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1. INTRODUCTION

1.1. Non-conventional ergodic averages of the form

1 N k ’
1) ST sama)
n=1j7=1
were first introduced by Furstenberg [8] in his ergodic theoretic proof of

Szemeredi’s theorem on arithmetic sequences in sets of positive density in
Z. He proved the following theorem:

1.2. Theorem (Furstenberg). Let (X, B, u,T) be a measure preserving sys-
tem. Let A be a set of positive measure, and f = 14. Then

hmlnf—Z/Hf (T7"z)

n=1

The theorem above ensures that there exists an integer n, such that the
points &, 7™z, ..., T*"z are in A. Questions related to the limiting behavior
of the averages (1) (pointwise or in L?), and related averages are an active
field of research. For k = 1 the average in (1) is the classical ergodic average.
Pointwise convergence is the classical Birkhoff ergodic theorem, and L? con-
vergence is given by the mean ergodic theorem. Convergence of the averages
(1) for the case k = 2 is relatively easy in the L? mode. Pointwise conver-
gence in this case is difficult and was shown by Bourgain [4]. Convergence
in L2 for k = 3 is much more difficult and was shown by Furstenberg and
Weiss [10], Conze and Lesigne [5],[6],[7], Host and Kra [11],[12]. Pointwise
convergence for £ > 3 is not known.

1.3. We concentrate on the behavior of the averages in (1) for the case k = 4.
The idea is to show that the limiting behavior of the ergodic averages in
question depends on a certain factor which will be described later, and to
take advantage of the special nature of these factors for which a pointwise
theorem is, in fact, available. Most of my work revolves about the study
of this factor, but I have also devoted a chapter to the ergodic pointwise
theorem (theorem 1.19).

1.4. By ergodic decomposition it will suffice to study the limit of (1) with the
additional hypothesis of ergodicity, but the nature of the limit will depend
on mixing properties of the system. The maximal degree of mixing relevant
is weak mizing; indeed in this case Furstenberg has shown:

1.5. Theorem (Furstenber ). If (X, B, 1, T) is weak mizing then

LS [T smm) 2 H/f;

n=17=1

The interpretation we can give to this is that under the hypothesis of
weak mixing the points x, 7"z, ...,T*"z move almost independently in X.



1.6. Notation. We write 1'f for the function 7'f(x) = f(T'z).

1.7. For a general ergodic system (X, B, u,T) the averages in equation (1)
need not converge to a constant function. Indeed, if the system (X, B, u,T)
is not weakly mixing there exists a nontrivial eigenfunction ¢. If Ty (x) =
AY(z) then

T2 (@) T2y () = (a)

for all n, thus

N
5 DT @) = )
n=
Therefore the set of limiting functions spans an algebra which contains
the algebra spanned by the eigenfunctions - the Kronecker algebra. The
Kronecker algebra is realized by the “Kronecker factor” (Z,Borel, Haar, o),
where Z is a compact Abelian group and the action is by rotation by a. It is
not surprising that an Abelian group factor should come up when studying
the relations between z, 7"z, T?"z, as z, &+ na, z + 2no form an arithmetic
sequence: z = 2(z+nao)—(z+2na). It turns out that this constraint imposed
by the Kronecker factor is the only constraint on the triple z, T"z, T?*"x, and
in a manner to be made precise, the Kronecker factor is “characteristic” for
the limit of the averages 4 Zﬁle f(Tmz)g(T*z).

1.8. Definition. Let (Y,D,v,T") be a factor of the system (X,B,u,T") so
that there is a measurable map « : X — Y. The space L2(Y,D,I/,T) can
be thought of as a subspace of L*(X,B,u,T). For f € L*(X,B,u,T) let
E(f|Y) be the projection of f on L*(Y,D,v,T). The system (Y,D,v,T) is

characteristic for the averaging scheme (ai1,as,...,a;) if for any bounded
functions f1,..., fr,
1 L E 1 Lt I?(X)
2 7o = Y T T EwslY) = o.
n=1j5=1 n=1j=1

It is in this sense that the Kronecker factor is characteristic for (1,2); i.e. for
calculating the limit of the averages + 22[:1 f(T"z)g(T*"z). The system
(Y,D,v,T) is characteristic for schemes of length k if it characteristic for
all schemes of length k. The system (Y,D,v,T) is a minimal characteristic
factor for schemes of length k if it is a factor of any characteristic factor for
schemes of length k.

1.9. For averaging schemes of length > 3 the Kronecker algebra does not
suffice. Let ¢ be a second order eigenfunction, i.e.: Ty = Y, where ¥ is
itself an ordinary eigenfunction. Then one can check that

T (x)T*" o3 (x)T*" p(z) = ()

for all n; thus

N
1 n n,  — n
~ ZlT O} )T ™ (@) T = p(a).
-



4

Note that if (Y,D,v,T) is a characteristic factor of (X, B, u,T") for a certain
scheme (a1, ...ay) then the limit of the averages % Ziv:l Hle [i (T ) is
always measurable with respect to the subalgebra of B lifted from D. From
the foregoing we see that the characteristic factor for (1,2,3) must be large
enough so that all second order eigenfunctions are measurable with respect
to it. It is natural to conjecture that the algebra spanned by the second
order eigenfunction is characteristic for (1,2, 3), but Furstenberg and Weiss
presented a counterexample: Let

x=("1)/('5) =

This space carries a measure m invariant under translations by any group
element. Consider the system (N/T', Borel,m,T) with T2T" = a2 fora € N.
This system has no second order eigenfunctions, but there are relations
between 2T, a"zl,a?"2l",a3"2l not coming from Kronecker factor: In N,
z = (a"z)3(a®x)"3a%"z, and this relation carries over to N/T'. The system
N/T is a circle extension of a 2 dimensional torus (which is the Kronecker
factor). The foregoing relation implies that the points , 7"z, T%"z, T%"z do
not move about freely in the fibers above the Kronecker factor. In particular
the characteristic factor for the averages % Zi\;l T fT?"¢T3"h will contain

functions other than first and second order eigenfunctions.

1.10. In general, if N is a k-step nilpotent group (Np4+1 = 1), then there
exists a function F' such that for g € N

2 E+1
g=F(a"g,a’g,...,a* V"),
and this relation carries on to a homogeneous space: If I' < N, z € G/I,
= F(a"z,a®z,. .. ,a(kH)'"‘:c).
1.11. Conjecture. The only constraints on the points «,T™z,...,T""x
come from a k-step nilpotent factor. In particular any persistent relations
between the points x,T"x,...,T* ¢ come from an algebraic structure in X.

1.12. Definition. A nilsystem consists of a space X on which a nilpotent
group NN acts transitively preserving a measure yu, and a transformation
T which acts by translation by a group element a: Tx = axz. If N is a
k-step nilpotent Lie group, I' a lattice, then N/T is a nilmanifold. The
system (N/T',Borel, Haar, T') is a k-step nilflow if the action of T is given by
TzI' = azl’ for some a € N. An inverse limit of nilflows is a pro-nilsystem.

Another formulation of the above conjecture:

1.13. Conjecture. The minimal characteristic factor for schemes of length
k is a k — 1-step pro-nilsystem.

1.14. The case k = 3 was analyzed by Conze and Lesigne ([5],[6],[7],[15][16]),
Furstenberg and Weiss [10], Host and Kra ([11],[12]), Rudolph [27]. The
following theorem is proved in [12]:
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1.15. Theorem. A characteristic factor for schemes of length 3 is a 2-step
pro-nilsystem.

1.16. We prove two related results: In the first result we determine the
minimal characteristic factor for k& = 4:

1.17. Theorem. The minimal characteristic factor for averaging schemes
of length 4 is a 3-step pro-nilsystem.

confirming the foregoing conjecture for the case k = 4.

1.18. The second result is a general pointwise convergence theorem for nil-
flows, which also gives an explicit description of limit.

1.19. Theorem. Let (N/T,a) be a k-step nilflow, where N is connected,
and let f; € L°(N/T), then
1 N k+1 4
N Z H fi(a’"xl')  converges for almost all (Haar) x € N
n=1j5=1

(to fupm-- oy oo T £ @ TPy w0)  TTEEE dimy (9,19 ).

1.20. By theorem 1.17 in order to have L? convergence of the averages in
(1) for the case k = 4, it is enough to prove an L? convergence theorem for
3-step pro-nilsystems. Convergence in L? for pro-nilsystems follows from
convergence for nilflows which is given by theorem 1.19 in the case where N
is connected, and in general follows from a general result by Shah [28].

1.21. Remark. The methods used in proving theorem 1.17 seem to work
for general k; the main problem is notational.

1.22. Remark. In the course of this work it was brought to my attention
that Kra and Host proved by different methods convergence of the averages

in (1) for all k& [13].
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Part 1. Preliminaries

In the following section we give some of the measure-theoretic and ergodic-
theoretic preliminaries. The definitions and theorems in sections 1 — 4 can
be found in [9], [23].

1.23. A measure preserving system (m.p.s) is a system (X,B,u,T) where
X is an arbitrary space, B is a o-algebra of subsets of X, u is a o-additive
probability measure on the sets of B, and T' a measure preserving transfor-
mation. When there is no confusion we sometimes write (X,T") in short for

(X, B, 1,T).

1.24. The action of T'is ergodic, if 71 A = A, for all A € B, implies u(A) =0
or u(A) = 1. In this case we also say that p is ergodic with respect to the
action of T. The transformation T induces a natural operator on L%(X, B, )
defined by T'f = foT, and the ergodicity of the action of 7" is equivalent to
the assertion that there are no non-constant T-invariant functions.

1.25. Theorem (Mean Ergodic Theorem). Let (X,B,u,T) be a m.p.s.,
and let f € LQ(X). Let Pf denote the orthogonal projection of f on the
subspace of the T invartant functions, then

1 N L?(X)
NZfoT” =’ Pf.

n=1

2. FACTORS AND DISINTEGRATION OF MEASURE

2.1. Let (X,B,u,T), (Y,D,v,T) be 2 m.p.s.. A measurable, measure pre-
serving map a : X — Y defines a homomorphism of (X, B, u,T) to (Y,D,v,T)
if for almost every # € X, o(Tx) = Ta(z). In this case we say that
(Y,D,v,T) is a factor of (X,B,u,T), and (X,B,u,T) is an extension of
(Y,D,v,T). The two measure preserving systems are equivalent if the ho-
momorphism of one to the other is invertible.

2.2. A mps. (X,B,u,T) is regular if X is a compact metric space, B the
Borel algebra of X, pt a Borel measure. A m.p.s. is separable if B is generated
by a countable subset. As every separable m.p.s. is equivalent to a regular
m.p.s., we will confine our attention to regular m.p.s.

23. Let o : (X,B,1,T) = (Y,D,v,T) be a homomorphism of m.p.s. The
map f — f¢ = foaidentifies L?(Y, D, v) with a closed subspace L?(Y, D, v)*
C L*(X,B, ). If P denotes the orthogonal projection of

L?(X, B, ) onto L2(Y,D,v)®, then we define E(f|Y) for f € L?(X, B, ) by

E(fIY) € L*(Y,D,v), E(f|Y)*=Pf.

Since T leaves L*(Y,D,v)* invariant, the operator E(:|Y) commutes with

the action of 7', i.e. for each f € LY(X,B, ), E(Tf|Y)=TE(f]Y).
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2.4. Let (X,B,u) be a regular measure space, and let o : (X,B,u) —
(Y,D,v) be a homomorphism to another measure space. Suppose « is in-
duced by a map ¢ : X — Y. In this case the measure u has a disintegra-
tion in terms of fiber measures u,, where u, is concentrated on the fiber
¢ 1(y) = X,. We denote by M(X) the compact metric space of probability
measures on X.

2.5. Theorem. There erists a measurable map from Y to M(X), y — py
which satisfies:

(1) For every f € LY(X,B, ), f € LY(X,B, )

forace. y €Y, and E(f|Y)(y) = [ fdu, forae yeyY

2) J{J fduy}dv(y) = [ fdu  for every f € L'(X,B,p).
The map y — wy, is characterized by condition (1). We shall write p =
[ pydv and refer to this as the disintegration of the measure u with respect
to the factor Y.

If (X,B,u,G) is a m.p.s., D the algebra of all G-invariant sets, u =
[ padp(z) the disintegration of p with respect to D, then p, is G-invariant
and ergodic, for a.e. x.

3. THE KRONECKER FACTOR

3.1. An action of a measure preserving transformation T on a measure space
(X,B,u) is a Kronecker action if X is a compact Abelian group, u the
Haar measure on X, and T acts by rotation: Tx = x 4+ «. The system
(X,B,u,T) is called a Kronecker system (or an almost periodic system).
Equivalently, (X, B, u,T') is Kronecker if the eigenfunctions of T span L?(X).
Every ergodic system has a maximal almost periodic factor:

3.2. Theorem. Let (X,B,u,T) be an ergodic m.p.s, then there is a map
w: X — 7 where 7 is a compact Abelian group, and a Kronecker action on
Z such that Tn(z) = n(T'(x)) for a.e. & € X. For every character x on Z
the function x'(z) = x(m(x)) satisfies

X (Tz) = x(r(z) + a) = x(2)x'(x)
and so is an eigenvector of T'. Moreover, every eigenfunction of the T -action
comes about this way.

The factor system (Z,D,m,T), where D is the algebra of Borel sets,
and m the Haar measure, is unique up to isomorphism and is called the
Kronecker factor of (X, B, u,T). For the proof see [§8].

4. ISOMETRIC EXTENSIONS

4.1. Let (X,B,u,T) be an ergodic m.p.s., and let (Y,D,v,T") be a fac-
tor. Consider the ring L*>(Y') as a subring of functions on X. A subspace
V C L3(X) is a finite rank module over L>=(Y) if there exist finitely many
functions ¢1,...,¢y, such that any function f € V can be expressed as
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f= Zle a;i(y)pi(z). We say that (X,B,u,T) is an isometric extension
of (Y,D,v,T) if L?(X) is spanned by finite rank T invariant modules over
L>(Y). It can be shown that in this case (X,B,u,T) is isomorphic to a
skew product (Y x M,B,v x m,T,) where M is a homogeneous compact
metric space on which there is a unique probability measure, m, invari-
ant under the transitive group of isometries. The action of T}, is given by
T,(y,m) = (Ty, p(y)m), where p : Y — Isom(M). For example, a Kro-
necker system is an isometric extension of a point. Define p, : ¥ — G by
Ty (y,m) = (T"y, pn(y)m); then p, satisfies a 1-cocycle equation for the
action of Z on functions from Y to G

Pn+m (y) = Pn (Tmy)p'm(y)'
Since pn(y) is determined bi p1 (y)we shall focus on p(y) = pi(y) and refer to

it as the extension cocycle (or just cocycle). We shall denote the extension
given by a cocycle p by Y x,G/H.

4.2. Let (X,B,u,T) be an ergodic m.p.s., and let (Y,D,r,T) be a factor.
Consider the subspace of L?(X), spanned by all finite rank 7T-invariant mod-
ules over L>°(Y'). This subspace will be defined by some factor (}},75, v,T)
between X and Y. The system (Y,TD, v,T) is called the mazimal isometric
extension of Y in X.

