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Abstract. We present some computational data on Ohtsuki series for a two pa-
rameter family of integer homology spheres obtained by surgery around what we
call ‘2–strand knots’, closures of the simplest rational tangles. This data allows us
to make certain conjectures about the growth rate of the coefficients in Ohtsuki
series generally, based on which we introduce an invariant which we call the slope
σ(M) of a manifold M (not to be confused with slopes in hyperbolic geometry). For
Seifert fibred manifolds, M , the conjectures are known to hold while π2σ(M) ∈ Q;
furthermore if M is also an integer homology sphere, π2σ(M) ∈ Z. Assuming the
conjectures, the numerical data enables us to give an example of a ZHS for which
π2σ(M) �∈ Z. This paper is based on the first author’s M.Sc. thesis.
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1. Introduction

Suppose that M is a compact oriented 3–manifold without boundary.
The sl2 Witten-Reshetikhin-Turaev invariant (see (Wi), (RT)) is a
complex number invariant ZK(M, L) of embeddings of links L in M ,
dependent on an integer K. It is known that for links in S3, ZK(S3, L)
is a polynomial in q = exp 2πi

K and q−1, namely the generalised Jones
polynomial of the link L.

Now assume that M is a rational homology sphere with H = |H1(M,Z)|.
In this paper we will only consider the case of invariants where the link
L is empty. From its algebraic definition, e.g. via quantum groups,
ZK(M, ∅) can be written as a rational (or polynomial) function of q
at Kth roots of unity. In the normalization for which ZK(S3, ∅) = 1,
denote the invariant for the pair (M, ∅), by ZK(M). For odd prime K,
ZK(M) ∈ Z[q] (see (M1), (M2)), so that for some am,K(M) ∈ Z, one
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has

ZK(M) =
∞∑

m=0

am,K(M)(q − 1)m . (1)

Although the am,K are not uniquely determined from this relation since
qK−1
q−1 = 0, however they are determined modulo K for m ≤ K−2 when

K is prime. It is known from (O1) and (O2) that there exist rational
numbers λm(M) such that,

am,K(M) ≡
(

H

K

)
λm(M) (2)

as elements of Z/KZ for all sufficiently primes K ≥ 2m+3. The formal
power series

Z∞(M) =
∞∑

m=0

λm(q − 1)m ,

is known as the Ohtsuki series of M and by (R3) Z∞(M) ∈ Z[ 1
2H ][[h]]

where q = 1 + h. For integer homology spheres (H = 1) we have
Z∞(M) ∈ Z[[h]], while λ0(M) = 1 and λ1(M) = 6λ(M) where λ(M)
denotes the Casson invariant of M . In general Z∞ is expected to be the
asymptotic expansion of the trivial connection contribution to ZK(M)
in Chern-Simons theory.

Relatively few computations of Z∞ have been carried out. For Lens
spaces, Jeffrey’s closed formula (Je) for ZK gives a formula for Z∞,

Z∞(L(P, Q)) = q±3s(Q,P ) q
1

2P − q−
1

2P

q
1/2 − q−1/2

,

where s(Q, P ) is a modified Dedekind sum. For Seifert fibred manifolds,
ZK can be written as the asymptotic expansion around q = 1 of a
holomorphic function of q expressed as a complex (contour) integral
(LR). Thus for a Seifert fibred manifold which is an ZHS,

Z∞

(
Σ

(
Q1

P1
, . . . ,

QN

PN

))
= c.q−

φ
4

∫
e

iKy2

8πP

∏N
j=1 sinh y

2Pj

(sinh y
2 )N−2

dy ,

where P =
∏

Pj , c is a constant (dependent on P ) and φ is a rational
number,

φ = 3signP +
N∑

j=1

(

12s(Qj , Pj) −
Qj

Pj

)

.

For special cases some other formulae are known, for example for ±1
surgery around the trefoil, that is for the Poincaré homology sphere
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Σ(2, 3, 5) and for Σ(2, 3, 7), (see (LZ), (Le))

q(q − 1)Z∞(Σ(2, 3, 5))(q) = 1 − 1/2

∞∑

n=1
χ(n)q(n2−1)/120

(q − 1)Z∞(Σ(2, 3, 7))(q) =
∞∑

n=0
q−

1
2
n(n+1)(qn+1 − 1) . . . (q2n+1 − 1)

where the odd function χ : Z/60Z −→ {−1, 0, 1} takes value +1
precisely at 1, 11, 19 and 29 (and nowhere else).

