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Introduction

All geometric spaces (mainly schemes) in this talk are of
characteristic zero. All schemes are noetherian.
It is now well understood how to desingularize algebraic
varieties (of char = 0), and our aim is to use this result as a
black box in order to desingularize more general geometric
objects. This procedure runs in three stages as follows.

Desingularize certain formal varieties using algebraization.
Desingularize quasi-excellent schemes using
decompletion and induction on codimension.
If the problem is solved for quasi-excellent schemes
functorially then one automatically obtains
desingularization of other geometric spaces, including
formal schemes (new), complex analytic spaces and
non-archimedean analytic spaces (e.g. Berkovich or rigid).
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Non-embedded desingularization

Let us introduce some terminology. We will work with schemes
but all this makes sense for other geometric spaces. Let X be a
reduced scheme.

A weak desingularization of X is a modification f : X ′ → X
with regular X ′ (i.e. is proper and induces an isomorphism
between dense open subschemes).
Such f is a desingularization if it is an isomorphism over
the regular locus Xreg.
f is strong if it comes equipped with a fixed factorization
into a composition of blow ups along regular centers.
A family of desingularizations F(X ) : X ′ → X is functorial
with respect to a family of morphism S if for any g : Y → X
in S one has that F(Y ) = F(X )×X Y (up to eliminating of
blow ups along empty centers).
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Embedded desingularization

Often one also wants to resolve a closed subscheme Z ↪→ X to
an snc divisor Z ′ = f−1(Z ) on X ′. Here is a strong version of
this procedure.

Definition
(i) Boundary of a blow up sequence Xi → · · · → X1 → X is the
union of the preimages of all centers of blow ups.
(ii) Assume X is regular. Strong embedded desingularization of
(X ,Z ) is a blow up sequence f : Xn → · · · → X along regular
centers transversal to intermediate boundaries so that
Zn = Z ×X Xn is a divisor supported on the boundary.
(iii) Functoriality is defined as earlier.
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Known results

Hironaka 1964: strong but non-functorial embedded and
non-embedded desingularizations are possible for
schemes of finite type over a local ring k (of cha = 0) such
that the morphism Spec(k̂)→ Spec(k) is regular (i.e. (is
flat) and has (geometrically) regular fibers).

Bierstone-Milman and Villamayor about 1990: can make
this canonically (e.g. functorial w.r.t. open immersions) for
varieties over a field k . The proof is much simpler because
one can glue local solutions.
Włodarczyk 2005: functoriality w.r.t. smooth morphisms.
Bierstone-Milman-Temkin 2009 (preprint): functoriality
w.r.t. all regular morphisms between varieties.
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Definition and motivation

Grothendieck, 1965, EGA IV,§7.
Definition: A noetherian scheme X is qe (or
quasi-excellent) if: (G) the homomorphism OX ,x → ÔX ,x is
regular for any x ∈ X , and (N) any scheme X ′ of f.t. over
X has open X ′reg.

Theorem: if any integral scheme X ′ of f.t. over X admits a
weak desingularization then X is qe.
Conjecture/Hope: the converse is true.

The modern conjecture/hope is that qe schemes admit strong
desingularization functorial in regular morphisms.
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Examples of qe schemes and rings

Quasi-excellence of a ring is preserved by: a quotient, a
localization, passing to a polynomial ring and a formal
(resp. convergent) power series ring. (The latter is very
difficult; proved by Gabber few years ago.)

Varieties, formal varieties, DVR (of char = 0), the ring of
overconverent functions on a Stein compact, affinoid rings
in non-archimedean geometry are qe.
In particular, all geometric objects we discussed are glued
from local objects controlled by qe rings along regular
gluing homomorphisms (e.g. formal localization).
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Main results

Our geometric categories are qe schemes, qe formal schemes
and various analytic spaces (of char = 0).

Theorem
(i) All these categories possess strong non-embedded
desingularization functorial in regular morphisms.
(ii) All these categories possess embedded desingularization
functorial in regular morphisms. If Z is a divisor then it can be
done in the strong form with the only difference that we can
blow up non-transversally to the boundary (so, intermediate
boundaries can be not snc).

From now on we will discuss non-embedded desingularization
because it is technically easier.
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Full functoriality of varieties
Formal varieties and algebraization
Quasi-excellent schemes and decompletion
Other categories

Absolute desingularization of varieties

BMT: the desingularization algorithm of Bierstone-Milman
is functorial in all regular morphisms not necessarily of
finite type (probably this is true for other methods, but we
do not know).

The main obstacle: all embedded methods replace ideals
I ⊂ OX with some derivative ideals obtained by applying
DerX/k . This depends on k , as DerX/kI can differ from
DerX/k0

I for k0 ⊂ k .
Solution: work with absolute derivations DerX/Q. (We
proved that for the algorithm of Bierstone-Milman the
absolute version is the old one.)
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Rig-smooth formal varieties

Currently, will deal only with formal schemes X of finite
type over Spf(k [[T ]]), where k is a field.

X is rig-smooth if its "singular locus" is "supported" on the
closed fiber Xs. When X = Spf(A) this just means that the
singular locus of X = Spec(A) is supported on the closed
fiber Xs = V (T ).
Elkik 1973: any affine rig-smooth formal variety X is
algebraizable by a k -variety X , i.e. X̂→̃X. (No analog with
divisors!)
Quasi-excellence implies that a desingularization X ′ → X
gives rise after the completion to a desingularization
X′ → X.
Functoriality w.r.t. regular morphisms allows to glue these
local desingularizations to a global one.
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Quasi-excellence implies that a desingularization X ′ → X
gives rise after the completion to a desingularization
X′ → X.
Functoriality w.r.t. regular morphisms allows to glue these
local desingularizations to a global one.
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Non-uniqueness of algebraization

If we algebraize X with the ground field morphism
i : X→ Spec(k) fixed then different algebraizations X and
X ′ are not too different because they admit a common
étale cover (locally over the closed fiber). It follows from
functoriality that they give rise to the same
desingularization of X.

