
Logarithmic Geometry and Resolution of
Singularities

M. Temkin

June 8, 2021

Conference on Arithmetic Geometry
in honor of Luc Illusie

M. Temkin (Hebrew University) Logarithmic Geometry and Resolution of Singularities 1 / 29



Introduction

I was lucky, my first project, where logarithmic structures of
Fontaine-Illusie were seriously used, was... a joint project with Luc
Illusie.
We worked out (and improved a bit) Gabber’s l ′ strengthening of
de Jong’s altered resolution.
The intuition of and the confidence in log geometry I got during
this project was very helpful for recent advances with the classical
Hironaka’s resolution.
In a joint project with Dan Abramovich and Jarek Włodarczyk we
extended the classical canonical/functorial resolution to
morphisms (functorial semistable reduction) and obtained a much
faster and simpler dream resolution algorithm.
Quite ironically, the dream algorithm does not use log geometry at
all... But it has a log variant developed by Ming Hao Quek.
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Altered resolution

The formulation and history

Definition
A char(X )-alteration of a dominant morphism f : Y → X of integral (log)
schemes is f ′ : Y ′ → X ′ with compatible morphisms Y ′ → Y , X ′ → X
proper, generically finite of rank not divisible by any l invertible on X .

Theorem (T17, altered resolution of morphisms)
Given a finite type f : Y → X between integral fs log schemes with
generically trivial log structures and X of finite type over a qe surface,
there is a log smooth char(X )-alteration f ′ : Y ′ → X ′.

Altered resolution was discovered by de Jong in 95: dim(X ) ≤ 1 (a
point or a trait), also there is an equivariant version.
de Jong-Abramovich 96: char(X ) = 0, X is a point.
Gabber (announce) ∼05: l ′-alteration for a single l , dim(X ) ≤ 1.
Illusie-T 14: Gabber’s program and l ′-alteration for any X .
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Altered resolution

The method

The proof runs by a direct induction on (relative) dimension: fiber

a variety or a morphism by curves Xd
fd→ Xd−1 → · · ·

f1→ X0 and
iteratively resolve fi and hence (the corresponding pullback of) Xi .
The role of log geometry is crystal clear: a relative curve fi can
only be made log smooth (or semistable). The proof is based on
properness ofMg,n and semistable reduction of Deligne-Mumford
(which was the first relative resolution result discovered).
Control on the rank is done by quotients preserving log
smoothness (by so-called toroidal/very tame actions).

Observation
The classical context operated with regular schemes and log
structures given by snc divisors, but everything works even easier for
log regular log schemes, and this generality becomes critical when
considering actions and making them toroidal (so-called torification).
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Altered resolution

Monoidal democracy and semistable reduction

Principle
Once log structures are used, the right smoothness context is that of all
fs log smooth/regular schemes/morphisms. All fs monoids are equal :)
If needed, they can be improved combinatorially by a separate routine.

Theorem (Adiprasito-Liu-T 18, semistable reduction for morphisms)

In the altered resolution theorem one can achieve in addition that Y ′

and X ′ are regular and the log structures are given by snc divisors.

This is the best possible resolution of morphisms, locally given by
x1 = y1 . . . yn1 , . . . ,xr = ynr−1+1 . . . ynr .
It is deduced from [T17] by hard combinatorial methods – a
relative version of the main result of [KKMS] on lattice polytops.
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Logarithmic resolution: motivation and formulations

The rest of the talk is about a joint project with D. Abramovich and J.
Włodarczyk on resolution of singularities over a field k with
char(k) = 0: morphisms, log varieties and a bit on a dream algorithm.

References:

Logarithmic resolution:
[ATW17] "Principalization of ideals on logarithmic orbifolds", JEMS
22, 2020.
[ATW20] "Relative desingularization and principalization of ideals".

Dream algorithms:
[ATW19] "Functorial embedded resolution via weighted blowings
up".
[Quek20] "Logarithmic resolution via weighted toroidal blowings
up".
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Logarithmic resolution: motivation and formulations

Motivation

De Jong’s method is not canonical, and even the smooth locus of
f : Y → X can be modified.
Main goals of the new project were:

Resolve morphisms so that the log smooth locus is preserved, in
particular, prove semistable reduction over non-discrete valuation
rings.
Do this as functorially as possible, e.g. compatible with base
extensions (or base changes).
Clarify the role of log geometry in the classical resolution.

