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SETUP

e In the sequel, RZ means Riemann-Zariski and qcqs means ”quasi-
compact and quasi-separated”.

e Unless said to the contrary, f : ¥ — X is a separated morphism
between qcgs schemes.

Definition 0.1. (i) A Y-modification of X is a proper morphism X' — X
with a schematically dominant X-morphism ¥ — X’.

(ii) The relative Riemann-Zariski space attached to f is RZy(X) :=
projlim(X’, Ox/), where the limit is taken in the category of locally ringed
spaces over all Y-modifications of X.

Remark 0.2. (i) The projective family of all Y modifications of X is filtered
with final object corresponding to the schematic image of f.

(ii) X = RZy(X) is a nice locally ringed space, which is usually not a
scheme.

(iii) Motivation for introducing X, its description and applications will
follow.
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1. CLASSICAL RZ SPACES

e We start with the semi-classical case when Y = Spec(K) is a point
and f is schematically dominant.

e For example, if K = k(X) (resp. K = k(X)%), then K-modification
of X is a modification (resp. alteration).

1.1. Valuative description of RZx(X).

Definition 1.1. (i) Let Valg(X) be the set of pairs (O, ¢), where O is a
valuation ring of K (i.e. Frac(O) = K), and ¢ : Spec(O) — X is a morphism
compatible with f.

(ii) One can easily provide Valg (X) with a natural structure of a locally
ringed space such that the local ring at (O, ¢) is O.

(iii) For example, the sets Valx(Z[f1,..., fn]) generate the topology of
Valg(Z) and O(Valg(Z[fi1,..., fn])) is the integral closure of Z[f1,..., fa]
in K.

By the valuative criterion of properness, the projection Valg(X) — X
(given by taking the image of the closed point under ¢) lifts to any K-
modification X’ of X. So, a map A : Valg(X) — RZg(X) arises.

Theorem 1.2. X is an isomorphism of locally ringed spaces.

Remark 1.3. (i) The proof follows from the following ” Chow lemma”: for
any h € K there exists a K-modification X’ — X such that h induces
a regular function X' — Plz. Hence for compatible sequence of points
z; € X; on K-modifications, U;Ox;, ., contains either h or h~! and hence is
a valuation ring of K. This gives an inverse of .

(ii) To prove the ”Chow lemma” we build a ” K-blow up” X’ — X by
taking X’ to be the schematic image of (f,h) : Spec(K) — X x Pi.
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1.2. Historical remarks.

e In 1930ies Zariski associated to a finitely generated field extension
K /k a Riemann space RZk (k) and noticed that it is the projective
limit of all proper k-models of K.

e Zariski used these spaces in his desingularization works. In partic-
ular, he used it for desingularization of threefolds of characteristic
Zero.

e Nagata used the Riemann-Zariski (or Zariski-Riemann) spaces to
establish the following compactification theorem. His proof was very
difficult for reading by other mathematicians. For this reason, one
often uses the notion of compactifiable morphisms, though Nagata
gives complete characterization of such morphisms.

Theorem 1.2.1 (Nagata compactification theorem). Let f : Y — X be a
finite type morphism between qcqs schemes. Then f is separated iff it is com-
pactifiable in the sense that it factors into a composition of a schematically
dense open immersion Y — Y with a proper morphismY — X.
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1.3. A categorical interpretation of Val.

Definition 1.4. Fix a field k, and let K denote a varying k-field.

(i) Vary is the category of integral k-varieties with a fixed dominant point
Spec(K) — X.

(ii) birg is the category of local homeomorphisms X — Valg (k) with a
qcgs topological space X.

Theorem 1.5. The functor Val induces an equivalence of the category Vary,
localized by K -modifications onto the category biry.

Remark 1.6. (i) Again, the proof is easy and uses the ”Chow lemma”.

(ii) The theorem is an easy analog of Raynaud’s theory. In particular,
Val is an analog of the generic fiber in Raynaud’s theory.

(iii) The theorem was applied in [T1] to study local structure of Berkovich
analytic spaces and was used to prove that properness in rigid geometry is
stable under compositions.