4.3. Let (X;, B, 13, 13), i = 1,...,k, be measure preserving systems, and
let (Y;,D;,vi,T;) be corresponding factors. A measure p on I1X; defines a
joining of the systems X if it is invariant under 77 X ... x T} and maps onto
p; under the natural map IIX; — X;. Let p;,, represent the disintegration
of p; with respect to (Y;,v;), and v the projection of p on I1Y;. We say that
w is the conditional product joining relative to I1Y; if

p= /ul,yl o By @V (Y, k)

4.4. Theorem. Let X;,Y; be as above. Assume (X;,B;, pi, T;) has finitely
many ergodic components. Let (f’},f)i,ﬁi,Ti) be the maximal isometric ex-
tension of (Y;, D;,vi, T;) in (X4, B, pi, T;). Let p be a measure on I1X; defin-
ing a joining which is a conditional product relative to I1Y;, then almost
every ergodic component of u is a conditional product relative to Hf’}; i.e.
If F ¢ L2(IX;,11B;, 1) is invariant under Ty x ... x T}, then there exists a
function & € L>(TY;, TID;, Ii;) for i; the image of p on TIY; so that

F(acl, e ,J?k) = <I>(ﬁ'1(x1)7 “e ,ﬁ'k(l’k))
Proof. see [8] theorem 9.5. O

4.5. (X, B, u,T) is a group extension of (Y,D,v,T) if it is isomorphic to a
skew product (Y x G,B,v x Haar,T') where G is a compact group, and

T(y,9) = (Ty,p(y)g), where p : Y — G. (This is a special case of an
isometric extension where H = {1}) .



4.6. Lemma. Suppose (X,B,p,T) is an ergodic isometric extension of
(Y, D,v,T) so that we can express X =Y x,G/H. Using the function p,
we can define a group extension Y X, G. Then G and H can be chosen so
that the extension Y X, G is an ergodic group extension.

Proof. [10] lemma 7.2. O

4.7. Lemma. Let X =Y X, G be an ergodic group extension of Y, and let
W be an intermediate factor between X and Y, then X is a group extension

of W.
Proof. [10] lemma 7.3. O

5. EQUIVALENT COCYCLES AND THE MACKEY GROUP

5.1. Let (Y,v,T) be an ergodic m.p.s., G a compact metrizable group. Let
(Y x, G, x mg) be a group extension: T,(y,g9) = (Ty,p(y)g). We can
reparameterize Y x G replacing (y,g) with F(y,g9) = (v, f(y)g) for some
measurable function f : Y — G. Let o'(y) := f(Ty)p(y)f(y)~!, then the
systems (1,,Y x, G), (Ty,Y X, G) are isomorphic, and p,p’ are called
equivalent cocyles. If p is equivalent to the identity cocycle then p is a
coboundary.

5.2. If p takes values in a closed subgroup H of G, the extension Y x,G will
not be ergodic (any function on H/G will be invariant). By the foregoing
discussion if p is equivalent to a cocycle taking values in a closed subgroup
H, then the extension Y x, G will not be ergodic. Mackey’s theory says
that all ergodic measures p on Y x, G that map onto v under the natural
projection come about by replacing the cocycle by an equivalent one, taking
its values in an appropriately chosen subgroup.. More precisely:

5.3. Theorem. Let Y x, G,u be an ergodic group exrtension. Suppose p
18 mapped onto v under the natural projection. There is a closed subgroup
H < @, unique up to conjugacy, so that:

(1) p is equivalent to a cocycle p' taking values in H.
i.e. p'(y) = F(Ty)ply)f(y)~" € H.

(2) The transformation T, has ergodic invariant measures v X mpy
where v € G, and my., is the translated Haar measure on H (sup-
ported on the coset Hy).

(3) Any ergodic T,y -invariant measure on'Y xG extending v has the form
v X mpy for some coset Hy, and the ergodic T, invariant measures
are obtained by applying F~1 to the ergodic T),-invariant measures.
The group H 1s called the Mackey group of the extension Y x,G.

6. ABELIAN EXTENSIONS

6.1. Notation. We use additive notation for Abelian groups with the ex-
ception of the group S! which will play a special role in the future. In
particular, if p, p/ are equivalent cocycles (defined in the foregoing section)
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taking values in an Abelian group GG, then there exists a function f : Y — G
such that

ply) = F(Ty) +0'(y) — fy).
6.2. If Y x, G is an Abelian group extension, the Mackey group defined in

the foregoing section H is unique. Let
H={xeG:x(g)=1forallge H}

be the annihilator of H. If p is equivalent to a cocycle taking values in H

then x o p is a coboundary for all x € H. The converse is also true: by

Pontryagin duality G < (S)¢, and p = (pX)xeé where py(y) = x 0 p(y).

If xop(y) = % is a coboundary for all y € I, then define P (y) =

Px (y)%:% for all x € G. Thus
X

H= {x € G- X o p is a coboundary}.
6.3. Proposition (Furstenberg Weiss). Let Y x,G be an Abelian extension,

and let M be the Mackey group of this extension. Let f € L*(Y x, G) be
s.t. for all x € M+,

[ fw9x(@dmets) =0

for a.ey €Y. Then f is orthogonal to the space of T, invariant functions.

6.4. Notation. Denote U; = d dimensional unitary matrices, C'(Uy) the
center of Uy, and P : Uy — PU; = Uy/C(Uy) the natural projection.

We need the following lemma:

6.5. Lemma. Let H be a compact Abelian connected group, and A : H —
Uys a measurable function. If P o A is a homomorphism, then A(H) is a
commuting set of matrices.

Proof. Let g,h € H. Suppose [A(h),A(g)] = 6. If v is an eigenvector of
A(h) with eigenvalue v, then
A(h)A(g)v = 6A(g)A(h)v = v3A(g)v

thus A(g)v is an eigenvector of A(h) with eigenvalue v§. This implies that
A*(g)v is an eigenvector of A(h) with eigenvalue 6%, thus § is a root of
unity of order < d. Denote Cy the group of order d! roots of unity. Then
the commutator set

{[A(h)aA(g)]}h,gEH C Cd7
Fix g. Denote
E(g,0) = {h: [A(g), A(h)] = 6}
The set E(g,1) is a closed subgroup of H since for hy,hs € H
[A(g), A(h1 + h2)] = [A(g), cA(h1) A(h2)]
= [A(g), A(h1)][A(g), A(h2)]
= [A(g), A(h1)][A(g), A(h2)].
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Let h € E(g,9), then by the above computation

E(g,6) = h+ E(g,1),
thus E(g,1) is a closed subgroup of index < d!. As H is connected E(g,1) =
H. Il

6.6. Theorem. Let (Y,T) be an ergodic m.p.s, Y x,H an ergodic extension
by a connected Abelian group. Let F : Y x H x H — S' be a measurable
function. Let o1(y,¢1),02(y,2) : Y x H — S be measurable functions.
Suppose
F(Ty, 1+ p(y), w2 + p(y))

Fy, e1,92) '
Then there exists measurable functions h,H : Y — S such that

1) = hly) )

Proof. Construct the system (X,S) = (Y x H x H x S! x §',5), where
Sy, e1,2,C1,¢2) = (Ty, 01 + p(y), 02 + p(y), 71(y; ¥1)C1, 02y, p2)C2)

Denote

o1(y, p1)o2(y, p2) =

T1(y,1,C1) = (Ty, o1 + p(y), 01(y, ¥1)C1)

Ta(y, ¥2,C2) = (Ty, 2 + p(y), 02(y, p2)¢2),
and
X1 =Y xHxSYT); Xo=(Y x HxSTp).
Then
(X,8) = (X1,Th) xy (X2,T»)

is a conditional product joining relative to Y. The function

(2) F(y,¢1,2,C1,C2) = Fy, 01, 02)¢ 5

is invariant under S, and therefore by theorem 4.4 it is measurable with
respect to Yy x Ys , where Y; is the max isometric extension of ¥ in X; for

i = 1,2. Isometric extensions are spanned by finite rank modules (see 4.1)
Thus

F‘(y79017902a<17<2) :Z<¢; (yasolaCI)v ;l (y79027<2)>

where

Tl ¢J1 (ya('plaé-l) = Hjl(y) ’L/} (ya @17(1)

T2 %2 (y,(PQ,Ci) = HJQ( ) 1/’; (ya 9027C2)7

and Hjl(y),HJQ(y) are d; x d; unitary matrices. Substituting the Fourier
expansions:

=4 3

¢ (¥, ¢1,C1) Z%k Y, 1)¢
_)
¢ ya‘pZ,C? ijk ya‘p?
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_}
in equation(2) we get that for & = —1 there exists j such that ¢]1’_17é 0.
Apply T to get
— —

o My, 1) ¥l _y (Ty, 1+ py)) = HH(y) ¥7_1 (y,¢1)

For simplicity we drop the indices:

(3) oMy 9) & (Tyy 0+ pv) = H(y) ¥ (1,9)

For each y consider the distribution ofz (y, ) in the fiber over y, and look
at the vector space spanned by the support of this distribution. Call this
V(y), so that V(y) C C%, and V(Ty) = H(y)V (y). Since H(y) is unitary,
dimV (Ty) = dimV (y), thus by ergodicity dimV (y) = d for a.s. y. For each
y choose a basis for C¢ s.t. V(y) is spanned by the first d elements. As the
transformation matrix is a function of y, we may assume d = d.

_)
Denote ¢ the projection on PV, and H the projection on PU, Thus:

— —

b (Ty, o+ pv) = Hy) ¥ (y,9).
X H) XIjI PUd Then

— —

Y (T"y, 0+ pu(y)) = Ha(y) ¥ (y,9)

Consider the group extension (Y

—

For fixed y, ¥ (y,¢) spans the space, so whenever (T"y, ¢ + pn(y)) is close
to (y,¢) (by ergodicity this happens for a generic y), H,(y) is close to the
identity. This implies that the foregoing group extension is not ergodic, and
furthermore - the Mackey group is trivial. Thus for some projective unitary
matrix function M:

(4) M(Ty, ¢+ p(y)) = H(y) M (y. )
Also for any ¢/
M(Ty,+¢' +p(y) = Hy)M(y, ¢ +¢').

Thus

M~ Ty, + ¢ + p(v)) M(Ty, 0 + p(y) = M~ (y, 0+ ') M (y, )
By ergodicity . . )

M~y ¢+ ¢ ) M(y,9) = A(¢'),

for all ¢', a.e.(y, ). By Fubini’s theorem there exists (g such that
(5) M(y,¢) = M(y,00) A7 (¢ — #0)-
a.e.(y, ). The function A(¢') is a homomorphism of H:
AW +¢") =My, o+ ¢ + ") M(y,¢)

MYy, o+ ¢ + "V M(y, o + ¢ VM Ny, 0 + ¢ )M (y, 9)
A(e")A(¢")
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Recall P : Uy — PUy is the natural projection. We can find a measurable
function A: H — Uy so that Po A = A.

A(H) = P~YA(H).

Then by lemma 6.5 A(H) is a commuting set. Substituting equation (5) in
equation (4) we get

M(Ty, e+ p(y))

Il
=

(Ty,00) A" (@ + p(y) — ©0)

=H(y)M(y, )
=H (y) M (y, 00) A~ (9 — o)
Thus
H(y) = M(Ty, 00) A~ (p(y)) M~ (y, o)
(6) H(y) = M(Ty,0) A(—p(y)) M~ (y, v0)d(y)

where d(y) is a scalar matrix. As A(H) is a commuting set, it is simultane-
ously diagonalizable:

(7) A(p) = N"'D(p)N
therefore
H(y) = M(Ty,00)N~'D(=p(y)) N M~ (y, ¢o)d(y)
Denote M'(y) = M (y, ¢o). Substitute H(y) in equation (3):
- -
a(y, ) NM'"H(Ty) % (Ty, + p(y)) = D(=p(y)dy) NM' (y) ¥ (y,¢)
Now each coordinate gives us the desired result. O

6.7. Remark. If H in theorem 6.6 is not necessarily connected, but the

cocycle p is cohomologous to a constant: p(y) = cf;(j;“;), then the result

holds as for some scalar matrix d(y) : ¥ — S?

Alp(y)) = Alef (Ty) () = A(F(Ty) A) AT (f (9)d(y)
Now diagonalize A(c) : A(c) = HDH™! and substitute in equation (6).

6.8. Corollary. Let (Y,T) be an ergodic m.p.s, Y x, H an ergodic Abelian
extension where either H is connected or the cocycle p is cohomologous to a
constant. Suppose there exists a family of functions {fr} nem, fn: Y x H =
S such that

oly,e+h) [Ty, ¢+ p(y))

U(?J:‘P) B fh(yﬂﬁ) ’

then
F(Ty, ¢+ p(y))
F(y, )

a(y,p) = g(y)
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Proof. Make the coordinate change: ¢1 = ¢; @2 = ¢ + h. Then
In(y,0) = f(y, hyo) = ['(y, 0 + hop) = [(y, 01, 02)

and

Ty, o+ py)) = f'(Ty, o1+ p(y), 02 + p(y))-
Now apply theorem 6.6. O

6.9. Notation. We write f ~ g if f/g =const.

6.10. Lemma. Let (X =Y x, H,T,) be an Abelian extension of (1,Y).
Let 0 : Y x H — S' be such that for all h € H there exists a function
frn:Y x H— S such that

(8) oy, o +h) _ [Ty, o+ py)

U(y,SD) oo fh(yaso) ’

and the functions {fn}ren depend measurably on h. Then there exists a
measurable family of functions {fn}rem satisfying the above equation, and
a a neighborhood U of zero in H such that

fh1+hz (ya 90) ~ fhz (ya ® + hl)fhl (y7 90)
Ahl—l-hg - )\hl >\h2

for hi,he € U.
Proof. For measurability see remark 6.17. Using equation (8) we get

o(y, + h1 + ha)
o(y, )

Tfh1+h2 (y,(p)
fh1+h2 (9,80)
T [ (Y, 0+ h2) T [, (y, )
Tr (Y0 + h2) [y (Y, 9)

= >‘h1+h2

= Ap; An,

this implies that
Jhaths (ya 90)
Fni(y, 0+ h2) fy (4, )
is an eigenfunction of T' and that

Ahy Ahy
>‘h1+h2

is an eigenvalue. Let (Z,«) be the Kronecker factor of (X,T},), 7: X — Z

the projection map, let N parameterize 7, and let ¢N(h1,hg)(z) be a character
of Z s.t.:

(9) fh1+h2 (ya 30)
fhz (ya @+ hl)fhl (y7 14

) VN (hy ko) © T (Y, 9)

and
)\]‘Ll >\h2

10
( ) )\hl +ho

= YN (hy,h2) (@)
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We now show that ¢y, 1,) satisfies a 2-cocycle equation:

fh1+h2+h3 (yaw)
Yo + ha + h2) fay+n, (Y, )
Jhathoths (Y ©)
fhz+hs (ya ®+ hl)f/n (y7 </J)

VN (hy+haohs) © T (Y 0) ~ ol

VN (hiha+hs) © T(Ys ) ~

Thus
YN (hithahs) © T(Ys @) Frs (Y @ + h1 + h2) fry 40, (Y, 9)
YN (hy haths) © T(Ys P) Fhotns (s @ + P1) fry (Y, #)
Dividing both sides by

T (U,9) frs (Y 0 + b1+ ho) fr, (Y, 0 + h1)

we get

Shiths (Y, ©)
ya()o)fhz (y790 + hl)
Thoths (s + h1)
Y, 0 +h1) fng (Y, 0 + ha + ha)’

Combining the above equation with equation (9),

(11) VN (hithohs) VN (h1he) (2) = VN (hy hatha) ()N (ho,hg) (2)-

As h — fj, is ameasurable function, fr,(y), frn,+r, (¥) are close in measure for
small hy, most ha, and the same goes for fy,(y, ), fr, (¥, + k). Therefore
the expression in equation (9) is close (in measure) to fy, (y,¢). But Ny #
Ny implies

13 12,1 o ?
wN(’ 1+7 2,]3) (y SO) fhl(

~ VN (hy ha+hs) © T(Y-9) ol

lon, = wlle = V2,
thus by equation (9), ¥n(h hy) = wN(hl) for hy € U’ a neighborhood of
zero in H, ho € A a set of positive measure. The set A — A contains a
neighborhood of zero U”. Let U = U' N U". Take any hy, ha, h1 + ho € U,
and find an element hs € A such that hs + hg € A, then by (11)
VN (hyhe) = ‘/’N(hl) N%hﬁhz)lﬁz\'f(zu)

For hi, he € U, denote
fh(ya 90) = wﬁ(}l) 0 W(ya W)fh (y7 90)

, and 3
Ah = An ;ﬁh)(a)-
By equations (9), if hy, ha, hy + he € U, then :
(12) Fhaths (U @) ~ Fo (450 + ) i (4, 0)-
By equation(10), if hy, ho, hy + he € U then
(13) 5‘h1+h2 = S\hl S‘hz'
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6.11. Lemma. Let H be a torus (possibly infinite dimensional) and let Y x,
H be an Abelian extension of Y. Suppose

oy, e+th) _ Ty, e+ py))
(14) - )‘h .