The only hope was to use Hironaka’s embedded resolution
methods with log smooth ambient varieties (or morphisms)
instead of the smooth ambient varieties.
A signature of log geometry in Hironaka’s approach and the
monoidal democracy principle indicated that this might be
possible.
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Logarithmic resolution: motivation and formulations

Classical resolution

Resolution of singularities associates to an integral variety Z a
modification (i.e. proper birational) Zres → Z with a smooth Zres.
Hironaka 1964 (the Fields medal work): a resolution exists.
Hironaka, Giraud 70ies: simplifications, maximal contact.
Villamayor, Bierstone-Milman 80ies-90ies: algorithmic and
canonical resolution.
Włodarczyk 2005: smooth-functoriality, i.e. Z ′res = Z ′ ×Z Zres for
any smooth Z ′ → Z . This both simplifies the arguments and has
stronger applications (e.g. equivariant resolution).
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Logarithmic resolution: motivation and formulations

Relative and logarithmic resolution

[ATW17] The classical algorithm has a logarithmic analogue
associating to each generically log smooth log variety X a
modification Xres → X with a log smooth log DM stack Xres. It is
functorial w.r.t. log smooth morphisms Y → X .
[ATW20] The same logarithmic resolution algorithm applies to a
morphism f : X → B of log schemes: it constructs Xres → X with a
log smooth Xres → B, but can fail when dim(B) > 1.
The new ingredient: there exists a modification h : B′ → B s.t. the
algorithm does not fail for the base change f ′ : X ′ → B′. Moreover,
X ′′res → X ′res is compatible with further base changes B′′ → B′.
In the current version h is not canonical, so resolution of
morphisms is only relatively functorial.
Work in progress: h can be chosen canonically.
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Classical resolution General framework

Embedded resolution

All canonical methods before [ATW17] construct essentially the
same algorithm built on Hironaka’s framework. Everything is done
locally and glues due to the functoriality.
The resolution is embedded: one (locally) embeds X into a
manifold (i.e. a smooth variety) M. To the pair (M,X ) one
associates a modification of manifolds f : Mres → M and
Xres ↪→ X ×M Mres is a certain transform of X under f .
Functorial embedded resolution implies functorial non-embedded
one because an embedding X ↪→ M with minimal dim(M) is
unique (étale) locally.
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Classical resolution General framework

Main choices

The following choices are done in the classical resolution:
(1) Class of modifications: the algorithm iteratively blows up

submanifolds V ⊂ M. Notation: fi : Mi+1 = BlVi (Mi)→ Mi .
(2) Transforms: one pullbacks X and subtracts a multiple of the

exceptional divisor: Xi+1 = f−1
i (Xi)− dEfi .

(3) Choice of centers: the order d = d1 of I = IX at x ∈ M is a (very
crude) primary invariant.

(4) The history: to avoid loops the algorithm encodes history in the
iterated exceptional sncd E . The number s(x) of its components
at x is another primary invariant.

(5) Induction: one iteratively restricts to hypersurfaces of maximal
contact, getting induction on n = dim(M). The actual invariant,
whose maximal locus is blown up, is closer to
(d1, s1,d2, s2, . . . ,dn) with the lex order.
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Classical resolution General framework

History and a dream algorithm

The classical algorithm has a subtle inductive structure and encodes
history of the process in the boundary. With our choices a no-history
algorithm does not exist:

Example (No progress.)

Let φ = x2 − yzt and X = V (φ) in M = A4. Then V = 0 is the only
smooth S3-equivariant subscheme containing 0 in Xsing, but
M ′ = BlV (M) has charts with X ′ = f−1(X )− 2E having the same
singularity, e.g. in M ′y we have
φ = (x ′y ′)2 − y ′(y ′z ′)(y ′t ′) = y ′2(x ′2 − y ′z ′t ′).

A similar computation shows that blowing up the pinch point of
Whitney umbrella V (x2 − y2z) yields a pinch point again.

