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Introduction

The ultimate goal

For simplicity, we will always take k = C and one can safely work
with complex analytic varieties instead of algebraic k -varieties
(using complex topology instead of the étale one).
Resolution of singularities associates to an integral variety Z a
modification (i.e. a proper birational map) Zres → Z with a smooth
source.
Modern resolution is canonical and, moreover, functorial w.r.t.
smooth morphisms Z ′ → Z in the sense that Z ′res = Z ′ ×Z Zres.
This both simplifies the arguments and has stronger applications
(e.g. equivariant resolution).
A joint project of D. Abramovich, M.T. and J. Włodarczyk aims to
resolve morphisms f : Z → B by modifications Z ′ → Z and B′ → B
and a log smooth morphism fres : Z ′ → B′ compatible with f (log
smoothness is the best one can hope for here).
Naturally, we want this to be functorial w.r.t. log smooth
morphisms.
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Introduction

The state of the art

So far, we have constructed a new algorithm for desingularization
of (log) varieties over a field k of characteristic zero, which is
functorial w.r.t. all log smooth morphisms.
The paper "Principalization of ideals on toroidal orbifolds" by D.
Abramovich, M. Temkin and J. Włodarczyk is available at
http://www.math.huji.ac.il/∼temkin/papers/LogPrincipalization.pdf
We expect that (essentially) the same algorithm applies to
morphisms, including functorial semistable reduction algorithms,
but details are to be worked out.
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Classical resolution General framework

Principalization

We describe the classical method based on ideas of Hironaka,
from his foundational 1964 paper and developed further by
himself, Giraud, Bierstone and Milman, Villamayor, Włodarczyk,
Kollár, and others. All constructions are local but glue due to the
functoriality.
The first step is to (locally) embed Z into a manifold X = X0 with a
boundary E = E0 = ∅ (i.e. X is smooth and E is an snc divisor)
and to reduce desingularization of Z to principalization of the ideal
IZ ⊂ OX of Z . One iteratively blows up smooth centers Vi sitting
over Z and having simple nc with Ei , so that Xi+1 = BlVi (Xi) and
Ei+1 = f−1

i (Vi) ∪ f−1
i (Ei) are a manifold with a boundary. The aim

is to get In = IZOXn invertible and monomial (i.e. supported on En).
In fact, the last non-empty strict transform Zi ⊂ Xi of Z equals to
Vi . So, it is smooth, transversal to Ei and desingularizes Z .
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Classical resolution General framework

Local charts

(Étale) locally one can always pretend to be working at
O ∈ X = An with coordinates t1, . . . ,tn such that
E = V (m1 · · · · ·ms) = ∪s

i=1Ei for mj = tij . We call m1, . . . ,ms
exceptional or monomial coordinates (they are unique up to units),
other ti ’s are regular coordinates (they are non-canonical).
V has snc with E means that V = V (t1, . . . ,tr ) for appropriate
coordinates t1, . . . ,tn.
X ′ = BlV (X ) is covered by r charts. The (new) coordinates on X ′i
are t ′k = tk

ti
for 1 ≤ k ≤ r and k 6= i and t ′k = tk otherwise. Also

E ′ = V (ti) ∪ V (ti1 . . . tis ).
Functions (and ideals) transform via

f (t1, . . . ,tn) = f (t ′1t ′a1
i , . . . ,t ′nt ′an

i ) = f ′(t ′1, . . . ,t
′
n)

with ai ∈ {0,1}.
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Classical resolution General framework

Example: the pinch points

The main counterexample to various overoptimistic expectations
is Whitney umbrella Z with IZ = I = (x2 − y2z) and the pinch point
O at the origin (it is the only non normal crossings point of Z ).
Blowing up the singular line V = (x , y) resolves Z , but not blowing
up of (x , y , z). E.g. in the z-chart we get
I′ = (y ′2(x ′2 − y ′2z ′)) = IZ ′ I2

