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General paradigm of resolution of singularities

The main aim of resolution of singularities is to
approximate a singular scheme X with a regular scheme Y
by finding a cover map f : Y → X . It is called a (local,
altered, etc.) desingularization, depending on the type of
the covering.
Grothendieck proved that quasi-excellent (or qe) schemes
form the widest class where one can hope to have a
consistent desingularization theory. Conversely, it is widely
hoped/believed that qe schemes do possess
desingularization of a very strong form.
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Desingularization

Definition
A (weak) desingularization of an integral scheme X is a proper
birational morphism f : Y → X with a regular Y .

Known cases:
Characteristic zero is the ideal situation: any qe X/Q
possesses a desingularization by blowing up regular
centers over Xsing. This can be done functorially in all
regular morphisms and extends to qe formal schemes and
analytic spaces.
Varieties over k of characteristic p > 0: only for
dim(X ) ≤ 3. Perfect k and p > 3! is due to Abhyankar
(1966); [k : kp] <∞ is due to Cossart-Piltant (2008).
General qe schemes (e.g. over Z): only for surfaces.
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Altered desingularization

A very successful way to weaken the classical notion of
desingularization was found by de Jong in 1996. It is easy
enough to be proved by current methods and yet it covers most
of cohomological applications (mainly with divisible
coefficients).

Theorem (de Jong)

Any integral scheme X of finite type over a base qe surface S
admits an altered desingularization: there exists a regular
integral Y with an alteration f : Y → X (i.e. f is proper and
generically finite).
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Altered local desingularization

There are weaker but useful versions of desingularization.

Definition
An altered local desingularization of an integral scheme X is a
morphism f : Y = tn

i=1Yi → X such that Y1, . . . ,Yn are integral
and regular, each Li = k(Yi) is finite over K = k(X ) and any
valuation of K with center on X lifts to some Yi .

For cohomological applications with non-divisible coefficients
one wants to control [Li : K ].

If Li = K then f is a local desingularization.
f is an inseparable local desingularization if Li/K are
purely inseparable.
f is an l ′-altered local desingularization if ([Li : K ], l) = 1.
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From local to global

An additional motivation for studying weaker desingularizations
is that sometimes they serve as an input for a patching/descent
that produces a usual desingularization. Here are two
examples.

For threefolds, local desingularization implies global
(Zariski, 1940).
In characteristic zero, altered desingularization implies
desingularization via toroidal quotients (Abramovich-de
Jong, 1997).
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Known cases

Altered local desingularization is known in the following cases.
l ′-altered local desingularization for any prime l invertible
on X : for all qe schemes X (Gabber, around 2007).
Inseparable local desingularization: for all varieties
(Temkin, 2008, the main topic of this talk).
Local desingularization: for varieties X of dimension at
most 3 and with [k(X ) : k(X )p] <∞ (Cossart-Piltant,
2008).
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Inseparable local uniformization

Zariski observed in 1930ies that the Riemann-Zariski space of
all valuations on X is quasi-compact, and hence (altered) local
desingularization reduces to (altered) desingularization of X
along a single valuation. The latter is called (altered) local
uniformization. Here is the local formulation of our main result.

Theorem (Inseparable local uniformization)
For any valuation ν on an integral variety X there exists a
regular integral variety Y with a dominant morphism Y → X
such that ν lifts to Y and L = k(Y ) is finite and purely
inseparable over K = k(X ).
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An application to local uniformization

Let p be the exponential characteristic (i.e. p ∈ {1,2,3,5, . . . }).
Choose n so that Lpn ⊂ K , then K is obtained from Lpn

by
successive adjoining p-th roots, and the integral closure of Opn

Y
in K gives rise to a model of ν. It easily follows that

Corollary
To prove local uniformization of ν it suffices to resolve along ν
hypersurface singularities of the form xp

n+1 = f (x1, . . . , xn).

Informally, this type of singularities was always recognized as
the important test case, where all "bad things" can happen, but
here we do prove a rigorous statement.
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Work in progress

The same method can be used to establish the following
generalization. We write "conjecture" since most of the proof (a
couple of articles) was not written down yet.

