The PSU(3) invariant of the Poincaré homology sphere. !

Ruth Lawrence 2

Department of Mathematics, University of Michigan
and Institute of Mathematics, Hebrew University, Jerusalem

Abstract. Using the R-matrix formulation of the sl3 invariant of links, we com-
pute the coloured sls generalised Jones polynomial for the trefoil. From this, the
PSU(3) invariant of the Poincaré homology sphere is obtained. This takes com-
plex number values at roots of unity. The result obtained is formally an infinite
sum, independent of the order of the root of unity, which at roots of unity reduces
to a finite sum. This form enables the derivation of the PSU(3) analogue of the
Ohtsuki series for the Poincaré homology sphere, which it was shown by Thang Le
could be extracted from the PSU(N) invariants of any rational homology sphere.

1: INTRODUCTION

Suppose that M is a compact oriented 3—manifold without boundary. For any
Lie algebra, g, and integral level, k, there is defined an invariant, Zg4s, (M, L), of
embeddings of links L in M, known as the Witten-Reshetikhin-Turaev invariant
(see [Wi], [RT], [TW]). It is known that for links in S3, Zx(S3, L) is a polynomial
in ¢ = exp %i, namely the generalised Jones polynomial of the link L.

Now assume that M is a rational homology sphere, with H = |H,(M,Z)|. In
the normalisation for which the invariant for S is 1, denote the invariant for the
pair (M, (), as an algebraic function of g at K*® roots of unity, by Zx(M). For a
rational homology sphere M, G = PSU(N) and odd prime K, Zx (M) € Z[q] (see
[B], [MR], [MW] and [TY]), so that for some a,, k(M) € Z, one has

Zg(M) = amx(M)(qg—1)™.

Although the a,, x are not uniquely determined, it is known from [L] that there
exist rational numbers A, (M) such that,

am, k(M) = A (M)

as elements of Zx for all sufficiently large primes K. For integer homology spheres,
Ao(M) =1and A\ (M) = N(N2-1)A(M) where A(M) denotes the (SU(2)-)Casson-
Walker invariant of M in Casson’s normalisation. As a result, one may define a
formal power series

ZOO(M) = Z Am(q - 1)m 3

m=0
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with rational coefficients, which is an invariant of rational homology 3—spheres, M,
known as the perturbative invariant of M. This is expected to be the asymptotic
expansion of the trivial connection contribution to Zx (M).

In this paper we use the R-matrix presentation of link and manifold invariants
from [RT], to compute the PSU(3) invariant for the Poincaré homology sphere.
Various calculations for the Lie group PSU(3) have been carried out elsewhere; we
mention [OY], [T1] and [T2] specifically for PSU(3) computations while [KT1] and
[KT2] obtained more general results on PSU(N) invariants. However the current
paper gives, to our knowledge, the first explicit calculation of the coloured Jones
polynomial of the trefoil, expressed in a form from which the PSU(3) perturbative
invariant of the PHS can be directly obtained.

An outline of the present paper is as follows. In §2, the basic theory associated
with the quantum group Uysls will be summarised. In §3, we follow [RT] and [L] to
give a description of the sl3 coloured Jones polynomial of a link, and of the PSU(3)
invariant of 3-manifolds. This is applied in the last section to compute the coloured
Jones polynomial of the trefoil and hence to to demonstrate how the coefficients
in the PSU(3) perturbative invariant of the Poincaré homology sphere, may be
computed. This is demonstrated for the coefficient of h, which is verified to be in
agreement with the appropriate multiple of the Casson invariant, while the results
of a computer computation of a few more terms are given.

2: R-MATRIX AND REPRESENTATION THEORY FOR Ujsls

Let ¢ = v2 = e be a formal parameter. Define g-numbers, g-factorials and

g-binomial coefficients according to

™" — ™

[”]:m, [n]!zili[l[i], [Z]:%

The dependence on ¢ will be omitted from the notation.