E ′ , hence Z ′ also has a pinch point. In
particular, one cannot always blow up the worst singularity and
one cannot make Z ′ nc by modifying the non-nc locus only.
The actual algorithm blows up the pinch point twice (!) to get
enough history (or evidence that this does not work), and then
blows up the singular line.
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Classical resolution General framework

The role of the boundary

The profits:
Have canonical monomial coordinates (coming from the history of
earlier blow ups). This decreases choices and makes the
construction much more canonical.
Boundary gradually accumulates I: if I = ImonIpure, where
Imon = (mn1

1 · · · · ·m
ns
s ) and Ipure is purely non-monomial, then

I = Imon and Ipure = (1) in the end of the principalization.
The price to pay:

Must treat E and monomial coordinates with a special care. E.g.
any center is either transversal to Ei or lies in it. (Another side of
the coin.)

Remark
Many technical complications of the classical algorithm are due to a
bad separation of regular and exceptional coordinates (e.g. in the
notion of order).
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Classical resolution General framework

Order reduction

The main invariant of the algorithm is d = ord(Ipure), where
ord(J) = minf∈J ord(f ). For example, ord(x2 − yz2) is 2 at any point
of the z-axis and ordO(x5 + y7, y2z3) = 5.
One works with marked (or weighted) ideals (I,d) where d ≥ 1,
only uses X ′ = BlV (X ) with V ⊆ (I,d)sing := {x ∈ X |ordx (I) ≥ d},
and updates I by I′ = (IOX ′)I−d

E ′ . E.g.
(x2 − yz2,2)′ = (x ′2 − y ′2z ′,2) on the z-chart.
Order reduction finds a sequence Xn → · · · → X of such
(I,d)-admissible blow ups so that (In,d)sing = ∅. Its existence
implies principalization (e.g. by taking d = 1).

Remark
The so-called max order case when d = ord(Ipure) is the main one. It
implies the general one relatively easily (and characteristic free). Have
to consider the general case due to a bad (inductive) karma.
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Classical resolution Induction on dimension

Maximal contact

The miracle enabling induction on dimension is that in the
maximal order case, order reduction of (I,d) is equivalent to that
of (C(I)|H ,d !), i.e. a blow up sequence reduces the order of (I,d)
iff it reduces the order of (C(I)|H ,d !). Here C(I) is a coefficient
ideal and H is a hypersurface of maximal contact.
The Main Example: if I = (td + a2td−2 + · · ·+ ad ) with t = t1 and
ai(t2, . . . ,tn), then H = V (t) and C(I) = (ad!/2

2 , . . . ,ad!/d
d ).

Remark
(i) Why coefficient ideal? Because, unlike C(I)|H , the stupid restriction
I|H = (ad )|H looses a lot of information.
(ii) Each coefficient ai has natural weight i .
(iii) No problem to have a1 = 0 in characteristic zero.
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Classical resolution Induction on dimension

Derivations

The main tool for a natural description of the algorithm are the
derivation ideals Dn(I) = D(. . .D(I) . . . ), where D(I) is generated by
the elements of I and their derivatives. Derivation decreases order
precisely by one and gives a conceptual way to define all basic
ingredients (excluding the monomial ones):

(1) ordx (I) is the minimal d such that Dd (Ix ) = Ox .
(2) Maximal contact is any H = V (t), where t is any regular

coordinate in Dd−1(Ix ) (in particular, H is smooth and E |H is a
boundary).

(3) The coefficient ideal C(I) is just
∑d−1

i=0 (Di(I))d!/(d−i).

Remark
The only serious difficulty in proving canonicity of the algorithm is to
show independence of the choice of a maximal contact.
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Classical resolution Induction on dimension

Complications

(1) If E is not transversal to H then E |H makes no sense for us, hence
we loose the control on the snc with E . Solution: iteratively reduce
the order of I along the locus where the multiplicity s of the old
boundary is maximal (i.e. work with I + Id

E(s)). Thus, the resulting
principalization algorithm consists of 2n embedded loops and it
improves the lexicographic invariant (d1, s1; d2, s2; . . . ; dn, sn).

