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Abstract. Let Γ be a countable abelian group. An (abstract) Γ-system
X - that is, an (abstract) probability space equipped with an (abstract)
probability-preserving action of Γ - is said to be a Conze–Lesigne sys-
tem if it is equal to its second Host–Kra–Ziegler factor Z2(X). The main
result of this paper is a structural description of such Conze–Lesigne sys-
tems for arbitrary countable abelian Γ, namely that they are the inverse
limit of translational systems Gn/Λn arising from locally compact nilpo-
tent groups Gn of nilpotency class 2, quotiented by a lattice Λn. Results
of this type were previously known when Γ was finitely generated, or the
product of cyclic groups. In a companion paper, two of us will apply this
structure theorem to obtain an inverse theorem for the Gowers U3(G)
norm for arbitrary finite abelian groups G.

1. Introduction

The purpose of this paper is to establish a Host–Kra type structure the-
orem for arbitrary (ergodic) abelian systems of order two, also known as
Conze–Lesigne systems in the literature. Questions of recurrence are not
addressed in this paper. However, the results of this paper will be applied in
the companion paper [28] to give a qualitative proof of the inverse theorem
for the Gowers uniformity norms U3(G) for arbitrary finite abelian groups
G via a correspondence principle.

1.1. A note on probability space conventions. For technical reasons we
will have to work in this paper with three slightly different categories of
probability spaces, as well as their corresponding categories of measure-
preserving systems associated to a group Γ (which will be countable1 in
most, though not all, of the contexts we will consider):
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1In this paper we use “countable” as an abbreviation for “at most countable”.
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(i) The category of concrete probability spaces (X,X, µ), in which one
can meaningfully talk about individual points x in the space X, and
maps between these spaces are defined in a pointwise fashion. One
can then form the category of concrete Γ-systems (X,X, µ,T ) of con-
crete probability spaces equipped with a pointwise defined measure-
preserving action T : γ 7→ T γ of Γ. Among other things, concrete
probability spaces are a convenient category in which to study group
extensions by measurable (but not necessarily continuous) cocycles.

(ii) The category of opposite probability algebras2 (X, µ)op, in which
one has “quotiented out all the null sets”; as a consequence, one
can no longer meaningfully refer to individual points, and maps be-
tween spaces are typically only defined up to almost everywhere
equivalence. One can then form the category of abstract Γ-systems
((X, µ)op,T ) of opposite probability algebras equipped with an ab-
stract measure-preserving action T of Γ. The category of abstract
Γ-systems is the most natural category in which to discuss factors
of a system, such as the Host–Kra–Ziegler or Conze–Lesigne fac-
tors, as well as to discuss the isomorphic nature of two systems.

(iii) The category of compact probability spaces (X,F ,X, µ), in which
the probability spaces are now compact Hausdorff (with the measure
µ being a (Baire-)Radon measure), and the maps between spaces are
now additionally required to be continuous. This then forms the cat-
egory of compact Γ-systems (X,F ,X, µ,T ) of compact probability
spaces equipped with a continuous measure-preserving action T of
Γ. The category of compact Γ-systems is the most natural category
to discuss transitivity properties of a group action, or to compute the
stabilizer of such an action at a point.

For the convenience of the reader we review the definition of these cat-
egories, as well as the relationships between them that we will need, in
Appendix A. Very roughly speaking, as long as one is in the “countable”

2In the language of [13, Chapter 2], opposite probability algebras are referred to as
measure algebras, and (separable) abstract Γ-systems are referred to as measure-preserving
dynamical systems. In the language of [27], opposite probability algebras are essentially
abstract probability spaces with the additional property that all non-empty abstract subsets
have positive measure.
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setting in which the acting group Γ is countable, the concrete probability
spaces are Lebesgue spaces, the opposite probability algebras are separa-
ble, and the compact Hausdorff probability spaces are metrizable, then these
three categories are “morally interchangeable”, largely thanks to the abil-
ity to construct topological models of abstract Γ-systems (and continuous
representations of factor maps between such systems); however more care
needs to be taken in “uncountable” settings when one or more of the above
assumptions is not in force, and even in the countable setting there are some
subtleties, particularly with regard3 to “near-actions” on concrete probabil-
ity spaces that are only defined up to almost everywhere equivalence, and
are thus only genuine actions in an abstract sense. Most of our arguments
will take place within a countable setting, but through appropriate use of
inverse limits our main result will also be applicable for inseparable sys-
tems. For a first reading we recommend that the reader ignore the fine
technical distinctions between these categories, or between the countable
and uncountable cases.

Traditionally, the literature has been focused on concrete Lebesgue Γ-
systems. However, it will be convenient to phrase our main results in the set-
ting of abstract (and not necessarily separable) Γ-systems, although thanks
to the aforementioned modeling results one can often reformulate these re-
sults in the other categories mentioned, particularly in the separable case.
In particular, the factor relation Y ≤ X between two Γ-systems X,Y (as de-
fined in Appendix A) will be understood to be in the abstract sense unless
otherwise specified, even when the systems X,Y can be viewed as concrete
or compact Γ-systems; similarly for the notion of an inverse limit of factors.
While the factor maps π : X → Y in this paper are initially only defined
abstractly, in practice they can often be upgraded to concrete measurable
maps by using tools such as those in Proposition A.2.

We isolate some key special examples of compact Γ-systems (which can
then be viewed as concrete or abstract Γ-systems by forgetting some of the
structure):

3See in particular the erratum [19] to [23, Chapter 19] for further discussion of this
particular subtlety.
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Definition 1.1 (Translational and rotational Γ-systems). Let Γ be a group. A
translational Γ-system is a compact Γ-system of the form G/Λ = (G/Λ, µ,T ),
where G = (G, ·) is a locally compact4 unimodular5 group, Λ is a closed co-
compact subgroup of G, µ is the Haar probability measure on the compact
quotient space G/Λ, and the action T is given by T γx = φ(γ)x for all γ ∈ Γ,
x ∈ G/Λ, for some homomorphism φ : Γ → G. If G is a compact abelian
group (which we now write additively as Z = (Z,+)) and Λ is trivial, we
refer to the translational Γ-system Z = (Z, µ,T ) as a rotational Γ-system.

Amongst the translational Γ-systems G/Λ, we single out for special men-
tion the Γ-nilsystems of order at most k for a given k ≥ 1, in which G is a
nilpotent Lie group of nilpotency class at most k, and Λ a lattice (i.e., a
discrete cocompact subgroup) of G. For instance, rotational Γ-systems are
Γ-nilsystems of order at most 1.

1.2. Host–Kra–Ziegler factors and Conze–Lesigne systems. Let Γ =

(Γ,+) is a countable discrete abelian group, and let X = ((X, µ)op,T ) be
an (abstract) Γ-system. Among the factors of X we can form the invariant
factor Z0(X), defined by replacing the σ-complete Boolean algebraX by its
invariant subalgebra

XT B
⋂
γ∈Γ

{E ∈ X : E = (T γ)∗E}

and restricting µ and T accordingly. As usual, we call the Γ-system X er-
godic if this invariant factor is trivial. Similar notions can now be defined
for concrete or compact Γ-systems by forgetting some of the structure. For
most of this paper we will focus on ergodic systems; in principle one can
use tools such as the ergodic decomposition (or conditional analysis, see
[24]) to adapt the results in this paper to the non-ergodic setting, but we
will not attempt to do so here.

4In this paper we use “locally compact group” as shorthand for ”locally compact Haus-
dorff second countable group”. Similarly for “compact group” or “compact abelian group”.

5The unimodularity hypothesis is required in order to have a well-defined Haar mea-
sure on the quotient space G/Λ. In our applications, the locally compact group G will be
nilpotent and thus automatically unimodular.
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The invariant factor Z0(X) of an (abstract) Γ-system X is the zeroth in the
sequence of Host–Kra–Ziegler factors

Z0(X) ≤ Z1(X) ≤ Z2(X) ≤ · · · ≤ X

of X; we briefly review the precise definition of these factors in Section 2.
We will not directly use this definition as we will rely on existing results
about these factors in the literature, but we will remark that Zk(X) is the
universal characteristic factor for the Host–Kra–Gowers seminorm ‖·‖Uk+1(X)

on X; see e.g., [22], [23], [4, Appendix A]. These norms are traditionally
defined for concrete Lebesgue Γ-systems, but their definitions can be easily
adapted to the abstract setting, or alternatively one can replace an abstract Γ-
system by a suitable concrete (or topological) model and apply the standard
constructions to that model; see Section 2.

In this framework, the zeroth Host–Kra–Ziegler factor Z0(X) is the in-
variant factor. The first Host–Kra–Ziegler factor Z1(X) is known as the
Kronecker factor and was studied by von Neumann and Halmos [17]. The
second Host–Kra–Ziegler factor Z2(X) is known as the Conze–Lesigne fac-
tor and was studied (in the Γ = Z case at least) by Conze and Lesigne [8],
[9] (see also [11], [30], [33], [20], [21]). For general k, the Host–Kra–
Ziegler factors were introduced in the Γ = Z case by Host and Kra [22]; in
the subsequent work of Ziegler [41] the universal characteristic factors for
multiple recurrence were constructed, which were later shown by Leibman
[3] to be equivalent to the factors of Host and Kra. As is well known, the
constructions of Host and Kra extend without difficulty to arbitrary count-
able abelian groups Γ; see for instance [4, Appendix A], where the factor
Zk(X) was denoted instead as Z<k+1(X).

Let k ≥ 0 be a natural number. An ergodic (abstract) Γ-system X is said
to be of order (at most) k if X = Zk(X). Thus for instance an ergodic Γ-
system is of order 0 if and only if it is (abstractly) trivial. We recall some
simple facts about such systems:

Lemma 1.2 (Basic facts about systems of order k). Let Γ be a countable
abelian group.

(i) Zk(X) is of order k for any ergodic (abstract) Γ-system X.
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(ii) Any factor of an ergodic Γ-system of order k will also be an ergodic
Γ-system of order (at most) k.

(iii) The inverse limit of ergodic Γ-systems of order k will also be an
ergodic Γ-system of order k.

Proof. For (i), see [22, Corollary 4.4], [4, (A.9)], or [23, Chapter 9, The-
orem 15(ii)]. For (ii), see [22, Proposition 4.6], [4, Lemma A.34], or
[23, Chapter 9, Proposition 17(ii)]. For (iii), see [22, Proposition 4.6], [4,
Lemma A.34], or [23, Chapter 9, Theorem 20]. �

Ergodic Γ-systems of order 1 will be referred to as Kronecker systems,
while ergodic Γ-systems of order 2 will be referred to as Conze–Lesigne sys-
tems; thus for instance a Conze–Lesigne system is its own Conze–Lesigne
factor. The classification of systems of arbitrary order is of importance in
the theory of multiple recurrence; for instance, as seen in [22], [41], classi-
fication of ergodic separable Z-systems (X,X, µ,T ) of order k was used to
give the first proofs of the norm convergence of multiple ergodic averages
1
N

∑N
n=1 T n f1 . . . T (k+1)n fk+1 for f1, . . . , fk+1 ∈ L∞(X,X, µ) for general k.

The classification of Kronecker systems is well-known (going back to the
work of von Neumann and Halmos [17]):

Theorem 1.3 (Classification of Kronecker systems). Let Γ be a countable
abelian group and let X be an ergodic separable Γ-system. Then the fol-
lowing are equivalent:

(i) X is a Kronecker Γ-system.
(ii) X is (abstractly) isomorphic to a rotational Γ-system Z for some

compact abelian metrizable group Z.
(iii) X is the inverse limit of rotational Γ-systems Zn for some compact

abelian Lie groups Zn.

Proof. For Z-systems, the equivalence of (i) and (ii) follows from [23, Chap-
ter 2, Theorem 12] and [23, Chapter 9, Proposition 8] (see also the discus-
sion before [22, Lemma 4.2]); the arguments extend without difficulty to
arbitrary countable abelian Γ (and one can replace the abstract Γ-system
by a concrete model if desired, or argue directly in the abstract setting).
The deduction of (i) from (iii) then follows from Lemma 1.2(iii), while the
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deduction of (iii) from (ii) follows from the Peter–Weyl theorem (or Pon-
traygin duality); see e.g., [38, Exercise 1.4.26]. �

We remark that it is not difficult to remove the separability and count-
ability hypotheses from Theorem 1.3, so long as one similarly removes the
metrizability hypothesis from conclusion (ii). As a consequence of this the-
orem (and Lemma 1.2), the Kronecker factor Z1(X) of an ergodic concrete
Γ-system X can be equivalently described as the maximal rotational factor
of X (cf. [23, Proposition 13(iv)]).

Now we turn to the higher order Host–Kra–Ziegler factors. In the case of
Z-systems, we have the following fundamental result of Host and Kra:

Theorem 1.4 (Classification of Host–Kra–Ziegler Z-systems). Let k ≥ 1 be
a natural number, and let X be an ergodic separable Z-system. Then the
following are equivalent:

(i) X is a Z-system of order (at most) k.
(ii) X is the inverse limit of Γ-nilsystems Gn/Λn of order at most k (as

defined at the end of Section 1.1).

The implication of (i) from (ii) can be found in [23, Chapter 12, Corollary
19]; the implication of (ii) from (i) is more difficult and was proven in [22,
Theorem 10.1] (see also [41] for closely related results, and [23] for a more
detailed exposition). For a treatment of the Conze–Lesigne case k = 2, see
[7, 8, 9], [12], [33], [30, §3], [22, §8], [40, §9]. An alternate proof of this
theorem using compact nilspaces was also given in [16].

Theorem 1.4 was extended to Zd-systems for any finite d by Griesmer
[15, Theorem 4.1.2], following similar arguments to those in [22]; a further
extension to Γ-systems for any finitely generated nilpotent group Γ (ex-
tending the preceding definitions to the nilpotent case in a natural fashion)
was obtained using the machinery of nilspaces in [6, Theorem 5.12] (with
the abelian case previously established by this method in [16]). However,
the situation changes somewhat once one considers groups Γ that are not
finitely generated; in particular, the arguments in [22], [15] rely crucially
on finite generation to establish some connectedness properties of certain
structure groups arising in the analysis that do not hold in general in the
infinitely generated case. A model infinitely generated case is that of the
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countably generated vector space Fωp =
⋃∞

n=1 F
n
p over a finite field Fp of

prime order p. In this case we have a fairly satisfactory classification, par-
ticularly in the case of high characteristic:

Theorem 1.5 (Classification of Host–Kra–Ziegler Fωp -systems). Let k ≥ 1
be a natural number, let p be a prime, and let X be an ergodic separable
Fωp -system. In the high characteristic case p ≥ k − 1, then the following are
equivalent:

(i) X is a Fωp -system of order (at most) k.
(ii) X is generated by phase polynomials6 of degree at most k.

In the low characteristic case p < k − 1, (ii) still implies (i), but it is cur-
rently open whether (i) implies (ii) in these cases. The weaker implication is
known that ergodic separable Fωp -systems of order k are generated by phase
polynomials of degree at most C(k) for some C(k) depending only on k.

Proof. The implication of (ii) from (i) (in both high and low characteristic)
is [4, Lemma A.35]; the converse implication was established for p ≥ k + 1
in [4, Theorem 1.18] and recently extended to p = k, k − 1 in [5, Theorem
1.12]. The final claim of the theorem is [4, Theorem 1.19]. �

The form of Theorem 1.5 does not closely resemble that of Theorem 1.4.
In more recent work of the second author, results closer in appearance to
Theorem 1.4 were established for various classes of group Γ:

Theorem 1.6 (Partial classifications of Host–Kra–Ziegler systems). Let k ≥
1, let Γ be a countable abelian group. Let X be an ergodic separable Γ-
system of order k.

(i) [34, Theorem 1.31] If k = 2, and Γ =
⊕

p∈P Z/pZ for some count-
able multiset P of primes, then X is the inverse limit of translational
systems Gn/Λn, where each Gn is nilpotent of class at most two.

(ii) [35, Theorem 2.3] If Γ = Fωp , then X is equivalent to a translational
Γ-system G/Λ with G and Λ totally disconnected and nilpotent of
class at most k.

6We will not need the concept of a phase polynomial to state or prove our main results,
but see for instance [4, Definition 1.13] for a precise definition.
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(iii) [35, Theorem 2.10] If Γ =
⊕

p∈P Z/pZ for some countable multiset
P of primes, then there exists a natural number m = m(k) depending
only on k, and an m-extension7 Y of X, which is an ergodic sepa-
rable Γ′-system for some countable abelian group Γ′ which is the
inverse limit of translational Γ′-systems Gn/Λn, where each Gn is
a finite dimensional8 locally compact group of nilpotency class at
most k, and Λn is totally disconnected.

