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Notation

• All schemes are locally noetherian.
• k is our base; it can be a field, a ring or a scheme.
• BlI(X) → X is the blow up of X along an ideal I ⊂ OX .
• Usually, X is a noetherian scheme with a closed subscheme Z,

X ′ → X is a blow up and Z ′ = Z ×X X ′.
• Assume OX,x is regular, then Z is strictly monomial at x if

locally it is given by an equation xn1
1 . . . xnm

m = 0 where ni ≥ 0
and x1, x2, . . . is a regular sequence of parameters of OX,x, and
Z is monomial if it is etale-locally strictly monomial, i.e. xi’s
exist in Osh

X,x. For example, Z = ∅ is strictly monomial.
• (X, Z)sing (resp. (X, Z)ssing) is the locus of points x ∈ X such

that OX,x is not regular or Z is not a monomial divisor (resp.
strictly monomial divisor) at x.

• (X, Z)reg = X \ (X, Z)sing and Xreg = (X, ∅)reg.
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1. Successive desingularization

Theorem 1.1 (Hironaka, 64). If k is a local ring containing Q whose

completion homomorphism φ : k → k̂ is regular (i.e. the geometric
fibers of φ are regular) and X is integral of finite type over k and with
a closed subscheme Z then:

Successive desingularization: there exists a sequence of blow ups
X ′ = Xn → · · · → X1 → X0 = X with regular X ′ and such that
the centers are regular and lie over Xsing.

Successive embedded desingularization: if X is regular then there
exists a sequence of blow ups X ′ = Xn → · · · → X1 → X0 = X with
monomial Z ′ = Z ×X X ′ and such that the centers are regular and lie
over Zsing, in particular (X ′, Z ′)reg = X ′.

Remark 1.2. (i) The proof goes by successive improving of singulari-
ties.

(ii) The main problem is in pasting local solutions (say, over open
subschemes).

(iii) An involved induction argument is used to bypass the above
difficulty, it leads to a non-constructive proof.

(iv) It is important for the proof to allow k which are not fields.
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”Recent” simplifications 1.3 (A very incomplete list is [BM97],
[Vil89], [WÃl05], [Kol07]). If k is a field of characteristic zero, then there
exists a canonical (or functorial with respect to smooth morphisms)
successive embedded desingularization.

Remark 1.4. (i) Canonicity ensures an easy pasting and leads to sim-
plified and constructive proofs.

(ii) One must be careful about regularity of the centers in the not
embedded case (actually, some proofs involve non-regular centers in
this case).

(iii) An easy argument by Bierstone-Milman shows that one can
choose the centers of blow ups over (X, Z)sing (which can be strictly
smaller than Xsing ∪ Zsing).
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2. Quasi-excellence

Definition 2.1 (Grothendieck, [EGA IVII], 1965). A Quasi-excellent
scheme is a scheme pasted from spectra of quasi-excellent rings, which
in their turn are noetherian rings satisfying two conditions:

(G) For any prime p ⊂ k, the completion homomorphism kp → k̂p is
regular.

(N) For any integral finitely generated k-ring A the set Spec(A)sing

is closed.

Remark 2.2. (i) Grothendieck introduced excellent schemes by im-
posing an additional condition of being universally catenary. The word
”quasi-excellent” was introduced later.

(ii) Grothendieck proved that it suffices to consider in (G) only com-

pletions km → k̂m with a maximal m.
(iii) Grothendieck proved that quasi-excellence of X is inherited by

schemes of locally finite type over X. The proof treats (G) and (N)
conditions separately.

(iv) Grothendieck proved that for local rings it suffices to check the
G-property only. Thus, Hironaka’s base is a quasi-excellent local ring.

(v) A fundamental question asked by Grothendieck: does quasi-
excellence survives completions? It suffices to prove that if k is quasi-
excellent then k[[T ]] is. One of main problems is that the analog for
the G-property (without (N)) is false.

(vi) In particular, it is difficult to define a reasonable notion of quasi-
excellent formal schemes without knowing (v).

(vii) I was informed that Gabber established an affirmative answer
to (v) (a proof is yet to be written).
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Definition 2.3. By a weak desingularization of a scheme X we mean
a proper birational morphism f : X ′ → X with a regular source.

Remark 2.4. Usually in the definition of a desingularization one re-
quires also that f does not modify the regular locus of X.

Theorem 2.5 (Grothendieck, loc.cit.). If k is a locally noetherian
scheme and any integral scheme of finite type over k admits a weak
desingularization, then k is quasi-excellent.

Conjecture 2.6 (Grothendieck, loc.cit.). The converse is probably
true, i.e. any integral quasi-excellent scheme admits a desingulariza-
tion.

