always a field. E.g., in $\mathbb{Z} / 10 \mathbb{Z}$ one has $2 \neq 0$ and $5 \neq 0$, but $2 * 5=10=0$.
- In general, one cannot divide by 2 and 5 in $\mathbb{Z} / 10 \mathbb{Z}$. For example, $2 * 0=0=2 * 5$ and $2 * 1=2=2 * 6$ in $\mathbb{Z} / 10 \mathbb{Z}$.
- A $p>1$ is prime if it has no divisors between 1 and p, e.g. $2,3,5,7,11,13,17,19,23,29 \ldots$.

Theorem

The ring $\mathbb{Z} / p \mathbb{Z}$ is a field (denoted \mathbb{F}_{p}) if and only p is prime.

Congruences

- Solving equations modulo p often provides valuable information, e.g. $x^{2}-3 y^{2}=5$ has no solutions in \mathbb{Z} because it has no solutions even in \mathbb{F}_{3} (modulo 3). Check that x^{2} is never 2 in \mathbb{F}_{3}.
- It is also useful to look for solutions modulo p^{k}. For example, $x^{2} \in\{0,1,4\}$ in $\mathbb{Z} / 8 \mathbb{Z}$, hence $x^{2}+y^{2}+z^{2}=8 m+7$ has no solutions for any m.
- Typically, one finds all solutions modulo p, then lifts them modulo p^{2}, p^{3}, etc.
- In our puzzle we worked with $p=10$ (which is not prime) and solved $x^{2}=x$ modulo $10,100,1000$, etc.
- In fact, we found 4 (!) series of solutions $x=\overline{\ldots x_{3} x_{2} x_{1} x_{0}}$: two trivial ones: 0 and 1, two strange ones: ... 0625 and ... 9376.

10-adic numbers

- Define the ring of 10 -adic numbers \mathbb{Q}_{10} to be the set of "numbers" finite to the left and infinite to the right (!):
$x=\overline{\ldots x_{2} x_{1} x_{0 \bullet} x_{-1} \ldots x_{-k}}=\frac{x_{-k}}{10^{k}}+\ldots+\frac{x_{-1}}{10}+x_{0}+10 x_{1}+100 x_{2}+\ldots$
Where x_{i} are arbitrary digits from 0 to 9.
$\bullet+,-, *$ are defined by usual arithmetic. Similarly to $\mathbb{Z} / 10 \mathbb{Z}$, the set \mathbb{Q}_{10} is a ring, but not a field.
- For example, we have found 4 solutions of $x^{2}=x$ in \mathbb{Q}_{10} : $0,1, y=\ldots 0625$ and $z=\ldots 9376$. One has $y \neq 0, y-1 \neq 0$, but $y(y-1)=y^{2}-y=0$. So, \mathbb{Q}_{10} is not a field.

p-adic numbers

- Why not to replace 10 by any $n>1$? For example, in programming one represents numbers in base-2 or base-16 system.
- For any $n>1$ define the ring of n-adic numbers \mathbb{Q}_{n} to be the set of base- n numbers finite to the left and infinite to the right (!):

$$
x=\overline{\ldots x_{2} x_{1} x_{0} x_{-1} \ldots x_{-k}}=\frac{x_{-k}}{n^{k}}+\ldots+\frac{x_{-1}}{n}+x_{0}+x_{1} n+x_{2} n^{2}+\ldots
$$

Where x_{i} are arbitrary digits from 0 to $n-1$.

- +,,$- *$ are defined by the usual base- n arithmetic, so \mathbb{Q}_{n} is a ring. Similarly to $\mathbb{Z} / n \mathbb{Z}$, it is a field if and only if n is prime.
- From now on we only consider p-adic numbers with a prime p.

The p-adic absolute value

- Does the formal sum $x=\overline{\ldots x_{2} x_{1} x_{0}}=x_{0}+x_{1} p+x_{2} p^{2}+\ldots$ make sense?
- If $|p|<1$, then yes! It converges as a geometric sequence!
- The p-adic absolute value $\left.\left|\left.\right|_{p}\right.$ is chosen so that $| p\right|_{p}<1<\left|p^{-1}\right|_{p}$.
- The formula is very strange: any $x \in \mathbb{Q}$ can be presented as $x= \pm p^{k} \frac{a}{b}$ with a, b prime to p and then $|x|_{p}=p^{-k}$.
- The absolute value is non-archimedean: $|n|_{p} \leq 1$ for any integral n.
- Nevertheless, $|x y|_{p}=|x|_{p}|y|_{p}$ and it satisfies the strong triangle inequality $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right) \leq|x|_{p}+|y|_{p}$.
- Exercise: deduce that any point in the p-adic disc of radius r around x is a center of the disc.

Advertisement

- Similarly to the reals \mathbb{R}, the field of p-adic numbers \mathbb{Q}_{p} is a completion of \mathbb{Q} - any reasonable (Cauchy) sequence from \mathbb{Q} converges to an element in \mathbb{Q}_{p}. In particular, one can study analysis in \mathbb{Q}_{p} as over the reals!
- It is easier to do arithmetic in \mathbb{Q}_{p} - no signs needed, and no double presentations like $1.0=0.99999 \ldots$ show up.
- For example, $-1=\ldots 11111$ in \mathbb{Q}_{2} because $1+2+4+\ldots=\frac{1}{1-2}=-1$. What is -1 in $\mathbb{Q}_{5} ?$

Example

Real roots can be computed by $\sqrt{1+t}=1+\frac{1}{2} t-\frac{1}{8} t^{2}+\frac{1}{16} t^{3}-\ldots$ when $|t|<1$. The same formula allows to compute roots in \mathbb{Q}_{p}. The most subtle (but not too difficult) case is \mathbb{Q}_{2}. For example, $|16|_{2}=\frac{1}{16}$ and $\sqrt{17}=1+8-32+256-\ldots$ converges in \mathbb{Q}_{2}, but $\sqrt{5}$ does not exist in $\mathbb{Q}_{2}\left(|4|_{2}\right.$ is not small enough and $1+2-\frac{1}{2}+4-\ldots$ diverges $)$.

Two famous theorems

- Are these p-adic numbers so natural? Yes!
- Can one find zillions other strange completions and absolute values? No!

Theorem (Ostrowski)
The usual and p-adic absolute values are the only absolute values on
\mathbb{Q} (up to equivalence), and \mathbb{R} and \mathbb{Q}_{p} are the only completions of \mathbb{Q}.
Solving polynomial equations in \mathbb{R} and all \mathbb{Q}_{p} can be done effectively (there are algorithms). In ideal situations, this tells us a lot about rational solutions. Here is the most famous example:

Theorem (Hasse-Minkowski)
A quadratic equation (like $x^{2}+3 x y-2 x-5 y z+7 z^{2}=2019$) has a solution in \mathbb{Q} if and only if it has solutions in each \mathbb{Q}_{p} and in \mathbb{R}.

Conclusions

- p-adic numbers are as central for number theory as real numbers. There even are computations of certain numbers (rational or algebraic) via p-adic approximations, which work better/faster than computations via real approximations.
- Many areas of mathematics, such as analysis, dynamics, etc., were developed both for real and p-adic numbers.
- For a mathematician, there is no doubt that p-adic numbers are very natural and useful "god given" objects of the "mathematical world".
- Physics is based on real numbers. Probably, number theory and p-adic numbers will never be essentially used to study our "physical world".
- Nevertheless, there are applications to "real life" - computer science and cryptography.

