Linear orders, cyclic orders and hereditary G-compactness

Tomasz Rzepecki

Uniwersytet Wrocławski

Wrocław, September 20, 2018

Outline

- ► The Lascar graph, Lascar distance and G-compactness.
- Cyclic orders, an example of a non-G-compact theory.
- Hereditary G-compactness and linear orders (unstable NIP implies not hereditarily G-compact[†]).

[†] modulo an open conjecture

Lascar graph

The Lascar graph consists of the following:

▶ vertices: small (also infinite!) tuples in 𝔅,

• edges: a, b are connected by an edge if for some $M \preceq \mathfrak{C}$ we have $a \equiv_M b$. Then

▶ Lascar distance $d_{L}(a, b) = \text{length of the shortest path } (\in \mathbf{N} \cup \{\infty\}).$

► A Lascar strong type = a connected component of the Lascar graph.

Remark

If
$$d_{\mathbb{L}}(a,b)<\infty$$
, then $a\equiv b$ (and even $a\equiv_{\mathfrak{acl}^{\mathfrak{eq}}(\emptyset)}b$).

▶ A theory is *G*-compact if all the Lascar strong types have finite diameter.

Fact

The theory T is G-compact if and only if all the Lascar strong types have uniformly bounded diameter.

Examples

Example

Let T be the theory of dense linear orders without endpoints, and take any small tuples $a \neq b \subseteq \mathfrak{C}$ such that $a \equiv b$. Then $d_{L}(a, b) = 1$: we can just take M that lies to the left of all elements of a, b and by q.e., $a \equiv_{M} b$.

Example

If $ad(\emptyset)$ is a model, then T is G-compact (with diameters uniformly bounded by 1).

Example

If T is stable or, more generally, simple, then T is G-compact (or even more generally, if T has NTP₂ and \emptyset is an extension base).

Cyclic orders

Definition

A ternary relation C(x, y, z) is a (strict, partial) cyclic order if it satisfies:

- 1. cyclicity: if C(x, y, z), then C(z, x, y),
- 2. asymmetry: if C(x, y, z), then $\neg C(z, y, x)$,
- 3. transitivity: if C(x, y, z) and C(y, z, t), then C(x, y, t).

Example

On the unit circle, C(x, y, z) if y lies on the arc from x to z in the counterclockwise direction.

Example

If (P, <) is a partially ordered set, then it has natural cyclic order structure, given by C(x, y, z) if x < y < z, y < z < x, or z < x < y.

Cyclic order with a twist

- ► Consider the structure $M_n = (\mathbf{T}, C, R_n)$, where $\mathbf{T} = \mathbf{R}/\mathbf{Z}$ is the unit circle, *C* is the cyclic order on **T**, and R_n is the rotation by 1/n.
- Let $\mathfrak{C}_n \succeq M_n$ be the monster model.
- For j = 1, 2, 3, let M_n^j be the submodel of M_n generated by $[(j-1)/3n, j/3n) + \mathbf{Z}$.
- Note that $M_n = \bigcup_j M_n^j$.
- Furthermore, one can show that $M_n^j \leq M_n$ and $M_n^{j_1} \cup M_n^{j_2} \leq M_n$.

(This example is due to Casanovas, Lascar, Pillay and Ziegler.)

 R_n -orbits stay together

$R_n\mbox{-}\mathrm{orbits}$ are large

Proposition

If $a, b \in M_n$ are adjacent in the Lascar graph, then d(a, b) < 2/n. It follows that in general, $d(a, b) < 2d_l(a, b)/n$ (where d is the metric from **R**).

Corollary

For any *n*, if
$$k = \lfloor n/2 \rfloor$$
, then $d_{\lfloor}(a, R_n^k(a)) = \Theta(n)$.

Proof.

We have $d_{l}(a, R_{n}^{k}(a)) \leq 3k \leq 3n/2$. On the other hand, since $0 \leq k \leq n/2$,

$$d_{L}(a, R_{n}^{k}(a)) > d(a, R_{n}^{k}(a)) \cdot n/2 = (k/n) \cdot n/2 = k/2 \ge n/4 - 1$$

A non-G-compact theory

Corollary

For any n, if
$$k = \lfloor n/2 \rfloor$$
, then $d_{\lfloor}(a, R_n^k(a)) = \Theta(n)$.

Corollary

The theory of the structure $M = (M_n)_{n \in \mathbb{N}}$ is not G-compact.