We also mention some further variants of the above results:

• In [36, Theorem 1.21], the second author proved that when Γ is
countable abelian and X is a Conze–Lesigne Γ-system, there exists
a nilpotent locally compact Polish group G, a compact totally dis-
connected group K, and a closed totally disconnected subgroup Λ

of G such that X is (abstractly) isomorphic to the double coset sys-
tem K\G/Λ acting by a translation action T γx = φ(γ)x for some
homomorphism φ : Γ→ G that normalizes K.
• In [36, Theorem 1.18], the second author showed that for any count-

able abelian group Γ and ergodic separable Γ-system X, there is an
extension Y of X whose Conze–Lesigne factor is a translational Γ′-
system G/Λ for some extension Γ′ of Γ and some locally compact
Polish group G that is nilpotent of nilpotency class at most two,
where the notion of extension was defined in [36].
• In [5, Theorem 1.9], it was shown in both high and low characteris-

tic that an ergodic separable Fωp -system of order k is a p-homogeneous
k-step nilspace system (see [5] for the definitions of these terms,
which we will not need in the rest of this paper).

1.3. Main result. We now come to the main new result of this paper, which
is to establish a complete description of Conze–Lesigne factors for arbitrary
countable abelian groups Γ:

7See [35, Definition 2.4] for a definition of this term, which we will not need in the rest
of this paper.

8See [35, Definition 2.6] for the definition of finite dimensionality for locally compact
groups; we will not need this notion in the rest of this paper.
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Theorem 1.7 (Classification of Conze–Lesigne Γ-systems). Let Γ be a count-
able abelian group, and let X be an ergodic Γ-system. Then the following
are equivalent:

(i) X is a Conze–Lesigne Γ-system (i.e., a Γ-system of order at most 2).
(ii) X is the inverse limit of translational Γ-systems Gn/Λn, where each

Gn is a locally compact nilpotent Polish group of nilpotency class
two, and Λn is a lattice (i.e., a discrete cocompact subgroup) in Gn.
Furthermore, Gn contains a closed central subgroup Gn,2 containing
the commutator group [Gn,Gn], with Λn ∩Gn,2 a lattice in Gn,2.

In (ii) we can also require that Gn,2 is a compact abelian Lie group, Λn∩Gn,2

is trivial, and Λn is abelian.

We remark that as Λn is a discrete subgroup of the Polish group Gn, it is
automatically countable.

This result can be compared with the previously mentioned result in [36,
Theorem 1.18]. On the one hand, Theorem 1.7 does not require the passage
to some extension Y of X; on the other hand, the conclusion is weaker as the
system is described as an inverse limit of translational systems, rather than
as a translational system. In view of Theorem 1.4, one could ask whether
one could strengthen Theorem 1.7 further by requiring in (ii) that the Gn are
nilpotent Lie groups, and Λn lattices, so that X would be the inverse limit
of nilsystems. Unfortunately when Γ is not finitely generated, there are
counterexamples that show that this stronger version of Theorem 1.7 fails;
see the example presented after [35, Conjecture 2.14] (in the discussion of
[35, Theorem 4.3]). In Theorem 1.7 it is not required that the system X be
separable, but it turns out it is quite easy to reduce to this case, and indeed
this will be one of the first steps in the proof. The group Gn,2 in Theorem
1.7 can in fact be taken to be the commutator group [Gn,Gn] if desired; see
Remark 4.7. However, from the theory of filtered nilpotent groups (see e.g.,
[14, Appendix B]) it seems more natural to allow Gn,2 to be slightly larger
than the commutator group (see Section 5.1 for one example of this).

In Section 5 we provide some examples of a Conze–Lesigne system as-
sociated to groups in even, odd, and zero characteristic that illustrate the
conclusion of Theorem 1.7 despite not being obviously associated to any
nilpotent structures. In the companion paper [28] to this paper, we shall use
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Theorem 1.7 and a correspondence principle to establish an inverse theorem
for the Gowers norm U3(G) associated to an arbitrary finite abelian group
G.

Remark 1.8. It is tempting to speculate as to whether Theorem 1.7 can be
extended to systems of order k for k > 2, by some induction on k. Here
one runs into a significant technical obstacle even when k = 3; whereas in
the k = 2 case, the system can be expressed (using Theorem 1.10 below)
as a group extension of a translational system (indeed a rotational system,
in this case), the analogous arguments in the k = 3 case (when combined
with Theorem 1.7) only allow one to describe systems of order 3 as group
extensions of inverse limits of translational systems. When the group Γ is
finitely generated, one can use the connectedness of the structure groups
to avoid this issue (cf. [22, Lemma 10.4]), but in the infinitely generated
case it is not clear to us whether such group extensions of inverse limits
of translational systems can necessarily be expressed as inverse limits of
translational systems, even if one possesses suitable higher-order analogues
of the Conze–Lesigne equation. We hope to investigate these issues further
in subsequent work.

Remark 1.9. Theorem 1.7 does not immediately imply previous structural
results about Conze–Lesigne systems for specific groups Γ, such as those
stated in Theorems 1.4, 1.5, 1.6, because these theorems can take advan-
tage of special features of the groups Γ they consider to obtain stronger
conclusions than those in Theorem 1.7(ii), see Section 1.5 below for a re-
lated discussion. However, one could certainly use Theorem 1.7 as a “black
box” to shorten the proofs of these other theorems, by reducing matters to
the study of nilpotent translational systems G/Λ of nilpotency class two,
for which many of the intermediate statements used in the course of those
proofs are easy to establish. We leave the details of such shortenings to the
interested reader.

1.4. Overview of proof. Our proof of Theorem 1.7 is based primarily of
the methods of Host and Kra [22], [23], while also incorporating some tools
from [4]. It is not difficult to reduce to the case of separable Γ-systems. The
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next step, which is quite standard, is to express Conze–Lesigne systems as
abelian extensions of the Kronecker factor.

Theorem 1.10 (Conze–Lesigne systems are abelian extensions of Kronecker
factor). Let Γ be a countable abelian group, and let X be an ergodic sepa-
rable Γ-system. Then the following are equivalent:

(i) X is a Conze–Lesigne system.
(ii) X is (abstractly) isomorphic to a group extension Z oρ K, where Z

is a rotational Γ-system, K is a compact abelian group, and ρ is a
(Z,K)-cocycle of type 2.

Furthermore, in part (ii), we can take Z to be equivalent to the Kronecker
factor.

The notions of cocycle, extension, and cocycle type appearing in the
above theorem will be reviewed in Section 2.1 below.

Proof. For Z-systems, the implication of (ii) from (i) was established in
[22, Proposition 6.34] or [23, Chapter 18, Theorem 6]; as observed previ-
ously by several authors [4, Proposition 3.4], [34, Proposition 1.16], [35,
Proposition A.18] (see also [39, Proposition 3.6] for an alternate proof of
the abelian nature of K), the arguments extend without difficulty to arbitrary
countable abelian groups Γ. The implication of (i) from (ii) follows from
[22, Corollary 7.7] or [23, Chapter 18, Proposition 8]; again, the arguments
extend without difficulty to arbitrary Γ. (One can use Proposition A.3(ii)
to first model X by a concrete Lebesgue Γ-system before applying these
arguments.) �

To proceed further it is convenient to lift Γ to a torsion-free group, and
also reduce to the case when K is a Lie group. The key step is then to
establish

Theorem 1.11 (Conze–Lesigne equation). Let Γ be a torsion-free count-
able abelian group, Z an ergodic metrizable rotational Γ-system, and K a
compact abelian Lie group. Let ρ be a (Z,K)-cocycle. Then the following
are equivalent:

(i) ρ is of type 2.
(ii) ρ obeys the Conze–Lesigne equation (see Definition 2.2(ix)).
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This result was obtained in [22, Lemma 8.1] (or [23, Section 18.3.3]) in
the case when Γ = Z and K is a torus (a connected compact abelian Lie
group), building upon previous results in this direction in [9], [11]. These
arguments extend without much difficulty arbitrary to torsion-free Γ in the
connected case when K is a torus; however the case of disconnected K
requires additional arguments (cf., the remark after [22, Lemma C.5] and
Remark 2.5). The crucial additional case to consider is that of a cyclic group
K = 1

NZ/Z. Here we can proceed instead by some linearization arguments
based on those in [4]. We remark that thanks to an example of Rudolph
[33], the above theorem fails if the compact abelian Lie group K is replaced
with other non-Lie groups, such as solenoid groups; see Example 5.6.

The proof of Theorem 1.11 in the general case will be given in Section
3. The derivation of Theorem 1.7 once Theorem 1.11 is in hand is fairly
standard and is given in Section 4, though there are some subtleties requir-
ing the introduction of a topological model in order to properly define the
notion of a stabilizer of a certain transitive group action (see [19] for further
discussion of this point). Here we will use a topological model (which we
call a Koopman model) that is constructed using Gelfand duality (and the
Riesz representation theorem), without the need to impose any “countabil-
ity” conditions such as separability; see Appendix A.4.

In order to finish up by expressing an arbitrary Conze–Lesigne system
as an inverse limit of nilpotent translational systems, one needs a techni-
cal result (Proposition 4.3) which states, roughly speaking, that the class of
nilpotent translational systems in Theorem 1.7 is closed under joinings. As
it turns out, this can be established without too much difficulty by exploit-
ing both directions of the equivalences established in Theorem 1.10 and
Theorem 1.11; see Section 4.3.

1.5. Towards a second-order Pontryagin duality? In principle, Theo-
rem 1.7 provides a complete description of all ergodic Conze–Lesigne Γ-
systems associated to a given countable abelian group Γ. However, one
could seek a more tractable such description, in which every Conze–Lesigne
system is described by certain algebraic data from which one can easily an-
swer questions about such systems, such as whether two such systems are
isomorphic (or whether one is a factor of the other), whether the system is
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a translational system or a nilsystem, whether it is generated by a cocycle
obeying the Conze–Lesigne equation, whether the structure groups Z,K are
connected, and so forth.

In the case of Kronecker Γ-systems, these questions can all be readily
answered through Pontryagin duality. Given a Kronecker Γ-system Z, one
can associate the group E of eigenvalues of the system, that is to say those
homomorphisms c ∈ Γ̂ from Γ to T such that one has a non-trivial function
f ∈ L2(Z) for which

T γ f = e(c(γ)) f

almost everywhere for all γ ∈ Γ. This group E is then a subgroup of Γ̂ (and
is also isomorphic as a group to Ẑ). Conversely, given any subgroup E of Γ̂,
one can form an associated Kronecker system ZE, defined to be the closure
in the compact group TE of the subgroup φ(Γ), where φ : Γ → TE is the
homomorphism

φ(γ) B (c(γ))c∈E,

with the rotational Γ-action given by φ; one can show that this is a Kro-
necker Γ-system with eigenvalue group E. The arguments used to establish
Theorem 1.3 can be used to show that two Kronecker Γ-systems Z,Z′ are
isomorphic if and only if their corresponding subgroups E, E′ of Γ̂ agree
(and more generally, Z is a factor of Z′ if E is a subgroup of E′), thus giv-
ing a complete description of Kronecker Γ-systems in terms of subgroups
of Γ̂; indeed the above constructions produce a duality of categories. Fur-
thermore, other properties of the Kronecker Γ-system can be translated into
properties of these subgroups by the usual dictionary of Pontryagin dual-
ity. For instance, given a Kronecker Γ-system Z and its associated subgroup
E ≤ Γ̂:

• Z is separable (or metrizable) if and only if E is countable.
• Z is connected if and only if E is torsion-free.
• Z is a Lie group if and only if E is finitely generated.

In analogy with this state of affairs in order one, one could hope for a “sec-
ond order Pontryagin duality” in which one could associate to each Conze–
Lesigne Γ-system X some algebraic data (analogous to the subgroup E)
which determines the isomorphism class of X, as well as other properties
of the system, such as whether it is a translational system or a nilsystem,
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or whether it is associated to a cocycle that obeys the Conze–Lesigne equa-
tion. Ideally, all existing results about such systems (including Theorem
1.7) could then be re-interpreted as specific facets of this duality. We do
not at present have a formal proposal for such a duality, though it seems
plausible that some form of group cohomology will be involved. We hope
to investigate these issues further in subsequent work.

1.6. Acknowledgments. AJ was supported by DFG-research fellowship
JA 2512/3-1. OS was supported by ERC grant ErgComNum 682150, and
ISF grant 2112/20. TT was supported by a Simons Investigator grant, the
James and Carol Collins Chair, the Mathematical Analysis & Application
Research Fund Endowment, and by NSF grant DMS-1764034. We thank
Bryna Kra and Bernard Host for several discussions of key points in [23],
leading in particular to the errata [19].

2. Notation

We use T B R/Z to denote the additive unit circle. Given any locally
compact abelian group G = (G,+), we define the Pontryagin dual Ĝ to be
the collection of all continuous homomorphisms from G to T; as is well
known, this is also a locally compact abelian group (with the compact-open
topology) with ˆ̂G ≡ G. We let S 1 be the unit circle in C, and let e : T→ S 1

be the standard character e(θ) B e2πiθ.
We briefly recall the construction of the Host–Kra–Ziegler factors from

[22, §3], [23, Chapter 9.1], or [4, Appendix A]. We begin with the tradi-
tional setting of concrete Lebesgue Γ-systems, with Γ a countable abelian
group. Given such a Γ-system X = (X,X, µ,T ), we can recursively define
the Host–Kra parallelepiped Γ-systems X[k] = (X[k],X[k], µ[k],T [k]) for k ≥ 0
by setting X[0] B X and

X[k+1] B X[k] ×Z0(X[k]) X[k]

where the right-hand side is the relatively independent product of X[k] with
itself over the invariant factor Z0(X[k]); see [10, Chapter 5] for the con-
struction of relatively independent product for concrete Lebesgue spaces.
As a set, X[k] can be viewed as a subset of X{0,1}

k
, which we can split as

X × X{0,1}
k\{0}k . We then define the Host–Kra–Ziegler factor Zk(X) (up to
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equivalence) by declaring a set A ∈ X to be measurable with respect to the
factor σ-algebra of Zk(X) if and only if there is a measurable subset B of
X{0,1}

k\{0}k such that

(1) 1A(x0) = 1B(x∗)

for µ[k]-almost all (x0, x∗) ∈ X[k]. We refer the reader to [22, §3], [23, Chap-
ter 9], or [4, Appendix A] for the basic properties of these factors, and
in particular for their relationship with the Host–Kra–Gowers seminorms
(which we will not utilize here).

Exactly the same constructions can be performed in the more general
setting of abstract Γ-systems, with no requirement of separability (with the
analogue of (1) being that the abstract indicator functions 1A, 1B agree when
they are both pulled back to X[k], which is now an opposite probability
algebra); alternatively, one can use the canonical model (see Proposition
A.3(iii)) to model such an abstract Γ-system by a compact Γ-system and re-
peat the previous constructions without significant modification. Note from
[27, Theorem 8.1] that the relatively independent product construction is
also valid in this “uncountable” setting.

Remark 2.1. It is even possible to extend the definition of the Host–Kra–
Ziegler factors to the case where Γ is uncountable. As a substitute for the
usual ergodic theorem in the case of uncountable actions Γ, one can use the
abstract ergodic theorem of Alaoglu and Birkhoff [1], which permits one
to construct the invariant factor Z0(X) of an abstract Γ-system X without
difficulty even when X is inseparable and Γ is uncountable. The Host–
Kra–Gowers seminorms were constructed in this uncountable setting in [39,
§1.4], and by following the arguments in that paper one can extend the
construction of the Host–Kra–Ziegler factors to this setting and verify that
the claims in Lemma 1.2 continue to hold. It seems that at least some of
the results of this paper similarly extend to the case of uncountable group
actions, but we do not pursue this question further here.

2.1. Cocycles and extensions. We recall some standard notations for (mea-
surable, abelian) cocycles (largely following [23], but extended to arbitrary
countable abelian groups Γ). Here it is convenient to work in the category of
concrete Γ-systems, but permit the cocycles to only be defined up to almost
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everywhere equivalence (so that the extension generated by such a cocycle
is merely an abstract Γ-system rather than a concrete one).

Definition 2.2 (Cocycles and extensions). Let Γ be a countable abelian
group, let Y = (Y,Y, ν, S ) be a (concrete) ergodic Lebesgue Γ-system, and
let K = (K,+) be a compact abelian group written additively.

(i) A (Y,K)-cocycle is a collection (ργ)γ∈Γ of (concrete) measurable
maps ργ : Y → K (defined up to almost everywhere equivalence)
obeying the cocycle equation

(2) ργ1+γ2 = ργ1 ◦ S γ2 + ργ2

ν-almost everywhere for all γ1, γ2 ∈ Γ. Observe that the space of
(Y,K)-cocycles form an abelian group.