2.1 The quantum group U,sl(3)

The quantum group A = Ujysl(3) is defined by generators H;, X; and Y; for
1 = 1,2 with relations

ohHi/2 _ ,—hH;/2

[H1,Hs] =0, [Xiij] = 0i,5 v — oyt ’
[Hi, Xj] = Aij X5, [Hi, Y] = —A;;Y;,
XEXj—[2]XinXZ'+Xin2=0, for i —jl=1,

YV2Y;—-[2lV;Y;Y; + ;Y2 =0, forli—j|=1,
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where A; ; denotes the matrix elements of the Cartan matrix (_21 _21) The
comultiplication A: A — A ® A is given by

A(H;)) =H;®1+1® H;,

A(X;) = X; @ ehHilt  e=hHild o x|

AY) =Yi@!Mi/tp e Ml gy,

with antipode S: A — A being an antihomomorphism acting on the generators by
S(H;) = —H, S(Xi)=—-vX;, S(Y)=-vY.

It is convenient to introduce E; = X;e "Hi/4 and F, = Y;eMHi/4 This then rep-
resents A by algebra generators H;, E; and F; with ¢+ = 1,2 and the following
relations

ohHi/2 _ ,—hH;/2

[H17H2] :07 [EMFJ] :61,3

1—g¢t ’
[Hi, Ej]l = AijEj,  [Hi Fj] = —Ai;Fj,
EizEj_[2]EiEjEi + EjEiz =0, for i —j] =1,

F!F;—[2|F;F;F; + F;F? =0, for i —j|=1.

The comultiplication is now given by

A(H)=H;®1+1® H;
AE)=E;®@1+e "2 E;

There is an adjoint action defined by ad = (L ® R)(id ® S)A, under which E;
acts according to
(adE;)x = Ejx — e M/ 2geh il 2,

The opposite comultiplication A’ = P o A induces an adjoint action defined by
ad' = (L ® R)(id ® S')A’ under which F; acts by

(ad'F)x = Fyx — ehHil2pe—hHi/2p

Using these actions we define, for 1 <14 < j < 3, E;; and F;; according to Ej;11 =
Ei, Fii+1 = Fi while

E13 = (adEl)Ez = E1E2 — UE2E1 y
F13 = (alel)Fz = F1F2 - ’UFzFl .
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These new elements interact with H;, FE; and F; according to

[Hi, Ers] = Fas, [H;, F13] = —Fi3,

EyErs = v BBy, FiFi3 = v Fi3Fy

EyFEh3 =vEq 3By, FyFi5 = vFyi3F,,
[E1, Fi3] = UFQe_hH1/2 , [Esq, Fig] = —qFlehH2/2 ’
[Era, F1] = _qehH1/2E2 ) [E13, o] = ve_hH2/2E1 )
[En3, Fi3] = q_f%l(eh(ffﬁfb)ﬂ — emhH+H)/2)

There are three natural copies of Ugsls inside Uyslz, namely those generated by the
triples (Hl, El, Fl), (Hg, EQ, FQ) and (H1 + Hg, E13, —q_1F13).

There is a Poincaré-Birkhoff-Witt theorem [R] which allows the subalgebra
generated by E; for ¢+ = 1,2, to be expressed as a vector space with basis elements
of the form E$E?;ES, with a,b,c € Zt. Similarly for the subalgebra generated by
F 1 and F2.

2.2 Finite dimensional U,sl(3)-modules
627r'i.’131

The diagonal matrices g2mits with z1+z9+z3 = 0, form a
627Ti:t3
maximal torus in SLz. The roots are x; —x; with standard root basis {a, g} with
a; = 2; — T44+1. The standard inner product then has (o, ;) = A;;. Dual to the
standard root basis we have the standard weight basis {1, A2} with (o, A;) = d;;.
In our case, \; = >_; Bjjc;, where (B;;) is the inverse matrix to (A;;),

A1 = (201 + a2) A2 = Ya(ag + 2a9) .

The positive roots are z; — x; for ¢ < j, and half the sum of the positive roots is
p=1x1 — T3 = A1+ A2 = a1 + a2, also being the longest root.