U(yv(p) fh(ya 90)
Then there is a subgroup Ho < H such that H/Hy = T™ such that if 7 : H —

H/Hs is the natural projection then there exists a function & : Y x H/Hy —

St such that
ToF(y,0)
F(y, )

Proof. By lemma 6.10 the functions f;, can be chosen such that A is mul-
tiplicative in U a zero neighborhood in H. The neighborhood U contains
Hj - a closed connected subgroup of H, such that H/H; = T thus )\ is a
character of Hy. Thinking of H as H/H; x H; with coordinates (hg, hy) the
above equation becomes

(15) U(yah07h1 +h) — Ahfh(Tya(p"i_p(y)).

U(y,‘ﬂ) fh(y,ﬁo)
where h € Hy. This is the same as

o(y, ) =6(y,m(v))

-1
(16) >\711+110(y7 hy,h1 + h) — Ty, ¢+ p(y))
Ao, ) )
Applying corollary 6.8 replacing ¥ with (Y x H/H;) and H with H; we get
I T T,F Y,
Aoy o ) = 5 (v, ho)ﬁ.
or
- T, F(y,
O'(y, ho, hl) = Ahlo-(y? ho)%

Now for hj in the kernel of A we have A, = 1. The image of X is St thus if
ker) is Hy then H/Hy = THL. O

6.12. Remark. If H is any connected compact Abelian group (not neces-
sarily a torus) then Hj in the foregoing proof is not necessarily connected.
By the same proof we will get that o is cohomologous to a cocycle lifted
from a product of a finite torus and a totally disconnected compact Abelian

group.

6.13. Lemma. Let and Y x, H be an Abelian extension of Y with p(y)
cohomologous to a constant function (now H is any compact Abelian group).
Let o be as in lemma 6.11. Then there is a subgroup Ho < H, and a finite
group Cy, such that H/Hy = T™ x C}, and if 7 : H — H/Hs is the natural
projection then there exists a function & :Y x H/Hy — S such that

T,F(y, )

o(y,p) =5y, m(p)) Fly.g) "
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Proof. By lemma 6.10 the functions f;, can be chosen such that Aj is multi-
plicative in U a zero neighborhood in H. The neighborhood U contains H;
- a closed subgroup of H, such that H/H; = T! x C; where C; is a finite
group, thus Aj is a character of Hi. Now proceed as in lemma 6.11 (the
image of X is either S! or a finite group).. (|

6.14. Lemma. Let Y = Z x, H be an ergodic Abelian extension, and F :
Zx H— SY, g:Z — S! measurable functions such that

o) = -

Then there exists x € ﬁ, and k : Z — S such that
F(0,¢) = k(0)x(#)-

Proof. Take the Fourier expansion of F':

F(8,0) = ki(®)xi(y).

Then for all ¢

ki(0 + ) xi(e)xi(p(0)) = g(0)ki(0)xi()-

Ergodicity of 7" implies |k;(0)| is constant a.e.. The fact that |F'| = 1 implies
that there exist an ¢ for which |k;(8)| # 0. If there are two such indices 1, j,
then

Xi
Xj( (0))
is a coboundary. As T' is ergodic x; = x;. O

6.15. Notation. Let (X3, B1), (X2,B2) be measure spaces. Denote
B(X1,X2) ={f: X1 — Xo, f measurable}.

6.16. Proposition. LetY = Z x, H be an ergodic Abelian extension (X, )
a measure space, and & — f,.(y) be a Borel measurable function from X to
B(Y,SY). Suppose for all « there are functions g.(8), F.(y) € B(Y,S') such
that

an) fuy) = g.(0) 20)

Fm(y) '

Then there is an & measurable choice of g.(6), Fi(y).-

Proof. Endowed with the L2 topology, B(Y,S') is a polish group. Let
B(Z,S") be the closed subgroup of B(Y,S*) of functions that depend only
on the 6 coordinate, and let f — f be the natural projection onto B =
B(Y,SY)/B(Z,S'), with the induced topology. By Dixmier ([3] theorem
1.2.4) there is a measurable section B — B. Equation 17 implies

: TF.(y)

fa(y) Foly)
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Define ¢ : B — B

o=
If () = ¢(g), then f
T5(y)
J = h(9).
L(y) ()

By 6.14 this implies that up to multiplication by a function of 8, 5 belongs

to a countable set, Thus ¢ is countable to one. By Lusin [19] ¢(B) is a
measurable set and there is a measurable function 9 : ¢(B) — B s.t.

potp=1Id|,p
Now if
then ~
_ _ TF,
Jo = SOO%b(fw) = Fm

the combination
t— fo— fo— F, = F,

gives a measurable choice of F}, and g, is measurable as a quotient of mea-
surable functions. O

6.17. Remark. If g,(8) € B(Y,*) (g, is constant) then the same proof
works to give a measurable choice of g, F.

7. NILSYSTEMS

7.1. Definition. Let N be a group. Denote N = N, N¥ = [N*-1 N]. N
is k -step nilpotent if N**1 = 1. Let N be a k step nilpotent group acting
transitively on a measure space X preserving a measure y. For a € N let T
be the transformation Tz = ax. Then (X,T) is a k-step nilsystem. If N is a

Lie group, I' a lattice then N acts transitively on N/I' preserving a unique
measure pg. We call N/I' a nilmanifold and (N/I',T) a nilflow.

7.2. Definition. Let (X,B,u,T) be a m.p.s. Let A C B be a T invariant
sub o-algebra. If

F =A{f: f measurable, |f| =1, T'f/f is A measurable}.

We define D(.A) as the smallest o-algebra with respect to which the functions
of F are measurable, and define D,(A) = D(D,-1(A)) where Dy(A) =
D(A). T is said to have generalized discrete spectrum [mod A] of finite type
if for some n € N, D,,(N) [D,(A)] is B, where N is the trivial o -algebra of
null sets and their complements. Since D,,(N') C D,,(A) generalized discrete
spectrum of finite type implies generalized discrete spectrum mod A of finite
type. The qualification “generalized” is dropped when n = 1.
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7.3. Example. If (Z x H,T}) is an Abelian extension of the Kronecker sys-
tem (Z,7T), then T, has discrete spectrum of finite type mod the Kronecker
algebra, and generalized discrete spectrum of finite type (mod the trivial
algebra). Another example - if (N/T',T) is a nilflow then T has generalized
discrete spectrum of finite type.

7.4. Proposition (Parry [25]). If T is ergodic with discrete spectrum mod
A then there exists a compact Abelian group G of measure preserving trans-
formations such that T(gz) = gTz for g € G and A = {B € B: gB =
B Vg € G}.

8. CHARACTERISTIC FACTORS
8.1. Definition. We say that (Y, D, v, T) is a characteristic factor for schemes
of length k if (Y,D,v,T) is a factor of (X,B,u,T), and for any distinct
a1y...,a5 € Z.

N N
1 ain arn 1 an arpmn
WE_:ITI fi...T™ fk—ﬁz_:lT E(fi]Y) ... T""E(f|]Y) — 0.

We say that (Y, D,v,T) is a minimal characteristic factor (m.c.f) for schemes
of length k if it is a factor of any other characteristic factor for schemes of
length k.

8.2. Lemma. Let Y7,Ys be characteristic factors of X for schemes of length
k

Then there exists a characteristic factor of X, which is a factor of both
Y1, Ys.

Proof. Denote P,Q the orthogonal projections onto L2(Y1), L(Y2) (seen as
subspaces of L2(X)) respectfully. Then P? = P* = P (same for Q). We
show that (PQP)" strongly converges to a self adjoint operator projection
W: P is a projection thus P < 1.

((PQP)’z,z) = (PQP=z,QPx) < (QPx,QPx) = (PQPx,x),

Inductively, the sequence (PQP)™ is a decreasing sequence of operators,
thus ((PQP)"x,x) converges for all . The sequence (PQP)"z is a Cauchy
sequence as

I(PQP)"x — (PQP)"z|* =((PQP)*"z,x) + ((PQP)*"x,x)
-2 <(PQP)("+’"‘)93,$> — 0.

Let W = lim,—o(PQP)", then W2 = W = W*. If Wz = = then Pz =
PWe=Waz =z, and

PQx=PQPr=POQPWaz=Wz=z= Qr=uc.
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W (L*(X)) is a characteristic factor as for all m:

N

1
. ain apmn
A}E}loo— nEZIT fi... %" fy,
1 N
= lim — TA"((PQP)™f1) ... T*™((PQP)™f).
Jim S TUN(PQPY™ ). T (PQP)™ )

g

8.3. Corollary. There exists a unique minimal characteristic factor for all
schemes of length k.

Proof. By Zorn’s lemma. O

The advantage of the definition of a characteristic factor for all schemes
of length k£ is that it is natural in the sense that any morphism of measure
preserving systems induces a morphism between their minimal characteristic
factors for schemes of length k - as will be shown in corollary 8.5 (this may
also be true for characteristic factors of a specific scheme).

8.4. Lemma. Let V be the o-algebra spanned by the partial L? limits of
the sequences {% EN Tamfy . T fi b where f; are bounded functions,

n=1
a1,...,a; € Z. Then V is the minimal characteristic factor for schemes of

length k.

Proof. Obviously V is a subspace of the minimal characteristic factor. We
must show that V is a characteristic factor: Let g L V, then for any f;

N N
1 1
— TURf T ) =— TU T2 o T f1.d
<9,N E 1 fk> N;:l/g 1 f2 Jrdp

n=1

N
]' —dain ap—a n
ZWZ/hT ang T f
=1
N

=5 0.
g
8.5. Corollary. If 7 : (X,B,u) — (Y,D,v) is a factor map, and Wx, Wy

are minimal for averaging schemes of length k for X Y respectfully, then
induces a map between Wx and Wy .

9. THE CONZE-LESIGNE FACTOR

9.1. Definition. A CL extension of a Kronecker system (Z,«) (or a CL
system) is an ergodic system (Y,7) where Y = Z x, H for H a compact
metrizable Abelian group, T'(0,¢) = (6 + o, ¢ + p(8)), and the extension
cocycle p satisfies the (additive) CL - equation: there exists a family of
functions {pg} such that for all g € Z

(18) p(0 + B8) — p(6) = h(a,B) + ps(0 + ) — pp(0)
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for a.e. 8 € Z. We call p a CL character. If Z is the Kronecker factor of
Z X, H then the extension is called weakly mizing.

9.2. Remark. The multiplicative form of the above equation 18 is known
as the Conze-Lesigne equation: Let x be a character of H, the CL equation
implies:
x o p(@+p) — x(h(a ))Xopﬂ(9+a)
x o p(f) ’ xops(0)
9.3. Lemma. If Z x,H is a CL extension then either the extension is weakly
mizing, or for some x # 1 € ﬁ, X © p 15 equivalent to a constant.

Proof. [12] lemma 4. O

9.4. Corollary. If Z x ,H is a weakly mizing CL extension then H is torsion
free so kH = H for every non zero integer.

Proof. [12] lemma 5. O

9.5. Corollary. If Z x, H is a weakly mizing CL extension then H is a
compact connected Abelzan group.

9.6. Proposition. Let Z x, H be a weakly mizing CL extension. If x is a
character of H, then x o p is lifted from a function on a finite dimensional
toral factor T™ of Z. Denote p : Z — T" the projection map. There exists
a unique matric M € M,(Z), N € Z" (at least one of them not zero), such
that for B in a neighborhood of zero in Z

xop(0+ 5) o2mi(Mp(a)p(B)+N- p(B)X° ps(p(6 + )

x o p(0) xops(p(0))
Proof. The fact that x o p is lifted from a function on a finite dimensional
toral factor T™ of Z is shown in [27] corollary 5.5. The existence of M, N

are shown in [27], and in [18] lemma 4. O
9.7. Lemma. If for all vy € 7,

xop(0+7)

x o p(0)
1s a CL cocycle then x o p is a CL cocycle.
Proof. [12] proposition 7. O
9.8. Proposition. Let | be a positive integer and let ay,...,a) be distinct
non zero integers Let pV, ... p) be multiplicative cocycles on Z. Suppose
Fz+a(B+a),....24+ai(f+
H P96+ ayf) = ( 1(8+ o) 1B+ a))

F(z+a18,...,z+ a;3) ’

(recall that p; )(9) =B+ (G —1Da)...p)"0 + a)p¥)(8)) then p¥ is a
CL cocycle for 1 < k <.

Proof. [12] proposition 10 (the notation there is reversed). O
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9.9. Definition. Let Z x, H be a CL extension and denote by B(Z, H) the
measurable functions Z — H.

G:={(6,f):8€Z;feB(ZH)}

Then G is a group under the multiplication:

BN ) = (B+B 17 + 1),
where fP'(2) = f(z+ ). Endow B(Z, H) with the topology:

. 2(
fo— f <:>VXeH:XOf,,LL—(Z))Xof.
Then G C Z x B(Z,H) is a polish group, and acts on Y = Z x H by
(B, 1)(8,¢) = (6 + B, + f(0)).

