Strong type spaces as quotients of Polish groups (joint with Krzysztof Krupiński)

Tomasz Rzepecki

Hebrew University of Jerusalem

October 2018

- (We have a blanket assumption that the theory we are working in is countable.)
- ► The goal: understanding strong type spaces.
- The idea: the Galois groups, strong type spaces, quotients of type-definable groups all behave like quotients of compact Polish groups.
- We have shown that, in a very strong sense (especially under NIP hypotheses), they are quotients of compact Polish groups.
- This observation (and the related theory) can be used to recover essentially all known theorems about cardinality and the so-called Borel cardinality of strong type spaces and quotients of type-definable groups.

Strong types, connected components

Definition

Let $X \subseteq \mathfrak{C}$ be a type-definable set. An equivalence relation E on X is *invariant* if it is Aut(\mathfrak{C})-invariant, and it is *bounded* if it has a small number of classes.

Definition

A strong type is a bounded invariant equivalence relation which refines \equiv .

Definition

A strong type space is the quotient X/E, where E is a strong type on X.

Definition

Given a $(\emptyset$ -)type-definable group G, the connected component G_{\emptyset}^{00} is the smallest $(\emptyset$ -)type-definable subgroup of G of small index.

Logic topology

Definition

Given a (\emptyset -)type-definable set X and a bounded invariant equivalence relation E on X, a set $A \subseteq X/E$ is closed in the *logic topology* if its preimage in X is type-definable.

Fact

The logic topology is compact (because X is type-definable), it is Hausdorff $\iff E$ is type-definable.

- These quotients also have a well-defined "Borel cardinality".
- ▶ In particular, we have the logic topology on G/G_{\emptyset}^{00} (because the coset equivalence relation is bounded and invariant).

Toy examples

- Consider a type-definable group G and its connected component G_{\emptyset}^{00} .
- Then G/G_{\emptyset}^{00} is a compact Polish group (with the logic topology).
- ▶ For any $H \leq G$, $G_{\emptyset}^{00} \leq H$, the quotient G/H and $(G/G^{00})/(H/G_{\emptyset}^{00})$ are essentially the same (topologically, descriptive-set-theoretically).
- Likewise, $Gal_{KP}(T)$ is a compact Polish group.
- For any complete \emptyset -type p and strong type E coarser than \equiv_{KP} on $X = p(\mathfrak{C})$, then $\operatorname{Gol}_{KP}(T)$ acts transitively on X/E.
- For any $a \models p$, X/E and $Gal_{KP}(T)/Stab_{Gal_{KP}(T)}([a]_E)$ are essentially the same.
- ▶ But this only works when *H* contains G_{\emptyset}^{00} , or when *E* is coarser than \equiv_{K^p} (because Gal(T) is not Hausdorff, so not Polish)...

Towards an application: a trichotomy in Polish groups

Fact (Useful Fact)

Suppose G is a compact Polish group, while $H \le G$ is analytic. Then exactly one of the following holds:

- ► H is open and [G : H] is finite,
- *H* is closed and $[G:H] = 2^{\aleph_0}$,
- ► H is not closed, [G : H] = 2^{ℵ0} and G/H is not smooth (in the sense of Borel cardinality).

In particular, G/H is smooth if and only if H is closed, and [G:H] is finite (and H is open) or $[G:H] = 2^{\aleph_0}$.

We want to show an analogous fact for strong type spaces/quotients of type-definable group.

An easier trichotomy

Proposition

Let $p \in S(\emptyset)$ and let E be an invariant equivalence relation on $X = p(\mathfrak{C})$, coarser than $\equiv_{\mathbb{KP}}$, analytic. Then we have exactly one of the following:

- ► E is relatively definable and X/E is finite,
- E is type-definable and $|X/E| = 2^{\aleph_0}$,
- E is not type-definable and $|X/E| = 2^{\aleph_0}$ and X/E is not smooth.

Idea.

We pull X/E up to $Gal_{KP}(T)$, apply the Useful Fact, and then push its conclusion back down.

- We have an analogous conclusion for quotients of type-definable groups by (invariant) analytic subgroups containing G_{\emptyset}^{00} .
- But this approach is completely useless for arbitrary bounded invariant equivalence relations on p(C), quotients by arbitrary bounded invariant subgroups.

Theorem

Let $X = p(\mathfrak{C})$ for some $p \in S(\emptyset)$. Then there is a compact Polish group \hat{G} such that for every strong type E on X, there is a $\hat{H} \leq \hat{G}$ such that:

- \hat{H} is closed iff E is type-definable,
- \hat{H} is open iff E is relatively definable (in X^2),
- ▶ Ĥ is analytic if E is analytic (in particular, it has the Baire property),
- $\hat{G}/\hat{H} \leq_B X/E$ and $\hat{G}/\hat{H} \sim_B X/E$ if p has NIP.

Theorem

Given a type-definable G, there is a compact Polish \hat{G} such that for every $H \leq G$ of bounded index, there is a $\hat{H} \leq \hat{G}$ (... analogous conclusion).