The Cartan subalgebra of A is generated by H; and Hj.

For generic values of ¢ (that is, away from roots of unity), any finite-dimensional
irreducible representation of sl(3) has a deformation which is an irreducible repre-
sentation of A. Such a finite-dimensional irreducible A-module, V), has a highest
weight vector u, for which Eyu = Eyu = 0, and is spanned as a linear space by
F'FisF{u with m, n and r non-negative integers. The action of H; on v is as
scalars, H;u = a;u, where A = a1 A1 + agAs is the highest weight of the module (a;
and a9 are arbitrary non-negative integers). With respect to the A-basis for weights,
the actions of F}, Fi3 and F5 change the weight by (_12>, (:}) and (_12>,
respectively.
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It will sometimes be convenient to use the basis {a1, as} for weights with re-
. . bl _ 2/3Cl1 + 1/3(12 . .
spect to which A has coordinates <b2> = ( sy + sty ) Coordinates of weights
will now be elements of 13Z x 13Z whose sum of coordinates is integral. The ac-
tions of Fy, F13 and F, change the weight in the o basis by ( _01> , (:i) , (_01>
respectively. Indeed the weights occurring in V), form a hexagonal array

1)

with vertices

b1 ba — b1 —bo —bo ba — by b1
by ]’ bo "\b1—=b2 )\ =b1 )"\ —b1 ) \bi—b2 /)"

C1

CiEbz‘+z’—bzﬁc1§bla—b1§02sza—b1§01—02§bz}

The dimension of the weight space with weight < ) is 14+min(by —c1, by —ca, ba +

C2
c1,b1 + c2,b1 + ¢1 — o, b2 + ca — ¢1).

The g-Gel’fand-Tsetlin bases for irreducible modules are indexed by tableaux

mi1,3 MMa23 1MN33
mi2 a2 , where m; ;11 < m;j; <M1 541,
mii

where the top row is fixed for a given module. In our case, m1 3 = a1+az, ma 3 = az
and mg 3 = 0. The dimension of this module is 2(a1 + 1)(az + 1)(a1 + a2 + 2).

2.3 Universal R-matrix for A

Rosso [R] gave a multiplicative formula for the universal R-matrix for the
quantum group Ugsl(N + 1) (see also [KR| and [LS] where general formulae for
U,g are given),

" h
R=T]e((1—a™2(=)' " By © Fyyia™) - exp (Sto)
k=1

where n = 15N (N + 1) is the number of positive roots, 3(1),...,5(n) enumerates
the positive roots in an order generated by a choice of minimal representation of
the longest element of the Weyl group and ty = ZZ ; B;jH; ® H;. Here we use the
quantum factorial

e(U;Q):Z 1—¢q)...1—qgm) "

m=0
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In our case N = 2, n = 3 and the order (k) is o — x3, £1 — 3 and 1 — x5. These
elements have lengths 1, 2 and 1, respectively, while E, ,, = F;; and Fy, 4, = Fjj,
so that

R=e((1-¢")E;® Fa;¢ " )e((1—¢")*(—¢")E13 ® Fi3;¢7")
e((l _ q—1)2E1 ® Fl; q—l) . e%(2H1®H1+2H2®H2+H1®H2+H2®H1) .

This can be written as a sum over non-negative integers p, s, m, n and r

R = Z (h/6)p+s v Vom(m—3)+Yon(n—7)+ Yar(r—3) (_1)n (’U — ,U—l)m—i—n—i—'r
pls! [m]![n]![r]!
p,s7m7n,r

E'EYLEY(2H, + Hy)P(Hy + 2H,)® @ Fy"F{4 F HY H; .