Denote [u,v] = u"lv™luv. Let u, = (, p) (the element that represents the

action of 7"). Define
(19) U:={u€g:[u,u.] = (0,const)}.
Let C'(U) be the center of U, then
{(0,h); he H} =CU).
As a subgroup of G, U acts on Z x H, and we have:

9.10. Lemma. The group U is a 2-step nilpotent group and acts transitively
onY =7 x H.

Proof. [27] theorem 3.8, or [21]. O

9.11. Notation.
We use T, for the action of the element w.
We denote V}, (vertical rotation) the action of the element (0,h).

9.12. Lemma. Let u = (8,pg), v = (7, py). there exists a constant h(B,7),
such that

[T“7Tq,](9,<,0) = (9790 + h(ﬁv7)) = Vh(,()’,’y)(ovgo)'

9.13. Lemma. LetY =7 x, H be a CL system. Then (Y,T) is isomorphic
to a 2-step pro-nilsystem lim N;/T;. Denote N := limN;. Let G be a
compact Abelian group of measure preserving transformations acting on'Y
and commuting with the action of T. Then G commutes with the action of

N.

Proof. Let Y = Z x, H be a CL system. We may assume that Z is the
Kronecker factor of the system. Let 7 : Y — Y’ be a factor map. Let Z’ be
the Kronecker factor of Y/. Then 7 induces a map between Z and Z'. In
particular, any transformation 7, : Y — Y that commutes with 7" induces
a map from Z — Z: 0 — 6 + «,. We first show that T}, respects the skew

product structure, i.e. that T,(8,¢) = (0 + oy, ¢ + f4(0) (a priori f, is a
function of # and ¢). For g € G:

TTy(0,9) =T(0+ ag, f4(8,9)) = (6 + ag + @, p(0 + ag) + [,(6,¢)).
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On the other hand,
T,T(0,p) = Ty(0 + a,0 + p(0))) = (0 + a+ ay, f4(T (6, 9)))-
Thus using the CL equation

Fo(T(8,0)) =p(0 + ay) + [f4(6, )
=p(0) + h(c, ag) + Pay (0+a)— Payg, (0) + fg(Q, ®).
Denote
be(6,0) = F4(6,9) = pa, () — ¢,

then 1), is an eigenfunction of 7" and is thus a function of 8. Therefore

fg(ea 9) =+ pag(e) + ¢g(9)-
Denote

f4(8) = pa, (8) + 14(0),

then

Ty(6,9) = (0 + g, 0 + [4(0))-

Denote g = (ag, fg). Then the fact that 7" and 7, commute implies that
g € U (by the definition of ¢). Since U is 2-step nilpotent, for any v € U,
there is an element A\(u,g) € H

[u7g] = (07/\(uag))'
This is a multiplicative function from U — G thus trivial on Up - the con-

nected component of the identity. But A(uq,ay) = 1, and u,, Uy generate a
dense subgroup of U (as the action of T is ergodic) thus A(u, o) =1. O

9.14. Proposition. Any factor of a CL system is a CL system.

Proof. Let (Y, D, u,T) be a CL system, (Y',D', i/, T) a factor. The system
(Y, D, u, T) has generalized discrete spectrum mod D’ of finite type (see 7.2).
Now apply the foregoing lemma, proposition 7.4 and induction. [l

9.15. Theorem. [HK] Let (Y, D, u, T) be an ergodic m.p.s. then the mazimal
CL extension is a characteristic factor for length 3 schemes. Furthermore
for any scheme (ai,a2,a3) (a; € Z) the limit

N
. 1 ain asn asmn
Am N,Z_lm 17y) fo(T™"y) f3(T*"y)

exists in L*(Y).

9.16. Corollary. Let (Y,D,u,T) be an ergodic m.p.s. then the minimal
characteristic factor for schemes of length 3 is a 2-step pro-nilsystem.
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Part 2. The minimal characteristic factor for linear schemes of
length 4

Let (X, B, u,T) be an ergodic m.p.s., f1,...,fr € L=®(X), a1,...,a; € Z.
We wish to study the limiting behavior of non-conventional ergodic averages

of the kind

N
% Z Talnfl e Taknfk.
n=1
9.17. By the ergodic theorem, the minimal characteristic factor for schemes
of length 1 is an inverse limit of cyclic groups (if 7" is totally ergodic it’s just
a point). It is not difficult to show that the minimal characteristic factor for

the schemes of length 2 is the Kronecker factor - an Abelian group rotation
factor ([10]).

9.18. Schemes of length 3 are already much more difficult to analyze. Ex-
istence of the limits in the totally ergodic case was shown by Conze and
Lesigne ([5],[6],[7],[15],[16],[18]), and in the general case by Furstenberg and
Weiss (in the process of analyzing related averages) [10], and by Host and
Kra ([11],[12]).

We prove the following theorem:

9.19. Theorem. The minimal characteristic factor for schemes of length 4
is a 3-step pro-nilsystem.

Our analysis seems to carry over for any k; the main problem is notational.
We intend to work it out in the near future.

10. REDUCTION TO AN ABELIAN EXTENSION OF THE CL FACTOR

10.1. To avoid cumbersome notation we perform the analysis for the scheme
(1,2,3,4). We start with a series of reductions that will eventually leave
us with handling an Abelian extension of the CL factor of the system. We
follow the lines of the work of Furstenberg and Weiss [10].

10.2. Reduction to an isometric extension of the CL factor Our first step
is to reduce the question to the case where X is the maximal isometric
extension of the CL factor. The following lemma is known as the van der
Corput lemma. The formulation below is due to Bergelson [2].:

10.3. Lemma (van der Corput). Let {u,} be a bounded sequence of vectors
in a Hilbert space H. Assume that for each m the limit

1 N
Y = Jim X_jl (ttns Ungom)
exists, and
1 M
(20) Jim > m =0.
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Then

1 N

n=1

Proof. Let M be large enough so that the expression in (20) is small. Let
N be large enough with respect to M so that the two expressions

are close. We have:

n=1m=1 m=1

1 N M
= W Z Z <un+m1 b un+77l2>

n=1mj,ma=1

M
Nowo 1
— —2 E ’Ym,g—m,l

mi,ma=1

which is small. O

10.4. Definition. Let Y be the CL factor of the system. Define the measure
My on Y4 by:

4 N 4
E3 M 1 n
/Hgk(yk)duy(yl,yz,yg,yn = hmﬁZ:l/kl:[lT’“ 91 (y)dv(y)

(the limit exists by Theorem 9.15).
Define a measure pu* on X* by:

4 4
J T ntendn = [ TLEGIY)w)di-
k=1 k=1

Then u* defines a joining of (X,T),...,(X,T*) which is the conditional
product joining (4.3) relative to (Y4, u%).

10.5. Remark. Both measures py, and p* are invariant under I'x T'x 1" x T’
and T x T? x T3 x T*.

10.6. Theorem. LetY be the mazimal isometric extension of Y in X. Then
Y is a characteristic factor for the scheme (n,2n,3n,4n).

Proof. We apply the van der Corput lemma 10.3 with

4
Uy = H Tknfk($).
k=1
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We calculate ~y,,:
N

o1
Y = lim ﬁ Z <U71.a un-{—m)

n=1

— lim — f:/ ﬁ T* f1,(x) T4 fi (@) dpa()
N n=1 k=1
1 N 4
—tim 3 [ T 7T )ty
n=1 k=1
1 N 4
—tim 3 [ TIT* BT Al ) Wiy
n=1 k=1
4
= / LT EGT ™ 1Y) (i) dpy (v1, y2, y3, y4)
k=1

4
=/Hfka'mfk(wk)du*(ﬂlhxz,903,934).

k=1

By the ergodic theorem, there exists a (L?(u*),T x ... x T*) invariant func-
tion D such that

M 4
.1 «
(21) hmM E 17m = /]}:Ilfk(xk)D(xly---,x4)dﬂ (z1, 22,3, 24).

By 4.3 this function is measurable w.r.t Y4 If fr is orthogonal to Y then

the average (21) is zero, and by VDC so is the original average. 0

10.7. Remark. If Y}, is a characteristic factor for the scheme (n,2n,..., kn),
then by the same proof, Y}, is a characteristic factor for (n,2n,...,(k+1)n).

11. THE ERGODIC COMPONENTS OF 3

11.1. Notation.

(1) ]SOI‘ yNG Y) y= (yay7y)y)7 y = (y17y27y37y4)‘ For 0 € Z) ZlS H)

8,9,0,p defined similarly.

(2) T stands for T x T... x T with length depending on context.

(3) 7=T xT?x T3 xT*

(4) 7o =Ty x T2 x T3 x T4 for u € U (U is defined in 9.9).

(5) For h e H*, V;(8,¢) = (6,5 + h).
11.2. Lemma. Let

M = {(hl,hg,hg,h4) :3h1 — 3ho + hy =0; 4hy — 6ho +4hy — hy = 0}.

Then M s the Mackey group characterizing the ergodic components of the
Abelian extension {z + B}pez x5 H* with respect to 7.
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Proof. See [12]. We give another way to compute the Mackey group imple-
mented for £ = 4 in corollary 13.4. O

11.3. Notation. For m € M, V;(6,3) = (8,3 + m).

11.4. Lemma. Let {pg}pcz be a measurable family of of functions satisfying
the CL equation with p, then the ergodic components of 3, are supported
on

Ly = {1, Vin(¥)}pez, meum
where y ranges over Y .
Proof. We need to show invariance under 7 (ergodicity follows from the
properties of the Mackey group). The functions pg are defined up to an
eigenfunction (taking values in H), thus there exists an eigenfunction
such that
(aap)(ﬁapﬂ) = (Oé + ﬁapﬂ + Pﬂ) = (Oé +/B:¢ + p(a-l—ﬂ))
Thus for m < 4:
(@, )™ (B, pp)™

=+, + plasn)"[(e0), (8, )] 7)
= (m(a + /B)v (?) ’Lﬁ(Oé + 6) +my + pm(a+ﬂ)> [(Oé, p)v (57 pb’)](r;)

But

(¥(8),2¢(6),3¢%(0),44(8)) 5 (0, h(e, B),3h(e, B), 6h(e, B)) € M.
|

11.5. Corollary. The ergodic components of T are invariant under 7y, Vi,
forueld,me M.

Proof. Invariance under 75 is obvious. Invariance under 7, follows as by
the same computation in lemma 11.4, there exists m € M such that 7,7, =
Tu’u%h- U

11.6. Remark. One can see directly that different y lead to disjoint sets;
thus the ergodic of 3, components are parameterized by y € Y.

11.7. Reduction to a group extension of the CL factor By Theorem 10.6 we
may assume that X is an isometric extension of the CL factor Y. Thus by
4.1 it is of the form Y x, G/H, where G/H is a homogeneous space of a
compact metric group G. By 4.6 we may assume that Y X, G is an ergodic
group extension. We will prove the following theorem:

11.8. Theorem. If X is an ergodic group extension of its CL factor, then
the mintmal characteristic factor of X for schemes of length 4 is a 3-step
pro-nilsystem.
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11.9. Corollary. If X is an tsometric extension of its CL factor X =Y X,
G/H, then the minimal characteristic factor for schemes of length 4 is a
3-step pro-nilsystem.

Proof. Choose GG,H such that X’ =Y x, (G is an ergodic group extension
of Y. Let Y/ be the m.c.f. of X’ for schemes of length 3. By corollary 8.5,
the map X’ — X induces a map from Y’ onto Y. By lemma 4.7, X’ is a
group extension of Y. By theorem 11.8 its minimal characteristic factor for
schemes of length 4 is a 3 step nilsystem. By proposition 13.47 (to be proved
later) a factor of a 3 step pro-nilsystem is also a 3 step pro-nilsystem. [

9

11.10. Reduction to an Abelian extension of the CL factor By corollary 11.9
it is enough to analyze the case where the system (X, T") is a group extension
of the CL factor Y, i.e. X =Y X,G, where G is a compact metrizable group.
Denote G = [G,G]. We show that Y x, G/G’ is a characteristic factor of
X. The proofs in this section carry over verbatim replacing 4 with any k,
and Y with the characteristic factor for the £ — 1 scheme.

11.11. Lemma. Let Gy,...,Gy be 4 groups, G = H?:l Gj. Denote by m;
the natural projection:

Let N be a subgroup of G satisfying 7;(N) = 7;(G). Then
o There exists an Abelian group K and homomorphisms ¥; : G; — K
so that

N = {(g1,---,94)[¥1(g1) - . . pa(ga) = 1}
o IfG! denotes the commutator subgroup of G; then G} x...xG) C N.
Proof. We first show that N is a normal subgroup. Let
4
M =1x]]GnN,
j=2

and define N; similarly. We claim that N; is a normal subgroup of G. Let

g = (179279&94) € va and take B = (ﬁlaﬁ?a/@3w@4) € é There exists
§ € G, such that o = (4, g2,93,94) € N, thus

BB~ = (1,P29285 ", B3g3B3 ", BagaBy ) = aga' € Ni.
Next we claim N = NaN3. Let (g1,...,94) € M. we can find h € Gy s.t.
(h,1,93,94) € Na. The element

(h_lglag%l,l) = (h717g3794)_1(917‘ e 794) € N3,

we can therefore express

(gla 794) = (h71793794)(h_1917927171) € N2N3-
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Thus M is normal in G. Let K = G/N. Define

¢l(gl) = (917171a1)N € Ka

and 4f; similarly. Clearly

(gla"' 794) EN — 1/}1(91) I,[)4(94) =1.

Each map ; : G; — K is onto and for i # j, ¥i(9:)¢;(9;) = ¥;(g5)%i(gi).
It follows that K is Abelian. O

11.12. Lemma. Let F(y1,91,...,Y4,94) be a function in L?(u*) invariant
under 7. Let G' be the commutator of G and let ¢ : (Y x G)* — (Y x G/G")*
be the natural map. Then there exists a function F' on (Y x G/G")* so that
F=Foyp

Proof. The statement of the lemma is equivalent to the assertion that al-
most all ergodic components of p* with respect to the transformation 7 are
invariant under the action of (G')*. For y € Y let L, be an ergodic compo-
nent of 7 on Y4 (see lemma 11.4) . The ergodic components of 7 on (Y x G)*
are the ergodic components of the G* extension of the L,. For each such
y we obtain a Mackey group N, C G* defined up to conjugacy. Denote by
[Ny] the conjugacy class of the subgroup N,. The set of conjugacy classes
is a compact metric space, and the map y — [NN,] is measurable. Since
T x ... x T commutes with 7 it follows that [Ny] = [Nrp,]. By ergodicity
[N,] = [N] for almost all y. We now claim that m;(N) = G3. For i = 4 the
statement is equivalent to showing that the Mackey group of T x T2 x T3
on my(Ly) x G* relative to m4(L,) is G3. This is the same as saying that
the 7' x T? x T3 invariant functions with respect to m4(u*) are lifted from
invariant functions on the base space m;(L,) but this is satisfied by the CL
-factor (this is equivalent to saying the the CL -factor is a characteristic
factor for the scheme (1,2,3)). The argument for ¢ < 4 is the same. O

11.13. We return to the average in 10.6. If f; is orthogonal to Y x G/G’
then the integral in equation (21) will be zero.

