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Conventiones

All geometric spaces (mainly schemes) in this talk are of
characteristic zero and all (formal) schemes are
noetherian.
The regular locus Xreg consists of points at which X is
regular, its complement is the singular locus Xsing.
A sequence of morphisms will often be denoted as
X ′ 99K X .
References: a survey "Absolute desingularization in
characteristic zero" at arXiv:[1001.5433] and the
references given there. Also, [BMT] stands for a joint paper
with E.Bierstone and P.Milman "Q-universal
desingularization" at arXiv:[0905.3580]. These papers and
the slides of the lecture are also at my homepage at
math.huji.ac.il/∼temkin.
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Hironaka’s theorem

Theorem (Hironaka, 1964)
Assume that k is a local noetherian ring containing Q whose
completion homomorphism φ : k → k̂ is regular (i.e. the
geometric fibers of φ are regular) and X is integral of finite type
over k and with a closed subscheme Z.
Non-embedded desingularization: there exists a sequence of
blow ups X ′ = Xn 99K X0 = X with regular X ′ and such that the
centers of blow ups are regular and lie over Xsing.
Embedded desingularization: if X is regular then there exists a
sequence of blow ups X ′ 99K X such that the centers are
regular, have normal crossings with the exceptional divisors,
and Z ′ = Z ×X X ′ is an exceptional divisor (with some
multiplicities), in particular, Z ′ is monomial.
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Some comments

Hironaka proved stronger results, in particular, he
considered also non-reduced X and proved that one can
choose centers Vi ⊂ Xi such that Xi is normally flat along
Vi .
The proof is not constructive, and the obtained
desingularization is not algorithmic or canonical. In
particular, it is not clear how to glue local
desingularizations, and this is one of the main reasons why
the proof is so difficult.
The proof cannot be run entirely in the category of
algebraic varieties, since formal completions are involved.
We will mainly discuss the non-embedded
desingularization for simplicity of the exposition.
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Quasi-excellent schemes

Encouraged by Hironaka’s work, Grothendieck wrote the
following in [EGA IV2,§7.8,§7.9], 1965.

Definition: a scheme k is quasi-excellent or qe (the word
was introduced later) if: (N) any integral f.t. k -scheme X
has open Xreg, and (G) OX ,x → ÔX ,x is regular for any
x ∈ X .
Theorem: if any integral f.t. k -scheme X possesses a
weak desingularization then k is qe.
Conjecture/hope: any integral qe scheme possesses a
desingularization.
Remark: Hironaka’s method reduces desingularization to
the case of X = Spec(A) for a complete local A. In
particular, it implies desingularization of qe schemes of
characteristic zero.
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Some comments

The world of qe schemes is the right place to study
desingularization: at least qe schemes possess weak local
uniformization (Gabber 2007, unpublished) and most
experts expect Grothendieck’s conjecture to be true.
Grothendieck’s remark is a puzzle (although it is repeated
in wikipedia’s article on resolution of singularities). No
supporting proof was published (to the best of my
knowledge).
Nevertheless, people used the remark as a proved result,
in particular, to resolve spectra of affinoid rings in rigid
geometry (e.g. Spec(Qp{T1, . . . ,Tn}/I)).
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Ubiquity of qe schemes

Almost any "reasonable" noetherian ring or scheme is qe.
Grothendieck (1965): Y is essentially f.t. over a qe X then
Y is qe.
Gabber (2007): qe rings are preserved under formal
completion (very difficult, uses weak local uniformization).
Fields and number rings are qe. Quasi-excellence of a ring
is preserved by passing to a f.g. algebra, formal or
convergent power series rings.
Local rings of varieties, formal varieties, complex analytic
spaces, non-archimedean analytic spaces are qe.
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The reasons to study desingularization of qe schemes

What is the motivation to study desingularization of qe
schemes (beyond the natural wish to clarify Grothendieck’s
claim and to prove results in largest possible generality)?