As in any quasi-triangular Hopf algebra, R = (id®S™!)R. Using the fact that
S—l(H) —H;, S7HE;) = —E;e"Hil2, STV (F;) = —e "Hi/2F; and S71(Fy3) =
h(H1+H2)/2(F1F2 — v 1F2F1) we Obtain

R_l = Z ( h’/6)p+ —Yolm(m+1)+n(n+1)+r(r+1)]—rn+m(r—n) (U_l - ,U)m—i-n—H"
p,8,m,n,r p's! [m]![n]![r]!
(—1)"E3"EY3E](2Hy + H3)P(Hy + 2H,)®

® HP Hy~ M —(ntm)B pr () YRy BN

Finally, the element K € A which will be placed at suitably oriented local
maxima/minima in tangle diagrams (see §3) is K = ¢f1 4z,

3: DEFINITION OF THE PSU(3) MANIFOLD INVARIANT

3.1 The generalised Jones polynomial

We will use the formulation of the generalised Jones polynomial [RT]. Suppose
L is an oriented link in S3 and A is a ribbon Hopf algebra. That is, A is a quasi-
triangular Hopf algebra with universal R-matrix, R € A ® A satisfying the Yang-
Baxter equation R15R13R23 = Re3R13R12. The square of the antipode is then given
by
S%(a) = uau™, foralla € A,

where u = m(S ® id)R2; and uS(u) is central. A is also equipped with a ribbon
element v such that

v? = uS(u), Sw)=wv, e(v) =1,A) = (R12R2) (v ®0).
Let K = v—'u so that S(K) = K.

The generalised coloured Jones polynomial of L is defined when each component
L; is coloured by a representation V; of A and will be denoted by Ji(Vi,...,Ve).
We will assume for simplicity that V; are irreducible. Indeed, according to [RT],
there is a functor, F, from the category of ribbon tangles to the category of vector
spaces, under which links (closed tangles) map to scalars, namely Jy. This functor
is defined by its images on the generators shown in Figure 1.
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Figure 1: Generators of the category of tangles

The two orientations of crossing, in which the strands are labelled with repre-
sentations V and W as shown, have as images the maps V@ W — W ® V given
by Po R and R~ o P, respectively, where P is the permutation of the factors. The
four cup and cap sections transform to maps

V*V —C VeV* —C
(z,y) — z(y) (y,z) — z(Ky)
and
C—VeV* C— V'V
1|—>Zei®ei 1|—>ZK_lei®ei

(2 (2

respectively. Here {e‘} is the dual basis for V* to the basis {e;} for V.

Suppose that L has one component and 7T is a 1-tangle representation of L,
that is T € Morph(a, a), where a is the object consisting of one downward oriented
point, such that its closure is ambient isotopic to L. Then the above prescription
can be used to generate a map V — V, for any representation V (the colour of
the one open strand). This map commutes with the action of A, so that if A is
irreducible it is given by multiplication by a scalar, namely

AGRECUY

where U is the unknot with framing zero. Indeed Jy (V) is precisely the quantum
dimension of the representation V. In this case, the above functorial prescription
can be realised from 7' in the following way. Suppose T is presented as a tangle
diagram in generic position, in which the crossings are between downward oriented
strands. In the neighbourhood of each crossing decorate the crossing stands by
elements of A according to Figure 2, and at local maxima or minima oriented
leftwards decorate the strand by K € A. Here R = ) . o; ® B; where «;,5; € A
and 7 lies in an indexing set. For a tangle with several crossings, ¢; denotes an
element of the indexing set assigned to the j*® crossing.
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?)N % Sa’
i i

Figure 2: Decorations on 1-tangle elements

Then F(T) is the algebra element read off the diagram by tracing the tangle
strand according to its orientation, and writing down the decorations in the form
of a product from left to right, and then summing over all labels 4;.