(iv) There should be a similar theory for general qcqs X’s, but this was
not checked.
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2. RAYNAUD’S THEORY

e Let k be a complete valued field of height 1, and k° be its ring of
integers.
e Recall that to a formal finitely presented Spf(k°)-scheme X one as-
sociates generic fiber X;® (resp. X2", resp. f{%d) which is a rigid
(resp. analytic, resp. adic) space over k.
Theorem 2.1 (Raynaud). The generic fiber functor establishes an equiv-
alence of the category of X’s localized by blow ups along open ideals onto
an appropriate category of generic fibers (e.g. qcqs rigid spaces or compact
strictly analytic spaces).

Remark 2.2. (i) The main part of the proof (as I see it) is a strong Chow
lemma which asserts that any np-modification X’ — X (i.e. a proper mor-
phism inducing an isomorphism %;7 — X, of generic fibers) is dominated by
a formal blow up X" — X.

(ii) The theorem indicates that there is strong analogy between formal
schemes, non-Archimedean spaces and functor n and schemes, RZ spaces and
functor Val. Moreover, %Zd: projlimy. ¢ X; and adic points are actually
valuations (while analytic points are valuations of height one and rigid points
are Zariski closed points in X24).

(iii) The main property of blow ups which is used in the theory is that
given an open immersion U — X any blow up U’ — U can be extended
easily to a blow up X’ — X because one can extend the defining ideal
by EGA 1. T can generalize this statement to all modifications only using
Nagata’s theorem.
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3. P-MODIFICATION THEOREMS

3.1. Projective limits of schemes.

Theorem 3.1 (EGA 1V, §8). (i) any filtered projective family (Xq, fa,) of
gcqs schemes with affine transition morphisms possesses a projective limit
X, which respects the locally ringed spaces, i.e. |X|= projlim|X,| and
Ox—=injlimpr;!(Oy,).

(i) injlim, (f.p. stuff/X,)—(f.p. stuff /X) for Ox-sheaves, X-schemes
and X -morphisms.

Theorem 3.2 (Thomason and Trobaugh, "EGA V”). A scheme X is qcgs
iff X= projlim X,, for X,’s of finite type over Z.

Remark 3.1.1. (i) Since any quasi-coherent sheaf is a direct limit of finitely
presented sheaves by EGA I, this theorem is easily equivalent to an a priori
weaker claim that X is affine over a scheme X of finite type over Z.

(ii) Thomason gently noted that probably this theorem should have ap-
peared in EGA V.

Theorem 3.3 ([T3], "EGA VI”). Any (separated) morphism ¥ — X of
qcqs schemes factors into a composition of an affine morphismY — X' and
a finite type (separated) morphism X' — X.

Remark 3.4. (i) This theorem can be proved similarly to Thomason’s the-
orem.

(ii) Both proofs can be shorten if one imitates a certain patching argument
from Raynaud’s theory.
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3.2. Three P-modification theorems.

e There is an interesting application of semi-classical RZ spaces to P-
modification theorems. The latter are results of the following general
form.

e Let P be a property of a morphism (e.g. having geometrically re-
duced fibers), and X — S be a morphism with integral S and
which is P over the generic point 7 — S. Then there exists a
K-modification S — S for some fixed K 2 k(n) and a proper mor-
phism ¢ : X' — X xg S’ subject to certain restrictions (usually, a
modification) such that X’ — S’ is P.

e We illustrate this too uncertain formulation by three theorems.

Theorem 3.5 (Flattening Theorem by Raynaud-Gruson). P is flatness,
K = k(S) and v is the proper transform (i.e. X' is the schematic closure
Of AX?7 =X X8 7]).

Theorem 3.6 (Reduced fiber Theorem by Bosch-Liitkebohmert-Raynaud).
P is having geometrically reduced fibers, K = k(S)* and 1 is a finite modi-
fication.

Theorem 3.7 (Semi-stable modification Theorem by de Jong). P is being
a relative semi-stable curve, K = k(S)* and v is a modification.

Remark 3.8. (i) Although these three theorems were originally proved
differently, they can be attacked by a similar method as follows:

(1) Solve canonically when S is the spectrum of a valuation ring (this
stage is different for each problem).

(2) For any O € RZg(S), use EGA 1V, §8, to find a finitely presented
over S approximation for the solution over Spec(Q).

(3) Glue these solutions together by canonicity and more EGA IV, §8.