Remark 2.7. (i) Grothendieck stated without proof that Hironaka’s
proof applies to any noetherian quasi-excellent.

(ii) It was never checked in the published literature. Nevertheless,
this statement has already been applied, e.g. for desingularization of
affinoid algebras.
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3. Desingularization of pairs and the main result

Definition 3.1. (i) We say that there is resolution of singularities of
pairs over a scheme k if for any integral X of finite type over k and
Z ↪→ X, there exists a blow up f : X ′ → X with center supported
on T = Xsing ∪ Zsing and such that X ′ is regular and Z ′ = Z ×X X ′ is
monomial.

(ii) A desingularization of pairs is strict (resp. semi-strict) if one
can, furthermore, take T = (X,Z)sing (resp. T = (X, Z)ssing).

Remark 3.2. (i) The resolution is simultaneous rather than successive,
the center of f is usually very bad.

(ii) By [BM97], there is strict resolution of singularities of pairs over
fields of characteristic zero.

(iii) If there is resolution of singularities of pairs over k, then it is
quasi-excellent.

Main result 3.3. In characteristic zero, resolution of singularities of
pairs over fields implies resolution of singularities of pairs over quasi-
excellent schemes.

Remark 3.4. (i) The assertion of the theorem holds also for semi-strict
resolution of singularities of pairs.

(ii) The strict case should hold true as well, but it is not proved so
far.

In the sequel, we will mainly consider the particular case of Z = ∅
for the sake of simplicity.
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4. Localization and reduction to Hironaka

Proposition 4.1. There is resolution of singularities over k if and
only if for any local integral scheme Y of essentially finite type over k
and its blow up f : Y ′ → Y with Y ′

sing ⊂ f−1(y) for the closed point
y ∈ Y , there is a desingularization Y ′′ → Y ′.

Sketch of proof. The direct implication is easy. To prove the opposite
one we would like to desingularize an integral X of finite type over k.
We will build a resolving blow up f : X ′ → X by decreasing noetherian
induction on the closed set S = f(X ′

sing). Choose a generic point x ∈ S
and set Xx = Spec(Ox) and X ′

x = Xx ×X X ′. Then (X ′
x)sing sits over

x, so we can find a desingularization X ′′
x = BlI′x(X

′) → X ′
x, where I ′x

is supported on the preimage of x. Our aim is to extend the blow up
gx : X ′′

x → X ′
x to a blow up g : X ′′ → X ′

X ′′
x

gx //
� _

²²Â
Â
Â

X ′
x� _

²²

fx // Xx� _

²²
X ′′ g //___ X ′ f // X

Using [EGA I], we can extend I ′x to an ideal I ′ ⊂ OX sitting over
the Zariski closure of x. Then X ′′ = BlI′(X ′) is isomorphic to X ′ over
X \S and desingularizes the preimage of x, hence the image of X ′′

sing in
X lies in S \ {x}. Since the composition h : X ′′ → X ′ → X is a blow
up with center at Xsing by Raynaud-Gruson, we see that the induction
works fine. ¤
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Corollary 4.2. Hironaka’s work implies desingularization of any noe-
therian quasi-excellent scheme over Q.

Corollary 4.3. To prove the main result it suffices to desingularize
schemes X such that Z = Xsing is an algebraic variety (i.e. of finite
type over a field).

Remark 4.4. (i) The proposition works in any characteristic.
(ii) A funny observation is that the proposition applies even when the

dimension of X and Xsing is infinite. I do not expect any application for
this case, but it indicates that we are on the right way: the proposition
reduces the case of any Xsing (including the infinite dimensional ones)
to the case of an algebraic variety.

(iii) The induction from the proof of the proposition does not sim-
plify local structure of singularities, but it does simplify their global
structure.

(iv) One of the advantages of general blow ups is that one can easily
extend them. We loose successiveness of the desingularization when
extending I ′x.

(v) The proposition is partially motivated by Raynaud’s theory of
formal blow ups.
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5. Reduction to desingularization of formal schemes

Idea: a quasi-excellent scheme X may have no good floor, but it has

such a roof (or roofs) X̂T , and it may share a roof with much better
schemes, e.g. algebraic varieties. So, the idea is to pass to a completion
and then to algebraize it in such a form that the initial desingularization
problem reduces to the case of varieties. Quasi-excellence should be
used to connect desingularizations of X and of its roof.

Example: if Â is a complete local ring such that X̂ = Spec(Â) has
an isolated singularity, then the latter is algebraizable due to Artin. It
allows to resolve isolated singularities.

Remark 5.1. (i) In general, we will need a more general algebraization
result due to Elkik.