3.2 PSU(3) 3-manifold invariant

As in [L], we will find it convenient to index irreducible A-modules as V,,_,
where p = A+ p € Ayy. Thus if g = k1 A1 + k2o = cr1 + cog, then k; = a; + 1
and ¢; = b;+1. The dimension of V) is Yakik2(k1+k2) while the quantum dimension
(Jones polynomial of the unknot with zero framing) is [u] = [k1][k2][k1 + k2]/[2])-

Suppose that ¢ is a K" root of unity. The prescription of [L] defines for a link
L with ¢ components and framing f; = £1 on the i*® component,

(Ly= 32 Tyl me) [l 2200

(22 SXERSY 27

where J; denotes the coloured Jones polynomial coloured by representations V,, 4,
normalised to 1 on the unknot and the sum is over representations pu; for which
ki1 and ky are integers congruent modulo 3 with 0 < k; < K and k; 4+ k; <
K. As noted in [L], if J; is extended using certain symmetry properties, then
equivalently (up to a constant which cancels in the computation of Zg), the sum
may be taken over representations for which ¢; € {1,..., K — 1}. Here Q(u) is the
framing normalisation

Q(’u) =q 1/3((1% +ajaz+a3)+ta;+as — qbf —b1ba+b3+by +-ba

2 2
ci—cicatcy;—1

_ ql/g(kf+k1k2+k§)_1 —q

The PSU(3) invariant of a 3-manifold M obtained from S by surgery around a
link L is then
Zie(M) = G G= (L),

where o are the numbers of positive/negative eigenvalues of the linking matrix of
L and G4 are the bracket values for the unknot with framings +1. When L is a
knot (¢ =1) with framing f = +1, this reduces to

Zu g/ (112 TL Vit p)
2, ¢/ [p]?

Zg(M) = (3.2.1)



The PSU (3) invariant of the Poincaré homology sphere. 9

3.3 The PSU(3) perturbative invariant

Writing the coloured Jones polynomial as a power series in h (¢ = e”), the
coefficients are polynomials in the colour. More precisely, a version of the Melvin—
Morton—Rozansky conjecture allows a representation in the form

Tt Viurp) = O aiyiy (B) - R ek (3.3.1)
i1,%2
where a;,;, are power series in h, and the sum is over integers %; and is.
By translating the summand, one can show, as for one-dimensional Gauss sums,
that
Z qi1k1+z’2k2 _qf/3(kf+k1k2+k§) _ q—f(if—i1i2+i§) Z qf/g(kf+k1k2+k§) . (3.3.2)
kl,kz k17k2
where the sum is over the parallelogram in ¢;’s mentioned in the previous section
(equivalently, over a fundamental region with k; and k2 congruent modulo 3, up

to translations in the k; and ks, directions, say modulo 3K). Since [k]? = (v —
v1)72(¢* + g% — 2), we can expand [u]? as

(k1 ?[k2)?[ky + k2)® = (v —v™1) 70 Capg™+0k2 (3.3.3)
a,b

where f,; take non-zero integer values for precisely 17 lattice points (a,b), as rep-
resented by the matrix

1
o -2 2 2 =2
0

in which the lattice coordinates a and b take the values —2, —1, 0, 1 and 2. Eval-
uating the individual sums obtained from this expansion, using (3.3.2), it follows
that

£ 6[2] fq—2f £
D [ka)?[ka]? [k + kol?q falkithakaths) — [lfg—l)s > Bk ke 43)

v
kl ,k}2 ( kl 7k2

Equation (3.2.1) now gives

1 - — f(33 —i1ia+i3
Zg(M) = —6[2]fq2f(v—v D3N biyiyq FT ) (3.3.4)

21,52
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where
2 71 _ i1k1+i2k
[/1’] JL(VM+P) - Z bi1i2q R
11,52
and b;,;, are Laurent power series in h. A term g“k1T%k2 in J! contributes

grRitekp? = (v v ™) 70272 Y, Capqr Tkt @40k 6 72 4] and therefore
its contribution to Zx (M) is, according to (3.3.4)

£[2]—1(,U _ ,U—l)—3q—f(i?—i1i2+i§)

[6q2f - 2qf(q2i1—'i2 _|_ qi2—2i1 + q2i2—i1 + qi1—2i2 + qil-l-ig + q—il—ig)
_ q—Zf(q4i1—2i2 + q2i2—4i1 + q4i2—2i1 + q2i1—4i2 + q2i1+2i2 + q—2i1—2i2)] .

