6 4 The Shapley Value

1 Introduction

The purpose of this chapter is to present an important solution concept
for cooperative games, due to Lloyd S. Shapley (Shapley (1953)). In the
first part, we will be looking at the transferable utility (TU) case, for
which we will state the main theorem and study several examples. After-
wards, we will extend the axiomatic construction to the non-transferable
utility (NTU) case.

2 The Shapley Value in the TU Case

2.1 A First Approach

Let N be a finite set of players and n = |N|. A game is a mapping
v: 2V — IR such that v() = 0. For S in 2V (ie., S = N), v(S) may be
interpreted as the worth of coalition S, i.e. what the players belonging to
S can get together by coordinating their efforts. This models a game with
transferable utility (or with side payments), i.e., where coalised players
may reallocate the total utility within the coalition: it is sufficient to map
every coalition to a single number, the coalition’s total utility.

The unanimity game Uz associated with the coalition 7' = N is defined
by:

1, if SoT;
0, otherwise.

Ur(S) : {

Given a set of players N, denote by G(N) the set of all possible games
with players in N. Let E = RY be the space of payoff vectors and for
x € E denote by x(S) the sum ), . ¢ X,. We may then define a value asa
mapping ¢: G(N) — E such that: ’

Vv e G(N),(pv)(N) = v(N) (a)
Yo,we G(N),p(v+w) = pv+ pw (b)

o/|T|, ifieT;

VT < N,VYoe R, p(aUr); = { 0 otherwise.

Axioms (a) and (b) are the standard ones of efficiency and additivity,
whereas axiom (c) is equivalent to the axioms: (i) neutral to permutation
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and (ii) null player. It is remarkable that no further conditions are

required to determine the value uniquely as in the following (Shapley
(1953)):

THEOREM 1  For each N, there exists a unique value function,- this value is
given by

(90) = =S o1 S} = ol < 3],
T <

where the sum extends over all total orders on the player set.

Before giving the proof, let us observe that the intuitive interpretation of
the formula is the following: when a player joins a coalition, it may
modify the worth of the coalition; the Shapley value gives to each player
his average marginal contribution to the worth of all possible coalitions.

Proof 1t is easily seen that the function defined above is a value. To
prove its uniqueness, it suffices to show that the above games
Ur(T # &, T < N) form a basis. Since their number equals the dimen-
sion of G(N), it suffices to show they are linearly independent. Suppose
they are not:

3(a;) such that Z a;Ur, = 0 and o; # O for some j. (1)

Among the subsets T; such that a; # 0, there exists at least one coalition,
say T}, with a minimum number of players. Then rearranging (1):

Ur, = —(1/o1) Y o Ury;
j>1 |
yet Ur,(T1) = 1 and Ur,(T1) = 0 for j > 1 because in this case T; & T7.
Hence any game may be written as a linear combination of the una-

nimity games, and by axiom c), a value is uniquely determined on these
games. QED

2.2 Examples

We shall now examine some examples to underline the differences
between the Shapley value and another solution concept, the core.

Example 1 Majority game of 3 players.

N =1{1,2,3}, v(S) =1 if |S| > 2 and 0 otherwise. The game is sym-
metric; player i changes the worth of the coalition that precedes him if he
is in position 2, which happens for two different orders. By either argu-
ment, gv = (1/3,1/3,1/3). On the other hand the core is empty, since
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there are always two players who can form a coalition and share what the
third player gets.

Example 2 Market with one seller and two buyers.

N ={1,2,3}, v({1,2,3})=v({L,2}) =v({1,3}) =1 and u(S)=0
otherwise (1 is the seller). Player 2 (or player 3) changes the worth of the
coalition that precedes him if player 1 is first and he is second, while
player 1 contributes to the coalition as soon as he is not in first:
ov = (2/3,1/6,1/6). Obviously (1, 0, 0) is in the core, and nothing else is,
because any other outcome could be blocked by a coalition of player 1
with one of the other players.