Desingularization is of algebraic nature: we will see that
strong enough desingularization of qe schemes implies
desingularization of all other geometric objects of
characteristic zero, including qe formal schemes, complex
analytic spaces, and non-archimedean analytic spaces.
Note that desingularization of formal varieties is new.
Our understanding of the variety case improved a bit in this
research ([BMT]).
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Functorial desingularization

Definition
A family F(X ) : X ′ 99K X of desingularizations is functorial
(w.r.t. smooth morphisms) if for any smooth f : Y → X the blow
up sequence F(Y ) is obtained from the pullback sequence
F(X )×X Y by omitting empty blow ups.

Main improvement of Hironaka’s results for varieties was in
constructing algorithmic functorial desingularization of
varieties (Bierstone-Milman, Villamayor, Włodarczyk, and
many other experts).
Proofs are much simpler since local solutions glue.
One works within the category of varieties earning
simplicity and sacrificing, for example, formal varieties.
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Main results

Theorem (T)
Reduced qe schemes over Q admit desingularization F
functorial w.r.t. regular morphisms, such that F(X ) : X ′ 99K X is
a sequence of blow ups with regular centers.

Normal flatness condition is not achieved so far.

Theorem (T)
Schemes Z embedded into regular qe schemes X over Q admit
desingularization E(X ,Z ) : X ′ 99K X that blows up regular
centers, monomializes Z and is functorial w.r.t. morphisms
(X ,Z )→ (X ,Z ) s.t. X → X is regular and Z = Z ×X X.

In the current version, the final boundary is snc but the centers
may not have normal crossings with the boundaries.
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Desingularization of other geometric spaces

Theorem (T)
(i) F and E extend to quasi-compact qe formal schemes and
compact analytic spaces of characteristic zero.
(ii) For non-compact spaces, F and E can be defined as infinite
hypersequences labeled by a well ordered set such that the
composition is finite over compact subspaces.

Proof.
Let us outline how F(X ) is constructed for a complex analytic
space X . Cover X by closed subspaces Xi of polydiscs. Then
Ai = OX (Xi) is qe, hence analytification of F(Spec(Ai)) is a
desingularization F(Xi) of Xi . The construction globalizes
because the gluing homomorphisms OX (Xi)→ OX (Xi ∩ Xj) are
regular (but not smooth!).
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Applications

So far, the main case used in applications is
desingularization of formal varieties.
In particular, it was used for study of motivic integration, log
canonical thresholds, desingularization of meromorphic
connections, and motivic Donaldson-Thomas invariants.
To study the latter, Kontsevich-Soibelman also conjectured
that any morphism between smooth proper formal varieties
over C[[t ]] which is generically an isomorphism or
bimeromorphic (resp. a rig-isomorphism) factors into a
composition of blow ups and downs with smooth centers
(resp. lying in the closed fiber). This weak factorization
conjecture is expected to follow from desingularization of
formal varieties (joint project with D. Abramovich).
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The method

Let us describe the main blocks of our method for constructing
F (while E is built similarly but more technically).

Step 0. Input: a desingularization of varieties FVar which is
functorial w.r.t. all regular morphisms.
Step 1. Localization: reduce the general problem to
desingularizing X ’s such that Xsing is a variety (or to
desingularizing rig-regular formal varieties X – the
completion of X along Xsing).
This stage is close in spirit to Grothendieck’s claim. It is
weaker, but I can prove it and it is still very useful.
Step 2. Algebraization: realize X above as a completion of
a variety X , and show that FVar(X ) induces FVar(X) which
is independent of the choice of the algebraization X̂→̃X.
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Choice of FVar

[BMT]: the desingularization algorithm FVar of
Bierstone-Milman is functorial w.r.t. all regular morphisms,
not necessarily of finite type (probably this is true for other
methods, but we do not know).
The main obstacle: all embedded methods replace ideals
I ⊂ OX with other ideals obtained by use of DerX/k . This
depends on k , as DerX/kI can differ from DerX/k0