It can be directly verified that this represents a power series in h (with only non-
negative powers of h) Y o o p, (i1, i2)h™ where the first three terms are given by

p()zla p1:_4fA7 p2:5A2+2A7

where A = i2 — i1y + 2. More generally, p,, is a polynomial in i; and iy of degree
at most 2n. Thus we have a linear map from terms in Jy (V,4,) to terms in Z, (M),
over the ring of formal power series in h,

T B — Q[[h]]
qi1k1+i2k2 — an(ih iz)hn 7

n=0

where B is the ring generated by ¢**11@2*2 gver Q[[h]]. The coefficient p,, itself
can be extended linearly to a map B — Q[[h]], and can be expressed as the
formal evaluation at k1 = ko = 0 of a differential operator of order 2n (in h_laik1
and h_I%). The following lemma is an immediate consequence, and will be used
in the next section to compute the first coefficients in the perturbative PSU(3)
invariant of the Poincaré homology sphere.

Lemma 3.3.5 Ifz € B is a product of r terms (r > 2n) of the form g k1 +azkz+b _

gukitaske b (with g, af b and b’ integers), then p,(z) is divisible by k=" and
ri1]
2 -

hence 7(z) is divisible by hl
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For K € N, J; reduces to a finite combination of terms as in (3.3.1), that
is the sum over i; and i3 becomes a finite sum. Then Zx (M) = 7(J;). On the
other hand, one can always write J; in the form of an infinite sum of form (3.3.1),
the only dependence on K being via the variable g, which is such that at a root
of unity, all but a finite number of terms vanish. Thus, so long as certain formal
convergence conditions are satisfied by J; (which it can be seen from the R-matrix
description of J; are always satisfied), 7(J} ), where J} is considered as an infinite
series (3.3.1), will be a well-defined power series in Q[[h]]. This is Zo (M), the
PSU (3) perturbative invariant of M.

4: EVALUATIONS ON THE TREFOIL

4.1 Diagrammatric evaluation

We use the 1-tangle realisation, T', of the trefoil knot shown in Figure 3. The
prescription given in the last section gives

F(T)= Z Bis i, Biy K iy Bi, i -

1119213

X

N

|

Figure 3: Trefoil

Suppose that V' is an irreducible representation of U,sls. Then F(T') will act
as multiplication by J;,(V) on V, and this action may therefore be determined
by calculating the action on the highest weight vector u. Here L’ is the trefoil
with framing three. Using the formula for the universal R-matrix given in the last
section, we see that o, is a product of H;’s with E5** ET3 ET*, which annihilates u
unless m; = n; = r; = 0. Similarly from j;,, we see that m3 = ng = r3 = 0. Thus
we obtain

J,LI(V)U = Z

P1,81,P2,52,P3,83
m,n,r

v 1/2[m(m—3)+n(n—7)+7"(7"—3)]Hfs HQS?’EEH'E{%E{ (2H1 + H2)p1 (Hl + 2H2)32H{)1 H;l
K(2H, + Hy)P?(Hy + 2H,)** Fy" FI4 F HY? H3?(2H, + H)P* (Hy + 2H2) ..

(Q)pl +s1+p2+s2+p3+ss

5 (’U _ ,U—l)m—l-n—l-r

p1!s1!palsalpslss! (=1)" [m)![n]![r]!
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Performing the sum over the p;’s and s;’s gives

v — ,U—l m-+tn+r

m,n,r

qaf +aias —i—ag +ai+as v 1/2 [m(m—T)+n(n—15)+r(r—7)]—3mas—3n(a1+a2)—3ra; )

A change of framing by 1 contributes a factor g /3(ai+aia+al)+ai+az a5 can
be verified by computing the action of ). ;K «;, coming from a 1-tangle represen-
tation of the unknot with framing 1. Thus the coloured Jones polynomial of the
trefoil with zero framing, L, is given by

JL(V) _ _ n(,U_,U—l)m—i—n—i—'r mpn pn pmpn pr,,
Juﬁﬁu_‘E:( Y [m]![n][r]! By BBy By P by

m,n,r

v Lolm(m—7)4+n(n—15)4r(r—7)]—3maz—3n(a1+a2)—3ra; —4a; —4az

4.2 Quantum group calculation

We shall calculate the action of E* ET3 ETF3" F{5 F] on the highest weight vec-
tor u in the irreducible A-module, V) with highest weight A = a1 A1 + a3A3. This
action will be multiplication by a scalar.