(2) The module of logarithmic derivations Dlog is spanned by mj∂mj

and ∂ti for regular ti ’s. These are the derivations preserving E (i..e
taking IE to itself). For almost all needs it is easier and more
conceptual to use Dlog, but it does not compute the order. This is
why one has to use the usual derivations.
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Logarithmic geometry

What is the boundary?

To proceed let us try to understand what the boundary really is.
Unlike the embedded scheme Z , I think it is wrong to view E as a
subscheme of X (though it is determined by it). This is hinted at by
functoriality: we consider blow ups (X ′,E ′)→ (X ,E) which do not
take E ′ to E : one has that f−1(E) ↪→ E ′ instead of E ′ ↪→ f−1(E).
The boundary is also determined by the sheaf of monomials
MX =MX (log E) = O×X\E ∩ OX ⊂ (OX , ·) consisting of elements
invertible outside of E . This gives the right functoriality:
f ∗(MX (log E))→MX ′(log E ′).
In fact, the sheaf of monomialsMX (log E) is precisely what we
need from E !
LocallyMX = O×X × Ns but this splitting (called a monoidal chart)
is non-canonical: it is given by fixing exceptional coordinates
m1, . . . ,ms.
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Logarithmic geometry

Logarithmic varieties

Definition
A logarithmic variety (X ,MX ) consists of a variety X with a sheaf of
monoidsMX and a homomorphism αX : MX → (OX , ·) such that
M×X = α−1

X (O×X ). A morphism is a compatible pair f : X ′ → X and
f ∗MX →MX ′ .

The example covering our needs is (X ,MX (log D)) for a divisor D.
Morphisms are f : X ′ → X s.t. f−1(D) ↪→ D′.
Many constructions extend to log geometry, e.g. Ω(X ,MX ) is
generated by ΩX and elements δm for m ∈ MX subject to relations
dα(m) = α(m)δm (i.e. δm is the log differential of m).
One also defines log smooth morphisms. As in the classical case,
they have locally free sheaves of relative differentials of expected
rank.
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Logarithmic geometry

Toroidal varieties

Log smooth varieties are just toroidal ones: étale (analytically or
formally) locally it suffices to work with the chart
X = Spec C[M][t1, . . . ,tl ] at its origin O, where M is the monoid of
integral points in a rational polyhedral cone. The log structure is
induced by M and Ω(X ,M) is freely generated by dti and δmi , where
{mi} is any basis of Mgp. The classical notation is (X ,U) or (X ,D)
with D = ∪m∈MV (m) and U = X \ D.
In other words, OX ,x = C[[M]][[t1, . . . ,tl ]]. We view ti as regular
coordinates and all elements of M as monomial coordinates (in
particular, M does not have to be free anymore and there is no
canonical base of Mgp).

M. Temkin (Hebrew University) Logarithmic resolution of singularities 15 / 24



Logarithmic geometry

Toroidal morphisms

Log smooth morphisms of toroidal varieties are just toroidal
morphisms, i.e. they are (étale-locally) modelled on toric maps and
formally-locally look as

C[[M]][[t1, . . . ,tr ]] ↪→ C[[N]][[t1, . . . ,tn]].

Example
(i) Semistable maps with appropriate log structures. For example,
Spec C[x , y ]→ Spec C[π] given by π = xayb is log smooth for the log
structures given by xN × yN and πN. The relative differentials are
spanned by δx = −b

aδy .
(ii) Kummer log-étale covers are obtained when N ⊂ 1

d M and r = n.
Relative differentials vanish. Finite but usually non-flat, e.g.
Spec C[x , y ]→ Spec C[x2, xy , y2] with the log structures of monomials
in x , y .
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Logarithmic geometry

Some remarks

Remark
Toroidal morphisms are log smooth maps of log smooth varieties. In a
sense, log geometry extends both to the non-smooth case (and
Z-schemes).