Using weighted blow ups we have constructed in [ATW19] a dream
algorithm which just iteratively blows up the maximal invariant locus, so
that the invariant drops. No history is needed there.
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Classical resolution General framework

The boundary

After a blow up f : M ′ → M each point x ∈ E = V (t) has a god
given coordinate t (unique up to a unit) coming from the history of
the resolution. One only uses coordinate systems which include t .
Inductively, for a sequence fi : Mi+1 → Mi we set
Ei+1 = f−1

i (Ei) ∪ Efi and call it the accumulated boundary of M.
We always work with coordinates t1, . . . ,tn s.t. Vi = V (ti1 , . . . ,til )
and Ei = (tn−r+1 . . . tn). So, Ei is an snc (simple normal crossings)
divisor and Vi has simple normal crossings with Ei (lies in few
components and is transversal to others).
We call the boundary coordinates exceptional or monomial and
denote them m1, . . . ,mr . So, (t1, . . . ,tn) = (t1, . . . ,tn−r ,m1, . . . ,mr ).
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Classical resolution General framework

The role of the boundary

Good news:

Using canonical monomial coordinates decreases choices, makes
the construction more canonical, helps to avoid loops.
Boundary can accumulate parts of I = IX : we set I = ImonIpure,
where Imon = (ml1

1 . . .m
lr
r ) and Ipure is purely non-monomial.

Bad news/another side of the same coin:
Must treat E and monomial coordinates with a special care.
Less possibilities for coordinates, centers must have snc with E .

Remark
Many technical complications of the classical algorithm are due to a
bad separation of regular and exceptional coordinates because both
are used to define the order.
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Classical resolution General framework

Principalization

All algorithms operate algebraically with I = IX and solve the
following principalization problem: find a sequence of submanifold
blow ups (Mn,En)→ · · · → (M,E) such that In = IXOXn is
invertible and monomial (i.e. supported on En).
Magic: the last non-empty strict transform Xl ⊂ Ml of X equals to
Vl . So, it is smooth and transversal to El .
Thus, principalization yields resolution Xl → X and even resolves
the boundary El |Xl (a strong smell of a log geometry).
A great profit: working with ideals provides a lot of flexibility.
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Classical resolution General framework

Order reduction

The main invariant of the algorithm is d = ord(Ipure), where
ord(J) = minf∈J ord(f ). For example, ord(x2 − yz2) is 2 at any point
of the z-axis and ordO(x5 + y7, x3z3) = 5.
One works with marked (or weighted) ideals (I,d) where d ≥ 1,
only uses M ′ = BlV (M) with V ⊆ (I,d)sing := {u ∈ M|ordu(I) ≥ d},
and updates I by I′ = (IOM′)I−d

E ′ . E.g., as we have computed
earlier (x2 − yzt ,2)′ = (x ′2 − y ′z ′t ′,2) on the y -chart.
Order reduction finds a sequence Mn → · · · → M of such
(I,d)-admissible blow ups so that (In,d)sing = ∅. Its existence
implies principalization just by taking d = 1.

Remark
The so-called max order case when d = ord(Ipure) is the main one. It
implies the general one relatively easily (and characteristic free). One
has to consider the general case due to a bad (inductive) karma.
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Classical resolution Induction on dimension

Maximal contact

The miracle enabling induction on dimension is that in the
maximal order case, order reduction of (I,d) is equivalent to that
of (C(I)|H ,d !), i.e. a blow up sequence reduces the order of (I,d)
iff it reduces the order of (C(I)|H ,d !). Here C(I) is a coefficient
ideal and H is a hypersurface of maximal contact.
The Main Example: if I = (td + a2td−2 + · · ·+ ad ) with t = t1 and
ai(t2, . . . ,tn), then H = V (t) and C(I) = (ad!/2

2 , . . . ,ad!/d
d ).