Let U, pnr = FS"F{3F{u. By the Poincaré-Birkhoff-Witt theorem [R], a basis
for the subalgebra of A generated by Fy and Fy is {F3" F{5F7 }r, n r, and therefore
the vectors uy, n » span V.

Since [E1, Fi3] = v2e "11/2F, we can inductively show that
EiF3 = FigES +v*sle M/ 2Ry E3—1

Again using induction, one obtains

min(n,s) ' ‘ . .
EjFfy= > vj<f+s—"+1>[ﬂ%e—hﬂlﬂFgFg—ﬂEf—ﬂ. (4.2.1)
j=0 ‘

Since {FYu ;1:0 is a Uyslp-module, under the action of the subalgebra generated by
Hl; El and Fl, thus

R W L

Et F’r‘ —
= e ey —

(4.2.2)
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Applying (4.2.1) to the vector FJu and using (4.2.2) with ¢ = s — j, we find that
Eftmnr = F3"(ETF{3) F{u is given by

min(n,s)

(s n r sllla; —r+s—j]!
Efum,n,r :Z pii—s a1+27")+s[ ] [ 3 ] [ ] [ ' ] Ut jm—jir—stj -
j=max(0,s—7) J §J [al B T]'
(4.2.3)
Next observe that [Ey3, Fy] = ve~?2/2E; | so that
E13tum nr = B13Foty—15p = FoFB13ty—1 e + 02700702 nly

+ v?" e g — 4 [t — 10,01
using (4.2.3) with s =1 to reduce E1vy,—1 p . Iterating this equation leads to

E13Um,n,r = F2mE13u0,n’r + ,Um-l-n—a1—a2+r+2[m][n]

+ pMitn—az—r42 m]lar —r + 1)[r]um—1,nr-1-

Um,n—1,r

(4.2.4)

2
Since [F13, Fi3] = 1qTq (vH1+H2 — U_HI_HQ), one can prove inductively that

Ersuon,r = FlyE13u00, — v3[a1 + a2 —n — 7+ 1][njugn_1, -
The first term vanishes, since F13F]u = 0. Substituting this into (4.2.4) gives
Evstmmy =—v""la1 +ag —m—n—r+ 1[numn_1,r
+ o™t 2 (g — 7 + 1) [rum—1,n—1 -
Applying this equation recursively leads to

min(k,r)

—i,t(n—as—r+i—k— m k
Efgum,n,r= Z (_1)k pi(n—az—r+i—k—1)+k( +3)[J
t=max(0,k—n)

[m)![ar — r + i]l[r]'[n]'as + as —m —n —r + k]!
m —illar —r]f[r —d'ln — k+i]llar +ag —m —n — 71+

'um—i,n—k—l—i,r—i .
(4.2.5)
The particular case of interest for us is

E?Sum—i—j n—yj,j :(_1)n—jv—j(j+a2+1)+n(m+j—|—3) [n]'
[m + j)'a1]a1 + ag — m — 7]

[m]!la1 — j]'a1 + az — m — n]!