Example 3 A weighted voting game.
N ={1,2,3,4}, with weights (2, 1, 1, 1); the total weight is 5 and a

majority of 3 wins. Player 1 is pivotal in position 2 or 3 (1 chance out of
2), while players 2, 3, and 4 are in symmetric positions; therefore
ov=(1/2,1/6,1/6,1/6). Once again the core is empty, since any out-
come can be improved upon by the three players who get the least. Note
that whereas the large player (player 1) has only 40% of the vote, he gets"

half the value. ,
Example 4 Another weighted voting game.

N ={1,2,3,4,5}, with weights (3, 3, 1, 1, 1); the core is empty as
before, and we have gv = (3/10,3/10,2/15,2/15,2/15). In this case the
large players’ value is less than their proportion of the vote; thus players
3, 4 and 5 would get less (1/3 instead of 2/5) if they were to unite into a
single player with weight 3. ‘

Example 5 Market game with 1,000,000 left gloves and 1,000,001 right
gloves—one glove per player.

2,000,001 players, v(N) = 1,000,000. In this case the core has a single
element, where the left glove owners get 1 (pair), and the right glove
owners get 0. The Shapley value, on the other hand, assigns a total of
500,428 to the left glove owners and a total of 499,572 to the right glove
owners.

2.3 Other Characterizations
2.3.1 The Potential

By theorem 1 it is possible to define the Shapley value through the mar-
ginal contributions of players: namely the value of a game may be seen as
the vector of the players’ “expected payoffs™ as their expected marginal
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contributions to coalitions (with the appropriate interpretation, axiom (b)
may be seen as an expected utility property). This idea has led to another
approach based upon the “potential” of a game. Let us define in a gen-
eral way the marginal contributions: map every game (N, v) to a real
number P(N,v), called the potential of the game, and let player i’s mar-
ginal contribution be: P(N,v) — P(N\{i}, “v|N\{i}”). Then one could
reasonably require that these marginal contributions satisfy an efficiency
condition, i.e. add up to v(N) for all players in N. It is clear inductively
that this condition (with an appropriate definition of “v|N\{i}”) deter-
mines a unique potential function; moreover it has been shown that it
leads precisely to the Shapley value (Hart and Mas-Colell (1989)).

2.3.2 The Monotonicity Principle

Alternative axiomatizations have been put forward. For instance (Young
(1985)), it is possible to replace the additivity axiom and the null player
axiom by some requirement related to the monotonicity of the value.
More precisely, define ¢ to be an allocation procedure if it maps every
game to a point in RY and is efficient. The procedure ¢ is symmetric
(anonymous) if for all permutations © of N, ¢ ()= ¢;(v), where
mw(S) = v(n~!(S)) for all.S. The procedure ¢ satisfies strong monotonicity
if:

V games v, w Vi € N, (¥S = N,v'(S) > wH(S)) = (p;(v) = 0,(W)),
where v*(S) = v(S U {i}) — v(S)-

In words, strong monotonicity means that the payoff to a player depends
only on his marginal contributions—and monotonically. The result is
then as follows:

THEOREM 2 The Shapley value is the unique symmetric allocation proce-
dure that is strongly monotonic.

2.3.3 A Smaller Class of Games

The axiomatization of the Shapley value requires the application of the
value axioms to all games. Yet, it is possible (Neyman (1989)) to derive
the Shapley value of any given game v by applying the axioms to a
smaller class of games, namely the additive group generated by the sub-
games of v, which yields a stronger characterization of the Shapley value.
Given a game (N, v), and a coalition S = N, define the subgame vy as the
mapping: 2V — R such that vs(T) = v(S " T); v(S) may be viewed as
the restriction of v to the subsets of S. Denote by G(v) the additive group
generated by the subgames of v: : '
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Gv)={we G )lw = Z k;vs, with k; integers and S; coalitions}

If Q is a subset of G(N), we say that a map ¥: Q — RY obeys the null
player axiom if:

Yve Q,Vie N, (v(S v {i}) =v(S),VS =« N) = (¥i(v) = 0)

The extension of the other axioms to a subset of G(N) is straightforward.
Then:

THEOREM 3 Let v € G. If a map ¥ from G(v) into RY is efficient, additive,
and symmetric, and obeys the null player axiom, then it is the Shapley
value.