11.14. Lemma. Let Jy = ﬁz‘:l ker ¢y, Then we may replace J = G/G'
with J/Jy.

Proof. Jox Jy x Jy x Jy C N, and p* invariant functions are invariant under
rotation by elements of N. Il

11.15. Corollary. We may assume that Jo = {1}.

11.16. By Pontryagin duality J < (S1)” so we replace Y x J with a join
of systems of the form Y X0, ST where w € J. We now wish to study St
extensions of the CL factor Y. To make the notation more simple we replace
w o ¢ with o.
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12. THE MACKEY GROUP FOR u*

12.1. The Mackey Group For p*. In accordance with 11.16 we can
reduce the study of the characteristic factor of a general system for schemes
of length 4 to that of X =Y x, S where Y is a CL system. We decompose
the system

X*= (Y xSY, pu*=pud x Haar*
into its ergodic components. For y € Y, let L, be an ergodic component of
7 (see lemma 11.4). Consider the system

(Ly % (S1)*,7).

This is a group extension of an ergodic system. Let N, be the associated
Mackey group in (S1)* (5.1). As T x T x T x T commutes with 7, and the
action of the group generated by 7,7 x T x T x T on (X*, u*) is ergodic, it
follows that N, is a.e. a constant function of y , thus N = N,,. If N = (S1)*
then then p* invariant functions are already measurable with respect to
Y* (the characteristiv factoor in this case would be Y). Otherwise as the
projection of N on any 3 coordinates is full (see lemma 11.12) the group
N1 is generated by one element (mq,mg,m3,my) , and by lemma 11.14,
ged{my} = 1. By theorem 5.3

TFy(g)
Fy(g

4
(22) 1o ) =
k=1

~——

forae. y €Y § € L,. Define
(23) L:=|]JL,
y

The set L is the support of the measure pj,. By proposition 6.17 there is a
measurable choice of £, thus we can write

g TE(@)

a.e. § € L.

12.2. Remark. Let y = (0,¢) then Vi, 4 nn) L0 ¢) = Lo p+n, Thus L is
invariant under V(;, 5, 1, ») for all h € H.

13. SOLUTION OF THE FUNCTIONAL EQUATION

13.1. We are trying to extract information on o from the functional equation
(24) given by the Mackey group. We shall arrive at the following CL type
equation:

0 h T

a(0,¢) fn(y)
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We start by showing that the homogeneous equation (when Aj, = 1) implies

that o(8,¢) = g(0) F;E";‘l;), and by reusing the original equation (24), we
deduce that g must satisfy the CL equation. This means that if o and o’
are solutions to equation (24) then their quotient satisfies the CL equation.
Given the set {\,} arising from equation (25), we construct a 3-step pro-
nilsystem with a cocycle satisfying equations (24), and (25). We do that
by first reducing the problem to the case where the CL factor Y is a torus
T™ x, T". Then the group ¢ defined in 9.9 is a locally connected 2 step
nilpotent Lie group. Next we construct a collection of functions {F,},ey
(that depend measurably on u) that satisfy ‘nice’ commutation relations
with o. This family will produce a set of constants A(u,h), that satisfy a
‘Jacobi’ condition. We use these constants to construct a 3-step nilsystem.
We have thus constructed a 3-step nilsystem with the same A;, as the original
one .Using the information gathered regarding the homogeneous equation,
we find that the original cocycle differs from the one constructed by a CL
cocycle factor. Combining the solutions to the CL case with what we have
obtained then produces a system isomorphic to the original characteristic
system, and shows that it is a (pro)nilsystem. We remark that most of the
following analysis applies for general k& (using induction).

13.2. Construction of f;. Let (X,T) be an ergodic m.p.s. which is a
circle extension of its CL factor; i.e X = Y x, S!, where Y is the CL
factor of the system. Then Y = (Z x, H,T), where (Z, a) is the Kronecker
factor of (X,T), H a connected compact Abelian group, and p satisfies the
CL equation (9.1). Suppose the extension (multiplicative) cocycle o(6,¢) :
Z x H — S satisfies the functional equation (24).

13.3. Proposition. There exists a measurable family of functions { fy }new,

such that

o1 (67 ©+ h)
g1 (9’ 90)

Tfh(67 (,0)
fh(97 90) ’

(26) =\,

for allh € H, a.e. 8,¢p.

Proof. Recall the definitions of L C Y4, M C H* from lemma 11.2, and
equation (23). By lemma 11.4 the set L is invariant under V,,, for m € M.
By remark 12.2, L is also invariant under Vy, ;5 ) for any h € H. Thus it
is invariant under

V(6h.6h.,6h,61)—(3h,5h,6h,6k) = V(3h,h.,0,0)-
Substituting (8,5 + (3h,h,0,0)) in equation (24),
TF(8,%+ (3h,h,0 )

(27) @a’"* (3h,h,0,0)) = TG h0.0)

Denote
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Dividing equations (27),(24) , the functions
Ugns (037 903)7 O'ZM (847 (104)

appear in both equations, and thus disappear in the quotient:

01" (01, 1 +3h) 052 (02,02 + h) _ TFu(0,9)
O_{m (917 801) O.rznz (‘927 902) Fy (é; 95)
We fix a measurable family of functions {pg}pez satisfying the CL equation
(9.1) with p. Recall that
(91792393704) = (9 +ﬁ76 + 2ﬁa9 + 3578+ 4ﬁ)

This implies that 61,602 determine 8 and 6 (62 — 61 = B, 261 — 62 = 6),
and thus also determine 63,6, and the value pz(). Using lemma 11.4, the
elements in L satisfy:

(20) 04 = 61 — 365 + 303
1 = 1 — 32 + 33 + pp(0) — 3p2p(0) + 3p3p(0) — pap(0)

In other words there is some function G : (Z x H)® — Z x H such that for
(6,9) € L:

(28)

(04, 04) = G(61,02,03, 01,02, 3).
As L is 7 invariant

T4(04,04) = T x T? x T?G(61,62,03, 01,92, ¢3)
Furthermore, if we take y = (6, ¢o) and set

Lgo = Lo .o
0

then by lemma 11.4, in L,
(037 903) = H(el’ ¥1, 927 902)a

and as Ly, is invariant under 7,
T°%(83,¢3) = T x T*H (61, 01,02, 92).
Thus restricting to Ly, , equation (28) can be expressed as
07" (01,91 + 3h) 05'% (02,02 + h) _ T x T2K¢th(91, 01,02, 92)
o (01,01)  05%(02, 02) Koy, 1(01, 01,02, 02)

In L,, there are no restrictions on 1, 2, thus the above equation is true
for a.e. 01,02 € Z, p1,09 € H for fixed h € H. the solution to equation
(28) is (see [21])

(30)

(31) o1 (01,01 +3h) 3 T f31,(61, ¢1)

ot (01,01) (61, 01)
o2(9 h T2 (02,
(32) oy (02, 02+ h) - gn (02, ¢2)

O'énz (92, QOQ) dh (927 802)
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As h — 3h is onto (H is connected),

ot (.o +h) _ ) Th(6¢)
O-Ij,[nl (07 30) ' fh (05 (;0)

By iteration it follows that for any (:

O +h) _  THl0,¢)
O-an (9’ 90) h fh(ea QD)

Specifically for [ = 2 we have

oY, 0+ h) _ 2 T(0,9)
O-énl (97 90) h fh(07 90)

combine equations (32) (35) with mql; = mals:

Agﬁf Aill = eigenvalue of T2 for all h.

(33)

(34)

(35)

The constants Ay, fi, can be chosen such that \j, is multiplicative in a zero
neighborhood (lemma 6.10). As H is connected and 7% has only a countable
number of eigenvalues, we get 2[; 4+ 3lo = 0 and thus:

(my:mea) = k(-2,3).

The @ coordinate is invariant under addition of (h, 2h, 3k, 4h), (h,4h,9h,16h)
thus substituting equation (34) in equation (24)

)\ml +4mo+9m3z+16may )\mq +8mo+27maz+64my
h > h

are eigenvalues of 7 for all h. As A, fr, can be chosen such that Ap is
multiplicative in a zero neighborhood (lemma 6.10)

my +4meo + 9mgz + 16my = 0; my + 8mo + 27m3 4+ 64my = 0.

Altogether we get:

(m17 ma,ms, m4) = k(_4? 67 _47 1)
As ged(my) = 1, k = 1. By applying the foregoing computation for the pair
01,04 (the element (—2h,—3h,—3h,—2h) € M thus L is invariant under
Vir,0,0.) = V(=2h,—3h,—3h,—2h)+(3h,3h.3h,3h)
which enables us to eliminate o2 and o3), we get (as myq = 1):
0 h T4g;, (8

(36) 04( P+ ) — 5h gh( 790)

04(6,¢) gn(8,¢)

As T,T* commute we have:

o1(T4(8,9))04(6,9) = 04(T (8, 0)01(6, ).
By equation (36):

paoibeth)  poalbeth)  ps T (6.0) T*gn(6.9) 4Tgn(8.p)
o1 (ef‘P,) — 04(97@) — h 911(9799) — gh(gf(P) — 971,(9790)
o1(8,0+h) o4(8,0+h) s, Tlanl8.9) T4g1(6,p) Tyn(8,p)

o1 (Gf(P) 04 (9390) h 911,(9790) gh(eﬁ‘P) gh(g‘,(p)
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Thus the function

(o—lw,so + h))‘l Tgn(6, ¢)
0-1(9)90) gh(9790)
is invariant under 74.If T4 is ergodic we’re done; otherwise

01 (9, e+ h) Tgh(97 90)
o1(0,¢) gn(6,9)
By proposition 13.10 (to be proved later), this would imply that A, (0 +42)
satisfies the CL equation. By Rudolph ([27] corollary 5.5) it depends only

on the connected part of Z - and is thus constant. Measurability follows
from remark 6.17. (]

= An(6 +42)

13.4. Remark. The above computation gives a description of the Mackey
group:
{(C1,€2, G, Ga) = (3¢ = 1)

13.5. Corollary. By lemma 6.10 there exvists a measurable family of func-
tions { fn}nem satisfying equation (26), such that

Try+13(0,0) ~ fuy (0,0 + ha2) f, (8, ¢)
)‘hl-f-hz = )‘h1 )\hl
for hi,ha in U - a neighborhood of zero in H.

13.6. Definition. Let B(Y,S’l) be the set of measurable functions from
Y — S! with the L? topology. Let

H={(u,f):uel; feB(Y,SH}.
‘H is a group under the multiplication
(u, F)(v,9) = (uwv, f9),  (f'9)y) = F(Toy)g(y).
‘H is a polish group which actson X =Y x ST by:

(ua f) (y,C) = (Tuy; f(y)C)

We will also denote the elements of H as pairs (T, f) or (V4, f) where we
are identifying ¢ with its action on Y. For (T, f), (Ty,g) in H we have

(37) [(Tu7 f)7 (Tv7 g)] = (T[u,v]7 k))
where k(y) satisfies

!
~
—
@

S—r
N
3

—~
<

S—’

f(y)
For u = (0, h) equation (26) implies

[(Vha fh)7 (Ta U)] = (07 >‘h)
Denote C(H) the center of H.

13.7. Proposition. If f,(0,¢) satisfies equation (26) for all h, then
[(%ufh)) (‘/gafg)] =0
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Proof. The function element in [(Vp, f1), (Vy, fg)] is invariant under 7, there-
fore constant,

[(‘//n fh)a (tha fg)] = (Oa ’V(Q, h))
As f4, (0,04 g2) fy,(8, ) also satisfies equation (26) for h = g1 + go,
fg1 +g2 (97 ‘P)Xgl-,gz (9) = fg1 (97 w+ gQ)fgz (97 ‘P)-
where xg4,.4,(0) is an eigenfunction of T' (and thus invariant under V3,).
[(Vlm fh)a (anfm)][(vha fh)a( g2 ftr))]
[(Wn fh)a (‘/ynfm)(%zafgz)]
[(V 1)7( g1+92> Xg1 ngg1+g2)]
[(V}L, fh)a (

g1+g2> f91+gz)]

Therefore

(91 + g2,h) = v(g1,h)7(g2, R)
for all g1, g2, h, and from symmetry it is also true for the second coordinate.
This implies that v5,(g9) = v(h,g) is a character of H (we assume that fy =
1,thus v(g1,h) =1 ). But any homomorphism from H (which is connected)
to H is constant. O

13.8. Lemma. If the cocycle o satisfies for all h € H:

(38) Vho-(ea 90) — Tfh(ea 90)
0(9790) fh(ga()o) ’
Then 6.0)
TH(8,
o(8,0) = h(f) ——"-=
00 =0T, ¢)
Proof. By corollary 6.8 for the case where H is connected. O

13.9. We need to get more restrictions on g(8), so we return to the original
functional equation (24). Iterating we get

T*F(6, )
or(0,%) = g (0 ;
109 =00 )
where g () is a Z cocycle for the action of 7. By equation (24):
4 _
m TE(Y)
39 [/ k Qk = —.
( ) Pt k ( ) F(y)

13.10. Proposition. If g(0) satisfies the functional equation (39) then g(8)
satisfies the CL equation.

Proof. We already showed in the proof of proposition 13.3 that this equation
reduces to

-~

T x T?F(yy1,y2)
F(y1,y2) )

(40) H mk ek — ]’L 91,99) —
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As (y1,y2) are free coordinates, F' can be expanded in the following form:

(41) F(y1,y2) = Z Fn1m/2(81’92)¢111 (‘Pl)zﬁﬂ/z(@?)

n1,n2

Where 1,,, are characters of H. combining equations (40), (41) we get: for
all ny,no

(42) T x TZFRL”’LZ (91792)¢n1 (01(91))¢n2 (p2(62)) - h(elaeo) n1,n2 (91,92)
The function |Fp, »,(61,62)| is constant on ergodic components of 7' x T2.
As

|F(y17y2)| =1 a.e (y17y2)7
almost all ergodic components have (n,n2) s.t.

|Fn1,n2 (61, 62)| 75 0

The ergodic components are invariant under T}, x T:? for all u = (8, f) € U,
by corollary 11.5, so applying T}, x T2 to equation (42) and dividing the two
equations:
(TuXT2)(TXT2) o) 0y (61,62) )
(TuXTE)Fnlﬂlz(el:eZ) _ (Tu X ﬂ:)h(91962)¢nl (pl(@l))@b ( (62))

X gy @) = (0n, 62) 0 (1 (61)) v (2 (62)
nl,n2(91192)

We now use the fact that the transformations 7' x T2, T,, x T2 commute on
the Kronecker factor, and the fact that 1/1;,1 (pi(6;)) satisfies CL to get:

(T X T2)Fq,,7.n17.n2 (817 92) (TH X T,f)h(@l, 92)
= 6(n1,n2)
Fung s (01,02) h(61,02)
We repeat the procedure with T, x T2 for v = (v, g) and get
(Ty xT2)(TyxT2)h(81,82)

(T X T*) Fuwmy s (01,02)  — (TuxT2)h(81.02)
- (TuxT2)h(61,62)
Fu,v,nl,ng (917 02) Wz)lz

Now substitute

61? 92 H 977lk

in the foregoing equation to get that

N g 9r " (Oxtkfthy)
(T X T‘)FLL v,n1,m2 91769 H mk (Or+k)

Fumin (01,62) mk(e—"'w
9 F(6r)
By proposition 9.8
g(%—ﬂ;)v)
_ g6+
G(0) = g(6+v)
9(9)

is a CL cocycle (take pF) = G and recall that my = 1), and by proposition
9.8, g itself is a CL cocycle. O
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13.11. Corollary. Ifo(8,¢) and 7(8,¢) satisfy both the functional equation
(24), and equation (26) with the same \j, for h in a neighborhood of zero in
H, then

(6, ¢)

0. 7
where g(8) satisfies the CL equation.