Remark
The most interesting feature of the new algorithm is functoriality w.r.t.
Kummer log-étale covers, e.g. obtained by extracting roots of the
monomial coordinates in the classical setting, or obtained by extracting
roots of π is in the semistable reduction case. This is out of reach (and
unnatural) for the classical algorithms.
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Logarithmic algorithms

Main results

Ignoring an orbifold aspect, our main result is:

Theorem (Log principalization)

Given a toroidal variety X with an ideal I ⊂ OX there exists a sequence
of admissible blowings up of toroidal varieties Xn → · · · → X such that
the ideal IOXn is monomial. This sequence is compatible with log
smooth morphisms X ′ → X.

As in the classical situation this implies

Theorem (Log resolution)

For any integral logarithmic variety Z there exists a modification
Zres → Z such that Zres is log smooth. This is functorial w.r.t. log
smooth morphisms Z ′ → Z.
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Logarithmic algorithms

The method

In brief, we want to log-adjust all parts of the classical algorithm. The
main adjustment is to only use log derivations:

(1) logordx (I) is the minimal d such that (Dlog)d (Ix ) = Ox .
(2) Maximal contact is any H = V (t), where t is any regular

coordinate in (Dlog)d−1(Ix ) (in particular, H is smooth and E |H is a
boundary).

(3) The coefficient ideal C(I) is just
∑d−1

i=0 ((Dlog)i(I))d!/(d−i).
(4) In addition, J is (I,d)-admissible if I ⊆ Jd and, for appropriate

coordinates, J = (t1, . . . ,tl ,m1, . . . ,mr ) for any set of monomials.
Then X ′ = BlJ(X ) is toroidal and the d-transform
I′ = (IOX ′)(JOX ′)−d is defined.
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Logarithmic algorithms

Infinite log order

Note that logord(ti) = 1 but logord(m) =∞. This is the main
novelty that allows functoriality w.r.t. extracting roots of monomials
(Kummer covers).
As a price we have to do something special when logord(I) =∞,
but this is simple: just start with blowing up the minimal monomial
ideal Imon containing I. For example, if I = (

∑
i∈Nr mi t i) then

Imon = (mi). This single toroidal blow up makes logord finite. (This
result is due to Kollár.)
Our algorithm is simpler, in particular, it does not have to separate
the old boundary (max contact is given by a regular coordinate!).
In a sense, we completely separate dealing with regular
coordinates via log order and dealing with monomials via
combinatorics (i.e. toroidal blow ups).
The invariant is just (dn, . . . ,d1) with di ∈ N ∪ {∞}.
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Logarithmic algorithms

Orbifolds

Is all this so elementary? Where is the cheating?
Well. Our algorithm does not distinguish monomials and their
roots. In fact, we view this as a serious advantage (log smooth
functoriality). As another side of the coin, to achieve correct
weights and admissibility, the algorithm often insists to use
Kummer monomials m1/d .
This can be by-passed by working on log-étale Kummer covers,
which is ok due to the strong functoriality we prove. The
Kummer-local description remains the same as we saw. However,
in order to describe the algorithm via modifications of X we have
to use orbifolds and non-representable modifications X ′ → X that
we call Kummer blow ups.
This is ok for applications, because we can remove the stacky
structure afterwards by a separate torification algorithm. Though
the latter is only compatible w.r.t. smooth morphisms.
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Logarithmic algorithms

An example

Example

(i) Take X = Spec C[t ,m] and I = (t2 −m2). Then logordO(I) = 2,
H = V (t), C(I) = (m2,2), the order reduction of C(I)|H blows up
(m2)1/2 = (m), and the order reduction of I blows up (t ,m). Just as in
the classical case.
(ii) If I = (t2 −m) then logordO(I) = 2, H = V (t), C(I) = (m,2), the
order reduction of C(I)|H blows up (m1/2), and the order reduction of I
blows up (t ,m1/2). This is a non-representable Kummer blow up
whose coarse moduli space Bl(t2,m)(X ) is not toroidal.

Remark
More generally, the weighted blow up of ((t1,d1), . . . ,(tr ,dr )) in An is
the coarse space of a non-representable modification with a smooth
source. So, Kummer blow ups might be useful for other classical
problems in birational geometry.
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Conclusion

Thanks to the organizers!
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Conclusion

Happy birthday Askold, and
"ad mea ve’esrim".
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