(ii) Let M(Y,K) denote the collection of measurable maps from Y to
K, up to equivalence almost everywhere; we give this space the
topology of convergence in measure (and also endow this space with
the Borel σ-algebra). If F ∈ M(Y,K), we define the derivative
dF = ((dF)γ)γ∈Γ to be the (Y,K)-cocycle

(dF)γ B F ◦ S γ − F.

It is easy to verify that this is indeed a (Y,K)-cocycle. Any (Y,K)-
cocycle of the form dF will be called a (Y,K)-coboundary. Two
(Y,K)-cocycles ρ, ρ′ are said to be (Y,K)-cohomologous if they dif-
fer by a (Y,K)-coboundary, in which case we write

ρ ∼Y,K ρ
′.

Thus for instance ρ is a (Y,K)-coboundary if and only if ρ is (Y,K)-
cohomologous to zero: ρ ∼Y,K 0.

(iii) If ρ is a (Y,K)-cocycle, we define the abelian extension YoρK to be
the concrete probability space that is the product of (Y,Y, ν) and K
(with the latter equipped with the Haar probability measure), with a
near-action T given by

T γ(y, k) B (S γy, k + ργ(y))

for all γ ∈ Γ, y ∈ Y and k ∈ K, where for each γ we arbitrarily select
one representative ργ : Y → K of the equivalence class for this co-
cycle. While from Fubini’s theorem one easily sees that each T γ is
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measure-preserving, the homomorphism law T γ1+γ2 = T γ1 ◦ T γ2 for
γ1, γ2 ∈ Γ is only true almost everywhere rather than everywhere.
Thus, Yoρ K is not quite well-defined as a concrete Γ-system; how-
ever, as discussed in Appendix A.3, it defines an abstract Γ-system
without difficulty (and this system does not depend on the choice of
representative of each ργ). We say that the (Y,K)-cocycle is ergodic
if this abstract Γ-system Y oρ K is ergodic.

(iv) Let ρ be a (Y,K)-cocycle. If φ : K → K′ is a continuous homomor-
phism from K to another compact abelian group K′, we let φ ◦ ρ be
the (Y,K′)-cocycle

(φ ◦ ρ)γ B φ ◦ ργ;

one easily verifies that this is indeed a (Y,K′)-cocycle. Similarly, if
π : Y′ → Y is a (concrete) factor map, we let ρ ◦ π be the (Y′,K)-
cocycle

(ρ ◦ π)γ B ργ ◦ π,

which one again easily verifies to be a (Y′,K)-cocycle.
(v) If ρ is a (Y,K)-cocycle and V is an automorphism of the concrete

Γ-system Y (thus V : Y → Y is a measure-preserving invertible map
and V ◦ S γ = S γ ◦ V for all γ ∈ V), we define the derivative ∂Vρ to
be the (Y,K)-cocycle

∂Vρ B ρ ◦ V − ρ.

(vi) We let Hom(Γ,K) be the collection of all homomorphisms c : Γ →

K. Every homomorphism c ∈ Hom(Γ,K) can be viewed9 as a
(Y,K)-cocycle by the formula

cγ(y) B c(γ)

for all γ ∈ Γ and y ∈ Y .
(vii) A (Y,K)-cocycle ρ is a (Y,K)-quasi-coboundary if it is (Y,K)-

cohomologous to a homomorphism, that is to say there exists mea-
surable F : Y→ K and a homomorphism c : Γ→ K such that

ργ(y) = F(S γy) − F(y) + c(γ)

9In the notation of (iv), we are identifying c with c ◦ pt, where pt is the factor map from
Y to a point.
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for all γ ∈ Γ and ν-almost every y ∈ Y .
(viii) If ρ is a (Y,K)-cocycle and k ≥ 0 is an integer, we let ∆[k]ρ be the

(Y[k],K)-cocycle

(∆[k]ρ)γ((yω)ω∈{0,1}k) B
∑

ω∈{0,1}k

(−1)|ω|ργ(yω)

where |(ω1, . . . , ωk)| B ω1 + · · · + ωk. One easily verifies that ∆[k]ρ

is a (Y[k],K)-cocycle. If ∆[k]ρ is a (Y[k],K)-coboundary, we say that
ρ is of type (at most) k.

(ix) If Y = Z is a rotational system and ρ is a (Z,K)-cocycle, we say that
ρ obeys the Conze–Lesigne equation if for every z ∈ Z, the deriv-
ative ∂Vzρ is a quasi-coboundary, where Vz denotes the translation
action Vz : z′ 7→ z + z′ on Z. In other words, for every z ∈ Z there
exists a measurable Fz : Y → K and a homomorphism cz : Γ → K
such that

ργ(z + z′) − ργ(z′) = Fz(S γz′) − Fz(z′) + cz(γ)

for all γ ∈ Γ and µZ-almost every z′ ∈ Z.

If the group K = (K, ·) is written multiplicatively instead of additively, we
define all the preceding concepts analogously, changing all additive notation
to multiplicative notation as appropriate.

Remark 2.3. The fact that measurable cocycles only generate abstract Γ-
systems rather than concrete ones will cause some technical issues for us
later in our arguments, but these will be resolved by the introduction of
suitable topological models, loosely following [23, §19.3.1], [19].

We recall some basic properties of cocycles:

Proposition 2.4 (Basic properties of cocycles). Let Γ be a countable abelian
group, let Y = (Y,Y, ν, S ) be an (concrete) ergodic Lebesgue Γ-system, let
K = (K,+) be a compact abelian group, and let ρ be a (Y,K)-cocycle.

(i) (Moore–Schmidt theorem) We have ρ ∼Y,K 0 if and only if ξ ◦ ρ ∼Y,T

0 for all ξ ∈ K̂.
(ii) (Criterion for ergodicity) ρ is ergodic if and only if ξ ◦ ρ /Y,T 0 for

all non-zero ξ ∈ K̂.
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(iii) (Mackey–Zimmer theorem) If µ is a Γ-invariant ergodic probability
measure on Y × K that pushes down to ν on Y, then there exists a
closed subgroup H of K (called the Mackey group of ρ, ν) and an
ergodic (Y,H)-cocycle ρ′ such that ρ′ ∼Y,K ρ, and that the Γ-system
Y ×ρ K equipped with the measure µ is abstractly isomorphic to
Y oρ′ H (equipped with product measure).

(iv) (Shifting to be ergodic) If Γ is torsion-free and K is connected metriz-
able, then there exists c ∈ Hom(Γ,K) such that ρ + c is ergodic.

(v) (Differentiation lowers type) If Y = Z is a rotational Γ-system, K =

T, and ρ is of type 2, then ∂Vzρ is of type 1 for all z ∈ Z.
(vi) (Order 1 cocycles and quasi-coboundaries) If Γ is torsion-free and

K = T, then ρ is of type 1 if and only if ρ is a (Y,T)-quasi-coboundary.

Proof. For (i), see [31, Theorem 4.3] or [25, Theorem 1.1] (see also [23,
Chapter 5, Lemma 7] for the Γ = Z case). For (ii), see [23, Chapter 5,
Lemma 8] (this is stated for Γ = Z, but the proof extends without difficulty
to arbitrary countable abelian Γ). For (iii), see [29], [42, Corollary 3.8,
Theorem 4.3], [13, Theorem 3.26], or [26, Theorem 1.6]. We remark that
(iii) is closely related to (i), (ii); for instance, H is the annihilator of the
group of characters ξ ∈ K̂ for which ξ ◦ ρ ∼Y,T 0.

Part (iv) is a routine generalization of [23, Chapter 5, Corollary 9]; for
the convenience of the reader we review the argument here. As K is con-
nected metrizable, the Pontryagin dual K̂ is countable and torsion-free,
while Hom(Γ,K) is a compact abelian group. By (ii), it thus suffices to
show that for every non-zero ξ ∈ K̂, one has ξ ◦ (ρ + c) /Y,T 0 for al-
most all c ∈ Hom(Γ,K). Fixing ξ, it suffices upon subtraction to show that
ξ ◦ c /Y,T 0 for almost all c ∈ Hom(Γ,K). But a character ξ ◦ c ∈ Γ̂ is a
(Y,T)-coboundary if and only if it is an eigenvalue of the action S ; from the
separability of Y, there are countably many such eigenvalues, so it suffices
to show that ξ ◦ c , 0 for almost all c ∈ Hom(Γ,K). If this is not the case,
then the closed subgroup {c ∈ Hom(Γ,K) : ξ ◦ c = 0} would have finite
index in Hom(Γ,K), hence there is an integer n such that ξ ◦ nc = 0 for
all c ∈ Hom(Γ,K). As Γ is torsion-free, this would imply that nξ vanishes,
contradicting the torsion-free nature of K̂.



21

Part (v) was established for Z-actions in [22, Corollary 7.5(i)] or [23,
Chapter 18, Proposition 11(i)], and for general actions10 in [4, Lemma 5.3]
by the same method.

Part (vi) was established for Z-actions in [23, Chapter 5, Lemma 13],
but the extension to torsion-free Γ is routine: for the convenience of the
reader we review the proof here. The “if” part is easy, so we focus on
the “only if” part. By using (iv) to shift ρ by a character (which does not
affect ∆[1]ρ) we may assume without loss of generality that ρ is ergodic. By
hypothesis, ∆[1]ρ is a (Y[1],T)-coboundary, thus there exists a measurable
map F : Y × Y → T obeying the equation

∆[1]ργ = F ◦ S γ − F

for all γ ∈ Γ. Setting X B Y oρ T, we conclude that the map

H : ((y0, k0), (y1, k1)) 7→ e(F(y0, y1) + k1 − k0)

is Γ-invariant in X × X. Thus the integral operator TH with kernel H is a
non-trivial Hilbert-Schmidt operator on L2(X) that commutes with the Γ-
action, thus there is an eigenfunction φ ∈ L2(X) of this action that is also a
non-trivial eigenfunction of TH. The function β ∈ L2(Y) defined by

β(y) B
∫
T

φ̄(y, k)e(k) dk

cannot vanish identically (since otherwise THφ would vanish), and obeys
the equation

β(S γy) = e(−c(γ))e(ργ(y))β(y)

for all γ ∈ Γ and almost every y, where e(c(γ)) is the eigenvalue of φ with
respect to S γ; note that c is necessarily a character in Γ̂. The function |β| is
Γ-invariant, hence constant. Writing β = |β|e(F̃), we obtain ργ = F̃ ◦ S γ −

F̃ + c(γ), thus ργ is a (Y,T)-quasi-coboundary as desired. �

Remark 2.5. As remarked after [22, Lemma C.5], Proposition 2.4(vi) can
fail if the circle T is replaced by a disconnected group. For instance, take
Γ = Z, K = 1

2Z/Z, and Y to be the rotational ergodic separable Z-system
T with action φ(n) = nα mod 1 for all n ∈ Z and some irrational real α. If

10There is a typo in the statement of that lemma: the hypothesis that X be of order < k
should instead be that Z<k(X) be a factor of Y .
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we let {} : T→ [0, 1) be the fractional part map, then one can check that the
tuple ρ = (ρn)n∈Z given by

ρn(x) B
{x + nα} − {x} − nα

2
mod 1

is a (Z,K)-cocycle. From the identity

∆[1]ρ = dF[1]

where F[1] ∈ M(T2,K) is the function

F[1](x, y) B
{x} − {y} − (x − y)

2
mod 1

we see that the (Z,K)-cocycle is of order 1; however it is not a (Z,K)-quasi-
coboundary. Indeed, if there was some F ∈ M(T,K) and c ∈ Hom(Z,K)
such that ρ = dF + c, then by specializing to n = 1 we conclude that

{x + α} − {x} − α
2

= F(x + α) − F(x) + c(1) mod 1

or equivalently

f (x + α) = e
(
α

2
+ c(1)

)
f (x)

for all x ∈ T, where

f (x) B e
(
F(x) −

{x}
2

)
.

By Fourier analysis this implies that α
2 +c(1) needs to be an integer multiple

of α, but this is inconsistent with the irrationality of α since c(1) ∈ 1
2Z/Z.

3. Derivation of the Conze–Lesigne equation

In this section we establish Theorem 1.11.
We begin with the derivation of (i) from (ii). Observe from Definition

2.2(ix) that if the (Z,K)-cocycle ρ obeys the Conze–Lesigne equation, then
the (Z,T)-cocycle ξ ◦ ρ obeys the Conze–Lesigne equation for any ξ ∈ K̂.
Similarly, from the Moore–Schmidt theorem (Proposition 2.4(i)), Definition
2.2(viii) and the obvious identity ∆[k](ξ ◦ ρ) = ξ ◦ ∆[k](ρ) for any ξ ∈ K̂ and
k ≥ 0 we see that if ξ ◦ ρ is of type k for every ξ ∈ K̂, then ρ is of type k.
From these observations we see that to show that (ii) implies (i), it suffices
to do so in the case K = T. By Definition 2.2(ix), we see that for every
z ∈ Z there exists a Fz ∈ M(Z,T) and a character cz ∈ Γ̂ such that

(3) ∂Vzρ = dFz + cz.
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At this point we run into the technical issue that Fz and cz need not depend
in a measurable fashion on z. It is however possible to select Fz, cz so that
this is the case, by means of the following result:

Proposition 3.1 (Measurable selection). Let Γ be a countable abelian group,
let Y be a concrete ergodic Lebesgue Γ-system, and let U be a compact
abelian group. Suppose that we have a measurable map u 7→ hu from U to
the space of (Y,T) cocycles (which we can view as a subset of M(Y,T)Γ,
which we endow with the product topology), with the property that for each
u ∈ U we can find Fu ∈ M(Y,T) and a character cu ∈ Γ̂ such that

hu = dFu + cu.

Then, after adjusting Fu and cu as necessary, we may ensure that Fu, cu

depend in a measurable fashion on u.

This proposition is a special case of [4, Lemma C.4] (which handles a
more general situation in which the hu need not obey the cocycle equation,
and the cu are allowed to be polynomials of a given degree). The proof of
that lemma requires at one point the measurability of a certain function nu

constructed in that proof. The verification of this measurability is actually
somewhat non-trivial, and so we give a complete proof of Proposition 3.1
in Appendix B. As remarked in [4], there are several other ways to establish
this proposition, including using Borel cross sections of homomorphisms
between Polish groups (see [22, Theorem A.1]) or a general measurable
selection result of Dixmier [2, Theorem 1.2.4]. In the case Γ = Z this result
was essentially established in [11, Proposition 10.5].

Invoking Proposition 3.1, we can now select the Fz, cz solving (3) to de-
pend in a measurable fashion on z.

As observed in [22, §3.2] (see also [23, §8.1.2]), Z[2] can be viewed as a
translational system on the compact group

Z[2] = {(z, z + s1, z + s2, z + s1 + s2) : z, s1, s2 ∈ Z}

with translation action φ[2] : Γ→ Z[2] given by the diagonal action

φ[2](γ) B (φ(γ), φ(γ), φ(γ), φ(γ))



24 A. JAMNESHAN, O. SHALOM, AND T. TAO

and φ : Γ → Z the original translation action on Z. The (Z[2],T)-cocycle
∆[2]ρ is then given by the formula

(∆[2]ρ)γ(z, z + s1, z + s2, z + s1 + s2) = ργ(z) − ργ(z + s1) − ρ(z + s2) + ρ(z + s1 + s2)

= ∂Vs2
ργ(z) − ∂Vs2

ργ(z + s1).

Applying (3), we conclude the identity

∆[2]ρ = dF[2]

where F[2] : Z[2] → T is the function

F[2](z, z + s1, z + s2, z + s1 + s2) B Fs2(z) − Fs2(z + s1).

By construction of the Fz, F[2] is measurable, and hence by Definition
2.2(viii) ρ is of type 2. This concludes the derivation of (i) from (ii).

Now we show that (i) implies (ii). Any compact abelian Lie group is iso-
morphic to the direct product of a torus and a finite abelian group (see e.g.,
[38, Exercise 1.4.27(iii)]), and hence also isomorphic to the direct product
of finitely many copies of the circle T and cyclic groups 1

NZ/Z. It is clear
that to show (i) implies (ii) for a direct product K = K1 × K2, it suffices to
do so for the two factors K1 and K2 separately. Thus it suffices to establish
this implication in the special cases K = T and K = 1

NZ/Z for a natural
number11 N.

The K = T case is immediate from Lemma 2.4: if z ∈ Z, then Lemma
2.4(v) implies that ∂Vzρ is of type 1, and Lemma 2.4(vi) then gives that
∂Vzρ is a (Z,T)-quasi-coboundary, thus giving the required Conze–Lesigne
equation.