Such computations have been obtained using three approaches. All
use a surgery presentation of the manifold via a link.

− One can write a state sum for ZK in which a state is a labeling
of the regions and components of a diagram of the link (see (KL))
and the local weights are quantum dimensions, θ-nets and quan-
tum 6j-symbols on the different elements of the diagram (com-
ponents/regions, edges, crossings, respectively). One can use the
method of recombination here to rewrite the state sum obtained in
a possibly simpler way. To extract a formula for Z∞ now requires
some manipulations of the form of the sums involved in ZK which
only work for a small class of manifolds. This was used in (L) and
(LZ).

− Using conformal field theory, one can write ZK as a sum of prod-
ucts of S and T matrix elements which take a particular simple
form for special manifolds. This was used to obtain Z∞ in (Je),
(LR).

− Using the formulation of JL(ρ1, . . . , ρc), the coloured Jones polyno-
mial of a link L coloured by representations ρi on its c components,
as the image of the link (or rather of a 1-tangle whose closure is
the link) under a representation of the category of tangles, one can
write JL in terms of the universal R-matrix, as the scalar value
taken by an element of Uqsl2

⊗c in the representations ρi. From
this universal invariant of the link an expression for Z∞(M) can
be obtained as an infinite sum with the property that coefficients
of (q − 1)n (for any n) arise only form a finite number of terms in
the sum. This was the method used by Le, (Le).

To obtain closed forms for Z∞ using the first two approaches, relies
on the manifold being obtainable from a particularly simple link, since
in the end the combinatorial formulae for ZK depend on quantum 6j-
symbols (or what is the same thing, R-matrix entries) which enter at
each crossing in a link diagram presentation. These have complicated
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formulae even for Uqsl2 and so only for those manifolds for which the
quantum 6j symbols can be manipulated to cancel can a closed form be
expected sufficient to find Z∞. This occurs for Seifert fibred manifolds.

In this paper we will consider a special (two parameter) class of
manifolds (see §2) for which the state sum formula is relatively sim-
ple, although still complicated enough that a closed formula for Z∞ is
unknown. In (Ja), computer computations were carried out for Z∞ on
this family; we outline the method and some peculiarities relating to
numerical precision, in §3. In §4, some of the results are given graph-
ically along with conjectures that they support. Finally, in §5, some
possible generalizations are suggested.

2. A two-parameter family of manifolds

2.1. Definition of the manifolds

Let K(( S
T

)) be the knot obtained by connecting two tangles each of
which consists of two strands simply braided, with S and T crossings
respectively, the two tangles being connected as shown in Figure 1.

Negative S and/or T result in crossings of opposite orientation. Here,
K(( S

T
)) will be a knot (and not a link) when S and T are not both odd.

Note that for different parities of S and T , the relative orientations
of the different parts of K(( S

T
)) will be different. Replacing (S, T ) by

(−T,−S) doesn’t change the knot, while reversing the signs of both S
and T (or interchanging S and T ) changes the knot to its mirror image.
Some special cases are, S = 0 (unknot), S = ±1 ((2, T ∓ 1) torus knot)
along with the examples in the table in table below, where the knots
have been given with their Conway names.

Table .

S 2 3 4 5 6 7 8 4 6 4 5 6

T 2 2 2 2 2 2 2 3 3 4 4 4

K
(( S

T
))

41 52 61 72 81 92 101 73 93 83 94 103

In this paper we consider the manifolds M(( S
T

)) obtained from S3 by
surgery on the framed knot K(( S

T
)) of Figure 1. The number of twists

U in K(( S
T

)) is chosen so that the resulting blackboard framed knot will
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T
crossing

u
curls

S
crossings

Figure 1. Knot family K
(( S

T
))

have framing ±1, that is, so that M(( S
T

)) will be an integer homology

sphere. This requires U = (−1)T S−(−1)ST±1, where the signs depend
on the parities of S and T (since the relative orientations of different
sections of the knot depend upon the parities of S and T ), so in fact
for each S and T we obtain two manifolds M±

(( S
T

))
.