Um,0,0 -

Combining with (4.2.3) for s = r and noting that Ef*Fimu = v™ [7192]l we obtain

[az—m]!
min(n,r) o
E?E?gE{F;lF&F{u: Z (_1)"—J,UJ(7'+H—&1—a2—1)+r+m+n(m+3)
=0

IR e s e
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4.3 PSU(3) invariant of the Poincaré HS

Combining the results of the last two subsections gives the coloured Jones
polynomial of the trefoil as

min(n.r) s tyminte [1][7]_[m+ jllor]aa]![o1 + az — m — ]
=3 > tomy [1][7] s :

Jd[m]lay — r]flas — m]![a; + az — m — n]!

m,n,r j=0

(_1) "U Volm(m—5)+n(n—9)+r(r—5)]—3mas—(3n+j+4) (a1 +a2)—3rai+j(r+n—1)+mn )

Observe that the dependence of the summand on the colour variables a; and as is
via a factor

(1) _ U—l)m+n+rv—(3n+3r+j+4)a1—(3m+3n+j+4)a2 [al] o [al —r+ 1]

“lag]...laa—m+1]-la1 +as—m—j]...[a1 +az —m—n+1],

which is (v—wv™)7 times a product of m+7r-+n — j differences of the form g'(21-22) —
ql'(‘“"‘?) where [ and [’ are affine linear functions of the colours a; and as. By the
lemma in §3.3, the contribution to Z,.(M) coming from this term will be divisible
by Rlm+r+n+i+1)/2]  Thys, in order to compute the coefficient of any power of h
in 7(J7), only a finite number of terms (m,n,r, j) will be involved. The resulting
series is Zo, (M), the perturbative PSU(3) invariant of M.

In particular, those terms contributing to h® and h! terms in Z, (M) will come
from m +n +r + 7 < 2. The restriction j < n,r ensures that in these cases j = 0.
The values of (m,n,r) and the associated terms in J; are listed below. We have
transformed a; into k; = a; + 1, while the last column lists the contribution (up to
order h) to Zoo(M).

4—2k1 —4ko

(0,0,0): ¢
(1 0 0) : q4_2k1_3k2 _ q5—2k1—4k2 — 1+ (4 16f)Z
U —  (-1+20

0.1.0): g% 3k1—3k2 _ 6—4ki—4k2 ( f)
(0’ 07 1) . q4—3k1—2k2 q5 4k1 —2ko R (_1 N 20f)h
(2 0 O) . q4—2k1—4k2 ( ) —2k1—5k2 + q7 2k, —6ko N —8fh
(O 2 O): q4—4k1—4k2 ( ) —5k1 —5k2 + 9—6k1 —6Ko — —8fh
(0,0,2): gt*k1—2k2 _ (q 4 0)gOR1—2ke y gT—6k1—2k N —8fh
(1 1 0) . q4—3k1—4k2 + q8—4k1—6k2 _ q7—4k1—5k2 _ q5—3k1—5k2 — —4fh
(1,0,1): g*3k1—3ka 4 g6—4ki—dks _ (5—3ki—dks _ (5—dk1—3k> — 4fh
(0 1 1) . q4—4k1_3k2 + q7—6k1—4k2 _ q5—5k1—3k2 _ q6_5k1_4k2 — —4fh,

Hence Z,, = 1+ 24fh + O(h?), in agreement with [L] which predicts that the
coefficient of h in the PSU (N) perturbative invariant of an integer homology sphere
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is N(N%2 — 1)A\(M), where A\(M) is the Casson invariant. Using Mathematica [Wo,
the above algorithm can easily be implemented to give the first few terms for both
positive and negative integer surgery on the trefoil (that is, for the Seifert fibred
manifolds (2, 3,5) and (2, 3,7)),

Zoo(M*) =1+ 24h + 432h% 4 7920h° 4 161424h* + 3718483.2R° 4 - - - |
Zoo(M™) =1 — 24h + 576h? — 15264h> + 455904h* — 15324595.2h° + - - - .

Changing variable to x = ¢ — 1, we get series

Zoo(M™T) =14 24z + 42022 + 74962 + 1499342* + 34091402°
+ 975000902 + 25082110807 + - - - |

Zoo(M™) =1 — 24z + 58822 — 1584823 + 4793342* — 162636002°
+ 6150446482° — 2572083036027 + - - - |

which we can expect to have integer coefficients as for the (SU(2)) Ohtsuki series
for integer homology spheres.
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