Unfortunately, i has a lot of deformations (unlike the case
of usual varieties). If the ground field k ⊂ OX(X) is not fixed
then it is a real headache to compare two algebraizations.
Idea: by Elkik’s results a sufficiently thick closed fiber
Xn = (Xs,OX/T nOX) determines X. A technical trick
shows that in our case the desingularization F(X ) actually
depends only on the thick neighborhoods Xn ↪→ X of Xsing.
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An ideal approach

We saw that a black box passage from varieties to formal
varieties is difficult.

Modern algorithms do not imply analytic desingularization
in a formal way, but can be rephrased in the analytic
contexts almost without changes. The same should be
done for formal varieties.
I expect that one can reformulate these methods for all
formal varieties at cost of working with continuous
derivatives D̂erX/k . Moreover, one can obtain an absolute
algorithm (compatible with all regular morphisms) by taking
absolute continuous derivatives D̂erX/Q.
Benefits: simpler argument, strong embedded
desingularization.
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Schemes with small singular locus

Consider the category of pairs (X ,D) where X is a
reduced qe scheme and D is a Cartier divisor that is
isomorphic to a variety and contains Xsing. Morphisms are
regular morphisms f : X ′ → X such that f−1(D) = D′.

The formal completion X of X along D is a rig-smooth
formal variety. Moreover, any desingularization of X blows
up only open ideals (only closed fiber should be modified)
and hence algebraizes to a desingularization of X .
We obtain desingularization of a scheme X whose singular
locus is a variety. The desingularization FVar(X ,D) (and its
functoriality) depends (at least a priori) on the choice of D.
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A construction of F

The general desingularization F(X ) : X ′ → X of qe
schemes is constructed from FVar(X ,D). For functoriality
reasons, F 6= FVar even on varieties.

The construction runs by induction on codimension in X .
At d-th stage we have a blow up functor
Fn : Xm → · · · → X which is a strong desingularization over
the points of codimension at most d .
Let Z = {z1, . . . , zn} ⊂ X be the "bad" points of
codimension d + 1. We will produce Fd+1 by inserting few
blow ups with centers over the closure of Z .
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Construction of F : continuation

For the localization X ′ = XZ at Z we solve this as follows.
First insert the blow up along Z into Fd(XZ ) as the first
blow up. Next desingularize all centers Vi of the blow ups
by inserting Fd(Vi) before blowing Vi up. Finally, set
Zm = Z ×X ′ X ′m and add FVar(X ′m,Zm) in the end of the
sequence.

In the general case simply extend all blow ups of Fd+1(XZ )
by taking the Zariski closure of all blow up centers in Xi ’s.

This scheme of induction is very robust and applies to any
variant of desingularization (e.g. various versions of embedded
desingularization). So, as soon as the case of formal varieties
is settled, the remaining part is nearly automatic.

M. Temkin Functorial desingularization of quasi-excellent schemes over Q



Introduction
Definitions and main results

The method

Full functoriality of varieties
Formal varieties and algebraization
Quasi-excellent schemes and decompletion
Other categories

Construction of F : continuation

For the localization X ′ = XZ at Z we solve this as follows.
First insert the blow up along Z into Fd(XZ ) as the first
blow up. Next desingularize all centers Vi of the blow ups
by inserting Fd(Vi) before blowing Vi up. Finally, set
Zm = Z ×X ′ X ′m and add FVar(X ′m,Zm) in the end of the
sequence.
In the general case simply extend all blow ups of Fd+1(XZ )
by taking the Zariski closure of all blow up centers in Xi ’s.

This scheme of induction is very robust and applies to any
variant of desingularization (e.g. various versions of embedded
desingularization). So, as soon as the case of formal varieties
is settled, the remaining part is nearly automatic.

M. Temkin Functorial desingularization of quasi-excellent schemes over Q



Introduction
Definitions and main results

The method

Full functoriality of varieties
Formal varieties and algebraization
Quasi-excellent schemes and decompletion
Other categories

Construction of F : continuation

For the localization X ′ = XZ at Z we solve this as follows.
First insert the blow up along Z into Fd(XZ ) as the first
blow up. Next desingularize all centers Vi of the blow ups
by inserting Fd(Vi) before blowing Vi up. Finally, set
Zm = Z ×X ′ X ′m and add FVar(X ′m,Zm) in the end of the
sequence.
In the general case simply extend all blow ups of Fd+1(XZ )
by taking the Zariski closure of all blow up centers in Xi ’s.

This scheme of induction is very robust and applies to any
variant of desingularization (e.g. various versions of embedded
desingularization). So, as soon as the case of formal varieties
is settled, the remaining part is nearly automatic.

M. Temkin Functorial desingularization of quasi-excellent schemes over Q



Introduction
Definitions and main results

The method

Full functoriality of varieties
Formal varieties and algebraization
Quasi-excellent schemes and decompletion
Other categories

Applications

As we noted, desingularization in other geometric
categories follows formally. Let us illustrate this on a qe
formal scheme X.

Take an open covering of X by affine subschemes
Xi = Spf(Ai). By quasi-excellence the formal completion of
F(Spec(Ai)) is a desingularization F(Xi) of Xi .
If X′ = Spf(B) is an open subscheme in Xi then F(X′) is
compatible with F(Xi) because A→ B is a regular
homomorphism. It follows that local desingularizations
F(Xi) glue to a global desingularization F(X).
Functoriality of F(X) in regular morphisms is checked
similarly.
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