2.2. Calculation of ZK

The Kauffman-Lins state sum formulation (see (KL)) of the WRT
invariant ZK(M±

(( S
T

))
) uses a sum over states which are colorings of

the one component of K(( S
T

)) and of the regions into which the knot
diagram of K(( S

T
)) in Figure 1 cuts the plane, by colors from the set

{0, 1, . . . , K − 2}. The only admissible colorings are those which sat-
isfy the constraint that for each edge of the knot diagram, the triple
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Figure 2. Allowed states for K
(( S

T
))

of colors coming from the component and the two regions on either
side of the edge, satisfies the Clebsch-Gordan constraint. The possible
colorings in our case are shown in Figure 2. This would give a formula
for ZK(M±

(( S
T

))
) as a sum over S + 1 indices in which the summand

contains S − 1 nontrivial quantum 6j symbols.

Using recombination, each crossing can be written as a sum over the
label on the internal edge, of the evaluation of an ‘H’ type graph with
two trivalent vertices (Figure 3(1)). This leads to the configuration in
Figure 3(2) which can be simplified using Figure 3(3) to a network
whose size is independent of S and T , although with a non-standard
weighting. It has just four trivalent vertices (that is, it is a tetrahedral

A triple {a, b, c} is said to satify the Clebsch-Gordan constraint if they satisfy
the triangle inequality |a− b| ≤ c ≤ a+ b while a+ b+ c is even and at most 2K −4.
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Figure 3. Recombination

network) and the resulting formula for the WRT invariant is

ZK(M±
(( S

T
))
) = G−1

±
∑

a,x,y

∆x∆y(λ
a a
x )S(λa a

y )T (λa a
0 )U

{
a x a
a y a

}
(3)

where the sum is over colors a, x and y for which {a, a, x} and {a, a, y
}are admissible triples, while G± are the Gauss sums

∑
a ∆2

a(λ
a a
0 )±

1
obtained by evaluation on the unknot with framing ±1. We have used
notation,

∆n = (−1)n A2(n+1)−q−2(n+1)

q2−q−2

λa b
c = (−1)(a+b+c)/2A(a(a+2)+b(b+2)−c(c+2))/2

where A is a fourth root of q.
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2.3. Properties of Ohtsuki series

The Ohtsuki series
∑∞

m=0 λm(q − 1)m will depend on S and T (and U ,
or equivalently on the sign of the surgery). To include this dependence
clearly in the notation, we will denote the coefficients by λ±

m(S, T ).

Theorem For fixed parity and signs for S and T , λm is a polyno-
mial in S and T of degree 2m with rational coefficients.

Proof. It is known that M −→ λm(M) is a finite type invariant
of manifolds of order m. On the other hand, the map K −→ λm(S3

K)
(doing +1 surgery on the knot) gives a Vassiliev invariant of order 2m.
(This follows for example from the Melvin-Morton-Rozansky conjecture
(B-NG) and Le (Le).)

However if |S|+|T | > 2m, then let us pick any 2m+1 of the crossings
in the knot diagram of K(( S

T
)) in Figure 1, say s of these crossings will be

from the ones that were counted by S and t from the crossings that were
counted by T , where s+ t = 2m+1. One can consider the 22m+1 knots
obtained by variously altering the orientations of these crossings in all
possible ways. Since λm is Vassiliev of order 2m, the alternating sum
of the values of λm on these knots vanishes. When the orientation of a
crossing (say of type S) in K(( S

T
)) is flipped, the resulting knot is of the

same type, by with S changed to S−2signS. Without loss of generality,
S and T are positive. Then the result of changing the orientations of i
crossings of type S and j crossings of type T , is K(( S−2i

T−2j
)). There are

(
s
i

) (
t
j

)
ways in which to pick the subsets of crossings to flip, so that

s∑

i=0

t∑

j=0

(−1)i+j
(

s
i

) (
t
j

)
λ±

m(S − 2i, T − 2j) = 0 , (4)

for all S and T positive and all s, t with s + t = 2m + 1. The left
hand side of (4) is the order s + t finite difference partial derivative of
λ±

m, s times in the S direction and t times in the T direction. Observe
also that all the terms in (4) involve S and T of fixed parities. This
condition is sufficient to guarantee that (for fixed parities) λ±

m(S, T ) is
expressible as a polynomial in S and T of order at most 2m, as required.
Since λm ∈ Z, these polynomials must have rational coefficients, in fact
22m((2m)!!)2λm(S, T ) ∈ Z[S, T ] where n!! ≡ ∏n

r=1 r!.
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3. Computer calculations of Ohtsuki series