I for
k0 ⊂ k . Thus, infinite localizations, such as
Spec(Q(x)[y ]) ↪→ Spec(Q[x , y ]), may cause troubles.
Solution: work with absolute derivations DerX/Q; this
makes various algorithms "absolute", i.e. induced from
their restriction onto Q-varieties. (We proved that this does
not affect FVar, so it is already absolute.)
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Main idea of localization

Resolving X = X0 by a blow up sequence
F(X ) = (. . . 99K Xi 99K X0), we can run induction by
codimension and localize w.r.t. X0 rather than current Xi .
This reduces the problem to finding a resolution FVar of
schemes X ′ with f.t. morphism f : X ′ → X s.t. X is local
with closed point x ∈ X and X ′sing ⊆ f−1(x). In particular,
X ′sing is a variety.
F is built uniformly for all schemes, so it differs from FVar
already on varieties.
The method is very robust, characteristic free and applies
to all versions of desingularization (embedded, functorial,
etc.).
In particular, non-functorial desingularization of general qe
scheme follows from Hironaka’s theorem (but the reduction
is, probably, not what Grothendieck meant).
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The inductive scheme

Set F0(X ) = IdX and built inductively a blow up sequence
Fd(X ) : X ′ 99K X that resolves X over an open set U
whose complement Z is of codimension at least d + 1.
For illustration, assume that Z = z is a point. Each center
Vi ⊂ Xi may be singular over z, so insert Fd(Vi) into
Fd(X ) before blowing up Vi . In the end apply the blow up
induced from FVar(X ′z), where X ′z = Spec(OX ,z)×X X ′.
In general, do this simultaneously for all codimension d + 1
points of Z , and extend the inserted blow ups by taking
Zariski closure of the centers.
The sequence Fd(X ) stabilizes by noetherian induction
(even when dim(X ) =∞ !), so set F = limFd .
It is useful to have qe pathologies in mind. The main
induction is by codimension. (How else can one treat
dim(X ) =∞ or even dim(Xsing) =∞?)
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Completion

If Xsing is a variety then to construct FVar(X ) is equivalent to
construct FVar(X), where X is the completion of X along
Xsing.
Indeed, X is a rig-regular formal variety (i.e. its "generic
fiber is regular"), so FVar(X) blows up only open ideals (or
the subschemes of the closed fiber of X), and those
algebraize to ideals on X (or subschemes of Xsing).
We use that X is qe, so X and X are related by regular
"morphisms". In particular, their regular loci match.
We also use that X is qe. This is much simpler than
Gabber’s results, and was proved by Valabrega in 1970ies.
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Resolution of formal varieties: a challenge

Modern algorithms (e.g. the algorithm of
Bierstone-Milman) do not imply analytic desingularization
in a formal way, but can be rephrased in the analytic
contexts almost without changes. The same should be
done for formal varieties.
I expect that one can reformulate the method of
Bierstone-Milman (and, probably, other methods) for all
formal varieties at cost of working with continuous
derivatives D̂erX/k . Moreover, one can obtain an absolute
algorithm (compatible with all regular morphisms) by taking
absolute continuous derivatives D̂erX/Q.
In the case of success, one would obtain strongest forms
of embedded and non-embedded desingularization (since
the localization stage can "chew" any input).
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Resolution of formal varieties by algebraization

Algebraization of an affine rig-smooth formal variety X over
k [[t ]] is possible by results of Elkik, so X→̃X̂ for a variety
X . Fortunately, this case suffices to construct F and E .
The main problem is that the choice of X and even its
ground field is absolutely non-unique. So, functoriality
requires a subtle study. It is done by descent to the ground
field Q (to by-pass non-uniqueness of the ground field) and
using Elkik’s result that X is determined up to an
isomorphism by X⊗k [[t]] k [[t ]]/(tn) for n� 0.
Fortunately, this suffice for desingularization but we lose:
(a) independence of characteristic (rig-regular versus
rig-smooth), (b) normal flatness condition (involves not
rig-regular completions), and profit: (c) additional troubles
in the embedded case (currently, no result is proved to
algebraize rig-regular divisors on X).
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