We turn to the K = 1
NZ/Z case. Now one cannot directly apply Lemma

2.4(v), (vi). However, since K is a subgroup of T, we can also view the
(Z,K)-cocycle ρ as a (Z,T)-cocycle, which will of course still be of type 2.
Applying the previous argument, we conclude that ∂Vzρ is a (Z,T)-quasi-
coboundary for every z ∈ T, thus we can find cz ∈ Hom(Γ,T) = Γ̂ such
that

(4) ∂Vzρ ∼Z,T cz.

11Using the Chinese remainder theorem one could reduce further to the case when N is
a power of a prime, but this does not seem to simplify the argument significantly.
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By Proposition 3.1, we may ensure that cz depends in a measurable fashion
on z.

The main difficulty here is that the homomorphism cz takes values in T
rather than in the smaller group K. To resolve this, we need some additional
structural control on the cz. We first apply a translation Vz′ to (4) to conclude
that

(∂Vzρ) ◦ Vz′ ∼Z,T cz

for any z, z′ ∈ Z; combining these identities with the cocycle identity

∂Vz+z′ρ = (∂Vzρ) ◦ Vz′ + ∂Vz′ρ

we conclude that
cz+z′ − cz − cz′ ∼Z,T 0.

Thus, if we let E ≤ Γ̂ denote the group

E B {c ∈ Γ̂ : c ∼Z,T 0}

then the map z 7→ cz is a homomorphism mod E, in the sense that

(5) cz+z′ = cz + cz′ mod E

for all z, z′ ∈ Z.
Note that if c ∈ E, then c = dF for some F ∈ M(Z,T), which implies that

e(F) is an eigenfunction of the rotational system Z:

e(F) ◦ T γ = e(c(γ))e(F).

By the unitary nature of the action, eigenfunctions with different eigenval-
ues are orthogonal. Since L2(Z) is separable, we conclude that E is count-
able.

We can now locally remove the “mod E” reduction in (5) by the following
argument (cf. the proof of [4, Proposition 6.1]). By (5), the map (z, z′) 7→
cz+z′ − cz − cz′ is a measurable map from Z × Z to the countable set E. The
autocorrelation function

a 7→ µZ2({(z, z′) ∈ Z2 : cz+z′ − cz − cz′ = cz+a+z′ − cz+a − cz′}),

where µZ2 is the Haar probability measure on Z2, is then a continuous func-
tion on Z which equals 1 at 0 (this follows for instance from Lusin’s theo-
rem). Thus there exists an open neighborhood U of the identity such that

µZ2({(z, z′) ∈ Z2 : cz+z′ − cz − cz′ = cz+a+z′ − cz+a − cz′}) ≥ 0.9
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(say) for all a ∈ U. Canceling the cz′ and making the change of variables
z′′ = z + z′, we see that for all a ∈ U, we have

cz+a − cz = cz′′+a − cz′′

for at least 0.9 of pairs (z, z′′) ∈ Z2 by measure, which implies that there
exists a (unique) c′a ∈ Γ̂ such that

(6) cz+a − cz = c′a

for at least 0.9 of the z ∈ Z by measure; furthermore, c′a will depend mea-
surably on a (it is the mode of cz+a − cz). From (5) we see that

(7) c′a = ca mod E

for all a ∈ U, and from several applications of (6) we have

(8) c′a + c′b = c′a+b

whenever a, b, a + b ∈ U.
We return to the equation (4). Since ρ takes values in K = 1

NZ/Z, we
have Nρ = 0, hence from (4) Ncz ∼Z,T 0 for all z ∈ Z, hence by (7) we
have Nc′a ∈ E for all a ∈ U. Thus there is e ∈ E such that Nc′a = e for
all a in a positive measure subset of U; from (8) and the Steinhaus lemma,
we conclude that Nc′a = 0 for all a in an open neighborhood U′ ⊂ U of
the identity. Thus for a ∈ U′, c′a takes values in K, and so from (4), (7)
∂Vaρ − c′a is a (Z,K)-cocycle which is a (Z,T)-coboundary. By the Moore–
Schmidt theorem (Proposition 2.4(i)), ∂Vaρ− c′a is also a (Z,K)-coboundary
(note that all the characters of K are of the form k 7→ nk for some integer
n). Thus ∂Vaρ is a (Z,K)-quasi-coboundary for all a ∈ U′. Meanwhile, from
the identity

∂Vφ(γ)ρ = dργ

for any γ ∈ Γ, we see that ∂Vaρ is also a (Z,K)-quasi-coboundary (in fact a
(Z,K)-coboundary) for all a ∈ φ(Γ). By the cocycle identity

∂Va+bρ = (∂Vaρ) ◦ Vb + ∂Vbρ

for any a, b ∈ Z, we conclude that ∂Vaρ is a (Z,K)-quasi-coboundary for all
a ∈ φ(Γ) + U′. But since the rotational Γ-system Z is ergodic, the subgroup
φ(Γ) of Z is dense, and hence φ(Γ) + U′ is all of Z. Thus ∂Vaρ is a (Z,K)-
quasi-coboundary for all a ∈ Z, thus ρ obeys the Conze–Lesigne equation.
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This concludes the derivation of (ii) from (i), and the proof of Theorem 1.11
is complete.

4. Conclusion of the argument

In this section we establish Theorem 1.7.

4.1. From nilpotent translational systems to the Conze–Lesigne equa-
tion. We begin with the derivation of (i) from (ii). From Lemma 1.2(iii),
Theorem 1.10 and Theorem 1.11, it suffices to show the following claim:

Proposition 4.1 (Verifying the Conze–Lesigne equation). Let Γ be a count-
able abelian group, and let G/Λ be an ergodic translational Γ-system,
where G is a locally compact nilpotent Polish group of nilpotency class
2, and Λ is a lattice in G, and one also has a closed central subgroup G2

of G containing [G,G] such that Λ ∩ G2 is a lattice in G2. Then G/Λ is
abstractly isomorphic to a group extension Z oρ K, where Z is a rotational
Γ-system, K is a compact abelian group, and ρ is a (Z,K)-cocycle obeying
the Conze–Lesigne equation. (Note that Z is not required to be the Kro-
necker factor.)

We now prove this proposition. We let φ : Γ → G denote the transla-
tion action. We take Z to be the compact group G/G2Λ, written additively.
We write π : G → Z for the projection homomorphism; this map factors
through the quotient map from G to G/Λ, and we use π̃ : G/Λ → Z to de-
note the projection map produced in this fashion. Then Z is a rotational
Γ-system with action given by π ◦ φ. Next, we take K to be the compact
group G2/(G2 ∩ Λ) written additively. Because G2 is central, this group K
acts freely on G/Λ; we express this action additively, thus if k ∈ K and
x ∈ G/Λ, we write k + x = x + k for the action of k on x. By construction,
we thus have

(9) g2x = x + Π(g2)

whenever x ∈ G/Λ and g2 ∈ G2, where Π : G2 → K is the projection
homomorphism. Observe that the orbits of this free K-action on G/Λ are
precisely the fibers of π̃, thus G/Λ is a principal K-bundle over Z (as a set,



28 A. JAMNESHAN, O. SHALOM, AND T. TAO

at least). Also, by the central nature of G2 we see that

(10) g(x + k) = gx + k

for all g ∈ G, x ∈ G/Λ, and k ∈ K.
It will be convenient to “work in coordinates” to facilitate computations.

We claim that the projection map π̃ : G/Λ→ Z admits a Borel cross-section,
that is to say a Borel-measurable map s : Z → G/Λ such that π̃(s(z)) = z for
all z ∈ Z. Indeed, observe that the map π : G → Z is a continuous surjective
homomorphism of Polish groups, hence by [2, Theorem 1.2.4] this map
admits a Borel cross-section s′ : Z → G; quotienting out by Λ then gives
the claim.

For any γ ∈ Γ and z ∈ Z, the points φ(γ)s(z) and s(π ◦ φ(γ) + z) in G/Λ
both lie in the fiber π̃−1(π ◦ φ(γ) + z), so there is a unique element ργ(z) of
K for which one has the identity

(11) φ(γ)s(z) = s(π ◦ φ(γ) + z) + ργ(z).

It is easy to see that ργ : Z → K is measurable for each γ. By computing
φ(γ1 + γ2)s(z) in two different ways using (10),(11) we can verify that ρ B
(ργ)γ∈Γ is in fact a (Z,K)-cocycle. By the identification

(z, k) ≡ s(z) + k

one can then verify that the translational system G/Λ is abstractly isomor-
phic to the semi-direct product Z oρ K (one can use Fubini’s theorem to
check that the product measure of Zoρ K is invariant under the left action of
G under this identification and is thus identified with the Haar probability
measure on G/Λ).

To conclude the proof of Proposition 4.1, it will suffice to show that ρ
obeys the Conze–Lesigne equation, which can be achieved by standard cal-
culations in a suitable coordinate system as follows. Let z0 ∈ Z be arbitrary.
As the projection π : G → Z is surjective, we can find12 gz0 ∈ G such that
π(gz0) = z0. Applying gz0 to (11) and using (10), we see that

gz0φ(γ)s(z) = gz0 s(π ◦ φ(γ) + z) + ργ(z)

12For this argument we will not need to require gz0 to depend in a measurable fashion
on z0, though we could ensure this if desired, by using either a variant of the Borel section
constructed previously, or by a variant of Proposition 3.1.
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for any γ ∈ Γ and z ∈ Z. Writing gz0φ(γ) = [gz0 , φ(γ)]φ(γ)gz0 and noting
that the commutator [gz0 , φ(γ)] lies in G2, we then have from (9) that

(12) φ(γ)gz0 s(z) + Π([gz0 , φ(γ)]) = gz0 s(π ◦ φ(γ) + z) + ργ(z).

On the other hand, since gz0 s(z) and s(z + z0) both lie in the fibre π̃−1(z + z0),
there exists a unique function Fz0 : Z → K such that

gz0 s(z) = s(z + z0) + Fz0(z)

for all z ∈ Z. Inserting this (both for z and for π ◦ φ(γ) + z) into equation
(12) and using (10) and (11), we conclude that

s(π◦φ(γ)+z+z0)+ργ(z+z0)+Fz0(z)+Π([gz0 , φ(γ)]) = s(π◦φ(γ)+z+z0)+Fz0(π◦φ(γ)+z)+ργ(z);

as the K-action is free, this can be rearranged as

ργ(z + z0) − ργ(z) = Fz0(π ◦ φ(γ) + z) − Fz0(z) − Π([gz0 , φ(γ)])

or equivalently

(13) ∂Vz0
ρ = dFz0 + cz0

where cz0 : Γ→ K is the map

cz0(γ) B −Π([gz0 , φ(γ)]).

As G has nilpotency class 2, one easily verifies that cz0 is a homomorphism
(this also follows from the fact that the other terms in (13) are (Z,K)-
cocycles). Hence ρ obeys the Conze–Lesigne equation as required. This
completes the proof of Proposition 4.1, and hence the derivation of (i) from
(ii).

Remark 4.2. For a given translational Γ-system G/Λ, with G a nilpotent
locally compact Polish group of nilpotency class two, there can be some
flexibility in how to select the subgroup G2; it must contain the commutator
group [G,G] and be contained in turn in the center Z(G) of G, and needs
to be closed and “rational” in the sense that G2 ∩ Λ is cocompact in G2,
but is otherwise arbitrary. From the above discussion, this means that it is
possible for the translational Γ-system G/Λ to be expressed as an abelian
group extension Z oρ K of a rotational Γ-system by a cocycle ρ obeying
the Conze–Lesigne equation in several inequivalent ways. As discussed
in Remark 4.7 below, the minimal choice G2 = [G,G] corresponds to the
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case when Z is the maximal rotational Γ-system factor of G/Λ, i.e., the
Kronecker factor; however in some cases one can also take larger choices
of G2, such as the center Z(G) of G, which correspond to smaller choices of
Z. See Section 5.1 for one example of this situation.

4.2. From the Conze–Lesigne equation to nilpotent translational sys-
tems. Now we show that (i) implies (ii). we begin with a technical reduc-
tion. Define a good system to be a translational Γ-system G/Λ of the form
required in part (ii) with the additional conditions listed at the end of the
theorem; thus G is a locally compact nilpotent Polish group of nilpotency
class two, Λ is an abelian lattice in G, and G contains a compact central Lie
group G2 containing [G,G] with Λ ∩G2 trivial. Call a factor of a Γ-system
a good factor if it is abstractly isomorphic to a good system. Our task is to
show that any Conze–Lesigne Γ-system is the inverse limit of a system of
good factors, indexed by a directed set. The requirement to be a directed
set can be dropped thanks to the following observation (cf., [23, §13.3.2,
Proposition 16]):

Proposition 4.3 (Good factors form a directed set). Given two good factors
Y1,Y2 of X, there exists another good factor Y of X such that Y1,Y2 ≤ Y.

We defer the proof of this proposition to Section 4.3. Assuming it for
now, any family of good factors can be completed to a directed set of good
factors, and hence for the purposes of showing that (i) and (ii) we can now
drop the requirement that the family of good factors be directed. In partic-
ular, if X is the inverse limit of some other systems Xn, and each Xn was
already demonstrated to be an inverse limit of good factors, then X itself
must also be an inverse limit of good factors, simply by concatenating all
the families of good factors together (and ignoring the directed set require-
ment).

The next step is to reduce to the case of separable Γ-systems. By Lemma
1.2 and the preceding discussion, it suffices to show that every Γ-system X
is the inverse limit of separable Γ-systems. But given any finite collection
F of elements of the σ-complete Boolean algebra X associated to X, one
can form the factor XF by replacing X with the σ-complete subalgebra
generated by the Γ-orbit {T γF : F ∈ F , γ ∈ Γ} of F , and restricting the
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measure and action appropriately. It is clear that this is a separable factor of
X, and X is the inverse limit of the XF , as claimed.

Henceforth X is separable. The group Γ is not assumed to be torsion-free,
but it is of course isomorphic to a quotient Γ′/Σ of a torsion-free countable
abelian group Γ′. For instance one can take Γ′ =

⊕
γ∈Γ
Z to be the free

abelian group formally generated by the elements γ of Γ, with Γ then nat-
urally identified with the quotient of Γ′ by the subgroup Σ consisting of
formal integer combinations of elements of Γ that sum to zero. Any ergodic
separable Γ-system X can then be viewed as a Γ′-system in the obvious
fashion; and if X when viewed as a Γ′-system is the inverse limit of good
Γ′-systems Gn/Λn, then each of the factor Γ′-systems Gn/Λn must have a
trivial action of Σ and thus also be interpretable as a good Γ-system. Fur-
thermore, if X is of order k as a Γ-system for a given k, it is easy to see
from the definitions that it is also of order k when viewed as a Γ′-system.
Thus, to prove the implication of (ii) from (i) for Γ, it suffices to do so for
Γ′. In particular, we may now assume without loss of generality that Γ is
torsion-free.

By Theorem 1.10, we can assume without loss of generality that the er-
godic separable Γ-system X is of the form X = Z oρ K, where Z is a ro-
tational ergodic Γ-system, K is a compact abelian group, and ρ is a (Z,K)-
cocycle of type 2. Since X was separable, Z is also separable, hence by
Pontryagin duality Ẑ is countable and Z is metrizable. By the Peter–Weyl
theorem or Pontryagin duality (see e.g., [38, Exercise 1.4.26]), K is the
inverse limit of compact abelian Lie groups Kn. One can then easily ver-
ify that Z oρ K is the inverse limit of Z oπn◦ρ Kn, where πn : K → Kn are
the projection homomorphisms. Since ρ is a (Z,K)-cocycle of type 2, the
(Z,Kn)-cocycles πn ◦ ρ also have type 2. Thus, for the purposes of estab-
lishing Theorem 1.7(i), we may assume without loss of generality that K is
a compact abelian Lie group. In particular, by Theorem 1.11, the (Z,K)-
cocycle ρ now obeys the Conze–Lesigne equation. Also, by Pontryagin
duality, K̂ is a finitely generated discrete group.

To summarize so far, we have reduced the derivation of (ii) from (i) to
establishing the following proposition (which can be viewed as a partial
converse to Proposition 4.1):
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Proposition 4.4 (Constructing a nilpotent translational system). Let Γ be
a countable abelian group, Z a metrizable rotational ergodic Γ-system, K
a compact abelian Lie group, and ρ an ergodic (Z,K)-cocycle obeying the
Conze–Lesigne equation. Then the (ergodic, separable) Γ-system Z oρ K
is abstractly isomorphic to a good system, i.e., a translational system G/Λ
with G is a locally compact nilpotent Polish group of nilpotency class two,
Λ is an abelian lattice in G, and G contains a compact central Lie group
G2 containing [G,G] with Λ ∩G2 trivial.

To avoid circularity in our arguments we emphasize that our proof of this
theorem will not use Proposition 4.3, as this latter proposition has not yet
been proven.