Using (3), ZK(M±
(( S

T
))
) can be computed for all the K − 1 different Kth

roots of unity, q = qs = exp 2πis
K (1 ≤ s < K) for fixed S, T and prime

K. From these values, the coefficients am,K(M±
(( S

T
))
) ∈ Z can be found

in (1) where we assume that they vanish past the (K − 2)th. Namely,
one solves the following linear system of size K − 1,

ZK |q=qs =
K−2∑

m=0

am,K .(qs − 1)m , (5)

where the dependence on the manifold has been omitted from the no-
tation. The integrality of the solutions provides a check on the errors in
the computations of the individual WRT invariants at different roots
of unity.

There a number of computational challenges here.

3.1. Growth of number of states

As was mentioned in the previous section, the sum obtained from
naively applying, say the Kauffman-Lins prescription, to the knot di-
agram Figure 1 leads to a sum over a number of states which grows
exponentially with S, since there would be a summation over S in-
dices ij , and the non-trivial quantum 6j-symbols effectively introduce
a further S − 1 summations, where the summand is now a product (or
quotient of products) of quantum numbers and factorials. This problem
is obviated with the used of recombination; thus (3) only involves a sum
over 4 indices (a, x, y and an additional index from the single quantum
6j-symbol) so that there are the order of K3 states to be summed over
(or K4 with a summand which is a quotient of products of quantum
numbers and factorials), and this is independent of S and T .

3.2. Numerical precision and summand size

Since q-factorials can be numerically very large, the individual terms
in (3) can be many orders of magnitude larger than their sum and this
necessitates using very high precision arithmetic.

We give the example of K = 97 for the manifold M+
(( 3

2
))

obtained

by surgery around the knot 52 (obtained from S = 3, T = 2, U = 6).
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For s = 1, [90]! ≈ 10114 and the order of summands in ZK for s = 2
is ∼ 1026, while their sum (Z97) is ∼ 106. To obtain an accuracy of d
significant figures in the result then requires 20 + d + e figures in the
summands, where the number of states is of order 10e. See Figure 4
which shows a plot of the numerical sizes of ZK and the individual
terms in the sum for ZK (more precisely, the sum of absolute values of
the real part of terms in the sum for ZK) on a log scale, against s.

Figure 4. Relative sizes of ZK and its summands against s

Because of the very large numerical values of the quantum factorials,
despite the smaller sizes of terms in the sums (10100 versus 1026 in the
above example), it is necessary to be able to work with numbers with
large exponent (say 300) though maybe only 30 significant figures. It is
very costly in time to use higher precision than absolutely necessary, so
some special routines were written to easily manipulate sum numbers
with large exponents, but (comparitively) not so high precision. For
example, calculating Z97 for all s using 30-digits precision took 596
seconds on a Pentium 600MHz computer but it takes 1740 seconds to
compute it for only one s using 80-digits precision!
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Because of the large discrepancy in orders of magnitude of the in-
dividual terms and the total sum, which as can be see from Figure 4
only occurs for some values of s (near 0 and K), it is necessary for
those values of s to perform the computations with specially higher
precision. Therefore two different routines were written, and used on
different values of s. For details, see (Ja).

The result of these two factors is to practically limit the size of K
(though not the complexity of the knot, that is S and T , since the
difficulty in calculation is practically independent of S and T ). For
M+

(( 3
2
))

these techniques allow computation for all primes K less then

137 with a total running time less than 1.5 days (using a 586 1GHz
computer).

Knowing am,K for primes K = Ki ≥ m + 2 determines λm mod-
ulo

∏
Ki, according to their definition in (2) (recall that here H =

1). From Ohtsuki’s theorem, it is known that this class, as an in-
teger in [−1

2

∏
Ki,

1
2

∏
Ki], stabilizes as the number of primes used

increases. This gives an algorithm for obtaining (the first few terms
in) Ohtsuki series. The practical limitation on K above gives a lim-
itation on how many terms can be calculated. The full implemen-
tation of this algorithm for our manifolds M±

(( S
T

))
can be found at

http://www.ma.huji.ac.il/~ruthel/nori/index.html.