TG, )
G(9,9)

Proof. By iteration, as H is connected,

a(6,¢p+h)
r@eth) _ TGi(f,9)

a(bp) G, (8,
=X (0, 9)

now apply lemma 13.8 and proposition 13.10. O

13.12. Lemma. (reduction to an extension of Kronecker by a finite torus)
There exists a subgroup Ho < H such that H/Hy = T" and if 7 : H — H/H,
is the natural projection, then there exists a function & : Z x H/Hy — St

such that TR
a(6.0) = 516, 7(0)) g -

Proof. By lemma 6.11, and remark 6.12 we can find Hy so that H/Hy =
T™x Hy where Hy is a compact totally disconnected Abelian group, but this

would be a contradiction to Z being the CL factor of the system (see 9.4).
O

13.13. Now Z x, H is an extension of Kronecker by a finite torus H = T".
By lemma 9.6 there exists a subgroup 73 < Z, such that Z/Z; = T™, and p
is lifted from a function on T™; i.e. if 7 : Z — Z/Z; is the natural projection,
then p = pom. Let C' be a measurable section Z/Z1 — Z: C(z2+Z1)—z € Z.
The system (Z,T") is isomorphic to the system Z/Z; x Z1 under the map

z = (24 Z1,C(z + Z1) — 2).
We compute the action of T
z+a—=(z+a+21,Clz+a+21) — 2z —a)

=(z+a+21,C(z+21) -2+ (Cz+a+21) - Clz+ Z1) — o)),

thus
T(z4+Z1,z1)=(z+a+Z1,21+ (Clz+a+7Z1) —C(z+ Z1) — a)).

If B € Z1 then
24+ B = (z+8+21,C(z+P+2Z1)—2—-08)=(2+21,C(z+ Z1) — 2z — )

i.e translation in —f in the second coordinate. Therefore the system (Y, T)
is isomorphic to the system (T™ x Z7) x T™ with the action of T' given by:

T(01,21,) = (01 + a1, z1 + f(61), 0 + p(61)).

where f is equivalent to a constant, and if y; € Zj, the element (0,v1,0) is
in Y and commutes with u, = (a1, f, p), and (0,0, h) for all h € H.
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13.14. Notation. When there is no confusion we denote (g g, 0y = 15, , and
0= (91, Zl)

13.15. Lemma. There exist a measurable set of functions {QﬁlaFﬁh}{ﬂleZl}
such that
Tpoly) _ (o)LL ()
o(y) B (y)
Proof. For all h € T™

Vi Ts0(y) T Viol(y) Tﬂ Tfu(y) TTﬁlfh(y)

h " 5(y) _ Moy _ ThA TR fu(y)
Tﬁlg(y) ‘/ha(y) Tfh(qv') T/ﬁlfh(y)
a(y) a(y) frly) fny)
Now use corollary 6.8. Measurability follows from proposition 6.16. O

13.16. Lemma. The functions gg, (8) satisfy the CL equation.

Proof. As the transformations Tj,, T' commute, and o satisfies equation 24,
the proof is the same as in proposition 13.10. O

13.17. Lemma. Let V be a closed subgroup of U, {g, tvey a measurable set
of CL cocycles such that g9 =1 and in U - a neighborhood of zero in V

Gu (T’ﬂ 9)91; (9) ~ TGu,m (9)

Guw(0) Guv(0)’
then there exists a neighborhood of zero Uy in V such that in Uy
TK, ()
u 0) = Cu .
g ( ) KH(Q)

Proof. The cocycles g, (6) satisfy the CL equation, thus for each u there is
anm € Z,n(u) € Z™, and M(u) € M, (Z), such that g,(0) is lifted from a
function defined on T™ and for § in a zero neighborhood of T™:
gu(g + 5) — e27ri(M(u)a6+n(u)6)K’U,5 (9 + a)
9u(0) Kus @)

for u,v,uv € U

(M (w)amé + M (v)amé — M (uv)amd) + (n(u) + n(v) — n(uv))é

= eigenvalue of 7.

Linearity in ¢ (in a neighborhood of zero) implies
n(u) +n(v) —n(uv) =0
M(u)+ M(v) — M(uv) =0.
Let
Upu={ueU:n(u)=n; M(u)=M},
then for some n, M, m(Up, ) > 0, thus Un,MUn_i/[ contains a neighborhood
of zero Uy. For u € Uy
911,(9 + 5) KU,J (6 + O{)

gu(g) B Ku,ﬁ(g) ’
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By corollary 6.8

g

13.18. Proposition. Let V be a subgroup of U acting continuously on Y.
Let {hu, gu, Fu} be a family of measurable function Y — S such that

(1) gu are CL characters.
_ T Fy(y)
(2) hu(y) = gu(®) Fuly)
(3) hyw ~ hlh,.
Then there exists a neighborhood of zero Vy in V, such that for u € Vi, hy
18 cohomologous to a constant, i.e.

TGu(y)
43 ho(y) = Cy
(43) () Goly)
Proof. The functions g,, F,, satisfy
Fy,
gugo it (1Y)
(44) O) ~ ~F
Guv W(y)
thus by lemma 6.14
EJ,U
45 :kuv 0 u,v h
(45) ot (0) = b (O ()

where Y. is a character of H,

-me) (y) :km:,w (H)Xm:,w (h) Fum (Twy) Fw (y)
:kuuw(e)Xuuw(h)Fu(TuTwy)Fvw(y)
Let w = (4, ps). Dividing the two equalities in equation (46) by
Fu(ﬂ)ﬂuy)ﬂl(ﬂuy)ﬂu(y),

(46)

we get
ku’uﬂ_u (Q)X’U,’U,w (h) ku’v (9 + 5)XU,’U (h + p(; (9)) = ku,vw (G)Xuﬂ;w (h) kv,w (Q)Xvw (h) .
As
Xu,v(h + 06(9)) = Xu,v(h)Xu,v(p(S(Q))a
we get
(47) Xu,oXuv,w = Xu,owXv,w-

As v — F, is a measurable function, there exists a neighborhood of zero
U C U such that for v € U,

m{u : ||Fup — Full2 > €} < 4.

As the action of T, is continuous, there exists a neighborhood of zero U’ C U
such that for v € U’,

miu:||[Fu(Toy) = Fu(y)ll2 > €} <6
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Therefore, by equation (45), for v € UNU', u € A - a set of positive measure,
the character x., ., is independent of wu:

Xu/u = )2'0 for U E A, v E l] ﬁ UI.

Let v,w,vw € UNU’', and let u € A be such that uv € A. Using equation
(47):
Xoaw = XuwXuvwXaww = KXo Xou-
Define
Fuly) = Pu(y)%u(h);  §u(6) = 9u(0)%5 " (0(9)).
The functions F,(y), §. () satisfy:

3u(6) Tt D = 0u(0)3p(0) g O = g0

and if v = (7, py),

() (h)fc ( )

Thus if Gy (8) = py(8)k.(8) then by equation equation (44) (with Fy, §.):

gu (Tv 9)571; (9) ~ TGu,ﬂ (9)
§m(9) Gum (9)

Now use lemma 13.17. |

13.19. Corollary. There exists a neighborhood of zero W in Z1 such that
for ﬁl € W)

Tso) _ o TEn ()
o(y M Fe ()

)
Proof. The subgroup {((0,/31),0)} of U, and the function

Fp, (Ty)
F, (y)

satisfy the conditions of proposition 13.18. (|

hﬁl (y) = 09p (9)

13.20. Corollary. There exists a subgroup Zs of Zy, and a cyclic group
C, such that Z1/Zs = T™ x Cy, and if 71 : Z1 — Z1/Zs is the natural
projection, then there exists a function & : (T™ x Z1) x T™ — S' such that
TF(017Z17@)

7(61,21,9) = 501, ma(21), 9) g5
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Proof. Recall the neighborhood W from corollary 13.19. Let Wy C W be a
subgroup such that Z; /W7 = T™ x C}, and for 51 € Wy

T/3’1O'(y) _ C,B TFLﬁ (y)
a(y) " Fy (v)
Now apply lemma 6.13 with Y = T™+™t x O}, x T", H = Wj. O

13.21. We are left with analyzing the system Y = (C}, x T™) x, T", X =
Y x, S'. The system (T%,{1} x T™ x T™ x, S') is ergodic, and the system
(X, T) consists of k copies of this system, where the transformation 7" moves
us from one copy to the next. Thus we must understand ergodic systems
of the form (T, T™ x T™ x S'), where the cocycle o satisfies the functional
equation 24. In this case the group U can be identified with (Z x R™) x R"
with multiplication defined by B = (B4, ..., B,), where B; € M,,1+1 m+1(Z)
are bilinear forms with coefficients in Z: for r € Z x T™, s € R*:

(r’ S)(rl7 SI) — ('rll’ S”)

where ,

! !
ro=r+r
" "

s’ =(s1,...sh), st =s;+ s+ Bi(r,r").
(see Rudolph [27]), and the action of 7" is given by the element (o, 0) (o =

(1,&) € Z x R™). We now have the vertical rotations V; for s € R" (for
n € Z™, V, acts trivially)

13.22. Lemma. For all s € R" we can choose fq, \s satisfying equation (26)
such that

fsl (9> w+ 52)f32 (9, 90) ~ f81+82 (9790)'

Proof. We now use lemma 6.10 to define fq,A; for all s € R™. Notice that
multiplying f by a constant does not affect equation (26). If s € R, s =
s1+ ...+ s, and s1,...,8; € U, define

f‘é(eaw) = f81(9790)f92(97<)0+51) fek(9790+ S1 + + Sk—l)-

We claim this is well defined (up to a constant multiple) on R™: Given two
sequences s1,...s; and s}, ... s; with equal sum, we can break up the ”steps”
s; into an equal number of small steps and we can interpolate a sequence
of such paths where two consecutive paths differ only within a small cube
which can be translated to be inside U. Since the resulting A’s and f’s will
be the same for consecutive paths, they will be the same for the initial and
final one.

O
13.23. Lemma. (Vy, fs), (Wi, ft) commute.
Proof. lterate proposition 13.7. (|

13.24. Lemma. There exists a matric N € My,41,(Z), and a vector j € Z™

such that
Ay = eZﬂ'i(Noz.—{—j)-s
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Proof. Now fs is defined on R",

(6, ¢) " f(0,9)
and satisfies the equations of lemma 6.10 for all s,t € R™. A, is continuous
and is thus of the form €275, Tet e; denote the standard basis for R”. Each
fe, is an eigenfunction (as the left side of equation (48) is 1); thus there
exists j(e;) € Z" such that f. (8, ) = Ce? () with eigenvalue e?(c),
Finally for each ¢ there is k; € Z such that

re; = j(ei)oz + k.

13.25. Notation. For u = (r,s), v = (r', §')
B(u,v) := B(r,r") — B(r', 7).

13.26. Proposition. There exists a measurable family of pairs {g., F,} such
that

(49) (T, 0), (Tu, Fu)] = ([T, Tul, 9u(0) F B o) (¥)

Proof. First note that if u = (0,h) then equation (49) holds by equation
(48) (using the formula in equation (37)). As [T\, Vs] = idy, we have

V. O'(Tu(gs‘P)) T a(Vs(b,¢)) T fs( T(‘9 <P))

5 o(b,p) _ v o(6,0) — “fs(6p)
7 (Tu(6,9)) a(Vs(6.9)) fsT(0.¢))
a(8,9) o(6,) fs(8.0)
Is(Tu(8,0))
_fS(VB(u(,,'LL)TUT(97<70))T fs(e,(p()p
B s T'“T 97 fsTu(e#P)
A6,
P Fe(Tulb)

_IBuawy(ViTLT(0,9)) T 155
B fB(ua,u)(T'uT(9790)) IsTu(6,0)

fs(8:0)
Thus _— (0
VS(MfB ua,u)(’I'UT(e ))) Tw
a(Ty(9, - Ty (8
(L2l Fo, ) (TT(0,9))  Lee)
By corollary 6.8:
Tuo(0,¢) ~ TF.(0,0)
50 f (vt Z}T 8 = Gu 4 .
Now define

gu(g) = gu((T'uT)_le)a
and use equation (37). By proposition 6.16 there is a measurable choice of
F’LL? gu . D

13.27. We first show that [(T,, F.), (Vs, fs)] is in the center:
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13.28. Proposition.
(T, Fu), (Vss £5)] = (0, A(u, s))

Proof. We show that
Fu(Vsy)
F,,(y)
fs(Tuy)
fs(y)
is a T-invariant function. As g, () is invariant under Vj:
Fy (ny) ra U(Tuvsy)
Fu‘(y) _ fB(UQ-U) (TUT‘/&y) O’(‘/S‘y)
Fu(Vsy) T F o TuT 7 (Tuy)
Fuly) fB(uﬂ,u)( y) o(y)
fs(Tuy) o(TuVsy)
fow) _ Fs(TuTy) ~5(vey)
f-e(Tu?l) fs (TTLLy) U(TH?I) )
y

fs(y) a(y)
By 13.23 (Vs, fs)s(VB(uau)s fB(uq m)) commute, thus:
fs (T’uTy) fs (ElTy) . fB(ua,u) (TuTy)

fS(T,EL:U) B fe(VB(ua,u)ﬂtTy) B fB(un.,u)(TuTV‘%y)
O

13.29. We must get some restrictions on g,(€), so we return to the original
functional equation (exactly as we did in 13.10), and show that g, (8) satisfies
a CL equation.

13.30. Notation.
FP = ®§:1F}73"
T B = ®i=1S 2B )
9% = ®}_19,,
o® = ®;¥:10;nj
We will need the following lemma:

13.31. Lemma. Let F' satisfy the functional equation (24). Then

(g) = il
(y)fB(“a_,")(y)
18 a T-tnvariant function.
Proof. As Y j3m,; =0,
It TD) _ o®(r ) _ Fody _ e
Mm@ 0®@)  — Eem o Eladi

13.32. Corollary. for anyv € U: k(1,7) = k(7).
Proof. Use lemmas 13.31, 11.5. O
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13.33. Proposition. g,(0) satisfies CL.