To prove Proposition 4.4, we now follow a standard construction (see
[8], [9], [30], [33], [20], [21], [22], [41]), but taking care to keep track of
which structures are only defined abstractly (or up to almost everywhere
equivalence), rather than pointwise. Define the Host–Kra group G to be the
collection of pairs (u, F), where u ∈ Z and F ∈ M(Z,K) obeys the Conze–
Lesigne equation

(14) ∂Vuρ = dF + c

for some homomorphism c : Γ → K. These pairs (u, F) generate a near-
action on X = Z oρ K by the formula

(15) (u, F)(z, k) B (z + u, k + F(z)),

where we arbitrarily select one concrete representative F : Z → K from the
equivalence class of F. One verifies from Fubini’s theorem that this near-
action is concretely measure-preserving, and that the abstract action on X
does not depend on the choice of representative. Thus if we endow G with
the group law

(u, F)(u′, F′) B (u + u′, F ◦ Vu′ + F′)

and inverse operation

(u, F)−1 B (−u,−F ◦ V−u)

one easily verifies that G is a group that has a near-action on X, and thus
(as discussed in Appendix A.3) acts abstractly on X. We claim that this
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abstract action is faithful. Indeed, if (u, F) acts abstractly trivially on X,
then for every bounded measurable f : Z × K → R we have

f (z + u, k + F(z)) = f (z, k)

for Z × K-almost every (z, k). Testing this against functions of the form
f (z, k) = e(χ(z)) for characters χ ∈ Ẑ, we conclude that u vanishes; testing
against functions of the form f (z, k) = e(ξ(k)) for characters ξ ∈ K̂ we
conclude that F vanishes almost everywhere, giving the claim. Thus we
can identify G with a subgroup of the unitary group on L2(X), by identifying
each (u, F) ∈ G with the Koopman operator defined in L2(X) by the usual
formula

((u, F) f )(z, k) B f ((u, F)−1(z, k))

for f ∈ L2(X)) (note that this is well-defined as a unitary map on L2(X) that
does not depend on the choice of representatives for F or f ).

Note that if k ∈ K, then (0, k) obeys the Conze–Lesigne equation (14),
and hence the group

G2 B {(0, k) : k ∈ K}

is a central subgroup of G. We also claim that G2 contains [G,G]. Indeed,
if (u, F), (u′, F′) ∈ G, then a brief calculation shows that

(16) [(u, F), (u′, F′)] = (0, F̃)

where F̃ B (∂Vu′F − ∂Vu F′) ◦ V−u−u′ . Differentiating the formula for F̃
using (14) we see that dF̃ = 0, and hence by ergodicity F̃ = k for some
k ∈ K, giving the required inclusion. In particular, G is nilpotent with
nilpotency class at most two. From the Conze–Lesigne equation we see
that the projection map (u, F) 7→ u is a surjective homomorphism from G to
Z with kernel H B {(u, F) ∈ G : u = 0} (which is clearly an abelian group
containing G2 as a subgroup), thus we have the short exact sequence

(17) 0→ H → G → Z → 0.

If we let φ : Γ→ G denote the map

φ(γ) B (φZ(γ), ργ)

where φZ : Γ→ Z is the rotation action on Z, one checks from the definitions
that the abstract action of Γ on X is the composition of φ with the abstract
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action of G on X, thus

T γ = φ(γ)

as abstract maps on X.
The strong operator topology gives the structure of a Hausdorff topolog-

ical group to the group of unitary operators in L2(X), and hence also to G.
This is a good topological structure to place on G:

Proposition 4.5. G is a locally compact Polish group, and G2 is a closed
subgroup of G (and thus also locally compact Polish).

Proof. As X is a separable opposite probability algebra, the Hilbert space
L2(X) is also separable. As is well known, the group of unitary operators
on such a space, when equipped with the strong operator topology, is a
Polish group. To show that G is also a Polish group, it thus suffices to
show that G is closed in the strong operator topology. But if (un, Fn) ∈ G
is a Cauchy sequence in the strong operator topology, it is easy to see (by
testing against characters χ ∈ Ẑ) that un is a Cauchy sequence in Z that
must therefore converge to some u ∈ Z, and for any character ξ ∈ K̂, that
the ξ ◦ Fn are a Cauchy sequence in measure, so (by the finitely generated
nature of K̂) Fn converges in measure to some limit F : Z → K. It is then
not difficult to show that (u, F) obeys the Conze–Lesigne equation and that
(un, Fn) converges to (u, F), which demonstrates that G is closed and thus a
Polish group. The same argument shows that G2, H are closed subgroups of
G; as the obvious bijection from K to G2 is a continuous map, we conclude
that G2 is isomorphic to K as a compact abelian group. In particular G,G2

are second countable.
It remains to show that G is locally compact. The homomorphism from

G to Z is a continuous surjective homomorphism of Polish groups, and is
thus an open map (see e.g., [2]). Using the short exact sequence (17), we
conclude that G/H is isomorphic to Z and is in particular locally compact.
To show that G is locally compact, it thus suffices (see [18, Theorem 5.25])
to show that H is locally compact.

Since G2 is already compact, it suffices to show that G2 is an open sub-
group of H, or equivalently that every sequence (0, Fn) in H converging to
the identity lies in G2 for n large enough. By the Conze–Lesigne equation
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(14), the Fn obey the equation

(18) dFn + cn = 0

for some cn ∈ Hom(Z,K), so for each ξ ∈ K̂ we have

(19) e(ξ(Fn)) ◦ S γ = e(ξ(cn(γ))e(ξ(Fn))

almost everywhere for all n and all γ ∈ Γ, where S denotes the rotation
action on Z. By the preceding discussion, Fn converges in measure to zero,
so for any fixed ξ ∈ K̂, e(ξ(Fn)) converges in measure to 1. In particular,
for n large enough, e(ξ(Fn)) has zero mean. Integrating (19), we conclude
that ξ(cn(γ)) = 0 for sufficiently large n and all γ ∈ Γ. Since K̂ is finitely
generated, we conclude that cn = 0 for all sufficiently large n. Thus by
(18), for all sufficiently large n, Fn is Γ-invariant, and therefore constant by
ergodicity. In other words, (0, Fn) lies in G2, giving the claim. �

Note that as G is locally compact and nilpotent, it is unimodular. It re-
mains to show that X is abstractly isomorphic to a translational Γ-system
G/Λ for some lattice Λ in G, with Λ ∩ G2 a lattice in G2. If G acted con-
cretely (or better yet, continuously) on X, one could hope to proceed here
by showing that the action of G on X was transitive, and take Λ to be the
stabilizer of a point. Unfortunately, the action of G that we have on X is
only an abstract action. To resolve this we use the Koopman topological
model X̂ = (X̂, ·) of the abstract G-system X constructed in Theorem A.4,
where we will use g : x̂ 7→ gx̂ to denote the G-action on this model. By
Lemma A.6, it now suffices to establish the following claims:

(iv) For any x̂1, x̂2 ∈ X̂, there exists g ∈ G such that gx̂1 = x̂2.
(v) For some x̂0 ∈ X̂, the stabilizer Λ B {g ∈ G : gx̂0 = x̂0} is a lattice

in G, Λ ∩G2 is trivial (and hence a lattice in G2), with Λ abelian.

Indeed, Lemma A.6 will then guarantee that X is abstractly isomorphic
as a G-system to the translational G-system G/Λ, and then by applying the
group homomorphism φ : Γ → G we see that X and G/Λ are abstractly
isomorphic as Γ-systems as well.

We begin with (iv). Observe from (15) (and the continuity of the projec-
tion from G to Z) that any continuous function f ∈ C(Z) on Z pulls back to a
G-continuous function (z, k) 7→ f (z) on X, where the notion of G-continuity
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was defined in Theorem A.4. Thus we have a tracial C∗-algebra homo-
morphism from C(Z) to the algebra A of G-continuous functions, which
preserves the G-action (letting (u, F) act on Z by translation by u). By
Gelfand–Riesz duality (see [27, Theorem 5.11]) and Theorem A.4, we thus
have a continuous factor map π̂ : X̂ → Z of compact G-systems. Because
the projection of G to Z is surjective, the (continuous) action of G on Z is
transitive. Thus to establish the transitivity property (iv), it suffices to do so
in a single fiber of π̂, that is to say we may assume without loss of generality
that π̂(x̂1) = π̂(x̂2).

It suffices to establish transitivity of the G2-action on fibers of π̂, that is
to say that under the hypothesis π̂(x̂1) = π̂(x̂2) there exists k ∈ K such that
(0, k)x̂1 = x̂2. We now repeat the arguments from [23, §19.3.3, Lemma 10].
Suppose for contradiction that the G2-orbit of x̂1 does not contain x̂2, then
by continuity we can find an open neighborhood U of x̂1 in X̂ such that x̂2

does not lie in the G2-orbit {(0, k)x̂ : x̂ ∈ U; k ∈ K} of U. By Urysohn’s
lemma, we can find a non-negative function f ∈ C(X̂) supported on U that
is positive at x̂1; the averaged function

f (x̂) B
∫

K
f ((0, k)x̂) dk,

with dk the Haar probability measure on K, is then a G2-invariant function
in C(X̂) that is non-zero at x̂1 but vanishes at x̂2. By construction of the
Koopman model, f can then be identified with a G-continuous function in
L∞(X) which is also G2-invariant, and hence arises from a G-continuous
function on Z thanks to (15). But as the projection from G to Z is surjective,
the G-continuous functions on Z can be identified with the ordinary contin-
uous functions on Z, thus f can be identified with an element of C(Z). But
as x̂1, x̂2 lie in the same fiber of π̂ we must then have f (x̂1) = f (x̂2), giving
the required contradiction. This establishes the transitivity property (iv).

As a corollary of this transitivity and the faithfulness of the G action, we
see (cf., [23, §19.3.3, Lemma 11]) that the central G2 action must be free,
since if (0, k)x̂ = x̂ for some k ∈ K and x̂ ∈ X̂, then by transitivity and
centrality the action of (0, k) on X̂ would be trivial, hence k = 0. Thus if we
let Λ be a stabilizer of a point x̂0 in G, then Λ∩G2 is trivial and thus clearly
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a lattice in the compact group G2. Since [Λ,Λ] is contained in both Λ and
[G,G] ⊂ G2, it must be trivial, hence Λ is abelian.

To complete the verification of (v) we need to show that the stabilizer
group Λ is a lattice in G. Since the G-action on X̂ projects down to the G-
action on Z, the stabilizer group Λ must be contained in the kernel H of the
projection from G to Z. On the other hand, as G2 is an open subgroup of H
and Λ∩G2 is trivial, we conclude that Λ is discrete. Also, by the transitivity
of the G2 action on fibers of π (which are preserved by the action of H)
we see that Λ must intersect every coset of G2 in H. Thus the quotient
H/Λ is homeomorphic to G2 and thus compact. Since G/H ≡ Z is also
compact, the projection from G to Z is open, and G is locally compact, G/Λ
is also compact13, so Λ is a lattice as required. This concludes the proof of
Proposition 4.4, and hence Theorem 1.7 once we establish Proposition 4.3.

Remark 4.6. The above arguments can also establish an isomorphism H ≡
K × Λ of topological groups; we leave the details to the interested reader.

Remark 4.7. In the model case where Z is the Kronecker factor of Z oρ K,
we can upgrade the inclusion [G,G] ⊂ G2 in the above construction to
[G,G] = G2 (where by [G,G] we denote the closed group generated by
the commutators). We sketch the proof as follows. Suppose this claim
failed, then by Pontryagin duality there exists a character ξ ∈ Ĝ2 ≡ K̂ that
annihilates [G,G]. For any z ∈ Z, let Fz, cz be a solution to the Conze–
Lesigne equation (3). Then (z, Fz), φ(γ) = (φZ(γ), ργ) both lie in G, and
by (16) their commutator is (0, cz(γ)) ∈ G2, thus cz(γ) is annihilated by ξ.
Applying ξ to the Conze–Lesigne equation (3), we conclude that ∂Vz(ξ ◦ ρ)
is a (Z,T)-coboundary for every z ∈ Z. If we let π : K → K/[G,G] be
the quotient homomorphism (identifying [G,G] ≤ G2 with a subgroup of
K in the obvious fashion), we conclude from the Moore–Schmidt theorem
(Proposition 2.4(i)) that ∂Vz(π ◦ ρ) is a (Z,K/[G,G])-coboundary for every
z. By a variant of Proposition 3.1, this implies that π ◦ ρ is of type 1, and
hence (by a variant of Theorem 1.10) Z oπ◦ρ K/[G,G] is of order 1, i.e., a

13Indeed, the local compactness of G, the open nature of the projection, and the com-
pactness of G/H gives an inclusion G ⊂ FH for some compact F, and the compactness of
H/Λ gives an inclusion H ⊂ F′Λ for some compact F′, thus G ⊂ FF′Λ and hence G/Λ is
compact.
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Kronecker system. Thus Z is not the maximal rotational factor of Z oρ K,
giving the required contradiction.

4.3. Joinings of good systems. Finally, we supply the proof of Proposition
4.3. It suffices to establish the following claim (cf. [23, §11.2.3, Corollary
10]):

Proposition 4.8 (Measure classification on good systems). Let G/Λ be a
(possibly non-ergodic) good system. If ν is an Γ-invariant ergodic mea-
sure on G/Λ, then G/Λ equipped with ν is abstractly isomorphic to a good
system.

Indeed, suppose that an (abstract) Γ-system X had two good factors,
which we write without loss of generality as G1/Λ1 and G2/Λ2. The abstract
factor maps give pullback maps from C(G1/Λ1) and C(G2/Λ2) to L∞(X),
which by the Stone–Weierstrass theorem gives a pullback map from C(G1×

G2/Λ1×Λ2) to L∞(X) which one can verify to be a C∗-homomorphism. The
integral on X then induces a trace on C(G1 × G2/Λ1 × Λ2), which by the
Riesz representation theorem gives a measure ν on G1×G2/Λ1×Λ2 (in fact
it gives a joining of G1/Λ1 and G2/Λ2). By construction, G1 ×G2/Λ1 × Λ2

equipped with ν is an ergodic Γ-system that is a factor of X, and has G1/Λ1

and G2/Λ2 as factors in turn. By Proposition 4.8, this factor is a good factor,
giving Proposition 4.3.

It remains to establish Proposition 4.8. This turns out to be a straightfor-
ward consequence of the implications regarding Conze–Lesigne systems
that we have already established. By lifting Γ to a torsion-free group as
before, we may assume without loss of generality that Γ is torsion-free. By
Proposition 4.1, the translational Γ-system G/Λ is abstractly isomorphic to
a group extension Z oρ K for some (possibly non-ergodic) separable ro-
tational system Z, some compact abelian Lie group K, and some cocycle
ρ obeying the Conze–Lesigne equation, except that the measure ν is not
necessarily equal to the product measure on Z oρ K. An inspection of the
construction shows that the cocycle equation (2) holds everywhere (not just
almost everywhere), and similarly for the Conze–Lesigne equation. Thus
this group extension Z oρ K (which by abuse of notation we also equip with



39

the measure ν) is well-defined as a concrete Γ-system, not just an abstract
one.

The ergodic measure ν on Z oρ K pushes down to an ergodic measure νZ

on Z, which is invariant under a translational action φZ of Γ on Z. A standard
Fourier-analytic computation then shows that νZ must be Haar measure of
a coset of some closed subgroup Z′ of Z (indeed, Z′ is the closure of φZ(Γ)
in Z). Applying a translation, we may assume without loss of generality
that the coset of Z′ is just Z′ itself. The ergodic measure ν is then sup-
ported on a subsystem Z′ oρ′ K of Z oρ K, where ρ′ is the restriction of ρ
to Z′. Since ρ obeys the cocycle and Conze–Lesigne equations everywhere
(not just almost everywhere), the same is true for ρ′; that is to say, ρ′ is a
(Z′,K)-cocycle that obeys the Conze–Lesigne equation. By Theorem 1.10,
the (Z′,K)-cocycle ρ′ is of type 2.

By construction, the ergodic measure ν on Z′ oρ′ K pushes down to the
Haar measure on Z′. By the Mackey–Zimmer theorem (Theorem 1.2(iii)),
there is a closed subgroup H of K and an ergodic (Z′,H)-cocycle ρ′′ such
that ρ′′ is (Z′,K)-cohomologous to ρ′, and Z′ oρ′ K equipped with the mea-
sure ν is abstractly isomorphic to Z′ oρ′′ H equipped with product mea-
sure. Since the (Z′,K)-cocycle ρ′ is of type 2, the (Z′,K)-cohomologous
cocycle ρ′′ is of type 2 when viewed as a (Z′,K)-cocycle, thus ∆[2]ρ′′ is a
((Z′)[2],K)-coboundary. As ∆[2]ρ′′ is also a ((Z′)[2],H)-cocycle, we see from
the Moore–Schmidt theorem (Proposition 2.4(i)) that ∆[2]ρ′′ is a ((Z′)[2],H)-
coboundary (note from Pontryagin duality that every character on H extends
(not necessarily uniquely) to a character on K). Thus ρ′′ is also of type 2
when viewed as a (Z′,H)-cocycle.