An easier trichotomy

Corollary

Let $p \in S(\emptyset)$ and let E be an invariant equivalence relation on $X = p(\mathfrak{C})$, coarser than $\equiv_{\mathbb{K}^p}$ bounded, analytic. Then we have exactly one of the following:

- ► E is relatively definable and X/E is finite,
- E is type-definable and $|X/E| = 2^{\aleph_0}$,
- E is not type-definable and $|X/E| = 2^{\aleph_0}$ and X/E is not smooth.

Idea.

We pull X/E up to $\operatorname{Gal}_{\mathrm{KP}}(\mathcal{T})$ \hat{G} , apply the Useful Fact, and then push its conclusion back down.

A trichotomy in type-definable groups

Corollary

Let G be a type-definable group and let $H \le G$ be invariant of small index, analytic. Then we have exactly one of the following:

- ► H is relatively definable and [G : H] is finite,
- *H* is type-definable and $[G:H] = 2^{\aleph_0}$,
- *H* is not type-definable and $[G : H] = 2^{\aleph_0}$ and G/H is not smooth.

Idea.

We pull G/H up to \hat{G} , apply the Useful Fact, and push its conclusion back down.

- This implies that for an analytic H, [G : H] is finite, 2^{\aleph_0} or unbounded.
- ▶ This is *not* true if *H* is arbitrary (there are "Vitali"-like counterexamples).

Rosenthal compacta

Fact (Rosenthal, Bourgain, Fremlin and Talagrand)

Let X be a compact Polish space, and let $A \subseteq C(X)$ be bounded in the sup norm. The following are equivalent:

- \overline{A} (the pointwise closure in X^X) consists of Borel functions.
- A has the Fréchet-Urysohn property (for any B ⊆ A, B = the limits of sequences in B).
- ► A contains no "independent sequence" (↔→NIP).
- ► A contains no "ℓ¹-sequence".

Definition

Given such A, we say that \overline{A} with the pointwise convergence topology (or any space homeomorphic to it) is a *Rosenthal compact*.

The Ellis semigroup, the Ellis group and its canonical Hausdorff quotient

Definition

Given a group G of homeomorphisms of a compact Hausdorff space X, the Ellis semigroup EL = E(G, X) is the pointwise closure of G in X^X (with composition as the semigroup operation).

► The Ellis semigroup is a compact left topological semigroup.

Definition

We say that the action of G on X is *tame* if E(G, X) is Rosenthal.

- ▶ Such *EL* always contains so-called 'Ellis groups" *uM*, which come equipped with a compact semitopological group structure (not Hausdorff).
- ▶ uM has a canonical (compact) Hausdorff group quotient uM/H(uM).

Construction of \hat{G}

- ▶ Recall that we want to express X/E as \hat{G}/\hat{H} , where $X = p(\mathfrak{C})$ for $p \in S(\emptyset)$.
- We choose a countable *ambitious* (i.e. homogeneous in a weak sense) model M which realises p.
- We the action of Aut(M) on $S_m(M)$.
- (Assume NIP for simplicity.)
- Because of NIP, this action is tame, i.e. the Ellis group EL = E(Aut(M), S_m(M)) is Rosenthal.
- ▶ This implies that $\hat{G} = u\mathcal{M}/H(u\mathcal{M})$ is a compact Polish group (as a countably tight compact Hausdorff group).
- (Without NIP we have to work a bit more to obtain \hat{G} .)

Some more ideas from the proof

We show that we have the following commutative diagram:

$$\begin{array}{c} EL & \longrightarrow \quad \hat{G} = u\mathcal{M}/H(u\mathcal{M}) \\ \downarrow & \downarrow \\ S_m(M) & \longrightarrow \quad X_M & \longrightarrow \quad X/E \\ \blacktriangleright \quad X_M = \{ \mathfrak{P}(a/M) \mid a \models p \} = \{ \mathfrak{P}(a/M) \mid a \in X \} \\ \blacktriangleright \quad \text{The map } EL \to S_m(M) \text{ is just evaluation at } \mathfrak{P}(m/M). \\ \vdash \quad \text{The map } EL \to \hat{G} \text{ is a certain natural epimorphism} \\ (\text{given by } f \mapsto ufuH(u\mathcal{M}), \text{ not continuous!}). \\ \vdash \quad \text{The map } \hat{G} \to X/E \text{ factors through an orbit map } \mathfrak{Gol}(T) \to X/E \\ \text{via an epimorphism } \hat{G} \to \mathfrak{Gol}(T). \end{array}$$

- ▶ It follows that \hat{G} acts on X/E, and \hat{H} is just the stabiliser of $[a]_E$ for some $a \in X(M)$.
- Then we work (a lot) more to show that this \hat{G} and \hat{H} have all the required properties.

Concluding remarks

- ► There is a weaker variant of the trichotomy which applies in the case when the domain is not p(𝔅) (i.e. we have smoothness ⇐⇒ type-definability).
- ▶ We can also consider a $Y \subsetneq p(\mathfrak{C})$ type-definable with parameters, and the theorem essentially applies in this case (under reasonable assumptions).
- The group Ĝ can be chosen in a sort-of natural way (independently of p), but there seems to be no "canonical" choice (we need to choose an appropriate countable model M).
- I have given a general (abstract) framework in which these sorts of results can be proved.