(ii) The new proof of 3.5 is due to Fujiwara-Kato, and the new proofs of
3.6 and 3.7 are in [T2]. Moreover, the obtained curve in 3.7 is canonical (or
stable), so one improves the original theorem by de Jong.
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3.3. Refined P-modification.

e Assume that U — S is open and X — S is P over U, then it is a
natural wish to preserve the U-fibers.

e Can one solve the P-modification problem so that S’ — S is an
isomorphism over U or is at least etale over U7 Note that flattening
and reduced fiber theorems were originally proved in such stronger
form.

e Idea ([T3], Fujiwara-Kato): to deal with the U-case use RZy(S)
instead of RZk ().

e To implement this idea one needs the following explicit description
of X = RZy(S).

Theorem 3.9. Identify U with a subset of X via the obvious embedding
U — X, then any point ¢t € X possesses a unique minimal generalization
uwe U, my COxy COpy and Ry = Ox /My is a valuation ring of k(u).

Remark 3.10. (i) One could expect that the theorem implies that X is a
family of classical RZ spaces with generic points u € U. However, we will
see that the situation is more subtle.

(ii) I call such Ox a semi-valuation ring with semi-fraction ring Oy,. It
is given by a local ring Oy, with a valuation ring R, of Oy /m., or by a
valuation | | : Oy, — I' U {0} with kernel m,,.

(iii) The theorem is proved similarly to Raynaud’s theory but using U-
modifications and U-admissible blow ups (i.e. blow ups along centers disjoint
from U).

(iv) RZy(S) is an algebraic analog of rigid (analytic or adic) spaces.

(v) Using the theorem, one easily strengthens the stable modification
theorem so that it involves only base change S’ — S which is etale over U
(though, then one has to allow non-proper covers).
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4. RELATIVE RZ SPACES

So far, we studied X = RZy (X) in the cases when f is an open im-
mersion or Y is a point (but f does not have to be a monomorphism).
It seems natural to study the case of more general f’s.

Let ¢ : Y — X be the natural map, then we introduce a sheaf My :=
i+(Oy) and notice that it is naturally an Ox-algebra.

Intuitively, the sheaf My can be considered as the sheaf of mero-
morphic functions on X. This agrees with the intuition in the cases
when Y is a point or f is a monomorphism.

The pair (Myx, Ox) is an analog of the pair (Ox, 0%) (resp. (Ox,0%))
in rigid (resp. adic) geometry.



RELATIVE RIEMANN-ZARISKI SPACES AND NAGATA COMPACTIFICATION 11

4.1. X-valuations on Y.

Definition 4.1. (i) An X-valuation on Y consists of a point y € Y, a
valuation ring R of k(y) and a morphism Spec(R) — X compatible with the
rest. In other words, it is a valuative diagram

Y Y

L

Spec(R) —= X

The set of all X-valuations on Y is denoted Spa(Y, X) (an adic space of R.
Huber when f is affine).

(ii) An X-valuation is minimal if the morphism y — Y xx Spec(R) is
a closed immersion. The set of all minimal X-valuations is denoted as
Valy (X).

e Each X-valuation on Y can be naturally ”cut” to a uniquely defined
minimal X-valuation on Y. Thus a set-theoretical retraction r :
Spa(Y, X) — Valy (X) arises.

e The valuative criterion of properness produces a natural projection
Spa(Y, X) — X.

e It was a surprise for me that this map is not an isomorphism, but
factors through r.

e Perhaps, this becomes less surprising after one observes that minimal
X-valuative diagrams suffice to test properness via the valuative
criterion. (This is not obvious, and requires a proof.)
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4.2. Main results for relative RZ spaces.

Theorem 4.2. (i) r is continuous;

(i) i : Y — X and any point r € X has a unique minimal generalization
y €i(Y);

(i11) Ox — Mx, and for any ¢ and y as above Ox . is a semi-valuation
ring with the semi-fraction ring Oy, = Mxy;

(iv) Valy (X)=X%.

Remark 4.3. (i) All the above claims are proved together, and none is
much simpler than another one.