Since K is a compact abelian Lie group, the closed subgroup H is also a
compact abelian Lie group. Applying Theorem 1.10 again, we see that ρ′′

obeys the Conze–Lesigne equation. Applying Proposition 4.4 (which did
not require the use of Proposition 4.3 in its proof), we conclude that Z′oρ′′H
is a good system. Since this system is isomorphic to G/Λ equipped with the
measure ν, the claim follows.

Remark 4.9. It is of interest to ask whether results such as Proposition 4.3
or Proposition 4.8 can be established directly from the theory of nilpotent
translational systems, without having to use the implications in Theorem
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1.10, Proposition 4.1, or Proposition 4.4. In the case of nilsystems this was
accomplished in [23, §13.3.2, Proposition 16], but the arguments there rely
heavily on the finite dimensionality of such systems.

5. Some examples of Conze–Lesigne systems

In this section we give some examples of Conze–Lesigne systems (in
even, odd, and zero characteristic respectively) to illustrate the main theo-
rems.

5.1. First example: an extension of a characteristic two rotational sys-
tem. Let Γ B Fω2 be the countably generated vector space over F2, and
let Z B FN2 be the countable product of F2 equipped with Haar probability
measure ν = µFN2 , and let S : Γ→ Aut(Z, ν) be the Γ-rotation S γ(z) B z + γ

(using the obvious identification of Γ with a subgroup of Z). By the mean
ergodic theorem, the projection of any f ∈ L∞(Z) depending only on finitely
many coordinates onto the invariant subspace of L2(Z) is constant. The span
of these functions is dense in L2(Z). Hence (Z, ν, S ) is an ergodic separable
Γ-rotational system.

Let K B Z/4Z be the cyclic group of order 4, and let ρ = (ργ)γ∈Γ be the
(Z,K)-cocycle

(20) ργ(z) B
∑
n∈N

(−1)zn1γn=1,

where we define

(−1)x =

1, x = 0,
−1, x = 1,

and 1γn=1 similarly equals 1 when γn = 1 and 0 otherwise. It is easy to
verify that ρ is a (Z,K)-cocycle. We have the following further properties:

Proposition 5.1 (Properties of ρ).

(i) ρ is ergodic.
(ii) ρ is of type 2.

(iii) ρ obeys the Conze–Lesigne equation.

Proof. We begin with (i). By Proposition 2.4(ii), it suffices to show that
ξ ◦ ρ is not a (Z,T)-coboundary for any non-zero ξ ∈ K̂. Since the character
x 7→ x

2 mod 1 of K is a multiple of any non-zero ξ ∈ K̂, it suffices to verify
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the claim for this specific character. Suppose for contradiction that 1
2 ◦ ρ

mod 1 is a coboundary, thus there exists F ∈ M(Z,T) such that

(21)
1
2
ργ = F ◦ Vγ − F mod 1

ν-almost everywhere for all γ. In particular we have

F(z + en) = F(z) +
1
2

mod 1

for any generator en of Γ = Fω2 . But by Lusin’s theorem, F(z+en) converges
in measure to F(z) as n→ ∞, giving a contradiction.

Now we verify (ii). As observed in [22, §3.2] (see also [23, §8.1.2]), Z[2]

can be viewed as a translational system on the compact group

Z[2] = {(z, z + s1, z + s2, z + s1 + s2) : z, s1, s2 ∈ Z},

with each γ ∈ Γ acting by translation by (γ, γ, γ, γ). Thus we need to locate
a measurable function F : Z[2] → T such that

ργ(z) − ργ(z + s1) − ργ(z + s2) + ργ(z + s1 + s2)

= F(z + γ, z + s1 + γ, z + s2 + γ, z + s1 + s2 + γ) − F(z, z + s1, z + s2, z + s1 + s2)

(22)

for all γ ∈ Γ and ν-almost all z, s1, s2. But the left-hand side expands as∑
n∈N

(−1)zn(1 − (−1)s1,n)(1 − (−1)s2,n)1γn=1,

and in the group K = Z/4Z, the product (1 − (−1)s1,n)(1 − (−1)s2,n) always
vanishes. Thus we may simply take F = 0 to verify that ρ is of type 2.

Finally, we establish (iii). We need to show that for each z ∈ Z, there
exists Fz ∈ M(Z,K) and cz ∈ Hom(Γ,K) such that ∂Vzρ = dFz + cz, or in
other words that

(23) ργ(w + z) − ργ(w) = Fz(w + γ) − Fz(w) + cz(γ)

for all γ ∈ Γ and ν-almost all w ∈ Z. But the left-hand side expands as∑
n∈N

(−1)wn((−1)zn − 1)1γn=1,

and in the cyclic group K = Z/4Z, (−1)wn((−1)zn − 1) is equal to (−1)zn − 1.
Thus we can solve the Conze–Lesigne equation by setting Fz B 0 and

cz(γ) B
∑
n∈N

((−1)zn − 1)1γn=1

which one easily verifies to be a homomorphism from Γ to K. �
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By the above proposition and Theorem 1.10, Z oρ K is an (ergodic, sep-
arable) Conze–Lesigne Γ-system. Now we compute its Host–Kra group G.
By definition, this is the set of all pairs (u, F), where u ∈ Z and F ∈ M(Z,K)
obeys the Conze–Lesigne equation

∂Vuρ = dF + c

for some homomorphism c ∈ Hom(Γ,K). By the proof of Proposition
5.1(iii), ∂Vuργ is constant, thus (dF)γ is constant for each γ ∈ Γ. In par-
ticular, for each natural number n, there must be a constant cn ∈ K such
that

(24) F(z + en) − F(z) = cn

for almost all z ∈ Z. Shifting z by en and summing in the characteristic two
group Z, we conclude that 2cn = 0, thus cn is either equal to 0 or 2. On the
other hand, F(·+ en) converges in measure to F, hence all but finitely many
of the cn vanish. From this we conclude that F must take the form

F(z) = θ +
∑
n∈N

(−1)zn1σn=1

almost everywhere for some θ ∈ K and σ ∈ Γ, which are uniquely deter-
mined by F. Thus, by abuse of notation, we can write the Host-Kra group
G as the collection of triples (u, θ, σ) ∈ Z ×K ×Γ, and one can calculate the
group law to be

(u, θ, σ)(u′, θ′, σ′) B

u + u′, θ + θ′ +
∑
n∈N

((−1)u′n + 1)1γn=1, σ + σ′


and inverse

(u, θ, σ)−1 =

u, θ +
∑
n∈N

((−1)un − 1)1σn=1, σ

 .
This group acts transitively (and continuously) on Z × K by the formula

(u, θ, σ)(z, k) B

z + u, k + θ +
∑
n∈N

(−1)zn1σn=1


and the stabiliser Λ of the point (0, 0) is

Λ B


0,−∑

n∈N

(−1)zn1σn=1, σ

 : σ ∈ Γ

 .
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One can check that the strong operator topology on G corresponds to the
product topology on Z × K × Γ (viewing K,Γ as discrete groups), so that
G is a second countable locally compact Polish group, Λ is a lattice in G,
and Z × K is isomorphic (as a compact Γ-space) to G/Λ, with the action of
a group element γ ∈ Γ on G/Λ given by multiplication by (γ, 0, γ). If one
defines the subgroup G2 of G by

G2 B {(0, θ, 0) : θ ∈ K}

then G2 is a closed central subgroup of G that contains14 [G,G], and hence
G is nilpotent of class two; also Λ ∩ G2 is trivial and thus a lattice in the
compact group G2. One can now verify that Theorem 1.7 holds for this
example.

As Z is a rotational system, it is contained in the Kronecker factor of
Z oρ K, thanks to Theorem 1.3. However, the Kronecker factor turns out to
be slightly larger than this:

Proposition 5.2. The Kronecker factor of Z oρ K is Z o2ρ 2K, where 2K =

2Z/4Z is a cyclic group of order 2, with factor map (z, k) 7→ (z, 2k).

Proof. Observe that the action of a group element γ on Z o2ρ 2K is given
by translation in the group Z × 2K by (γ, 2

∑
n∈N 1γn=1). Thus Z o2ρ 2K is a

translational Γ-system and thus contained in the Kronecker factor.
To establish the converse claim, observe from Theorem 1.3, Proposition

1.2, and Pontryagin duality that the factor algebra of the Kronecker factor
is generated by eigenfunctions of the Γ-action, that is to say functions f ∈
L∞(Z oρ K) such that

(25) f ◦ T γ = λγ f

almost everywhere for all γ ∈ Γ and some λγ ∈ C (which must lie in S 1

by unitarity). Since the Γ-action on Z oρ K commutes with the abelian K-
action, we see on applying a Fourier decomposition with respect to the K
variable that we can restrict attention to eigenfunctions of the form

(26) f (z, k) = F(z)e(mk/4)

14In fact [G,G] is strictly smaller than G2, consisting only of those triples (0, θ, 0) where
θ is a multiple of two; we leave the verification of this fact to the interested reader. Compare
also with Remark 4.2.
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for some m = 0, 1, 2, 3 and some F ∈ L∞(Z). The eigenfunctions with even
m already are measurable in the factor Z ×ρ K, so it suffices to show that
there are no non-trivial eigenfunctions of the form (26) with m odd. The
function |F| is Γ-invariant, thus constant by ergodicity; we may normalize
|F| = 1. Applying the eigenfunction equation (25) with γ = en we see after
some calculation that

F(z + en) = λene(−m(−1)zn/4)F(z)

for almost all z ∈ Z. As m is odd, direct calculation then shows that ‖F(· +
en) − F‖L2(Z) is bounded away from zero. But F(· + en) converges strongly
to F in L2(Z), giving the required contradiction. �

Remark 5.3. One can view Z oρ K as a group extension of the Kronecker
factor Z o2ρ 2K by a suitable (Z o2ρ 2K,K/2K)-valued cocycle and obtain
analogues of Proposition 5.1 for that cocycle; we leave the details to the in-
terested reader. One can also obtain higher order variants of this construc-
tion by replacing the cyclic group Z/4Z with larger cyclic groups Z/2kZ,
or even with the 2-adic group Z2 to create larger systems Z oρk Z/2

kZ and
Z oρ∞ Z2,with the cocycles ρk, ρ∞ defined as in (20) but taking values now
in Z/2kZ or Z2 rather than Z/4Z. One can then show that for any k ≥ 1, the
kth Host–Kra–Ziegler factor Zk(Z oρ∞ Z2) is isomorphic to Z oρk Z/2

kZ; we
leave the details of this computation to the interested reader. Note that the
previous calculations are consistent with the k = 1, 2 cases of this assertion.

5.2. Second example: a system associated to a bilinear form in odd
characteristic. Let p be an odd prime, Γ B Fωp , Z B FNp , ν B µFNp its Haar
measure, and B : Γ×Γ→ Fp the standard bilinear form B(γ, γ′) B

∑
n γnγ

′
n.

We define the rotational Γ-system Z = (Z, ν, S ) where S : Γ → Aut(Z, ν)
is the Γ-rotation S γ(zn) B (zn + 2γn). Since {2γ : γ ∈ Γ} is dense in Z
(identifying Γ with a subgroup of Z), the rotational Γ-system Z is ergodic.
Let K = Fp and ρ = (ργ)γ∈Γ be the (Z,K)-cocycle

(27) ργ(z) B
∑
n∈N

znγn + B(γ, γ)

It is not difficult to verify that this is indeed a (Z,K)-cocycle.
We claim that ρ obeys the properties stated in Proposition 5.1. We begin

with ergodicity. If this cocycle was not ergodic, then by repeating the proof
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of Proposition 5.1(i) we could find F ∈ M(Z,T) such that

1
p
ργ = F ◦ Vγ − F mod 1

ν-almost everywhere for all γ. In particular

F(z + en) = F(z) +
zn + 1

p
mod 1

for any generator en of Fωp , and this again contradicts Lusin’s theorem.
To see that ρ is a type 2 cocycle, we can directly verify that (22) holds

(with γ replaced by 2γ on the right-hand side) with F ≡ 0. Similarly, to
verify the Conze–Lesigne equation, direct calculation shows that (23) holds
with Fz ≡ 0 and cz(γ) B

∑
n∈N znγn.

A modification of the proof of Proposition 5.2 (relying on the assumption
that p is prime) reveals that Z is the Kronecker factor of ZoρK; we leave the
details to the interested reader. We also can compute the Host–Kra group
similarly to the previous example. Indeed, following similar computations,
we find that if (u, F) ∈ G, then

F(z) = θ +
∑
n∈N

znσn

almost surely for some θ ∈ K and σ ∈ Γ = Fωp . A difference to the previous
example is that these F correspond to the eigenfunctions of the Kronecker
factor Z. Proceeding as with the previous example, we can then identify G
with the set of all triples (u, θ, σ) ∈ Z × K × Γ endowed with the group law

(u, θ, σ)(u′, θ′, σ′) = (u + u′, θ + θ′ +
∑
n∈N

unσn, σ + σ′)

The remaining analysis can be carried out analogously to the previous ex-
ample, and we leave it to the interested reader.

5.3. Third example: a system associated to a bilinear form in charac-
teristic zero. We now present a “characteristic zero” variant of the previous
example, which is a standard skew-shift system. Let Γ = Z, K = Z = T

both equipped with Lebesgue measure, and α ∈ T be irrational. We equip
Z with the rotational Γ-system z 7→ z + 2α, and denote the resulting system
by Z. For n ∈ Z, let ρn : T → T be defined by ρn(z) = zn + αn2. Then
ρ = (ρn)n∈Z is a (Z,K)-cocycle. Now form the skew product X = Z oρ K.
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As 2α is an irrational rotation, Z is an ergodic Γ-rotational system. By irra-
tionality of α and the definition of ρ, we conclude that Z is the Kronecker
factor of X. For x = (0, 0) ∈ T2, we put x(n) B T n

ρ (x) = (2αn, αn2). By
Weyl’s equidistribution theorem (e.g., see [37, Corollary 1.1.9]), (x(n))n∈Z

is asymptotically equidistributed in T2 with respect to Haar measure. Thus
X is an ergodic Γ-system. The cocycle ρ satisfies the type 2 condition (22)
with F ≡ 0, and the Conze-Lesigne equation (23) with cu(n) B nu mod 1
for all n ∈ Γ and u ∈ Z. All eigenvalues of (Z, 2α) are of the form 2αm for
m ∈ Z. Therefore, we can identify the Host-Kra group G of X with the set
of all triples (u, θ,m) ∈ Z × K × Γ with group law

(u, θ,m)(u′, θ′,m′) B (u + u′, θ + θ′ + u,m + m′)

and inverse

(u, θ,m)−1 B (−u,−θ − u,−m)

We observe that G acts continuously and transitively on Z × K by

(u, θ,m) · (z, k) = (z + u, k + θ + mz).

The stabilizer of x = (0, 0) ∈ Z × K is just

Λ = {(0, 0,m) ∈ m ∈ Z}

We define

G2 B [G,G] = {(0, k, 0) ∈ k ∈ K}

Finally, define the translation φ : Z → G by φ(n) B (2αn, αn2, n). One now
verifies that Theorem 1.7 holds for this example as well.

Remark 5.4. The last two examples can be unified into a class of examples
of Conze–Lesigne systems which we sketch in the following. Let Γ be a
countable abelian group, U be a compact abelian group, and B : Γ× Γ→ U
be a symmetric bilinear form. Let Z = Hom(Γ,U) (which is a compact
abelian group equipped with Haar measure), and let X be the set of quadratic
functions x : Γ → U defined by x(γ) = B(γ, γ) + z(γ) + c for some z ∈ Z
and c ∈ U. We can identify X with Z ×U and equip X with product of Haar
measures. We let Γ act on X by

(γ · x)(γ′) B B(γ + γ′, γ + γ′) + z(γ + γ′) + c.
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This extends a translational action on Z defined by

(γ · z)(γ′) B z(γ) + 2B(γ, γ′)

using the (Z,U)-cocycle

ργ(z) B B(γ, γ) + z(γ).

Under a suitable genericity hypothesis15, these actions are ergodic. The ver-
ifications of the type 2 property (22) and Conze–Lesigne equation (23) for
ρ proceed similarly to before, and one can express this system as a transla-
tional system G/Λ with G the Host–Kra group. We leave the details to the
interested reader.