Proof. We apply 7, to the functional equation (24), and divide the two.
Using equation (50):

F(TTufl:’) ~ ~
F(ru7) _ U®(Tuy) . g@(é)f@ (7_ Tg) Fi?(Ty)
F(rj) R - Ju B(ug,u)\ ¢ F® ~
gad a® () w (9)
Thus,
- Flruti) ne( .~
9% (0) = ([, m]muty) Firag) L (79)

F(TUTg)fg(ua,u) (T”Tg) f;?((quj)) F'i@(g)

by lemma 13.31
F([T’ 7'“,]7'“,7':0)
F(TuTg)f?(umu)(TuTg)
is a 7 invariant function, therefore it is constant on the ergodic components
of 7. By lemma 11.5 it is invariant under 7, for all v € 4. We now have

SRR D) FEER )
A F(r7y F(1y u’’v
(51) g?(ﬂﬁ) _ F(ry uy) Fi (ro 9) _ F(ro uy) Fi (ro9) F(rmyg) F“ (TTvy)
oy - F(ryT & - F(lruty) p® F(rytmyTy ~
F0)  FeReien | Selnen) Enilps (o)
H R () B FY ()

Let’s study the right part of the right expression.

F u v F u Ul~ B
%:y‘;/)}? (T707) %F@’([T rolrori)
F uwly y - F wTo
%FE@(TM?J) %E?(Tﬂy)
F(ryt707) B
— WfB(ua q; (TuTva)

F(TL‘ry fB(ua 7))( UTy)
But
F(r1,9) 5
F(T'UTg) B(uf"vv)(Tva)
is invariant under 7,7, ou,], thus the quotient is 1!. Return to equation (51)
to get
9? (00) _ TGy (7)
gf? (9) Gv(g)

Now apply proposition 13.10. O

13.34. Proposition. There exists a family of functions {Fy, gu}ueu satis-
fying equation (49), and a family of functions functions { fuw(6)}uveu such
that

Fv fuv( ) uvs 9u(9) =Cy

for u,v in a zero neighborhood of U.
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Proof. By equation (50)

0 (Tuvy)
o(y)
On the other hand:
o(Tuvy) _J(TuTvy) o(Twy)
oly) — o(Tuy) oly)
(52) =gu(Tv0)gv (e)fB(uor,U) (TuTTvy)fB(u(y ) (T, Ty)
Fu(TToy) T(F, Fo(y))
Fu(T,Ty) (FyF.(y)
£ (1T, F. ([T, 1T,T,T
FETT% - %(TﬂTy) %= 7w Bl
By lemma 13.22
(53) IBua ) (LaTToY) [B(u ) (TuToTY) ~ [B(ug,uv)(TuloTy).

Therefore:

Fuo(Ty)

= Juv 6 U WU Tu'uT -
010 0) (T T0) S

fB(u(y,v) (TuTva)
fB(ua,v) (TUTy) .

U(Tuvy) F:FU (Ty)
(54) W ~ Gu (Tvg)gv(e)fB(umum)(TM’Ty)W'
Define (Ty)
_ ollay) =
P, (y) = a(y) fB(ua,,u) (ElTy) .

Then (T

hul) = 0u(6) 1 2
and
(55) o (y) ~ by (y) o (y),

The functions h,, satisfy the conditions of proposition 13.18. Take §,(0) =
Cy and F,(y) = G, (y) from equation (43), and by equation (55), Fy./EFVF,
is an eigenfunction. O

13.35. Corollary. The functions F,, can be chosen such that for all u € U,
gu 18 constant.

Proof. The group U is generated by U, u,. Now iterate using equation (54)
with ¢,(f) = C(u) for u in a neighborhood of zero and choose F,, = o,
C(uq) = 1. Using the argument in lemma 13.22 we get g, constant for u
in the connected component of the identity, then using u, we get it for all
u€el. O

13.36. Corollary. The functions F, are defined up to an eigenfunction .
13.37. Remark. We can identify fs with Fig ).

13.38. Corollary.
Au, s+ 8") = Au, s)A\(u, s').
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Proof. By multiplicativity of Fg,) (up to constants). O

13.39. Corollary.
Auv, s) = AM(u, s)A(v, s).

Proof. Figenfunctions are invariant under Vj O
13.40. Notation. Denote

J(u,v,w) = Au, B(v,w))\Nw, B(u,v)) A (v, B(w,u)).
13.41. Corollary. For v,w € U: J(uq,w,v) = 1.

Proof. By the Jacobi identity
(T, 0), (T, Fo)], (T, Fu)l[(Ts F), (T, 0)], (Lo, )]
(T, Fo), (Tw, Fu)], (T, 0)] = 1
By corollary 13.36 there exists an eigenfunction of 1" - 1, ,, such that
F;UFw = wly,u,,Fvw,

thus there exists an eigenfunction of 1" - '(,Zv,w such that

[(Tv7 Fv)7 (Tw7 Fw)] = (TB(v,w)7 1;17,1UFB(v,w))a

therefore
([T, Fo), (Turs Fu))s (T,0)] =[(T(o0)s P F(a): (T50)]
Yo (TH)
= T 1;11J7F v, )T’
Yo (0) [(TB(0.0), FB0.0))> (T 0)]

As g,,(8) is constant,
[(T;U? Fw)? (T’ U)] ~ (TB(‘II),1LG))FB(H),H@))‘

Thus J(ua,w,v) is an eigenvalue of 7. Linearity in v,w, gives the result

in the connected component of the identity. As B(u,v) is antisymmetric
J(u,u,v) =1. Now

J (U uqw,v) = J (U, Ua, V)T (U, W, 0) = T (Uq, w, V).
and u, along with the connected component of the identity generate &. [

13.42. An Explicit Solution. The situation is as follows. We are trying
to construct a system (X,7") which is a circle extension of T™ x T™ by a
cocycle o which satisfies the equation:

Vio(0,¢) _ N TFon)(b, 90)_
0'(6, 90) F(O,h:)(07 90)
for all h € T™. We will obtain a cocycle cohomologous to the original one ”up
to a CL character”. This will then be modified to obtain a system isomorphic
to the original one. We defined a function A(u, s) on U x R™ which coincides
with A(uq,h) in a neighborhood of zero in R™, is multiplicative in both
coordinates, and satisfies a ‘Jacobi’ equation (13.41).
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13.43. Proposition. There exists N e Mm+1.n(Z), such that if u = (r,s)
Au, s') = e2miN (),
Proof. If u = ((l,z),s),l € Z,x € R™, then as in lemma 13.24 the fact that
of fe, are eigenfunctions of 7" implies:
)\(u7 Sl) — eQwi(N(u)(m,s/)+j(u)s/)'
where N(u) € Mu.m(Z), j(u) € Z™ For u = ((1,0),0), N(u) = 0 thus
multiplicativity of A(%,s’) implies N(u) = N, and j is a linear function
which depends only on [ - thus determined by j(1) = jy. Thus for N = (ﬁ\%)
Au, o) = 2EV)
O
13.44. Corollary. for all u,v,w € U, J(u,v,w) = 1.

Proof. Let T = Z™*1+7 then the group generated by u,,I is dense in U.
By the foregoing proposition, if y1,7v2,73 € Z™1*" then J(vy1,72,73) = 1.
The corollary follows from corollary 13.41. O

13.45. Theorem. There exists a 3-step nilpotent group M, a discrete sub-
group L and an element a € M, such that the system (M /L, a) is isomorphic
to (X, T).
Proof. We construct the following 3-step nilpotent group:
M= (Z xR") x R"™ x S1

with multiplication:

(r,5,0)(r",',¢') = ((r,5)(1", ), ({TePmErsr’=D))
where
(56) &(ry s, r Sl) = N(r, 5’) + C(r, r r)+ D(r, r, T’) + E(TaTl)a
Where C(r,r',r"), D(r,r',r") trilinear forms, and E a bilinear form. In
order for this multiplication to be associative C', D must satisfy:

N(r,B(r',v")) = =D(r,»', 7"y + C(' 7", r) + (C — D)(r,r", 7).
For fixed ¢, 7, k& we must solve
—dijk — dirj + ki + Cing = Liji

where l;;;, € Z. The conditions of integrality on C' and D are that x(r, s, 7', s’)
be an integer when the arguments are integer vectors. Denote

ngk, = Cjki + Cikj
and similarly

d:ﬁjk = dijk + dikj~
By the Jacoby identity (see 13.41), the l;;;, satisfy

lije + Liki + Uiy — lejs — Ljiw — Ly = 0.
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The system
has a solution in integers with the right symmetry properties:
dl

! 1 . _q
Cijk = Cjiks ik = Qikjs

If 7,7,k are different then we are done. If i = j, then ¢;;; may be a half

integer. set
!
El(?‘,?‘ ) = _ZC1J1T’I T

/ /
E CigiTiT;T5 — E CijiT4iTj € Z

C(r,r',r)+ E1(r,7) € Z.
If 7 = k do the same for D using a matrix Fo and set £ = F; 4+ F>. Now
M is a 3-step nilpotent group, and K = Z™*! x Z" x {1} is a discrete
subgroup of M. Let N/ = Z x R™ x R™ with the induced multiplication,
L = Z™*! x 7™ The projection M/K — N/L is onto, and let

L:N=N/L— MK

(rys) = (rys,L(r,s))K
be a measurable section. We have

f/((r, s)(m1,mz2))

(r,s)(my,ma), L((r,s)(m1,m2)))K
(r,s),L(r,s))K
(rys), L(r,s))(m1,ma, 1)K
(r,s)

r,s (m17 m?) (T, 8)62771(.5(7’,3,771.1,771.2)))IC

then for r,r’ € Z™+1,

thus

r,Ss

=(
=(
=(
=(

Thus '
L((r,s)(m1,m2)) = L(r, s)ezm(g(r’s’ml’m’Z))

The action of the element («,0,1) is given by
(@,0,1)(r,5,¢) = (r + o, s + B(a,r), (™l 0r2))

Set L(rs)
_ r,$ 2mi(&(a,0,r,8))
f(T, 5) (L(r+a,5+B(O[,7’)))e )

then f is defined on N'/L and represents the action of («,0,1):
(2,0,1)(r,s,L(r,s)C)
=(r+a,s+ B(a,r), L(r, 5)62”1'(5(“’0"’"5))4“)
=(r+oa,s+ B(a,r), f(r,s)L(r + o, s + B(e,7))().

Define
L(r,s+1)

Sy T
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then L(r,s) is defined on N'/L:

Lt((r, S)(ml,m2)) _ 627r7:$(r,3—|—t;m1,7n2)

Li(rys) T e2mig(r,s,ma mz) =1
finally
[rys+0) _ Trrasriagme 0
f(r,s) L) owi(e(aOirs))

L(r+a,s+B(a,r))

Ly(r,s) e2milN (at)
Lt(r + a, s + B(Oé,T))
The system we constructed is isomorphic to the original system up to a
CL character. Let B(r,r') denote the bilinear form representing this CL
character. If we replace y in equation (56) by

§(r,s,7',s") = N(r,s') + C(r,r',r) + D(r,r",r") + E(r,7") + B(r,r"),
we get the desired system. 0

To complete the picture we must prove that a factor of a 3 step pro-
nilsystem is also of this type.

13.46. Lemma. Let X =Y X, J whereY is the m.c.f for schemes of length
3, J a compact Abelian group, and o satisfies equation (24). Then (X,T)
is isomorphic to a 3 step pro-nilsystem M /L = lim«M,;/L;. Let K be a
compact Abelian group of measure preserving transformations acting on X
and commuting with the action of T'. Then K commutes with the action of

M.

Proof. We use additive notation for J. Denote T}, the action of the element
k € K. By corollary 8.5 the transformation 7} : X — X induces a map
from Y — Y. Denote t;, the action of £ on Y, and by lemma 9.13 the action
of K on Y = N'/D is by rotation by a central element of N': For k € K:

TTk(y7.7) = T(tkyvfk(yaj)) = (Ttkyao_(tky) + fk(yaj))
On the other hand,
TiT'(y,j) = Tu(Ty,j + o)) = Ty, fe(T(y, 7))
Thus
(T (y, 7)) = o(tey) + fr(y, )

The transformation £, is in the center of i; thus ¢,y = V},, y for some hy, € H
(see 9.9). Thus by equation (25)

T(fi(y:9) =7 = fn (W) = Ay + iy, ) — 5 — fn (),
which implies that for some eigenfunction )y (6)
Fe(y,3) =7+ fr. () +n(8) = 5+ f1,, (v)-
The transformation T}, is thus of the form T}(y,j) = (txy,j + f;, (y)). For

each character y € j, x o o is isomorphic to a cocycle which is lifted from
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a finite torus factor of Y, and as the action of K commutes with the action
of M on Y we are reduced to the case where (X,7") is a nilflow. This case
was treated in [26] theorem 4.3 (one can also show this directly as in 9.13).

O

13.47. Proposition. Any factor of a 3-step pro-nilsystem is a 3-step pro-
nilsystem.

Proof. Let (X,B,T) be a 3-step pro-nilsystem, (X', B',T) a factor. The
system (X, B, T) has generalized discrete spectrum mod B’ of finite type (see
7.4). Now apply the foregoing lemma, proposition 7.4 and induction. O



Part 3. A non-conventional ergodic theorem for a nilflow
14. INTRODUCTION

We prove an almost everywhere convergence theorem for nilflows. Let N
be a k-step connected, simply connected nilpotent Lie group, I' a discrete
subgroup s.t. N/T is compact. Let Ny = N, and for i > 1: N; = [N,;_1, N]
(N is a k-step nilpotent group if Ny = {1}),and for¢ > 1let T, = TN N;.
Then T'; is a discrete subgroup of V;, and N; /T is compact (cf. Malcev [20]).
Let m; be the probability measure on N;/I';, invariant under translation by
elements of N;. Let a € N, and for ' € N/T', let T2’ = azl’. Then
the measure preserving system (N/I',mq,T), is called a nilflow. In [17], E.
Lesigne proved the following theorem for 2-step nilflows:

14.1. Theorem. (Lesigne) Let (N/I',my,T") be a 2-step nilflow. Suppose T
acts ergodically on N/T', f1, fa, f3 € L°(N/TI"), then for almost all x € N

N
. 1 n 2n 3n
Nh—l)nooN E T" f1 (D) T" fo ()T f3(2I)

n=1
=[] henD et ey dm ) dny(ars)
N/T J Ny /T
We generalize this result and prove the following ergodic theorem:

14.2. Theorem. Let (N/I';m1,T) be a k-step nilflow. Suppose T acts er-
godically on N/U'. If f1,..., fr41 € L>®(N/T), then for almost all x € N

N k+1

dw 2 L ster)
n=1j5=1
k+1 i () k+1
/N/F »/Nk/Fk]l;Il ! 11;[1 jI;[1 Y

(note that as Nj11 = {1}, yr+1 = 1 and the measure my1 is trivial).