(ii) Should have an analog of Raynaud’s theory for valuative spaces Valy (X),
but this was not checked.
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4.3. Decomposable morphisms.

e We say that f is decomposable if it is a composition of an affine
morphism Y — X’ followed by a proper morphism X’ — X.

e The analysis of spaces RZy(X) can be easily generalized to the case
when f :Y — X is decomposable, but U-admissible blow ups of X
should be replaced with Y-blow ups of X”.

o If f is affine, a Y-modification X — X is called a Y-blow up if
there exists an X-ample £ on X and a Y -trivialization ¢ : Ox— L
inducing an isomorphism after pulling back to Y.

Lemma 4.4. Each Y-blow up X — X is given by finitely generated Ox -
submodules € of f«(Oy) that contain 1. Namely, X —=Proj(#>2,E™), where
E™ is the submodule of f.(Oy).

e The unit section 1: Ox — f.(Oy) gives rise to ¢.

e Y-blow ups are as convenient to work with as usual blow ups. In
particular, one can extend them from an open subscheme, and prove
for them a version of Chow lemma.

e Using Y-blow ups one can imitate Raynaud’s theory.
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4.4. Decomposition theorem and Nagata compactification. It turns
out that the description of RZ spaces in the decomposable case is actually
the general description of RZ spaces because of the following decomposition
theorem.

Theorem 4.5. Let f : Y — X be a morphism between qcqs schemes. Then
f is separated iff it is a composition of an affine morphism 'Y — X' with a
proper morphism X' — X.

e Although the formulation of the decomposition theorem seems to be
new, it is equivalent to the union of Nagata compactification and
"EGA VI” (the separated case).

e Thus, one can deduce the theorem from known results, and as a
consequence obtain a description of a general RZ space.

e However, the interesting direction is the opposite one. Namely, one
can describe RZ spaces directly, and deduce the decomposition the-
orem.

e | hope that the second approach can lead to a proof of the decom-
position theorem for algebraic spaces.

Remark 4.6. It is very natural to look for counterexamples to the decom-
position theorem. Here are two failing candidates:

(i) The scheme Proj(Z[zg, x1,...,Zn,...]) is not qcgs because it is covered
by infinitely many affine charts.

(i) The qcqgs locally ringed space (Pz)N is not a scheme because its points
do not have affine neighborhoods.
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4.5. Main stages in direct description of RZ spaces.

e If Y/ — Y is an open immersion, X’ — X is separated of finite type,
and f': Y’ — X' is an X-morphism, then we have an embedding i :
Spa(Y’, X") — Spa(Y, X) by the valuative criterion of separatedness.

e The situation with Val’s is more subtle since the minimality condi-
tion can be destroyed by 1.

e It turns out that ¢ induces an embedding Valy/(X’) — Valy (X) iff
Y’ - Y xx X' is a closed immersion.

e Deligne following Nagata says that in such case Y’ is a quasi-domination
of Y over X', and this notion plays an important role in his proof of
Nagata’s theorem.

e One describes an RZ space X = RZy (X) in two stages.

e Local stage.

— At this stage for each point ¢ € X one finds a neighborhood of
the form X; = RZy,(X;) where Y; is a quasi-domination of Y
over X; and Y; — X; is affine. Then using a quasi-compactness
argument one is left with finitely many such quasi-dominations.

— This stage is done by using EGA 1V, §8 to approximate a val-
uative diagram with schemes of finite type.

— This stage has no analog in Raynaud’s theory, since each rigid
space is automatically covered by finitely many affinoid ones
(and the latter have affine formal models).

e Patching stage.

— This stage is an imitation of Raynaud’s theory.

— We use that the decomposable case (including each X;) is de-
scribed very concretely using Y-blow ups.

Remark 4.7. (i) Although RZ spaces and their analogy with the Raynaud’s
theory helped a lot to find the above proof of the decomposition theorem,
one can eagsily eliminate them from all formulations and arguments.

(ii) In such a proof, one simply approximates minimal valuative diagrams
with affine quasi-dominations, and then patches them together after modi-
fying them with appropriate Y-blow ups.

(iii) I hope that, up to small changes, the same proof should apply to
algebraic spaces.

(iv) It also seems probable that there is an analog of relative RZ spaces for
a morphism ) — X of algebraic spaces, which is the quotient of a relative
RZ space by an etale equivalence relation.
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