Remark 5.5. In all of the above examples, the Host–Kra group G ends up
being a semi-direct product of Z and K × Λ. However, this need not be
the case in general, particularly when the cocycle ρ is not of a polynomial
nature. Suppose for instance we take the Heisenberg nilsystem G/Λ with
Γ B Z,

G B

1 R R/Z
0 1 R
0 0 1

 ; Λ B

1 Z 0
0 1 Z
0 0 1


with the group action φ : Γ→ G given by

(28) φ(n) B

1 nα n(n−1)
2 αβ mod 1

0 1 nβ
0 0 1


for some real numbers α, β with 1, α, β linearly independent over the ratio-
nals. The Kronecker factor Z can be identified with the two-torus (R/Z)2

with translation map S n : (x, y) 7→ (x + nα, y + nβ), and by following the
construction in Section 4.1 with the section s : Z → G/Λ defined by

s(x, y) B

1 {x} 0
0 1 {y}
0 0 1


with x 7→ {x} the fractional part map from R/Z to [0, 1), we can calculate
the cocycle (Z,K)-cocycle ρ (with K = R/Z) to be

ρn(x, y) =
n(n − 1)

2
αβ + nα{y} − (x + nα)({y} + nβ − {y + nβ}) mod 1.

15It appears tentatively that the correct genericity hypothesis to make here is that there
does not exist a finite index subgroup Γ′ of Γ and a non-trivial character ξ ∈ Û such that
ξ ◦ B vanishes on Γ′ × Γ′, although we will not establish this here.



48 A. JAMNESHAN, O. SHALOM, AND T. TAO

Here the Host–Kra group G is not the semi-direct product of Z and K × Λ;
instead we have a non-split short exact sequence

0→ H → G → Z → 0

with

H B

1 Z R/Z
0 1 Z
0 0 1

 ≡ K × Λ.

Remark 5.6 (Rudolph’s example). 16 Let α, β be as in the previous example.
One can take an inverse limit of the Z-nilsystems1 R R/2NZ

0 1 R
0 0 1

 /
1 2NZ 0
0 1 Z
0 0 1


as N → ∞, using the translation action (28) for each N, to obtain a Conze–
Lesigne system that was shown by Rudolph [33] to not be expressible as a
nilpotent translational Z-system of nilpotency class two. It can be expressed
as an abelian extension Z oρ K, where the Kronecker factor Z is given by
Z B S 2 × R/Z, with S 2 is the 2-adic solenoid group formed as the inverse
limit of the R/2NZ, and with the translation action n 7→ (nα, nβ), K B S 2 is
another copy of the solenoid group, and the (Z,K)-cocycle ρ is given by

ρn(x, y) B
n(n − 1)

2
αβ + nα{y} − (x + nα)({y} + nβ − {y + nβ})

(where we embed R into S 2 in the obvious fashion) for n ∈ Z, x ∈ S 2,
y ∈ R/Z, noting that the product in the last term is well-defined since
{y} + nβ − {y + nβ} is an integer. This cocycle is ergodic and of type 2
but does not obey the Conze–Lesigne equation, mainly because there are
too few continuous homomorphisms17 from Z to K; this does not contradict
Theorem 1.11 because K is not a Lie group. On the other hand, the system
Z oρ K can be expressed as a double coset system1 0 0

0 1 {0} × Z2

0 0 1

 \
1 R × Z2 R × Z2

0 1 R × Z2

0 0 1

 /
1 ∆(Z) ∆(Z)
0 1 ∆(Z)
0 0 1


16This reformulation of Rudolph’s example was communicated to us by Yonatan

Gutman.
17In particular, there are no non-trivial continuous homomorphisms from T to S 2.
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where the 2-adic group Z2 is the inverse limit of Z/2NZ and ∆ is the diagonal
embedding of Z into R × Z2; see [36].

Appendix A. Concrete and abstract measure theory

In this appendix we review the notational conventions we will use for
various types of probability spaces, and measure-preserving actions on such
spaces. It will be convenient to use some of the category theoretic formalism
from [27], although we will not make heavy use of category-theoretic tools
in this paper.

A.1. Forgetful functors. We begin with a general convention concerning
“casting functors” from [27], although in this paper we will refer to these
functors as “forgetful functors” instead.

We will deem a number of functors18

C C0

from one category C to another C0 to be “forgetful functors”, which intu-
itively would take an C-object X or a C-morphism f : X → Y and “forget”
some of its structure to return a C0-object XC0 or a C0-morphism fC0 : XC0 →

YC0 . We always consider the identity functor to be forgetful, and the com-
position of two forgetful functors to be forgetful19; for instance if we have
two forgetful functors

C1 C2 C3

then we have XC3 = (XC2)C3 for any C1-object X.
Given a pair of forgetful functors

C1 C0 C2

we say that a C1-object X1 and a C2-object X2 are C0-isomorphic if there
is a C0-isomorphism between (X1)C0 and (X2)C0 . Similarly, a C1-morphism
f1 : X1 → Y1 and a C2-morphism f2 : X2 → Y2 are C0-equivalent if X1, X2

areC0-isomorphic, Y1,Y2 areC0-isomorphic, and theC0-morphisms ( f1)C0 : (X1)C0 →

(Y1)C0 , ( f2)C0 : (X2)C0 → (Y2)C0 agree after composing with theseC0-isomorphisms.
If a C1-object X1 is C0-isomorphic to a C0-object X′, we call X1 a C1-model

18All functors in this paper will be covariant.
19This convention will be unambiguous because all of our forgetful functors will com-

mute with each other.
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of X′; similarly, if a C1-morphism f1 : X1 → Y1 is C0-equivalent to a C0-
morphism f ′ : X′ → Y ′, we call f1 a C1-representation of f ′.

A.2. Probability spaces. In this paper we will work with three categories
CncPrb,PrbAlgop,CHPrb of probability spaces.

Definition A.1 (Categories of probability spaces). [27]

(i) A concrete probability space (or CncPrb-space) is a triple (X,X, µ),
where X is a set,X is a σ-algebra of subsets of X, and µ : X → [0, 1]
is a countably additive probability measure. A concrete probability-
preserving map (or CncPrb-morphism) f : (X,X, µ)→ (Y,Y, ν) be-
tween two CncPrb-spaces is a measurable map f : X → Y such that
µ( f −1(F)) = ν(F) for all F ∈ Y (that is to say, the pushforward f∗µ
of µ by f is equal to ν).

(ii) An opposite probability algebra (or PrbAlgop-space) is an object
of the form (X, µ)op, where X = (X,∨,∧, 0, 1, ·̄) is a σ-complete
Boolean algebra, and µ : X → [0, 1] is a countably additive proba-
bility measure on X such that µ(E) = 0 if and only if E = 0. The su-
perscript op is a formal placeholder that denotes use of the opposite
category. An abstract probability-preserving map (or PrbAlgop-
morphism) f : (X, µ)op → (Y, ν)op between two PrbAlgop-spaces is
a formal object of the form f = ( f ∗)op, where the pullback map
f ∗ : Y → X is a Boolean homomorphism that preserves count-
able joins20 (thus f ∗

∨∞
n=1 Fn =

∨∞
n=1 f ∗Fn for all Fn ∈ Y such that

µ( f ∗F) = ν(F) for all F ∈ Y).
(iii) A compact probability space (or CHPrb-space) is a quadruple (X,F ,X, µ),

where (X,F ) is a compact Hausdorff topological space, X is the
Baire21 σ-algebra (i.e., the topology generated by the continuous
functions from X to R), and µ is a countably additive probability

20Actually, the preservation of countable joins is automatic for Boolean homomor-
phisms between opposite probability algebras, and such algebras are in fact complete
Boolean algebras as opposed to merely being σ-complete, although we will not need these
(easily established) facts here.

21See [25, 27] for a discussion as to why the Baire σ-algebra is a more natural choice
than the Borel σ-algebra for compact Hausdorff spaces that are not necessarily metriz-
able, and similarly for why “compact Gδ inner regular in the Baire algebra” is the natural
definition of a Radon measure in this setting.
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measure which is Radon in the sense of [27, Definition 4.1], i.e.,
µ is compact Gδ inner regular in the Baire algebra. A continuous
probability-preserving map (or CHPrb-morphism) f : (X,F ,X, µ)→
(Y,G,Y, ν) between CHPrb-spaces is a continuous map which is
also a CncPrb-morphism.

It is easy to verify that CncPrb,PrbAlgop,CHPrb are indeed categories.
Inside these categories we isolate some “countable” objects:

(i) A concrete probability space (X,X, µ) is a Lebesgue space (or Lebesgue
for short) if the measurable space (X,X) is a standard Borel space,
that is to say one can endow X with the structure of a Polish space
such that X is the Borel σ-algebra.

(ii) An opposite probability algebra (X, µ)op is separable if theσ-complete
Boolean algebra X is countably generated.

(iii) A compact probability space (X,F ,X, µ) is metrizable if the topo-
logical space (X,F ) is metrizable (or equivalently by the Urysohn
metrization theorem, second countable).

There are obvious forgetful functors

CHPrb CncPrb PrbAlgop

between these categories, in which a CHPrb-space (X,F ,X, µ) is converted
to a CncPrb-space (X,F ,X, µ)CncPrb B (X,X, µ) by forgetting the topology
F , and a CncPrb-space (X,X, µ) is converted to an opposite probability
algebra (X,X, µ)PrbAlgop B (Xµ, µ)op by forming the probability algebra

Xµ B {[E] : E ∈ X}

where for each E ∈ X, the equivalence class [E] is defined as the collection
of sets equal modulo null sets to E, thus

[E] B {F ∈ X : µ(E∆F) = 0},

and by abuse of notation we define µ : Xµ → [0, 1] by requiring µ([E]) B
µ(E) for all E ∈ X. Morphisms are then also transformed in the obvious
fashion. It is not difficult to verify that these are indeed functors, and we
will adopt the forgetful functor conventions from Section A.1. We also
describe some of these conventions in plainer English:
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• If X is a compact or concrete probability space, we refer to the oppo-
site probability algebra XPrbAlgop as the abstraction22 of X. Similarly,
if f : X → Y is a continuous or concrete probability-preserving map,
we refer to the abstract probability-preserving map fPrbAlgop : XPrbAlgop →

YPrbAlgop as the abstraction of f .
• A CncPrb-model X̃ (resp. CHPrb-model X̂) of an opposite prob-

ability algebra X will be called a concrete model (resp. topolog-
ical model) of X. Similarly, a CncPrb-representation f̃ : X̃ → Ỹ
(resp. CHPrb-representation f̂ : X̂ → Ŷ) of an abstract probability-
preserving map f : X → Y will be called a concrete representation
(resp. continuous representation) of f .

Observe that if a compact probability space (X,F ,X, µ) is metrizable,
then the Baireσ-algebra coincides with the Borelσ-algebra and so the asso-
ciated concrete probability space (X,F ,X, µ)CncPrb is Lebesgue. Similarly,
if a concrete probability space (X,X, µ) is Lebesgue, then the associated op-
posite probability algebra (X,X, µ)PrbAlgop is separable. Thus the notions of
“countability” for the three categories CncPrb, PrbAlgop, CHPrb are all
compatible with each other. On the other hand, the converse implications
are false; it is entirely possible for a separable opposite probability algebra
to be modeled by a concrete probability space that is not Lebesgue, or a
compact probability space that is not metrizable.

If two concrete measure-preserving maps f , g : X → Y agree almost ev-
erywhere, then they are abstractly equal: fPrbAlgop = gPrbAlgop . However, if
the target space Y is not Lebesgue or Polish, the converse statement can
fail; see [25, Examples 5.1, 5.2]. Nevertheless the reader may wish to think
of “agreement almost everywhere” as a heuristic first approximation of the
concept of “abstract equality”.

It is natural to ask to what extent the above forgetful functors can be
inverted. In this regard we have the following results:

Proposition A.2 (Reversing the forgetful functors for probability spaces).

22More precisely this should be “abstraction modulo null sets”, as we are both abstract-
ing away the space X and quotienting out by the null ideal. Similarly for other uses of the
term “abstract” in this paper.
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(i) (Existence of concrete representations) [25, Proposition 3.2] If (X,X, µ),
(Y,Y, ν) are concrete probability spaces with (Y,Y, ν) Lebesgue,
then every abstract probability-preserving map f : (X,X, µ)PrbAlgop →

(Y,Y, ν)PrbAlgop has a concrete representation f̃ : (X,X, µ)→ (Y,Y, ν),
which is a concrete probability-preserving map that unique up to al-
most everywhere equivalence. Related to this, two concrete measur-
able maps from X to a Polish space Y agree abstractly if and only if
they agree almost everywhere.

(ii) (Cantor model) [13, Theorem 2.15] If π : (X, µ)op → (Y, ν)op is
an abstract probability-preserving map between separable oppo-
site probability algebras, then there exists a continuous represen-
tation π̂ : (X̂,F , X̂, µ̂) → (Ŷ ,G, Ŷ, ν̂) of π between compact metriz-
able probability spaces (in fact Cantor spaces).

(iii) (Canonical model) [27, Theorem 7.2] There exists a canonical model
functor (or Stone functor)

PrbAlgop CHPrbConc

that takes an opposite probability algebra (X, µ)op and constructs a
topological model Conc((X, µ)op), and similarly takes any abstract
probability-preserving map f : (X, µ)op → (Y, ν)op and constructs
(in a completely functorial and natural fashion) a continuous rep-
resentation Conc( f ) : Conc((X, µ)op)→ Conc((Y, ν)op).

We remark that the compact probability space Conc((X, µ)op) in Proposi-
tion A.2(iii) is constructed using either Gelfand duality or Stone duality and
is not metrizable in general, even when (X, µ)op is separable.

Given a concrete probability space (X,X, µ), we let L0(X,X, µ) denote
the space of measurable functions from X to C, quotiented out by almost
everywhere equivalence, and for 1 ≤ p ≤ ∞ we let Lp(X,X, µ) denote the
subspace of L0(X,X, µ) consisting of those (equivalence classes of) measur-
able functions which are pth power integrable (or essentially bounded, in the
p = ∞ case). For an opposite probability algebra (X, µ)op we can similarly
define L0((X, µ)op) and Lp((X, µ)op) by passing to a concrete or topological
model (for instance by using the canonical model functor Conc) and using
the previous construction; note that up to isomorphism, the precise choice
of model used is irrelevant. Note that L2((X, µ)op) is a Hilbert space and
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L∞((X, µ)op) is a tracial commutative von Neumann algebra (and hence also
a C∗-algebra), using the integral against µ as the trace.

A.3. Dynamics. Let Γ be an arbitrary group (not necessarily countable
or abelian); for this discussion we treat Γ as a discrete group, ignoring
any topological structure. Let C be one of the three categories CncPrb,
PrbAlgop, CHPrb. We define a CΓ-system to be a pair X = (X,T ), where
X is a C-space and T : Γ → AutC(X) is a group homomorphism of Γ to the
automorphism group AutC(X), that is to say the group of C-isomorphisms
from X to itself. A CΓ-morphism π : (X,T ) → (Y, S ) between two CΓ-
systems (X,T ), (Y, S ) is a C-morphism π : X → Y with the property that
one has the identity S γ ◦ π = π ◦ T γ of C-morphisms for all γ ∈ Γ. Prop-
erties defined for C-spaces are then also applicable to CΓ-systems in the
obvious fashion; for instance, a CncPrbΓ-system (X,T ) is Lebesgue if the
underlying CncPrb-space X is Lebesgue. We also adopt the following ter-
minology:

• CncPrbΓ-systems and CncPrbΓ-morphisms will be called concrete
Γ-systems and concrete factor maps respectively.
• PrbAlgop

Γ-systems and PrbAlgop
Γ-morphisms will be called ab-

stract Γ-systems and abstract factor maps respectively. Any two Γ-
systems will be called abstractly isomorphic if they are PrbAlgop

Γ-
isomorphic.
• CHPrbΓ-systems and CHPrbΓ-morphisms will be called compact

Γ-systems and continuous factor maps respectively.