Remark
(i) Why coefficient ideal? Because, unlike C(I)|H , the stupid restriction
I|H = (ad )|H looses a lot of information.
(ii) Each coefficient ai has natural weight i .
(iii) No problem to have a1 = 0 in characteristic zero (enough d ∈ k×).
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Classical resolution Induction on dimension

Derivations

The main tool for a choice-free description of the algorithm is the
derivation ideals D(I) = D1(I) generated by the elements of I and their
derivations, and its iterations Dn(I) = D(Dn−1(I)). Note that
ordx (I) = ordx (D(I)) + 1 for x ∈ V (I). The derivation provides a
conceptual way to define all basic ingredients excluding the monomial
ones:

(1) ordx (I) is the minimal d such that Dd (Ix ) = Ox .
(2) Maximal contact is any H = V (t), where t is a regular coordinate

in Dd−1(Ix ) (in particular, H is smooth).
(3) The coefficient ideal C(I) is just

∑d−1
i=0 (Di(I))d!/(d−i).

Remark
The only serious difficulty in proving canonicity of the algorithm is to
show independence of the choice of a maximal contact.

M. Temkin (Hebrew University) Logarithmic Geometry and Resolution of Singularities 19 / 29



Classical resolution Induction on dimension

Log derivations

The module of logarithmic derivations Dlog is spanned by mj∂mj and ∂ti
for regular ti ’s. These are the derivations preserving E (i.e. taking IE to
itself). For almost all needs it is easier and more conceptual to use
Dlog, but it does not compute the order. This is why one has to use the
usual derivations and runs into two complications as follows.
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Classical resolution Induction on dimension

Choice of the maximal contact

(1) If E is not transversal to H then E |H makes no sense for us, hence
we loose the control on the choice of centers having snc with E .

Solution: new boundary is transversal to H (and any center lying in it),
so first iteratively reduce the order of I along the locus where the
multiplicity s of the old boundary is maximal (practically, work with
I + Id

E(s)). Thus, our primary invariant is (d , sold) ordered
lexicographically.
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Classical resolution Induction on dimension

Monomial contribution to the order

(2) When ord(I) ≥ d but ord(Ipure) < d we cannot proceed by looking
only at Ipure. This happens because Imon contributes to the order
and causes that (I,d)sing 6= ∅ = (Ipure,d)sing.

Solution:
1. Reduce e = ord(Ipure) only along the locus where ord(Imon) ≥ d − e.
Practically, we resolve the so-called companion ideal, which is the
weighted sum of (Ipure,e) and (Imon,d − e).
2. Once e = 0 (i.e. Ipure = (1)), apply a purely combinatorial step to
Imon.
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Logarithmic algorithms

What is the boundary?

To proceed let us try to understand what the boundary really is.
Unlike the embedded scheme X , I think it is wrong to view the
boundary as a subscheme E of M (though it is determined by E).
This is hinted at by functoriality: we consider blow ups M ′ → M
which do not take E ′ to E , i.e. (M ′,E ′)→ (M,E) is not a
morphism of pairs.
But (M ′,E ′)→ (M,E) is a morphism of log schemes, once we
view the boundary as the associated log structure
MM =MM(log E) = O×M\E ∩ OM ⊂ (OM , ·) given by elements
invertible outside of E .
Furthermore, the sheaf of monomialsMM(log E) is precisely
what we need from E for principalization via factoring out Imon!
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Logarithmic algorithms

Logarithmic parameters

Étale locally log smooth log varieties are toroidal varieties, i.e. of
the form T = Spec k [M][t1, . . . ,tl ] for a sharp fs M.
We view ti as regular coordinates and all elements of M as
monomial coordinates at the origin of T .
Ω(T ,M) is freely generated by dti and δmj , where {mj} is any basis
of Mgp.
Monomial democracy: M does not have to be free anymore and
there is no canonical base of Mgp, all monomials are equal :)

Remark
The most interesting feature of the new algorithm is functoriality w.r.t.
Kummer log-étale covers, e.g. obtained by extracting roots of the
monomial coordinates in the classical setting, or obtained by extracting
roots of a uniformizer π in the semistable reduction case. This is out of
reach (and unnatural) for the classical algorithms.
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Logarithmic algorithms

Main results

Ignoring an orbifold aspect, our main result is:

Theorem (Log principalization)

Given a toroidal variety T with an ideal I ⊂ OT there exists a sequence
of admissible blowings up of toroidal varieties Tn → · · · → T such that
the ideal IOTn is monomial. This sequence is compatible with log
smooth morphisms T ′ → T .