(ii) We prefer to define roofs as formal schemes.

Definition 5.2. (i) We say that a formal scheme X is absolutely quasi-
excellent if for any open affine subscheme Spf(A) the ring A is quasi-
excellent. We say that X is quasi-excellent if it admits an open covering
by absolutely quasi-excellent subschemes.

(ii) We say that X is special if Xs is a variety.

Theorem 5.3 (Valabrega, 1976). Special formal schemes are excellent.

Remark 5.4. (i) I was informed that Gabber proved that an I-adic
noetherian ring A is quasi-excellent iff A/I is so (a proof is yet to be
written).

(ii) This result is an ultimate result on quasi-excellence of formal
schemes. In particular, it eliminates any need to introduce absolute
quasi-excellence.
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Definition 5.5. (i) If X = Spf(A) is absolutely quasi-excellent, X =
Spec(A) and I ⊂ A defines the subscheme Xsing, then we set Xsing =
Spf(A/I). This definition globalizes for quasi-excellent formal schemes!

(ii) We say that X is regular (resp. rig-regular) if Xsing = ∅ (resp. is
defined by an open ideal).

(iii) By a desingularization of a rig-regular formal scheme X we mean
a formal blow up X′ → X along an open ideal such that X′ is regular.

Proposition 5.6. If X is quasi-excellent and Z = Xsing is a variety,

then X = X̂Z is a special rig-regular formal scheme and any desingu-
larization X′ → X leads to a desingularization of X.

Proof. Any open ideal on X algebraizes to an ideal on X, and blow ups
are taken by completions to formal blow ups. ¤
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6. Reduction to varieties

Theorem 6.1. In characteristic zero, desingularization of rig-regular
special formal schemes follows from desingularization of varieties.

Main points of the proof are as follows.

• Blowing up an ideal of definition we can make it locally princi-
pal.

• A decreasing noetherian induction argument similar to an argu-
ment used earlier allows to localize the problem. In particular,
it suffices to desingularize an affine rig-regular special formal
scheme X with a principal ideal of definition.

• A special affine formal scheme with a principal ideal of definition
is of finite type over k[[π]] for appropriate choice of a field k.

• In characteristic zero, a rig-regular X is actually rig-smooth over
k[[π]].

• By Elkik’s theorem, if affine X is rig-smooth then it is algebraiz-
able (e.g. is isomorphic to a completion of a scheme X of finite
type over k[π]).

• Finally, any desingularization of X gives rise to a desingular-
ization of X.
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7. Complements. A: some details on desingularization of
pairs

Remark 7.1. Elkik’s theorem does not treat algebraization of rig-
monomial divisors (though, probably, some results in that direction
can be proven by similar methods). Therefore, the previous proof does
not carry over straightforwardly to the case of pairs. The following
proposition which monomializes strict transform of a closed subscheme
allows to treat the general case as well.

Proposition 7.2. If there is resolution of singularities of pairs over k
up to dimension d, X is of finite type over k of dimension d and Z is
a closed subscheme, then there exists a blow up X ′ → X with center in
(X,Z)ssing and such that Z ×X X ′ is strictly monomial along the strict
transform of Z.

Remark 7.3. (i) The proposition is valid without any restriction on
the characteristic.

(ii) The proposition allows to obtain semi-strict desingularization of
pairs from the desingularization results of [Vil89], [WÃl05], [Kol07], and
other works (where semi-strictness is not studied).

(iii) It seems certain that one can replace (X, Z)ssing and strict mono-
miality with (X, Z)sing and monomiality in the proposition. In this case
one would also deduce strict desingularization of pairs of quasi-excellent
schemes of characteristic zero.
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8. Complements. B: Questions for further study

• Can one use a similar method to reduce desingularization of
quasi-excellent schemes to the case of schemes of finite type
over a quasi-excellent DVR? (The hope is yes.)

• Can one prove successive desingularization of quasi-excellent
schemes by a similar method? (Yes.)

• Can one desingularize not rig-regular formal scheme by a sim-
ilar method? (The main difficulty is that non-open ideals on
an open formal subscheme may not admit an extension to the
whole formal scheme. Most probably, one has to use functorial
desingularization.)

• Can one prove functorial desingularization of quasi-excellent
schemes by a similar method? (Work in progress. Most prob-
ably the answer is positive. An analog of localizing proposi-
tion has been proved. Algebraization of special formal schemes
requires a more delicate treatment since it is absolutely not
canonical. One has to include in the argument some knowledge
about the desingularization algorithms rather than use them as
a black box (as opposed to our method in this lecture). Func-
toriality proved in [BM97],[Vil89],[WÃl05] or [Kol07] does not
suffice for a straightforward argument.)
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