Note that, in this case too, it is possible to replace the additivity and null
player axioms by strong monotonicity.

3 The Shapley Value in the NTU Case

If x, y € RV, then we write x > y if x; > y; for all i. A set 4 in RY is said
to be comprehensive if x € A and x > y implies y € 4. A convex set C in '
RY is said to be smooth'if it has a unique supporting hyperplane at each
point of its frontier C. An NTU game is a function V that assigns to
each coalition S a convex comprehensive non-empty proper subset V(S)
of RS, such that:

1. V(N) is smooth,
2. If x,ye 0V(N) and x > y, thenx =y,
3. VS < N, Ixe RY sit. V(8) x {0M\S} =« V(N) +x,

where 0M\S is the 0-vector in R¥\S. The interpretation of the NTU case is
that, since no side payments are allowed, there is no possible reallocation.
Thus to evaluate the worth of a coalition one has to take into account the
payoffs of all players belonging to the coalition; maximizing the worth of
a coalition is now a “multi-criterion”” problem, in the currently popular
jargon. Condition 2 says that the frontier of the grand coalition payoft-
set contains only strict Pareto-optima and Condition 3 can be thought of
as an extremely weak kind of monotonicity. If v is a TU game, then the
NTU game V corresponding to v is defined by:

V(S) = {x e RS ;xi < v(S)};

thus we can speak of an NTU unanimity game as one corresponding to a
TU unanimity game. '
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We still need to define the Shapley correspondence; the idea (Shapley
1969) is to associate a TU game with every NTU game and comparison
vector, with the worth of a coalition S being the best it can get in terms of
the comparison vector. More precisely, let ¥ be an NTU game and
AeRY a comparison vector (i.e. A'> 0,Vi). Define an auxiliary TU
game v; as follows:

01(S) = sup{(2°, x)[x € V(S)};

the game v; is well defined if the supremum is finite for all S. A Shapley
value of V is a point x in the closure c/( V(N)) of ¥(NN) such that for some
A, v; is well defined, and the vector (A'x') is the Shapley value of v;. Now

if T is the set of all NTU games with at least one Shapley value, the cor-

respondence from I' to RY that assigns to every game ¥V in I the set
A(V) of its Shapley values is the Shapley correspondence. _

Define a value correspondence as a correspondence ®: T — RY satis-
fying the following axioms:

[

YV e, ®(V) # &

YV eT,®(V) < aV(N);

YU,V eT,0(U +V) 2 (®(U) + (V) n (U + V)(N);
. For all unanimity games Ur, ®(Ur) = {z/|T|};
®(clV) = o(V);

VieRY 1> 0,0(AV) = i0(V);

VYV, WeTl, if V(N)< W(N) and V(S) = W(S) for S# N, then
®(V) o F(W)nV(N).

a o o

@ ™o

. Axiom (a) is non-emptiness; axiom (b), efficiency, says that all values are

Pareto optimal; axiom (c) says that if y and z are values of V’ and W and
if y + z is Pareto optimal in V' + W, then it is a value of V' + W; axiom
(d) determines the values of the unanimity games (the values are unique);
axiom (e) is closure invariance; axiom (f) is scale covariance; axiom (g) is
the well-known independence of irrelevant alternatives (L.I.A.), and it
says that a value y of a game W remains a value when one removes out-
comes other than y from the set W(N) of all feasible outcomes, without
changing the W(S) for S # N. We now have (Aumann (1985)):

THEOREM 4 There is a unique value correspondence, and it is the Shapley
value.

It is noteworthy that removing LLA. (Axiom (g)) is not too damaging, as
the following holds (Aumann (1985)):
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THEOREM 5 The Shapley correspondence is the maximal correspondence
among those satisfying axioms (a) through (f) (i.e. if @ satisfies axioms (a)
through (f), then ®(V) = A(V) for all games V inT).
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