4. Results and conjectures

4.1. Individual Ohtsuki series

For small K (up to 100), it turns out that the number of states is
≈ K2.9 (rather than K3) while the running time is ≈ K4.2 (rather
than K4) due to the increase in computational time of each summand
and initialization procedures, for the larger values of K. For M+

(( 3
2
))

discussed above ((S, T, U) = (−2,−3, 6)), K < 137 was sufficient to
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compute the first 21 coefficients of Z∞,

Z∞(M+
(( 3

2
))
)

= 1 + 12h + 258h2 + 7756h3 + 300055h4 + 14192892h5

+793556722h6 + 51201783488h7 + 3744412949224h8

+306062634843942h9 + 27651533457983745h10

+2736207255879667844h11 + 294306807889008940143h12

+34188707473104409330168h13

+4265845139103716469762268h14

+568978507509845435699024672h15

+80787229265313530505892175542h16

+12165972894589961487357113418955h17

+1936811327962748352514940775515283h18

+325007156713501796302801741846095206h19

+57334985329655520887251821186176103843h20

+10607981215487793536113323249915379712259h21

+2053956644731187123340443541756436810603354h22 + · · ·

where h = q − 1.

4.2. Polynomiality of coefficients

We already know that for fixed m, the dependence on S and T (of
fixed parity) of λ±

m(S, T ) is polynomial of degree 2m. Since for S = 0
(or T = 0), K(( S

T
)) is the unknot for which Z∞ = 1, thus λ±

m(S, T ) is
divisible by S (for S even) and by T (for T even) and by ST (for S, T
both even).

Since the WRT invariants of the mirror image manifold M̄ of M
are given by ZK(M̄)(q) = ZK(M)(q−1) at all roots of unity, thus
Z∞(M̄) can be obtained from Z∞(M) by replacing q by q−1, that is by
substituting 1

1+h − 1 = − h
1+h for h. This gives (complicated) relations

between λ±
m(S, T ) and λ∓

m(T, S), while λ±
m(−T,−S) = λ±

m(S, T ). Hence
it is only necessary to compute the polynomials λ+

m(S, T ) for the two
parity combinations, (even, even), (even, odd). Knowing the degrees of
the polynomials, numerical results for a large enough number of pairs
(S, T ) are sufficient to determine these polynomials. The results for the
first few coefficients are, for S and T both even,

λ+
0 = 1

λ+
1 = −3

2ST
λ+

2 = 3
4ST (5ST + T − S + 3)
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and for S even, T odd,

λ+
0 = 1

λ+
1 = 3

4S(S + 2T )
λ+

2 = 25
32S4+ 25

8 S3T + 15
4 S2T 2− 1

2S3− 3
2S2T− 3

4ST 2− 1
2S2+ 1

4ST− 1
4S

Observe, for example, that λ1 is divisible by 6, and indeed the Casson
invariant is

λ(M+

(( S
T

))
) =

1
6
λ+

1 (S, T ) =

{
−1

4ST for S and T both even
1
8S(S + 2T ) for S even and T odd

4.3. Slopes

For fixed S and T , the dependence on m of λ±
m(S, T ) is more interesting.

See Figure 5 for graphs of the ratios λ+
n (S,T )

λ+
n−1(S,T )

for S = −2 and several

odd values of T . From this figure there is an obvious conjecture.

Conjecture If M is a rational homology sphere, then the ratio
λn(M)

λn−1(M) is asymptotically linear in n, for large n.

When this conjecture holds, set

σ(M) = lim
n−→∞

λn(M)
nλn−1(M)

;

this will be called the slope of M (not to be confused with slopes in
hyperbolic geometry).

It is known from (LR) that the slope exists for Seifert fibred mani-
folds and is

σ

(
Σ

(
Q1

P1
, . . . ,

QN

PN

))
= ±

∏
Pi

π2
= ±

(

π2
N∑

i=1

Qi

Pi

)−1

.