The proof is a combination of the proof of Lesigne with the work of Leib-
man [14] on geometric sequences in groups. Let # € N, and denote A, the
closure of the orbit of (z,...,z) in (N/I)**! under T x ... x T*+1, We show
that the system (A,,T x ...xT**1) is isomorphic to some nilflow (N/T, S,).
We then use the fact that for nilflowss ergodicity implies unique ergodicity.
The main technical difficulty will be with proving that the transformation
S, is ergodic on N /T for almost all (Haar) € N.
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15. PROOF OF THEOREM 14.2

We define a set N by N = Ny x...xNj,. For (z1,...,25), (y1,-.-,yx) € N
we define
21 = T1Y1,
-/ =T T 2s<is.
(@1, @) * (Y1, ) = (21,2, 20),

One should think of (21,...,z), (y1,-..,Yk) as representing the vectors

k

()

(57) x17x1x'77 Hx ) ylay%yQV"aHyjj )
j=1

respectively. Then (z1,...,2;) represents the coordinate product of these
vectors. By Leibman [14] (corollary 1.3), N is a group under the multi-
plication defined above. Now N is a nilpotent connected simply connected
Lie group. Let = Ly xooox Ty, then (F *) is a discrete subgroup of N,
and the quotient N / I is compact. For z € N we define a transformation
S, : N/T = N/T by:

Se((y1, - un) *D) = ((ala, z],e,...,e) * (y1,...,yx)) x L,

and a mapping I, : N — (N/T)**1 by:
L) = (enlagiel,.2 ol D).

Let (y1,...,7%) € I then we have for all (y1,...,y;) € N:

L((y1, - u6) x (7155 7%))

T 77,0
= @yl eyiyerivel, .2 [[y; 7 " [[% 7 ')
j=1 j=1
2 WGy
= (J:le‘,J:ylygF,...,xHyj 7T
i=1

= Iz(yla' . 7yk)a

thus I, can be defined on N/f‘ Let m denote the probability measure on
N / T, invariant under the action of N. By uniqueness of the Haar measure
m =m1 X...Xxmy. Denote by m,, A, the images of m, N/f under I,,. The
mapping I, is an isomorphism of the systems (A,,m,, T x T? x ... x T*+1)



and (N/T,m,58,):
L(Se((y1s- - yr) x )
= I((a[a,z],e,...,€) % (y1,...,yp) % L)

2,2 )k 1L+1 k+1)
= (zala, z]y1l, z(afa, z])*y7y2l, . . ., z(afa, z])*T H Y;
02 e T it T 07
= (azy1 ', a*zyjyel, ..., a"x Hyj] Lo "tz H y; ’ I)
- - il

=(TxT?x...x Tk+1)([z((y1,---,yk)*f‘))

(note that yp41 € Niy1 = {1} thus yj41 = 1; we use it just to simplify the
notation). If the action of S, is ergodic, then by Parry [24] (theorem 4), the
m.p.s (N/I,m,S,) is uniquely ergodic (Parry shows that unique ergodicity
is equivalent to minimality of the action on N/[N,N] I which is a torus),
and thus the m.p.s (Ag,m,, T x T? x ... x T**1) is uniquely ergodic. For
each  such that S, is ergodic we have: for all (y1,...,yx) € N and for all

continuous functions F on (N/T)*+1,
N k+1 k+1)
- (1»+1
]\}1—>Inoo ZlF a"zyi T, a® :chlygI‘ xHyJ
n

k+1 () k+1

= .. F(zyD, zyyel, ...,z | | v dm;(y,; I
‘/N/F »/Nk/rk ' H ! H e

In particular, for all such functions F

(58)

li il F n T, 2n T,. (k—l—l)'n r
N Zl a"zl,a™"x zl)

k+1 (1) k+1

= F(zy T, zyfyel, ...,z || v dm,; (y,;T
/N/F /Nk/rk ! H ! H T

(once again note that yr41 € Npp1 = {1}, and pp4q is trivial). If S,
is ergodic then we proved the theorem for fi,..., fr+1 continuous (take
F=f1®...Q frr1). As the subspace of continuous functions is dense in
L?*(N/T') equation (58) holds for all bounded measurable functions.

In order to finish the proof of the theorem, we must show that the action
of S, is ergodic for almost all (Haar) « € N.

16. ERGODICITY OF S,

16.1. We wish to show that the action of S, on N/I is ergodic for almost
all (Haar) € N. Let N’ denote the commutator subgroup of N. Let o be
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a character of N s.t. o vanishes on N’/ xI'. By Green [1] we must show that
if o # 1 then

mp{z € N : o((a[a,z],e,...,e)) =1} =0

(as there is only a countable number of characters on N/N'T"). Suppose this
set is of positive measure. Let

Y(z) = o((ala,zl e, ... €)),
then ¢ is an analytic function on N, therefore 1)(z) = 1 on a set of positive
measure implies ¢ = 1. For 1 < ¢ < k we define the functions o; on N; by

oi(y)=oc((e,...,e,y,e,...,e)) where y is in the i’th place.
We have

i
oy, ) = [ oi(w)-
=1

We will show that if ¢(2) = 1 then o, =1 for 1 <i < k, and thus o = 1.

16.2. W.lo.gk > 2. Forn € N and y1,...,yn, € N we define R(y1,...,Yn)
as follows:

RU(yla"'ayn) = {yla---ayn}
RJ(ylaayn) Z{[RMRI] OS Zal S]_l}

k—1
R(yla IR 7yn) = U Ri(yh s 7yn)‘
=1
In other words, R(y1,...,Yyn) is the set of commutators involving y1,...,¥n
(note that as N is k-step nilpotent Rp_1 = Ry).
16.3. Example. For k=3, n=2, 2,y € N
R(z,y) = {[l&, 9], [z, )", 9], [z, 9] 2] )
16.4. Lemma. If z,y € N; then
oi(zy) = oi(z)oi(y)bi(w,y)

where 0;(z,y) = Hj>1- oj(rij(z,y)), where rj(x,y) is a finite product of ele-
ments from R(z,y) N N;.

Proof. Recall from equation (57) that (e,...,e,z,e,...,e) represents the

vector (e,...,e,x,x(itlx ,x(lz)) Then
oi(x)o;(y) =o(e,...,e,z,e,...,e)o(e,...,e,y,e,...,¢€)
=o((e,...,e,x,e,...,e)x(e,...,e,y,e,...,e))

=o(e,...,e,xy,rit1(x,y),...,r(z,y))
where 7;(x,y) is a product of elements from R(z,y) NN, fori < j <k. O
16.5. Example. For k=2, z,y € N

o1(zy) = o1(2)o1(y)os ([z,y]).
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16.6. Assume 1y = 1. Our aim is to show that o is trivial. Using lemma 16.4
we have: for all =

1 =vy(z) =o((ala,z],e,...,e)) = o1(ala, z))
= o1(a)o1([a, z])o2(re(x)) ... op(re(z)),
where 7;(z) are products of elements of R(a,[a,z]).

16.7. Setting =z = e we get o1(a) = 1, thus
(59)

for all x € N, where r;,, (z) € R(a,[a,z]) (as R(a,[a,z]) is closed under the
operation of taking commutators).

16.8. We will need the following lemma, which is based on the fact that
c=1on N

16.9. Lemma. Let x € N, y € N,,. We define
k—1
H(x,y) = U Ri(x7y)
1=2

Ifoi(h) =1Vi>1, h € H(z,y) N\ N;, then o, ([2,y]) " Oms1([z,y])" L =1,
for all m < n.

Proof: We denote by f](w,y) the set of finite products of elements of
H(z,y). By lemma (16.4) and since H(x,y) is closed under commutators,
oi(h) =1 (i > 1) forall h € H(z,y) N N;. As 0|5, =1, we have

m

_ w m
1=0((z l,e,...,e)*(e,...,y 1,...,6)*($,€,...,€)*(€,...,y,...,e))
k
=0(21,...,2k) = HUi(Zz'),
=1
we calculate the z;:
Z1=...=Zpm_1 =€,
zZm = [z, y] = [&,y]" ho
for some hy € H(z,y).
2,7(7';n+1)z7n+1 — [x(m—l-l)jy('m—f—l)] — [x,y]('m,+1)2 I,Z'/l -

Zm+l = [337 y](m—i—l)f;l
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for some hq, h~'1 € .ﬁ](x,y) We show by induction that z,4; = f;j for 7 > 1,
h; € H(zx,y). For j = 2:

A o = ) U] = e T,
Lmr = [x’y]—m(m;2)—(m+1)(m+2)+(7n+2)(m;Q)};2 = Iy
for some hs, h~’2 € ﬁ(m,y) Suppose it is true for 2 <1 < j, we have
ATV s = O] = T
Zmtj = [a:,y]_m(mj‘—j)_(7"'+1)(I;Lj—lj)*'('mﬂ)(m;rj)}Zj — h~j
for some f;j,l;; € H(x,y). Thus
k k
1=[oi(z) = om e, 9] ho)omr1([e, 9] k) [T oilhizm)
=1 i=m—+2
= o[, y" )T ([, y]" ),
as H([z,y], ho), H([z,y],h1) C H(z,y). O

16.10. Corollary. If o1([z,y]) = 1, and o;(h) =1 for all h € H(z,y) N N;
then o;([z,y]) =1 for all i s.t. [z,y] € N;.

Proof: By lemma 16.9, o;([z,y])* = 1. N is connected, and o;([e,y]) = 1.
g

16.11. Notation. We use [z1,...,2,] for [...[[[z1,z2], 23], 24],. .., Tpn].

16.12. Notation. Let S = {(s1,...,5;) : 0 < 7 < k,1 < 5, < k}. For
A= (s1,...,5n) €S define Cy by:

O[) —qa

, -
¢y ={[Cy )t x € Ny}
Cy=0C%

16.13. Example. If A = (1,3) then
Ca = {[la,z]*,y]* : ¢ € N,y € N3}

16.14. Notation. (1) For A= (s1,...,5;) € S, |A|=)_s;
(2) For A€ S, (i: A) means: Yv € (CaNN;) :0;(v) =1 (if |4 <t -1
the intersection is empty).
(3) j2 (>) is some [ > j (I > j).
(4) Let X be either j, j2, 5”2, then X+ is a sequence of length > 1,

whose entries are of type j, 72, j> respectively.
(5) For z € N;, |z| = j.



16.15. Proposition. For all A€ S, 1 <1 <k we have (i: A).

Proof: We will be using the following induction rules (for example rule
(2) in the next lemma means that if for all A of the form A = (s1,...,5,)
where n > 1, s; > j for 1 <1 < n, we have for all + > 1, v € C4 N N;,
o;(v) = 1 then for all w € C(;y we have o1(w) =1).

16.16. Lemma. We prove the following rules:

(1)

|A| >k = Vi (i: A). (triviality rule)

(2) Vi (z :j7+) = (1:j). (reducing rule)

3)
(4)

(L GA0) 87> LBV (2 (A1) 691 6 (4, ~1,524)
= (1:(A,,j—1)) & (1:(A,j—11)). (expanding rule)
EA )() 7)) EVi (i (A,52,524)) & Vi (i1 (A,57) = Vi (i
»J

Proof: Let A = (s1,...,s;),0<j <k, z, € N,,.

(1)
(2)

|A| > k implies that [a,21,...,2;] =1 thus o;([a,z1,...,2;]) =1
Let z € N;.
We use equation 59:

o1([a, x]) H H oi(ri, (x

1=2m=1
where r;, (z) € R(a,[a,z]). Denote b = [a,z], then r;  (z) € R(a,b).
Looking at the a appearing in a minimal number of brackets, r; ()
is of the form: [[a,y1]*!,. .., ¥m] where m > 1, |y,| > |b| > |z|, and
is thus of type (57+).
Let v = [a,z1,...,2;], y € Ni,z € Nj_; then yz € N;.

1 =o1([v,y2]) = o1([v,y][v, y, z][v, 2])
I

k
= o1(lvsalor(le,u, oa(le,=D [T I it @r2,0)

([v,9,2 HHU (bi,, (4, 2,v)),

1=2m=1

where b;,, € R([v,y],[v,z],[v,y,2]). If [v,y] appears in b, (y,z,v)
then w.l.o.g.

bim(yvzav) = [v7y7yla"' 7y7n]7
where m > 1, |y,| > j (look at the [v,y] appearing in the minimal
number of brackets) This is of type (A,1,2+4). Otherwise [v,y] does
not appear in b;, (y, z,v), thus w.l.o.g.

bim (y> 2, U) = [’U, ZyZlyennsy ZﬂL];

where m > 1, |z,| > j. This is of type (A,j — 1,j2+).
For (A,j — 1,1), do the same with [v, zy].
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(4) Let v be of type A, © € N;. By lemma 16.9, we must show that
for h € H(v,z) N N;, o;(h) = 1. But any such h is either of the
form [v,7(v,z)] where r(v,z) € R(v,) and thus of type (4,5”), or
[v,21,. .y 2m], m > 1, |z, > 7, and thus of type (A4, j2,j2+).

16.17. Proposition. (1:(A,1)) = (i : (A,12+)), where |A| >0, 1> 1.

Proof: We prove this by induction on |A|, [. For |A| = k, and for any
[, it is clear (as the commutator is trivial). Suppose the statement is true
for |A| > d, any [. For |A| =d, [ =k — d it is clear (as the commutator is
trivial). Suppose the statement is true for |A| = d, any j > [. We follow the
following scheme:

1:(A4,10)

j=k—|(AD)|>1 E—(A D)<
/ !
i: (A1)

1:(A,(5-1),1)
1:(A,L(G-1))

Explanation for numbered arrows::

(1) k — |(A,1)| < [ implies (i : (A,12,124)) by the triviality rule 1.
(1:(A,1)) implies (1:(A,j)) for j > (as x € N; = « € N;) By the
induction hypothesis (i : (A,7)) for j > [, and by rule 4 (i : (4,1)).

(2) By expanding rule 3 and triviality rule 1.

(3) By the induction hypothesis (as |A, j| > |A]).

(4) By the induction hypothesis (as |A,I| > |A]).

(5) By expanding rule: (j —1) > [, (1 : (A1), (i : (4,1,52+)), and
(i:(A,(j —1),j2+)) asif  — 1 = [ it is the previous condition, and
if j —1>1then (1:(A,!)) implies (1: (A,j — 1)) which implies by
the induction (i : (4,j — 12+)).

(6) Repeat the procedure until j = [.

(7) By this procedure we now know (i : A,12,12+). Repeat the argu-
ment in 1.

Proof of proposition 16.15 We prove this by induction on j: (1 : k) by
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triviality rule 1. (1:j) = Vi (i : j2+) by proposition 16.17 (|A| = 0). By
rule 2 this implies (1: 7 —1). O

16.18. Proposition. For alli, o; = 1.
Proof: We prove this by induction on k. By proposition 16.15, we have

m

(60)  or([r1,.--,a,...,z_1]) =1 Vay,...,zp—1 €N, 1<m<k
Since |z =1,

or([v1,--- o)) =1 Yy1,...,v €L
From (60)

or([a,y2,..,v]) =1 Vya, ...,k € T.
Since oy, is a character on Ny, and a acts ergodically on N/I', we have

or([z1,72,--,7%]) =1 Vya, ..., €0, 21 € N.

Using (60) and induction, we get

op([z1, ... z5]) =1 Yei,...,2, € N,

thus o, = 1. Now oy, ...,0;41 = 1 implies that o; is a character. For j > 1,
by Proposition 16.15, we have

K3

oi([z1,...,a,...,zj1]) =1 Veg,...,zj-1 €N, 1<m<y,

and by the same argument as above we have o0; = 1. For j =1, 01 is a
character which satisfies

O'l(a)zl, Ull[‘EL
thus o1 = 1. O
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