As in the classical situation this implies

Theorem (Log resolution)

For any integral logarithmic variety X there exists a modification
Xres → X such that Xres is log smooth. This is functorial w.r.t. log
smooth morphisms X ′ → X.
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Logarithmic algorithms

The method

In brief, we want to log-adjust all parts of the classical algorithm. The
main adjustment is to only use log derivations:

(1) logordx (I) is the minimal d such that (Dlog)d (Ix ) = Ox .
(2) Maximal contact is any H = V (t), where t is any regular

coordinate in (Dlog)d−1(Ix ) (in particular, H is toroidal).
(3) The coefficient ideal C(I) is just

∑d−1
i=0 ((Dlog)i(I))d!/(d−i).

(4) In addition, J is (I,d)-admissible if I ⊆ Jd and, for appropriate
coordinates, J = (t1, . . . ,tl ,m1, . . . ,mr ) for any set of monomials.
Then X ′ = BlJ(X ) is toroidal and the d-transform
I′ = (IOX ′)(JOX ′)

−d is defined. Note that J is submonomial – a
monomial ideal on the log submanifold V (t1, . . . ,tl)).
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Logarithmic algorithms

Infinite log order

Note that logord(ti) = 1 but logord(m) =∞. This is the main
novelty that allows functoriality w.r.t. extracting roots of monomials
(Kummer covers).
As a price we have to do something special when logord(I) =∞,
but this is simple: just start with blowing up the minimal monomial
ideal Imon containing I. For example, if I = (

∑
i∈Nr mi t i) then

Imon = (mi). The single toroidal blow up makes logord finite! (This
result is due to Kollár.)
Our algorithm is simpler, in particular, it avoids both complications
(max contact is given by a regular coordinate!).
In a sense, we completely separate dealing with regular
coordinates via log order and dealing with monomials via
combinatorics (i.e. toroidal blow ups).
The invariant is just (d1, . . . ,dn) with di ∈ N, dn ∈ {0,∞}.
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Logarithmic algorithms

Orbifolds

Is all this so elementary? Where is the cheating?
Well. Our algorithm does not distinguish monomials and their
roots. In fact, we view this as a serious advantage (log smooth
functoriality). As another side of the coin, to achieve correct
weights and admissibility, the algorithm often insists to use
Kummer monomials m1/d .
This can be by-passed by working on log-étale Kummer covers,
which is ok due to the log smooth functoriality we prove. The
Kummer-local description remains the same as we saw. However,
in order to describe the algorithm via modifications of T we have
to use orbifolds and non-representable modifications T ′ → T that
we call Kummer blow ups.
This is ok for applications, because we can remove the stacky
structure afterwards by a separate torification algorithm. Though
the latter is only compatible w.r.t. smooth morphisms.
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Logarithmic algorithms

An example

Example

(i) Take T = Spec C[t ,m] and I = (t2 −m2). Then logordO(I) = 2,
H = V (t), C(I)|H = (m2,2), the order reduction of C(I)|H blows up
(m2)1/2 = (m), and the order reduction of I blows up (t ,m). Just as in
the classical case.
(ii) If I = (t2 −m) then logordO(I) = 2, H = V (t), C(I)|H = (m,2), the
order reduction of C(I)|H blows up (m1/2), and the order reduction of I
blows up (t ,m1/2). This is a non-representable Kummer blow up
whose coarse moduli space Bl(t2,m)(T ) is not toroidal.

Remark
More generally, the weighted blow up of ((t1,d1), . . . ,(tr ,dr )) in An is
the coarse space of a non-representable modification with a smooth
source. They are used in the dream algorithm of [ATW19] and should
be useful for other classical problems in birational geometry.

M. Temkin (Hebrew University) Logarithmic Geometry and Resolution of Singularities 29 / 29


	Introduction
	Altered resolution
	Logarithmic resolution: motivation and formulations
	Classical resolution
	General framework
	Induction on dimension

	Logarithmic algorithms