Proof.

We can find a sequence $a = (a_n)_{n \in \mathbb{N}}$ of elements of M such that the diameter of the Lascar strong type of a_n is $\Omega(n)$. It follows that the diameters of the Lascar strong types are not uniformly bounded, so Th(M) is not G-compact. (In fact, the Lascar strong type of a has infinite diameter.)

Hereditary G-compactness

Definition

We say that a theory T is hereditarily G-compact if for every $M \models T$ and every N interpreted in M (possibly with parameters), the theory Th(N) is G-compact.

Remark

If T is hereditarily G-compact and G is a group definable in a model of T, then $G_{\emptyset}^{00} = G_{\emptyset}^{000}$.

Example

Every stable theory, and, more generally, every simple theory is hereditarily G-compact.

Question

Is the converse true, i.e. is a hereditarily G-compact theory necessarily simple?

DLO is not hereditarily G-compact

Example

Consider the theory of dense linear orders without endpoints, and the model $(\mathbf{R}, <)$. The structure M_n is clearly interpretable in \mathbf{R} with parameters $\{0, 1/n, \ldots, (n-1)/n, 1\}$. Thus, the structure $(M_n)_n$ is interpretable in \mathbf{R} with parameters in $\mathbf{Q} \cap [0, 1]$. Thus, dense linear orders are not hereditarily G-compact.

Generalised cyclic order with a twist

Definition

Let (P, <) be a poset, and let *n* be a positive integer. Then $C_n(P)$ is the structure $(P \times \{1, \ldots, n\}, C, R_n)$, where *C* is the natural cyclic ordering, and R_n given by $R_n(p, i) = (p, i + 1)$ (where (p, n + 1) = (p, 1)).

- ▶ The structure M_n defined before is essentially $C_n([0,1))$.
- ▶ In any case, *P* interprets each $C_n(P)$ (without parameters), and hence also $(C_n(P))_{n \in \mathbb{N}}$.

Properties of $C_n(P)$

Definition

We call a poset *P* three-splitting if the initial embeddings of *P* and $P \oplus P$ into $P \oplus P \oplus P$ are elementary.

• (Is this equivalent to saying that the embedding of P in $P \oplus P$ is elementary?)

Example

 ${\bf Q}$ and ${\bf Z}$ are three-splitting (e.g. by quantifier elimination). The same is true for any models of their theories.

Lemma

If P is three-splitting, then for any $p \in P$, then the diameter of the Lascar strong type of $(p, i) \in C_n(P)$ is $\Omega(n)$.

Discrete linear orders are not hereditarily G-compact

Example

 ${\bf Q}$ and ${\bf Z}$ are three-splitting (e.g. by quantifier elimination). The same is true for any models of their theories.

Lemma

If P is three-splitting, then for any $p \in P$, then the diameter of the Lascar strong type of $(p, i) \in C_n(P)$ is $\Theta(n)$.

Example

A discrete linear order without endpoints is not hereditarily G-compact.

Example

A discrete linear order with both endpoints is not hereditarily G-compact.

Extracting a dense and discrete linear order

Lemma

Suppose L is an \aleph_0 -saturated infinite linear order. Then there is some infinite $D \subseteq L$, definable in pure order language, such that D is either dense or discrete.

Sketch of the proof.

If *L* contains arbitrarily long finite intervals, by \aleph_0 -saturation, it contains an infinite discrete interval. If not, the set $L' \subseteq L$ of all elements without a successor is densely ordered.

Corollary

An infinite linear order is never hereditarily G-compact.

A conjecture on unstable NIP theories

Conjecture

Suppose T is unstable NIP. Then T interprets an infinite linear order.

- ▶ It is known that such T \bigvee -interprets an infinite linear orders (Simon).
- It follows that it is true for ω -categorical T.
- It is also known to hold if T is unstable "weakly VC-minimal" (Guingona, Laskowski).

Corollary

If the conjecture holds, then every unstable NIP theory is not hereditarily G-compact.

Corollary

If the conjecture holds, then every unstable NIP theory is not hereditarily G-compact.

- What about theories with IP?
- In general, the reduction to linear orders is probably not enough.
 E.g. atomless Boolean algebras do not interpret an infinite linear order (I don't know if they are hereditarily G-compact).
- On the other hand, it seems like all examples of non-G-compactness are essentially NIP.