As a corollary π2σ(M) ∈ Q for such manifolds, while if in addition the
manifold is an integer homology sphere then π2σ(M) ∈ Z. Since the
WRT invariant (and therefore also the Ohtsuki series) is multiplicative
under connect sum,

|σ(M#N)| = max(|σ(M)|, |σ(N)|)

when |σ(M)| 
= |σ(N)|, while under mirror image, the sign of the slope
is reversed (σ(M) = −σ(M)).
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Figure 5. λ+
n (S, T )/λ+

n−1(S, T ) for S = −2 against n

Assuming that slopes exist for our family of manifolds, from the
polynomiality of the terms λ±

m(S, T ), one can make a further conjecture.

Conjecture The slope for the manifolds M±
(( S

T
))

is polynomial in

S and T of degree at most 2.

Observe that this conjecture does not follow from the previous
conjecture and the theorem giving λ±

m(S, T ) as a polynomial of degree
2m in S and T , since we have no control on the growth rate of the
coefficients in such polynomials with m (it is conceivable that the lower
order coefficients may grow more rapidly that the leading one). This
conjecture is backed by numerical data. See for example Figure 6 which
gives the slopes for S = −3 plotted against T (even); and Figure 7 which
gives slopes for S and T even, plotted against T for various values of
S.

Again assuming this conjecture, we can theoretically determine what
its form should be. For the case of S odd and T even, we know that the
knot for S = ±1 is the (2, T ∓1) torus knot, surgery around which gives
for M δ

(( S
T

))
the Seifert fibred manifold on three fibers Σ(2, T − S, 2T −

2S − δ), and hence its slope is 2
π2 (T − S)((2T − 2S)δ − 1). Hence for

general (odd) S and even T , the quadratic giving the slope must still
have coefficient 4

π2 for T 2.
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Figure 6. Graph of slopes for S = −3 and T even

Figure 7. Graph of slopes for S and T even, against T

67



N. Jacoby & R. Lawrence

For the case of S and T both even, we have no similar data from
special cases, since although we know that for S = 0, the manifold
obtained is S3 and Z∞ = 1, there is no well-defined slope!

Finally we remark that the numerical data and precision is sufficient
to demonstrate (assuming the conjectures) the existence of integer
homology spheres for which π2σ(M) 
∈ Z, for example M+

(( 3
2
))
.

5. Conclusions

We have presented numerical data on Ohtsuki series for a 2-parameter
family of integer homology 3-spheres (which includes some hyperbolic
manifolds), which led to the conjectural introduction of a ‘new’ invari-
ant of manifolds, which we called the slope. For Seifert fibred manifolds
this is known to exist. The numerical data indicates that the slope
(assuming it exists) is quadratic in the two parameters of the manifold.

It may be noted that the computer program may be used to compute
the Ohtsuki series for surgery around an arbitrary knot, though the
complexity of the calculation is likely to be prohibitively high for more
general manifolds. However, for an arbitrary knot diagram, adding a
2-strand (that is, replacing any disc which contains within it just two
non-intersecting strands in the knot diagram, by a braid σS

1 ) results
in a manifold after surgery whose Ohtsuki series has a computational
complexity essentially independent of S. The coefficients in the Ohtsuki
series will be polynomial in S by the same argument as used in this
paper, and one may suppose that the slope will be quadratic in S.

In future work it is hoped to extend the calculations to manifolds
obtained by surgery on closures of arbitrary rational tangles, since
then the recombination technique used in this paper can be applied
to reduce the computation of ZK to a small (fixed) number of quan-
tum 6j symbols, after which the complexity is essentially independent
of the numbers of twists in the diagram (apart from its depth). We
also remark the there is some hope of obtaining proofs of formulae at
least for leading coefficients of λ±

m, using the direct presentation of the
coloured Jones polynomial via universal R-matrices (see Le’s approach
to Ohtsuki series (Le)).

It does not seem that Witten-Chern-Simons theory sheds any light
on the slope, or its physical meaning. In fact a somewhat ‘orthogo-
nal’ way of viewing the Ohtsuki series of manifold invariants is via
an asymptotic expansion of the ratio of adjacent coefficents, in order
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words not only the leading coefficent (that of n, which we have called
the slope) but also other coeffients may be of interest.
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