The diagram of forgetful functors from the previous subsection can now
be enlarged to a commuting diagram

CHPrbΓ CncPrbΓ PrbAlgop
Γ

CHPrb CncPrb PrbAlgop

of forgetful functors in the obvious fashion. We adapt concepts such as
topological models, concrete representations, etc. to this dynamical setting;
for instance, a CHPrbΓ-model X̂ of a PrbAlgop

Γ-system X will be referred
to as a topological model of X.
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For us, one important source of an abstract Γ-system arises by starting
with a concrete probability space (X,X, µ) and equipping it with a near-
action23 of Γ, by which we mean a family of concrete measure-preserving
maps T γ : X → X for each γ ∈ Γ such that T 1(x) = x for µ-almost all
x ∈ X, and T γ1T γ2(x) = T γ1γ2(x) for all γ1, γ2 ∈ Γ and µ-almost all x ∈
X (with the obvious changes if the group Γ is written additively instead
of multiplicatively). This is not quite a concrete Γ-system because of the
possibility that the identities T 1(x) = x, T γ1T γ2(x) = T γ1γ2(x) fail on a null
set. However, by passing to the abstract setting we see that (T 1)PrbAlgop is
the identity and (T γ1)PrbAlgop(T γ2)PrbAlgop = T γ1γ2

PrbAlgop for all γ1, γ2 ∈ Γ, so the
near-action induces an abstract Γ-system ((X,X, µ)PrbAlgop , (T γ

PrbAlgop)γ∈Γ).
If one has an abstract factor map π : XPrbAlgop

Γ
→ YPrbAlgop

Γ
between two

(concrete, abstract, or compact) Γ-systems X,Y, we write Y ≤ X; this is
a partial order up to abstract isomorphism. This map generates a factor
algebra {π∗E : E ∈ Y} ⊂ X, where X, Y are the σ-complete boolean
algebras associated to X, Y respectively. A factor Y of an abstract Γ-system
X is said to be the inverse limit of a collection (Yα)α∈A of factors indexed
by a directed set A (with factor maps παβ : Yβ → Yα whenever α ≤ β that
all commute with each other and with the factor maps πα : Y → Yα in the
obvious fashion) if the factor algebra of Y is generated by the union of the
factor algebras of the Yα.

Again, we have some results concerning the extent to which the forgetful
functors can be inverted:

Proposition A.3 (Reversing the forgetful functors for systems). Let Γ be a
group.

(i) (Concrete representation) [13, Theorem 2.15(ii)] If Γ is countable,
X,X′ are concrete Lebesgue Γ-systems, and π : XPrbAlgop

Γ
→ X′PrbAlgop

Γ

is an isomorphism of abstract Γ-systems, then there exist full mea-
sure concrete sub-systems X0,X′0 of X,X′ (formed by deleting Γ-
invariant Borel null sets from both systems) and a concrete repre-
sentation π̃ : X0 → X′0 of π.

23Here we follow the notation of Zimmer [42].
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(ii) (Cantor representation) [13, Theorem 2.15(i)] If Γ is countable, and
π : X→ Y is an abstract factor map between abstract separable Γ-
systems, then there exists a continuous representation π̂ : X̂→ Ŷ of
π between compact metrizable Γ-systems (in fact Cantor systems).

(iii) (Canonical model) [27, Theorem 7.2] The canonical model functor
from Proposition A.2(iii) induces a commuting square of functors

PrbAlgop
Γ CHPrbΓ

PrbAlgop CHPrb

Conc

Conc

in the obvious fashion, such that if π : X → Y is an abstract factor
map between abstract Γ-systems, then the continuous factor map
Conc(π) : Conc(X) → Conc(Y) is a continuous representation of
π (and Conc(X), Conc(Y) are topological models of X,Y respec-
tively).

(iv) (Concrete representation, II) [42, Proposition 3.1], [32, Lemma 3.2]
If Γ is countable, X = (X,T ) is an abstract Γ-system, and X̃ is a
concrete Lebesgue model for X, then there exists a concrete model
X̃ = (X̃, T̃ ) of X.

A.4. Koopman models. We now construct a topological model X̂ that one
can associate to any PrbAlgop-space X that has an action of a locally com-
pact group G. This model is constructed via the Koopman action of G and
so we refer to this as the Koopman model of X; this generalizes the canon-
ical model Conc(X) discussed earlier, which corresponds to the case when
the group G is trivial. Our treatment is inspired by that in [23, §19.3.1],
[19]. By taking advantage of the general category theoretic dualities in
[27], we can avoid the need to impose any “countability” or “separability”
hypotheses on our spaces and groups.

Theorem A.4 (Koopman model). Let G be a group (not necessarily count-
able, discrete, or abelian), and let X = (X,T ) be an abstract G-system.
Assume the following axioms:

(i) The G-action is abstractly faithful in the sense that the Koopman
representation g 7→ Ug, which assigns to each g ∈ G, the unitary
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Koopman operator Ug : L2(X)→ L2(X) defined by

Ug( f ) B f ◦ T−1
g ,

is injective.
(ii) By (i), we can identify G with a subgroup of the unitary group of

L2(X), Endowing the latter with the strong operator topology, we
assume that G is locally compact.

Then there exists a topological model X̂ = (X̂, T̂ ) = (X̂,F , X̂, µ̂, T̂ ) of
X = (X,T ) (which we call the Koopman model of X) with the following
properties:

(a) All non-empty open sets in X̂ have positive measure.
(b) The action T̂ : G × X̂ → X̂ is jointly continuous in G and X̂ (as

opposed to merely being continuous in X̂ for each individual group
element g ∈ G).

(c) If f ∈ L∞(X) is G-continuous in the sense that the map g 7→ Ug( f )
is a continuous map from G to L∞(X), then f has a continuous rep-
resentative f̂ ∈ C(X̂) in X̂ (which is unique by property (a)).

Furthermore, the model X̂ is unique up to isomorphism of compact G-
systems.

Proof. We first establish uniqueness of the Koopman model X̂. Being a
topological model, we can identify L∞(X̂) with L∞(X) as a tracial commu-
tative C∗ algebra. There is an obvious tracial C∗-algebra homomorphism
from C(X̂) to L∞(X̂) ≡ L∞(X), which is injective from property (a). From
property (c), the image of this homomorphism contains all the G-continuous
functions; conversely, from property (b), every element of this image is G-
continuous. Thus as a tracial commutative C∗-algebra, C(X̂) (viewed as
a subalgebra of L∞(X)) is uniquely determined by the abstract G-system
X. The uniqueness of the model up to isomorphism then follows from the
Gelfand–Riesz duality (i.e., Gelfand duality combined with the Riesz rep-
resentation theorem) between CHPrb-spaces and tracial C∗-algebras; see
[27, Theorem 5.11].

We now reverse these steps to establish existence of the Koopman model.
LetA denote the space of G-continuous functions in L∞(X). This is clearly
a tracial commutative C∗-algebra. We claim that the closed unit ball of this
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algebra is dense in the closed unit ball of L∞(X) in the L2(X) topology. To
see this, fix a left-invariant Haar measure dg on G, let f be in the closed
unit ball of L∞(X), and consider the convolution

φ ∗ f B
∫

G
φ(g)Ug( f ) dg

of f with a continuous compactly supported function φ ∈ Cc(G). As G is
given the strong operator topology, it is easy to see that this integral is well-
defined and is G-continuous; also, by choosing φ to be a suitable approxi-
mation to the identity (non-negative, supported on a small neighborhood of
the identity, and of total mass one) and again using the fact that the topology
of G is given by the strong operator topology, one can ensure that φ ∗ f lies
in the closed unit ball of A and is arbitrarily close to f in L2(X); see [22,
§18.3.1, Lemma 7]. This establishes density.

By Gelfand–Riesz duality [27, Theorem 5.11], we can now construct a
CHPrb-space X̂ such that C(X̂) is isomorphic as a tracial commutative C∗-
algebra to A. Identifying these two algebras, we see that the L2(X̂) norm
on C(X̂) agrees with the L2(X) norm on A. In particular, every non-zero
element of C(X̂) has positive L2(X̂) norm (i.e., the trace is faithful), which
gives (a) by Urysohn’s lemma. As X̂ is equipped with a Radon measure,
C(X̂) is dense in L2(X̂), hence on taking L2 closures of unit balls we obtain
an identification of L∞(X̂) with L∞(X), which one can easily verify to be
an isomorphism of tracial commutative von Neumann algebras. From this
and the duality of categories between tracial commutative von Neumann
algebras and opposite probability algebras (see [27, Theorem 7.1]) we see
that X̂ is a topological model of X.

The claim (c) is clear from construction, so it remains to establish the
claim (b). By definition of a CHPrbG-system, the action T̂g : X̂ → X̂ as-
sociated to any group element g ∈ G is an element of the space C(X̂, X̂) of
continuous maps from X̂ to itself. We endow this space with the compact-
open topology. To prove joint continuity, it then suffices to show that the
map g 7→ T̂g is continuous from G to C(X̂, X̂). By the homomorphism prop-
erty of the group action, it suffices to show that for any net gα converging
to the identity in G, the maps T̂gα : X̂ → X̂ converge to the identity in the
compact-open topology. From the identification of C(X̂) with A we see
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that for any f ∈ C(X̂), f ◦ T̂gα converges uniformly to f , and the claim now
follows from Urysohn’s lemma. �

Remark A.5. Even when the original PrbAlgop-space X is separable, the
Koopman model X̂ need not be metrizable if the action of the group G is in-
sufficiently “transitive”. For instance if G is the trivial group then the Koop-
man model X̂ coincides with the canonical model Conc(X) from Proposition
A.2(iii) (basically because all elements of L∞(X) are G-continuous in this
case), which as previously remarked is almost never metrizable in practice.
However, if X is separable and G is “weakly transitive” in the sense that
the convolution operators f 7→ φ ∗ f used in the above proof map L2(X) to
L∞(X) for any φ ∈ Cc(G), then it is not difficult to show that the C∗-algebra
A is separable, and hence the Koopman model X̂ will be metrizable. This
weak transitivity property is not true for arbitrary groups G, but can be ver-
ified for the specific Host–Kra groups arising for instance in the proof of
Theorem 1.4; see the erratum to [23, Chapter 19] at [19] for more details.

For us, the main application of Koopman models is to enable one to iden-
tify abstract systems as translational systems. We formalize this using the
following lemma:

Lemma A.6 (Criterion for being isomorphic to a translational system). Let
G,X obey the axioms of Theorem A.4, and let X̂ = (X̂, T̂ ) be the Koopman
model. Let x̂0 be a point in X̂. Assume the following additional axioms:

(iii) G is unimodular.
(iv) The action of G on X̂ is transitive. That is to say, for any x̂1, x̂2 ∈ X̂,

there exists g ∈ G such that T̂ g x̂1 = x̂2.
(v) The stabilizer group Λ B {g ∈ G : T̂ g x̂0 = x̂0} is a lattice in G.

Then the Koopman model X̂ is isomorphic as a compact G-system to the
translational G-system G/Λ (with the obvious action of G). In particular,
the abstract G-system X is abstractly isomorphic to G/Λ.

Proof. By axiom (iv), we can form a bijection between G/Λ and X̂ by iden-
tifying any coset gΓ with T̂ gx0. From Theorem A.4(b) and axiom (v) this bi-
jection is continuous; since G/Λ and X̂ are both compact Hausdorff spaces,
this bijection is thus a homeomorphism, and so we may identify G/Λ and
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X̂ as compact Hausdorff spaces at least. By construction, the action of G on
both these spaces agree; by the uniqueness of Haar probability measure on
G/Λ (which is well-defined by axioms (iii), (v)) we conclude that the mea-
sure µ̂ on X̂ agrees with the Haar probability measure on G/Λ. The claim
follows. �

Appendix B. Measurable selection lemma

In this appendix we give a full proof of Proposition 3.1. The arguments
here can also be used to give a more detailed proof of [4, Lemma C.4]; we
leave this modification to the interested reader.

Let Γ,Y,U, hu be as in the proposition. For each u ∈ U, we introduce the
set

Ωu B {F ∈ M(Y,T) : hu − dF ∈ Γ̂},

then by hypothesis Ωu is non-empty for each u. Observe that each Ωu is a
coset of the group

E B {F ∈ M(Y,T) : dF ∈ Γ̂},

We introduce a countable dense sequence G1,G2, . . . in M(Y,T), and for
each u ∈ U, let nu be the first integer such that there exists Fu ∈ Ωu such
that ‖e(Fu) − e(Gnu)‖L2(Y) <

1
100 ; such an integer exists by density. Assume

for the moment that nu depends in a measurable fashion on u. By [4, Lemma
C.1], all the Fu that arise in the above fashion differ from each other by a
constant for fixed u. In particular, there is a unique Fu ∈ Ωu that minimizes
‖e(Fu)− e(Gnu)‖L2(Y), and this fu clearly depends in a measurable fashion on
u. Setting cu B hu − dFu, we obtain Proposition 3.1 as claimed.

It remains to establish the measurability of nu, which was asserted as
being “clearly” true in [4]. Clearly it suffices to show that for each n, the set{

u ∈ U : ‖e(Fu) − e(Gn)‖L2(X) <
1

100
for some Fu ∈ Ωu

}
is measurable in U.

Fix n. Let Z1(Γ,Y,T) ⊂ M(Y,T)Γ denote the collection of (Y,T)-cocycles.
The above set is the preimage under the map u 7→ hu of the set

(29) {h ∈ Z1(Γ,Y,T) : h − dF ∈ TΓ for some F with e(F) ∈ Bn}
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where

Bn B

{
f ∈ M(Y, S 1) : ‖ f − e(Gn)‖L2(X) <

1
100

}
(note that h−dF is a cocycle, and so if it lies in TΓ then it must come from a
character in Γ̂). By the measurability of the map u 7→ hu, it suffices to show
that (29) is measurable in Z1(Γ,Y,T).

The constraint h − dF ∈ TΓ can be expanded as an equation of the form

e(hγ(x))e(F(x))
e(F(T γx))

= e(cγ)

holding almost everywhere in x for each g ∈ G and some cγ ∈ T. If we now
define the unitary operators Uγ

h : L2(Y)→ L2(Y) by

Uγ
h f (x) B e(−hγ(x))F(T γx)

(noting from the cocycle equation that these give a unitary action of Γ) and
define a joint eigenfunction of (Uγ,h)γ∈Γ to be a function f ∈ M(X, S 1) such
that Uγ,h f = λγ f for all γ ∈ Γ and λ ∈ S 1, we see that the set (29) can be
written as

{h ∈ Z1(Γ,Y,T) : (Uγ,h)γ∈Γ has a joint eigenfunction in Bn}.

For any n′ and sufficiently small ε > 0, we will show that there is a
measurable set S n′,ε which contains
(30)
{h ∈ Z1(Γ,Y,T) : (Uγ,h)γ∈Γ has a joint eigenfunction f with ‖ f−e(Gn′)‖L2(Y) < ε

10}

and is contained in
(31)
{h ∈ Z1(Γ,Y,T) : (Uγ,h)γ∈Γ has a joint eigenfunction f with ‖ f−e(Gn′)‖L2(Y) < ε}

taking a suitable countable union of such sets, we obtain the claim.
We now set S n′,ε to be the set

S n′,ε B {h ∈ Z1(Γ,Y,T) : lim
n→∞

1
|Φn|

∑
γ∈Φn

|〈Uγ
hGn′ ,Gn′〉|

2 ≥ 1 − ε8},

where Φn is some Følner sequence for G. The existence of the limit here
follows from the mean ergodic theorem for Hilbert spaces (applied to the
unitary action γ 7→ Uγ

h ⊗ (Uγ
h )∗ of Γ on L2(Y)⊗ L2(Y)). Observe that S n′,ε is

measurable.
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Suppose that h lies in the set (30), then 24

〈Uγ
h e(Gn′), e(Gn′)〉 = 〈Uγ

h f , f 〉 + O(ε10) = 1 + O(ε10)

for every γ ∈ Γ, and so h ∈ S n′,ε if ε is small enough. Conversely, suppose
that h lies in the set S n′,ε. The operator

A f B lim
n→∞

1
|Φn|

∑
γ∈Φn

〈 f ,Uγ
h e(Gn′)〉U

γ
h e(Gn′)

(with the limit existing in the weak operator topology at least, thanks to the
mean ergodic theorem for Hilbert spaces as before) is a self-adjoint Hilbert–
Schmidt operator of Hilbert–Schmidt norm at most 1 (it is the limit finite
rank operators of this form), and by construction one has

〈Ae(Gn′), e(Gn′)〉 ≥ 1 − ε8.

From the spectral theorem, A has a one-dimensional eigenspace of eigen-
value 1−O(ε8) (and all other eigenvalues of size at most O(ε4), to maintain
the Hilbert–Schmidt bound), and a unit eigenvector f in this eigenspace is
such that

〈e(Gn′), f 〉 ≥ 1 − O(ε4)

and hence by the parallelogram law

‖e(Gn′) − f ‖L2(Y) = O(ε2).

Observe from the fact that the Uγ
h are a group action and the Følner prop-

erty that A commutes with every Uγ
h , hence by one-dimensionality of the

eigenspace, f is a joint eigenfunction. (Note that | f | is G-invariant, hence
constant by ergodicity, hence equal to 1 since f is a unit vector in L2(Y), so
f lies in M(Y, S 1).) Thus h lies in the set (31), and the claim follows.
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