Conjecture
For any valuation ν of residue characteristic p on an integral qe
scheme X there exists a regular integral scheme Y with a
dominant morphism Y → X such that ν lifts to Y and L = k(Y )
is of degree pn over K = k(X ). In equal characteristic one can
take L/K either abelian or purely inseparable. In mixed
characteristic one can take L ⊂ K (x1/pn

1 , . . . , x1/pn

m ).
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Conventiones

Let us fix some notation.
k is a trivially valued ground field,
p = exp.char.(k) ∈ {1,2,3,5, . . . }.
K/k is a finitely generated extension of valued fields
ν is the valuation on K (or Kν) and hν is its height (rank).
X is a model of Kν (or ν), i.e. X is integral and separated
k -variety, k(X ) = K and ν is centered on X .
K ◦ν is the ring of integers, |K×ν | is the group of values and
K̃ν is the residue field.
Dν = DK/k = dim(X )− tr.deg.k (K̃ν)− rkQ(|K×ν | ⊗Q) is the
transcendental defect of ν; it is non-negative by
Abhyankar’s inequality and ν is called Abhyankar if Dν = 0.
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Main steps

Proof of the inseparable local uniformization theorem runs in
three steps; each step serves as the induction base for the next
one:

Step 1: the case of Abhyankar ν (only the height one case
will be used in Step 2).
Step 2: the case of hν = 1 is done by induction on Dν .
Step 3: the general case is done by induction on hν .

Step 2 is the crucial one, and it is the only step that prevents us
from proving the local uniformization. We will briefly discuss
each step and then concentrate on Step 2.
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Relation to toroidal geometry

Abhyankar valuations are much easier to work with
because the valued field (K , ν) is defectless, i.e. any finite
extension L/K satisfies

∑
ei fi = [L : K ].

Local desingularization is known for Abhyankar ν over
perfect k (Kuhlmann-Knaf, 2005), but we have to prove
slightly more (see the next slide), so we have to provide a
new proof.
The key technique is log-geometry (or toroidal geometry).
One easily finds K0 such that [K : K0] <∞ and ν0 = ν|K0 is
toric, and the main idea is to show that sufficiently fine toric
model of ν0 induces a toroidal model of ν. One essentially
uses that K/K0 is defectless.

M. Temkin Inseparable local uniformization



Introduction
An outline of the method

Induction on the defect rank
Complements

A general structure
Step 1: Abhyankar case
Step 2: induction on Dν

Step 3: induction on height

Descent and simultaneous local uniformization

Theorem (Simultaneous local uniformization of Abhyankar
valuations)
If k is perfect, K = Kν is Abhyankar, X is a model of Kν and
K1, . . . ,Kn are finite valued extensions of K , then there exists a
finer model Y → X of Kν such that the lift of ν to each Ki is
centered at a toroidal point yi ∈ Yi = NorKi (Y ), and y1 is even
regular.

One cannot have all yi ’s regular (Abhyankar’s example).
We will only need descent version in which n = 1, but the
rest comes for free.
Equivariant local uniformization is obtained when n = 1
and L1/K is Galois.
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Induction on the transcendental defect

Direct induction on dimension: fix curve fibrations
X = Xd → · · · → X1 → X0 where d = Dν and ν|k(X0) is
Abhyankar. The defect rank of νi = ν|k(Xi ) is i .
To uniformize νi+1 apply the induction assumption on νi
and a (sort of) relative uniformization of νi over
Si = Spec(k(Xi)

◦
νi

). The latter is possible only after a purely
inseparable (or other) alteration of Si (or Xi ), so we have to
replace Xi ’s with their inseparable alterations.
A similar induction scheme was also used by Kuhlmann
and (recently and in other context) by Kedlaya.
de Jong’s and Gabber’s works use full fibration by curves
(to dimension 0), and Dν plays no role there.
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Induction on height

ν is composed from ν1 of height one and a valuation on
K̃ν1 . Find a fibration X → B such that ν1 is centered over
the generic point η ∈ B and ν̃ = ν|k(B) is of height hν − 1.
Combine inseparable local uniformizations of ν1 on the
generic fiber Xη and of ν̃ on B into an inseparable local
uniformization of ν. This involves a lot of approximation
technique from [EGA IV, §8] (see next slide).
A similar argument reduces local uniformization to the
height one case.
For technical reasons (e.g. log-geometry is not developed
yet for Berkovich spaces), one loses stronger properties
(e.g. descent strengthening) when running Step 3 in the
current paper.
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Approximation of schemes

Roughly speaking, [EGA IV, §8] (which I call approximation
theory) states that S = proj lim Xi exists whenever the
transition morphisms are affine, and then f.p. (finitely
presented) geometry over S is the direct limit of f.p.
geometries over Xi .
Often, this is the only way to generalize known results to
non-noetherian schemes, e.g. S = Spec(K ◦ν ).
One makes an essential use of a simple but very important
observation that S→̃proj lim Xi where Xi are all (affine)
models of ν. In particular, one can use approximation to
pass from varieties to f.p. S-schemes and vice versa.
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The induction step in Step 2: an outline

X is a model of Kν , X → Y is a curve fibration, L = k(Y ),
µ = ν|L, DK/L = 1.
The valued field Lµ is inseparably uniformizable by
induction. We want to uniformize Kν using this and relative
uniformization of Kν on the S-curve XS = X ×Y S for
S = Spec(L◦ν). In addition to (standard) approximation
arguments this requires two steps.
Step (a): uniformize the completion K̂ν on the formal
Ŝ-curve X̂S (using Berkovich geometry).
Step (b): use decompletion to uniformize Kν on XS and
deduce the result for X (the main trouble is
non-henselianity of Kν).
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Inseparable uniformization of valued fields

Theorem (Inseparable very local uniformization)

There exist purely inseparable extensions l/k and L/lK and a
transcendence basis x1, . . . , xn ∈ L such that L is unramified
over l(x1, . . . , xn).

This follows from inseparable local uniformization of ν and
can be viewed as its "very local" version.
Many other local uniformization results/conjectures imply
analogous very local results. Converse implication is not
automatic, but I expect that the main difficulty is hidden
already in the very local versions.
To simplify exposition, we will use very local formulations to
illustrate Steps (a) and (b).
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Main analytic ingredient

Theorem (Inseparable uniformization of analytic
one-dimensional extensions)

For any one-dimensional extension K/k of equicharacteristic
analytic fields with DK/k = 1 (e.g. K̂ν/L̂µ) there exists a finite
purely inseparable l/k and finite separable m/l such that lK is
unramified over a subfield of the form m̂(x) for x ∈ lK .

A non-trivial extension l/k must be present. So, having
purely inseparable (or, as an alternative, abelian of degree
pn) extension l/k is the best we can hope for.
The proof is a hard computation with analytic fields.
The same proof shows that in all characteristics the same
is true for some l ⊆ k ′, where k ′/k is a fixed extension with
deeply ramified k ′.
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Deeply ramified fields

An analytic field l of residue characteristic p is deeply
ramified if (i) l is not discrete, and (ii) (l◦)p + pl◦ = l◦ (i.e.
frobenius is surjective on l◦/(p)). (If char(l) = p then (ii)
means that l is perfect.)
If char(k) = p then k has both abelian and purely
inseparable algebraic extensions l with deeply ramified l̂ ; if
char(k) = 0 then one can take l = k(x1/p∞

1 , x1/p∞
2 , . . . ).

We essentially use the following (characterizing) property
of a deeply ramified l : if m/l is analytic and
inf |m − α| < inf |l − α| for α ∈ la then l(α) embeds into m.
Other such properties are: (i) any algebraic extension of l
has zero different (i.e. is almost étale in the sense of
Faltings), (ii) Ω1

m◦/l◦ = 0 for finite separable m/l .
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Decompletion

Very local analytic uniformization easily implies the following
valued analog.

Theorem
If K/k is a one-dimensional extension of valued fields with
DK/k = 1 then there exists a finite purely inseparable extension
l/k, a finite extension m/l , and an unramified extension L/lK ,
such that L is unramified over a subfield of the form m(x).

The extension m/l is usually ramified, and we cannot split
off m as a subfield of lK because Kν does not have to be
henselian anymore.
Thus, we only manage to uniformize ν étale-locally, and
some descent technique is still required.
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The descent trick

The descent is enabled by the fact that we prove (by
induction) the descent version of inseparable local
uniformization. In our case, k = k(Y ) and we apply the
induction assumption to Y and the extension m/k .
This trick seems to be of global geometric nature. It seems
that there is no meaningful formulation of descent very
local uniformization.
Oversimplifying, we find a smooth morphism T → Z
between models of L = m(x) and m. If a finer model
Y ′ → Y is such that Z ′ = Norm(Y ′) refines Z and m is
centered on its regular point, then Y ′ also induces
uniformization of L, and hence (by étaleness of L◦/(lK )◦)
also of lK .
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Conjecture: the strongest form

Conjecture
Assume that X is an integral qe scheme, ν is a valuation of
K = k(X ) centered on X, K1, . . . ,Kn are finite valued
extensions of Kν , and L/K is an algebraic deeply ramified
extension. Then:
(i) There exist a finer model X ′ → X of Kν , a finite subextension
L ⊆ L and extensions of the valuations to Li = LKi which are
centered on toroidal points yi ∈ NorLi (X

′). Moreover, y1 can be
chosen regular.
(ii) If ν is Abhyankar then can take L = K in (i), i.e.
simultaneous local uniformization holds for such ν.
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